Marginal Structural Models for Life-Course Theories and Social Epidemiology: Definitions, Sources of Bias, and Simulated Illustrations

Abstract Social epidemiology aims to identify social structural risk factors, thus informing targets and timing of interventions. Ascertaining which interventions will be most effective and when they should be implemented is challenging because social conditions vary across the life course and are s...

Full description

Saved in:
Bibliographic Details
Published inAmerican journal of epidemiology Vol. 191; no. 2; pp. 349 - 359
Main Authors Gilsanz, Paola, Young, Jessica G, Glymour, M Maria, Tchetgen Tchetgen, Eric J, Eng, Chloe W, Koenen, Karestan C, Kubzansky, Laura D
Format Journal Article
LanguageEnglish
Published United States Oxford University Press 24.01.2022
Oxford Publishing Limited (England)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Abstract Social epidemiology aims to identify social structural risk factors, thus informing targets and timing of interventions. Ascertaining which interventions will be most effective and when they should be implemented is challenging because social conditions vary across the life course and are subject to time-varying confounding. Marginal structural models (MSMs) may be useful but can present unique challenges when studying social epidemiologic exposures over the life course. We describe selected MSMs corresponding to common theoretical life-course models and identify key issues for consideration related to time-varying confounding and late study enrollment. Using simulated data mimicking a cohort study evaluating the effects of depression in early, mid-, and late life on late-life stroke risk, we examined whether and when specific study characteristics and analytical strategies may induce bias. In the context of time-varying confounding, inverse-probability–weighted estimation of correctly specified MSMs accurately estimated the target causal effects, while conventional regression models showed significant bias. When no measure of early-life depression was available, neither MSMs nor conventional models were unbiased, due to confounding by early-life depression. To inform interventions, researchers need to identify timing of effects and consider whether missing data regarding exposures earlier in life may lead to biased estimates.
AbstractList Social epidemiology aims to identify social structural risk factors, thus informing targets and timing of interventions. Ascertaining which interventions will be most effective and when they should be implemented is challenging because social conditions vary across the life course and are subject to time-varying confounding. Marginal structural models (MSMs) may be useful but can present unique challenges when studying social epidemiologic exposures over the life course. We describe selected MSMs corresponding to common theoretical life-course models and identify key issues for consideration related to time-varying confounding and late study enrollment. Using simulated data mimicking a cohort study evaluating the effects of depression in early, mid-, and late life on late-life stroke risk, we examined whether and when specific study characteristics and analytical strategies may induce bias. In the context of time-varying confounding, inverse-probability-weighted estimation of correctly specified MSMs accurately estimated the target causal effects, while conventional regression models showed significant bias. When no measure of early-life depression was available, neither MSMs nor conventional models were unbiased, due to confounding by early-life depression. To inform interventions, researchers need to identify timing of effects and consider whether missing data regarding exposures earlier in life may lead to biased estimates.Social epidemiology aims to identify social structural risk factors, thus informing targets and timing of interventions. Ascertaining which interventions will be most effective and when they should be implemented is challenging because social conditions vary across the life course and are subject to time-varying confounding. Marginal structural models (MSMs) may be useful but can present unique challenges when studying social epidemiologic exposures over the life course. We describe selected MSMs corresponding to common theoretical life-course models and identify key issues for consideration related to time-varying confounding and late study enrollment. Using simulated data mimicking a cohort study evaluating the effects of depression in early, mid-, and late life on late-life stroke risk, we examined whether and when specific study characteristics and analytical strategies may induce bias. In the context of time-varying confounding, inverse-probability-weighted estimation of correctly specified MSMs accurately estimated the target causal effects, while conventional regression models showed significant bias. When no measure of early-life depression was available, neither MSMs nor conventional models were unbiased, due to confounding by early-life depression. To inform interventions, researchers need to identify timing of effects and consider whether missing data regarding exposures earlier in life may lead to biased estimates.
