Beetroot juice and exercise: pharmacodynamic and dose-response relationships
Dietary supplementation with beetroot juice (BR), containing approximately 5–8 mmol inorganic nitrate (NO 3 − ), increases plasma nitrite concentration ([NO 2 − ]), reduces blood pressure, and may positively influence the physiological responses to exercise. However, the dose-response relationship b...
Saved in:
Published in | Journal of applied physiology (1985) Vol. 115; no. 3; pp. 325 - 336 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Physiological Society
01.08.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Dietary supplementation with beetroot juice (BR), containing approximately 5–8 mmol inorganic nitrate (NO
3
−
), increases plasma nitrite concentration ([NO
2
−
]), reduces blood pressure, and may positively influence the physiological responses to exercise. However, the dose-response relationship between the volume of BR ingested and the physiological effects invoked has not been investigated. In a balanced crossover design, 10 healthy men ingested 70, 140, or 280 ml concentrated BR (containing 4.2, 8.4, and 16.8 mmol NO
3
−
, respectively) or no supplement to establish the effects of BR on resting plasma [NO
3
−
] and [NO
2
−
] over 24 h. Subsequently, on six separate occasions, 10 subjects completed moderate-intensity and severe-intensity cycle exercise tests, 2.5 h postingestion of 70, 140, and 280 ml BR or NO
3
−
-depleted BR as placebo (PL). Following acute BR ingestion, plasma [NO
2
−
] increased in a dose-dependent manner, with the peak changes occurring at approximately 2–3 h. Compared with PL, 70 ml BR did not alter the physiological responses to exercise. However, 140 and 280 ml BR reduced the steady-state oxygen (O
2
) uptake during moderate-intensity exercise by 1.7% ( P = 0.06) and 3.0% ( P < 0.05), whereas time-to-task failure was extended by 14% and 12% (both P < 0.05), respectively, compared with PL. The results indicate that whereas plasma [NO
2
−
] and the O
2
cost of moderate-intensity exercise are altered dose dependently with NO
3
−
-rich BR, there is no additional improvement in exercise tolerance after ingesting BR containing 16.8 compared with 8.4 mmol NO
3
−
. These findings have important implications for the use of BR to enhance cardiovascular health and exercise performance in young adults. |
---|---|
AbstractList | Dietary supplementation with beetroot juice (BR), containing approximately 5-8 mmol inorganic nitrate (NO3-), increases plasma nitrite concentration ([NO2-]), reduces blood pressure, and may positively influence the physiological responses to exercise. However, the dose-response relationship between the volume of BR ingested and the physiological effects invoked has not been investigated. In a balanced crossover design, 10 healthy men ingested 70, 140, or 280 ml concentrated BR (containing 4.2, 8.4, and 16.8 mmol NO..., respectively) or no supplement to establish the effects of BR on resting plasma [NO3-] and [NO...] over 24 h. Subsequently, on six separate occasions, 10 subjects completed moderate-intensity and severe-intensity cycle exercise tests, 2.5 h postingestion of 70, 140, and 280 ml BR or NO...-depleted BR as placebo (PL). Following acute BR ingestion, plasma [NO...] increased in a dose-dependent manner, with the peak changes occurring at approximately 2-3 h. Compared with PL, 70 ml BR did not alter the physiological responses to exercise. However, 140 and 280 ml BR reduced the steady-state oxygen (O2) uptake during moderate-intensity exercise by 1.7% (P = 0.06) and 3.0% (P < 0.05), whereas time-to-task failure was extended by 14% and 12% (both P < 0.05), respectively, compared with PL. The results indicate that whereas plasma [NO...] and the O2 cost of moderate-intensity exercise are altered dose dependently with NO...-rich BR, there is no additional improvement in exercise tolerance after ingesting BR containing 16.8 compared with 8.4 mmol NO... These findings have important implications for the use of BR to enhance cardiovascular health and exercise performance in young adults. (ProQuest: ... denotes formulae/symbols omitted.) Dietary supplementation with beetroot juice (BR), containing approximately 5–8 mmol inorganic nitrate (NO 3 − ), increases plasma nitrite concentration ([NO 2 − ]), reduces blood pressure, and may positively influence the physiological responses to exercise. However, the dose-response relationship between the volume of BR ingested and the physiological effects invoked has not been investigated. In a balanced crossover design, 10 healthy men ingested 70, 140, or 280 ml concentrated BR (containing 4.