Social epidemiology aims to identify social structural risk factors, thus informing targets and timing of interventions. Ascertaining which interventions will be most effective and when they should be implemented is challenging because social conditions vary across the life course and are subject to time-varying confounding. Marginal structural models (MSMs) may be useful but can present unique challenges when studying social epidemiologic exposures over the life course. We describe selected MSMs corresponding to common theoretical life-course models and identify key issues for consideration related to time-varying confounding and late study enrollment. Using simulated data mimicking a cohort study evaluating the effects of depression in early, mid-, and late life on late-life stroke risk, we examined whether and when specific study characteristics and analytical strategies may induce bias. In the context of time-varying confounding, inverse-probability–weighted estimation of correctly specified MSMs accurately estimated the target causal effects, while conventional regression models showed significant bias. When no measure of early-life depression was available, neither MSMs nor conventional models were unbiased, due to confounding by early-life depression. To inform interventions, researchers need to identify timing of effects and consider whether missing data regarding exposures earlier in life may lead to biased estimates.
Abstract Social epidemiology aims to identify social structural risk factors, thus informing targets and timing of interventions. Ascertaining which interventions will be most effective and when they should be implemented is challenging because social conditions vary across the life course and are subject to time-varying confounding. Marginal structural models (MSMs) may be useful but can present unique challenges when studying social epidemiologic exposures over the life course. We describe selected MSMs corresponding to common theoretical life-course models and identify key issues for consideration related to time-varying confounding and late study enrollment. Using simulated data mimicking a cohort study evaluating the effects of depression in early, mid-, and late life on late-life stroke risk, we examined whether and when specific study characteristics and analytical strategies may induce bias. In the context of time-varying confounding, inverse-probability–weighted estimation of correctly specified MSMs accurately estimated the target causal effects, while conventional regression models showed significant bias. When no measure of early-life depression was available, neither MSMs nor conventional models were unbiased, due to confounding by early-life depression. To inform interventions, researchers need to identify timing of effects and consider whether missing data regarding exposures earlier in life may lead to biased estimates.
Author Gilsanz, Paola
Tchetgen Tchetgen, Eric J
Koenen, Karestan C
Eng, Chloe W
Kubzansky, Laura D
Glymour, M Maria
Young, Jessica G
Author_xml – sequence: 1
  givenname: Paola
  surname: Gilsanz
  fullname: Gilsanz, Paola
  email: Paola.Gilsanz@kp.org
– sequence: 2
  givenname: Jessica G
  surname: Young
  fullname: Young, Jessica G
– sequence: 3
  givenname: M Maria
  surname: Glymour
  fullname: Glymour, M Maria
– sequence: 4
  givenname: Eric J
  surname: Tchetgen Tchetgen
  fullname: Tchetgen Tchetgen, Eric J
– sequence: 5
  givenname: Chloe W
  surname: Eng
  fullname: Eng, Chloe W
– sequence: 6
  givenname: Karestan C
  surname: Koenen
  fullname: Koenen, Karestan C
– sequence: 7
  givenname: Laura D
  surname: Kubzansky
  fullname: Kubzansky, Laura D
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34668974$$D View this record in MEDLINE/PubMed
BookMark eNp9klFrFDEUhYNU7Lb65LsMCEWoY5NMkpn4UNC1amGLD63PITNzs82amazJROkf8Hc33d2KFvEpIfe7h3NP7gHaG_0ICD0n-A3BsjrRKzj59lO3lFeP0IywWpSCcrGHZhhjWkoq6D46iHGFMSGS4ydov2JCNLJmM_TrQoelHbUrLqeQuimFfL3wPbhYGB-KhTVQzn0KEYqra_DBQiz02BeXvrMZPVvbHgbrnV_evC0-gLGjnawf4-tMpNBl2pvivdX5YdNmh-T0BH1x7lyKU9Ab-il6bLSL8Gx3HqKvH8-u5p_LxZdP5_N3i7JjDE-lYYRQXDPG76ZqGtxy0wuoteiprjmhJo9cC6q7lgPhQlasNVK2rKItxq2uDtHpVned2gH6DsbswKl1sIMON8prq_6ujPZaLf0P1eS4pGRZ4NVOIPjvCeKkBhs7cE6P4FNUlDcMkwbXMqMvH6CrnEiOOlOiajjntCKZevGno99W7r8oA2QLdMHHGMCozk6b1LJB6xTB6m4NVF4DtVuD3HP8oOde9t_00Zb2af1f8BZgu8N_
CitedBy_id crossref_primary_10_1016_j_socscimed_2023_116198
crossref_primary_10_1002_dad2_12399
crossref_primary_10_1016_j_socscimed_2024_116804
crossref_primary_10_1186_s12916_024_03424_w
crossref_primary_10_1097_EDE_0000000000001780
crossref_primary_10_1016_j_gloepi_2025_100186
crossref_primary_10_1016_j_socscimed_2025_117712
Cites_doi 10.1093/aje/kwy273
10.1016/j.jad.2012.11.059
10.1111/add.13907
10.1111/j.1600-0447.2009.01519.x
10.1037/a0022610
10.1097/EDE.0000000000000834
10.1212/WNL.0b013e3182904d59
10.1161/JAHA.115.001923
10.1161/STROKEAHA.111.630871
10.1093/aje/kwn164
10.1016/j.socscimed.2016.07.045
10.1097/EDE.0b013e318245847e
10.1097/EDE.0000000000001144
10.1002/sim.1144
10.1515/em-2012-0001
10.1161/STROKEAHA.116.013554
10.1093/aje/kwy067
10.1097/EDE.0000000000000312
10.1097/00001648-200009000-00012
10.1007/s40471-020-00243-4
10.1097/EDE.0b013e3181e13539
10.1093/aje/kwq481
10.1017/S0033291718001368
10.1097/EDE.0b013e31824570bd
10.1146/annurev.publhealth.031308.100310
10.1097/EDE.0b013e3181d61eeb
10.1093/aje/kwx155
10.1017/S0033291716002294
10.1176/appi.ajp.2007.06101757
10.1093/oso/9780192627827.001.0001
10.1136/jech-2011-200040
10.1001/jama.2011.1282
10.1161/STROKEAHA.114.005815
10.1097/00001648-200009000-00011
10.1093/oxfordjournals.bmb.a011601
10.1093/oxfordjournals.aje.a009969
10.1001/jamainternmed.2016.1615
ContentType Journal Article
Copyright The Author(s) 2021. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com. 2021
The Author(s) 2021. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Copyright_xml – notice: The Author(s) 2021. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com. 2021
– notice: The Author(s) 2021. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7T2
7TK
7U7
7U9
C1K
H94
K9.
NAPCQ
7X8
5PM
DOI 10.1093/aje/kwab253
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Calcium & Calcified Tissue Abstracts
Health and Safety Science Abstracts (Full archive)
Neurosciences Abstracts
Toxicology Abstracts
Virology and AIDS Abstracts
Environmental Sciences and Pollution Management
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Nursing & Allied Health Premium
Virology and AIDS Abstracts
Toxicology Abstracts
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Health & Safety Science Abstracts
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef
MEDLINE
Nursing & Allied Health Premium


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Public Health
EISSN 1476-6256
EndPage 359
ExternalDocumentID PMC8897994
34668974
10_1093_aje_kwab253
10.1093/aje/kwab253
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIA NIH HHS
  grantid: R01 AG052132
– fundername: NIA NIH HHS
  grantid: RF1 AG050782
– fundername: NIA NIH HHS
  grantid: R01 AG065276
– fundername: NIA NIH HHS
  grantid: R01 AG066132
– fundername: ;
  grantid: R01AI104459; R01AI27271; RF1AG050782; RF1AG052132; RF1AG055486; R01AG065276; R01AG066132; R01CA222147; R01GM139926; R01MH101269; T32MH017119; T32AG049663
GroupedDBID ---
-DZ
-E4
-~X
..I
.2P
.55
.GJ
.I3
.XZ
.ZR
0R~
186
1CY
1TH
23M
2WC
354
3O-
4.4
482
48X
53G
5GY
5RE
5VS
5WA
5WD
6.Y
6J9
70D
85S
8F7
AABZA
AACZT
AAJKP
AAJQQ
AAMVS
AAOGV
AAPGJ
AAPNW
AAPQZ
AAPXW
AAQQT
AARHZ
AASNB
AAUAY
AAUQX
AAVAP
AAWDT
AAWTL
AAYJJ
ABEFU
ABEUO
ABIXL
ABJNI
ABKDP
ABLJU
ABNHQ
ABNKS
ABOCM
ABPTD
ABQLI
ABQTQ
ABSAR
ABSMQ
ABXVV
ABZBJ
ACFRR
ACGFO
ACGFS
ACGOD
ACMRT
ACPQN
ACPRK
ACUFI
ACUTJ
ACUTO
ACZBC
ADBBV
ADEYI
ADEZT
ADGZP
ADHKW
ADHZD
ADIPN
ADJQC
ADOCK
ADQBN
ADRIX
ADRTK
ADVEK
ADYVW
ADZXQ
AEGPL
AEJOX
AEKPW
AEKSI
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFNX
AFFZL
AFIYH
AFOFC
AFRAH
AFSHK
AFXEN
AFYAG
AGINJ
AGKEF
AGKRT
AGMDO
AGSYK
AHMBA
AHXPO
AI.
AIAGR
AIJHB
AJEEA
ALMA_UNASSIGNED_HOLDINGS
ALUQC
APIBT
APJGH
APWMN
AQDSO
AQKUS
ASPBG
ATGXG
ATTQO
AVNTJ
AVWKF
AXUDD
AZFZN
BAWUL
BAYMD
BCRHZ
BEYMZ
BHONS
BTRTY
BVRKM
BZKNY
C1A
C45
CAG
CDBKE
COF
CS3
CZ4
DAKXR
DIK
DILTD
D~K
E3Z
EBS
EE~
EIHJH
EJD
EMOBN
F3I
F5P
F9B
FEDTE
FLUFQ
FOEOM
FOTVD
FQBLK
GAUVT
GJXCC
GX1
H13
H5~
HAR
HVGLF
HW0
HZ~
IH2
IOX
J21
KAQDR
KBUDW
KC5
KOP
KQ8
KSI
KSN
L7B
M-Z
M49
MBLQV
ML0
N9A
NEJ
NGC
NOMLY
NOYVH
NTWIH
NU-
NVLIB
O0~
O9-
OAWHX
OCZFY
ODMLO
OHH
OHT
OJQWA
OJZSN
OK1
OPAEJ
OVD
OWPYF
O~Y
P2P
P6G
PAFKI
PB-
PEELM
PQQKQ
Q1.
Q5Y
QBD
QZG
R44
RD5
RHF
RIG
RNI
ROL
ROX
ROZ
RUSNO
RW1
RXO
RZF
RZO
TCURE
TEORI
TJX
TMA
TR2
UAP
UBC
UHB
UPT
VH1
W8F
WOQ
X7H
X7M
YAYTL
YF5
YKOAZ
YOC
YQI
YROCO
YSK
YXANX
Z0Y
ZGI
ZKX
ZXP
~91
AAILS
AAYXX
ABDFA
ABEJV
ABGNP
ABVGC
ADCFL
ADMHG
ADNBA
AEHKS
AGORE
AHGBF
AHMMS
AJBYB
AJNCP
ALXQX
CITATION
JXSIZ
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7T2
7TK
7U7
7U9
C1K
H94
K9.
NAPCQ
7X8
5PM
ID FETCH-LOGICAL-c440t-f4112074459262880b5fd6e7a6d2a7512f000762acb5e156934bf99b432b00ba3
ISSN 0002-9262
1476-6256
IngestDate Thu Aug 21 18:39:50 EDT 2025
Thu Jul 10 18:04:13 EDT 2025
Mon Jun 30 08:54:37 EDT 2025
Thu Apr 03 07:01:01 EDT 2025
Thu Apr 24 23:11:07 EDT 2025
Tue Jul 01 01:20:10 EDT 2025
Wed Aug 28 03:17:03 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords social epidemiology
confounding
simulation
bias
marginal structural models
inverse probability weighting
life course
Language English
License This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)
https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
The Author(s) 2021. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c440t-f4112074459262880b5fd6e7a6d2a7512f000762acb5e156934bf99b432b00ba3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/8897994
PMID 34668974
PQID 2638555231
PQPubID 41038
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8897994
proquest_miscellaneous_2584018079
proquest_journals_2638555231
pubmed_primary_34668974
crossref_citationtrail_10_1093_aje_kwab253
crossref_primary_10_1093_aje_kwab253
oup_primary_10_1093_aje_kwab253
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-01-24
PublicationDateYYYYMMDD 2022-01-24
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-24
  day: 24
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Oxford
PublicationTitle American journal of epidemiology
PublicationTitleAlternate Am J Epidemiol
PublicationYear 2022
Publisher Oxford University Press
Oxford Publishing Limited (England)
Publisher_xml – name: Oxford University Press
– name: Oxford Publishing Limited (England)
References Lipsitch (2022030514100670200_ref36) 2010; 21
Hernán (2022030514100670200_ref7) 2000; 11
Hernan (2022030514100670200_ref25) 2020
Mayeda (2022030514100670200_ref39) 2018; 29
Cain (2022030514100670200_ref38) 2011; 173
Young (2022030514100670200_ref27) 2014; 3
Gilsanz (2022030514100670200_ref9) 2017; 48
Cerdá (2022030514100670200_ref11) 2010; 21
Pan (2022030514100670200_ref5) 2011; 306
Li (2022030514100670200_ref13) 2016; 176
Hope (2022030514100670200_ref18) 2019; 49
Hardeveld (2022030514100670200_ref24) 2010; 122
Robins (2022030514100670200_ref29) 1997
Cole (2022030514100670200_ref28) 2008; 168
Hernán (2022030514100670200_ref6) 2002; 21
Robins (2022030514100670200_ref26) 2000; 11
Koenen (2022030514100670200_ref2) 2017; 47
Nandi (2022030514100670200_ref12) 2012; 23
Krishna Rao (2022030514100670200_ref14) 2015; 26
Dong (2022030514100670200_ref22) 2012; 43
Shi (2022030514100670200_ref37) 2020; 7
Glymour (2022030514100670200_ref3) 2016; 166
Kuh (2022030514100670200_ref31) 1997
Marden (2022030514100670200_ref16) 2017; 186
Kaufman (2022030514100670200_ref1) 1999; 150
Rhew (2022030514100670200_ref17) 2017; 112
Nagayoshi (2022030514100670200_ref4) 2014; 45
VanderWeele (2022030514100670200_ref19) 2011; 79
Power (2022030514100670200_ref32) 1997; 53
Berkman (2022030514100670200_ref30) 2009; 30
Zhong (2022030514100670200_ref20) 2018; 187
Zisook (2022030514100670200_ref23) 2007; 164
De Stavola (2022030514100670200_ref33) 2012; 23
Pacek (2022030514100670200_ref34) 2013; 148
Gilsanz (2022030514100670200_ref10) 2015; 4
Mansournia (2022030514100670200_ref8) 2019; 188
Capistrant (2022030514100670200_ref15) 2012; 66
Yakubovich (2022030514100670200_ref21) 2020; 31
Howard (2022030514100670200_ref35) 2013; 80
References_xml – volume: 188
  start-page: 753
  issue: 4
  year: 2019
  ident: 2022030514100670200_ref8
  article-title: The implications of using lagged and baseline exposure terms in longitudinal causal and regression models
  publication-title: Am J Epidemiol.
  doi: 10.1093/aje/kwy273
– volume: 148
  start-page: 188
  issue: 2-3
  year: 2013
  ident: 2022030514100670200_ref34
  article-title: The bidirectional relationships between alcohol, cannabis, co-occurring alcohol and cannabis use disorders with major depressive disorder: results from a national sample
  publication-title: J Affect Disord.
  doi: 10.1016/j.jad.2012.11.059
– volume-title: Latent Variable Modeling and Applications to Causality
  year: 1997
  ident: 2022030514100670200_ref29
– volume: 112
  start-page: 1952
  issue: 11
  year: 2017
  ident: 2022030514100670200_ref17
  article-title: Examination of cumulative effects of early adolescent depression on cannabis and alcohol use disorder in late adolescence in a community-based cohort
  publication-title: Addiction.
  doi: 10.1111/add.13907
– volume: 122
  start-page: 184
  issue: 3
  year: 2010
  ident: 2022030514100670200_ref24
  article-title: Prevalence and predictors of recurrence of major depressive disorder in the adult population
  publication-title: Acta Psychiatr Scand.
  doi: 10.1111/j.1600-0447.2009.01519.x
– volume: 79
  start-page: 225
  issue: 2
  year: 2011
  ident: 2022030514100670200_ref19
  article-title: A marginal structural model analysis for loneliness: implications for intervention trials and clinical practice
  publication-title: J Consult Clin Psychol.
  doi: 10.1037/a0022610
– volume: 29
  start-page: 525
  issue: 4
  year: 2018
  ident: 2022030514100670200_ref39
  article-title: Can survival bias explain the age attenuation of racial inequalities in stroke incidence? A simulation study
  publication-title: Epidemiology.
  doi: 10.1097/EDE.0000000000000834
– volume: 80
  start-page: 1655
  issue: 18
  year: 2013
  ident: 2022030514100670200_ref35
  article-title: Effect of duration and age at exposure to the Stroke Belt on incident stroke in adulthood
  publication-title: Neurology.
  doi: 10.1212/WNL.0b013e3182904d59
– volume-title: Causal Inference: What If.
  year: 2020
  ident: 2022030514100670200_ref25
– volume: 4
  issue: 5
  year: 2015
  ident: 2022030514100670200_ref10
  article-title: Changes in depressive symptoms and incidence of first stroke among middle-aged and older US adults
  publication-title: J Am Heart Assoc
  doi: 10.1161/JAHA.115.001923
– volume: 43
  start-page: 32
  issue: 1
  year: 2012
  ident: 2022030514100670200_ref22
  article-title: Depression and risk of stroke: a meta-analysis of prospective studies
  publication-title: Stroke.
  doi: 10.1161/STROKEAHA.111.630871
– volume: 168
  start-page: 656
  issue: 6
  year: 2008
  ident: 2022030514100670200_ref28
  article-title: Constructing inverse probability weights for marginal structural models
  publication-title: Am J Epidemiol.
  doi: 10.1093/aje/kwn164
– volume: 166
  start-page: 258
  year: 2016
  ident: 2022030514100670200_ref3
  article-title: Causal inference challenges in social epidemiology: bias, specificity, and imagination
  publication-title: Soc Sci Med.
  doi: 10.1016/j.socscimed.2016.07.045
– volume: 23
  start-page: 233
  issue: 2
  year: 2012
  ident: 2022030514100670200_ref33
  article-title: Marginal structural models: the way forward for life-course epidemiology?
  publication-title: Epidemiology.
  doi: 10.1097/EDE.0b013e318245847e
– volume: 31
  start-page: 272
  issue: 2
  year: 2020
  ident: 2022030514100670200_ref21
  article-title: Long-term exposure to neighborhood deprivation and intimate partner violence among women: a UK birth cohort study
  publication-title: Epidemiology.
  doi: 10.1097/EDE.0000000000001144
– volume: 21
  start-page: 1689
  issue: 12
  year: 2002
  ident: 2022030514100670200_ref6
  article-title: Estimating the causal effect of zidovudine on CD4 count with a marginal structural model for repeated measures
  publication-title: Stat Med.
  doi: 10.1002/sim.1144
– volume: 3
  start-page: 1
  issue: 1
  year: 2014
  ident: 2022030514100670200_ref27
  article-title: Identification, estimation and approximation of risk under interventions that depend on the natural value of treatment using observational data
  publication-title: Epidemiol Methods.
  doi: 10.1515/em-2012-0001
– volume: 48
  start-page: 43
  issue: 1
  year: 2017
  ident: 2022030514100670200_ref9
  article-title: Changes in depressive symptoms and subsequent risk of stroke in the Cardiovascular Health Study
  publication-title: Stroke.
  doi: 10.1161/STROKEAHA.116.013554
– volume: 187
  start-page: 1871
  issue: 9
  year: 2018
  ident: 2022030514100670200_ref20
  article-title: Causal model of the association of social support with antepartum depression: a marginal structural modeling approach
  publication-title: Am J Epidemiol.
  doi: 10.1093/aje/kwy067
– volume: 26
  start-page: 509
  issue: 4
  year: 2015
  ident: 2022030514100670200_ref14
  article-title: Estimating the effect of childhood socioeconomic disadvantage on oral cancer in India using marginal structural models
  publication-title: Epidemiology.
  doi: 10.1097/EDE.0000000000000312
– volume: 11
  start-page: 561
  issue: 5
  year: 2000
  ident: 2022030514100670200_ref7
  article-title: Marginal structural models to estimate the causal effect of zidovudine on the survival of HIV-positive men
  publication-title: Epidemiology.
  doi: 10.1097/00001648-200009000-00012
– volume: 7
  start-page: 190
  issue: 4
  year: 2020
  ident: 2022030514100670200_ref37
  article-title: A selective review of negative control methods in epidemiology
  publication-title: Curr Epidemiol Rep.
  doi: 10.1007/s40471-020-00243-4
– volume: 21
  start-page: 482
  issue: 4
  year: 2010
  ident: 2022030514100670200_ref11
  article-title: The relationship between neighborhood poverty and alcohol use: estimation by marginal structural models
  publication-title: Epidemiology.
  doi: 10.1097/EDE.0b013e3181e13539
– volume: 173
  start-page: 1078
  issue: 9
  year: 2011
  ident: 2022030514100670200_ref38
  article-title: Bias due to left truncation and left censoring in longitudinal studies of developmental and disease processes
  publication-title: Am J Epidemiol.
  doi: 10.1093/aje/kwq481
– volume: 49
  start-page: 664
  issue: 4
  year: 2019
  ident: 2022030514100670200_ref18
  article-title: Temporal effects of maternal psychological distress on child mental health problems at ages 3, 5, 7 and 11: analysis from the UK Millennium Cohort Study
  publication-title: Psychol Med.
  doi: 10.1017/S0033291718001368
– volume: 23
  start-page: 223
  issue: 2
  year: 2012
  ident: 2022030514100670200_ref12
  article-title: Using marginal structural models to estimate the direct effect of adverse childhood social conditions on onset of heart disease, diabetes, and stroke
  publication-title: Epidemiology.
  doi: 10.1097/EDE.0b013e31824570bd
– volume: 30
  start-page: 27
  year: 2009
  ident: 2022030514100670200_ref30
  article-title: Social epidemiology: social determinants of health in the United States: are we losing ground?
  publication-title: Annu Rev Public Health.
  doi: 10.1146/annurev.publhealth.031308.100310
– volume: 21
  start-page: 383
  issue: 3
  year: 2010
  ident: 2022030514100670200_ref36
  article-title: Negative controls: a tool for detecting confounding and bias in observational studies
  publication-title: Epidemiology.
  doi: 10.1097/EDE.0b013e3181d61eeb
– volume: 186
  start-page: 805
  issue: 7
  year: 2017
  ident: 2022030514100670200_ref16
  article-title: Contribution of socioeconomic status at 3 life-course periods to late-life memory function and decline: early and late predictors of dementia risk
  publication-title: Am J Epidemiol.
  doi: 10.1093/aje/kwx155
– volume: 47
  start-page: 209
  issue: 2
  year: 2017
  ident: 2022030514100670200_ref2
  article-title: Post-traumatic stress disorder and cardiometabolic disease: improving causal inference to inform practice
  publication-title: Psychol Med.
  doi: 10.1017/S0033291716002294
– volume: 164
  start-page: 1539
  issue: 10
  year: 2007
  ident: 2022030514100670200_ref23
  article-title: Effect of age at onset on the course of major depressive disorder
  publication-title: Am J Psychiatry.
  doi: 10.1176/appi.ajp.2007.06101757
– volume-title: A Life Course Approach to Chronic Disease Epidemiology
  year: 1997
  ident: 2022030514100670200_ref31
  doi: 10.1093/oso/9780192627827.001.0001
– volume: 66
  start-page: 951
  issue: 10
  year: 2012
  ident: 2022030514100670200_ref15
  article-title: Current and long-term spousal caregiving and onset of cardiovascular disease
  publication-title: J Epidemiol Community Health.
  doi: 10.1136/jech-2011-200040
– volume: 306
  start-page: 1241
  issue: 11
  year: 2011
  ident: 2022030514100670200_ref5
  article-title: Depression and risk of stroke morbidity and mortality: a meta-analysis and systematic review
  publication-title: JAMA.
  doi: 10.1001/jama.2011.1282
– volume: 45
  start-page: 2868
  issue: 10
  year: 2014
  ident: 2022030514100670200_ref4
  article-title: Social network, social support, and risk of incident stroke: Atherosclerosis Risk in Communities Study
  publication-title: Stroke.
  doi: 10.1161/STROKEAHA.114.005815
– volume: 11
  start-page: 550
  issue: 5
  year: 2000
  ident: 2022030514100670200_ref26
  article-title: Marginal structural models and causal inference in epidemiology
  publication-title: Epidemiology.
  doi: 10.1097/00001648-200009000-00011
– volume: 53
  start-page: 210
  issue: 1
  year: 1997
  ident: 2022030514100670200_ref32
  article-title: Social and biological pathways linking early life and adult disease
  publication-title: Br Med Bull.
  doi: 10.1093/oxfordjournals.bmb.a011601
– volume: 150
  start-page: 113
  issue: 2
  year: 1999
  ident: 2022030514100670200_ref1
  article-title: Seeking causal explanations in social epidemiology
  publication-title: Am J Epidemiol.
  doi: 10.1093/oxfordjournals.aje.a009969
– volume: 176
  start-page: 777
  issue: 6
  year: 2016
  ident: 2022030514100670200_ref13
  article-title: Association of religious service attendance with mortality among women
  publication-title: JAMA Intern Med.
  doi: 10.1001/jamainternmed.2016.1615
SSID ssj0011950
Score 2.4333282
Snippet Abstract Social epidemiology aims to identify social structural risk factors, thus informing targets and timing of interventions. Ascertaining which...
Social epidemiology aims to identify social structural risk factors, thus informing targets and timing of interventions. Ascertaining which interventions will...
SourceID pubmedcentral
proquest
pubmed
crossref
oup
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 349
SubjectTerms Bias
Causality
Computer Simulation
Data Interpretation, Statistical
Depression - epidemiology
Depression - etiology
Epidemiology
Health risks
Humans
Mathematical models
Mimicry
Missing data
Models, Structural
Models, Theoretical
Practice of Epidemiology
Regression analysis
Regression models
Risk analysis
Risk Factors
Social conditions
Statistical analysis
Stroke - psychology
Structural models
Title Marginal Structural Models for Life-Course Theories and Social Epidemiology: Definitions, Sources of Bias, and Simulated Illustrations
URI https://www.ncbi.nlm.nih.gov/pubmed/34668974
https://www.proquest.com/docview/2638555231
https://www.proquest.com/docview/2584018079
https://pubmed.ncbi.nlm.nih.gov/PMC8897994
Volume 191
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbtQwELWWIlWVEIJyCxQwUp-g6cWxnYQ37m3R8sJW6lvkZG0RSLOVdldIfADfwmcyvq5DCwJeoii2YylzMp6xZ84gtM3gL1MF209rJkpwUHKalkTylKq8EITpgx-9oT_-wA9P6PEpOx2NfkRRS8tFvdt8uzSv5H-kCs9ArjpL9h8kG14KD-Ae5AtXkDBc_0rGukqtqWr10bDAGgYNXdysMyQL4G8rmeqidHNpc_DBKw6hmppPeFUd1vA-vZaq7W0Il9kUNfv6JtTjZWvzvszg9kyX_AJD9ajrlp52dx5bueEYKOKlkNFkIein7eZgm1pLdtaJCyroWAfpNmJVAOxdp_cqDMrGOs-oDWMmgL4FfKln_sZreXfw5XY2iA4RSW1C9a602pjmPAUHjQ_Uta3u5XBJIuWbWfLTC4uCJcwSnyVcv3wVNbH0xBFAzs8MQjLKeVHmdLU2hohF33QFXSXgkBjn_eh9OK_SxXRd9ifMtgdz7bmZNtC6HzswfQbplJFX82twbmTtTG6g685NwS8s5m6ikew30frYBWJsomt2uxfbLLZb6LuHIl5BEVsoYoAijqCIPRQxoAlbKOIYis9xBMQd7GCIZwprGO7YYR6EeADC2-jk7ZvJq8PUlfhIG0r3F6miYO-DgqBM81bCWlIzNeUyF3xKRA7GqDJnxUQ0NZMHjJcZrVVZ1jQjsF7UIruD1vpZL-8hnAklKM8aLhV4BSUvSDE9KAsFAlF5WU4T9NR__apx_Pe6DEtX2TiMrAKpVU5qCdoOnc8t7cvl3R6DGP_cY8uLuHL_3LwisOgxxsC1StCT0Ax6XR_WiV7OltAH9KQm18vLBN21iAjzeEAlKB9gJXTQnPHDlr79ZLjji0Kf49P7v33nA7Sx-he30BqARj4Eu3tRPzKQ_wmXgd41
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Marginal+Structural+Models+for+Life-Course+Theories+and+Social+Epidemiology%3A+Definitions%2C+Sources+of+Bias%2C+and+Simulated+Illustrations&rft.jtitle=American+journal+of+epidemiology&rft.au=Gilsanz%2C+Paola&rft.au=Young%2C+Jessica+G&rft.au=Glymour%2C+M+Maria&rft.au=Tchetgen+Tchetgen%2C+Eric+J&rft.date=2022-01-24&rft.eissn=1476-6256&rft.volume=191&rft.issue=2&rft.spage=349&rft_id=info:doi/10.1093%2Faje%2Fkwab253&rft_id=info%3Apmid%2F34668974&rft.externalDocID=34668974
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-9262&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-9262&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-9262&client=summon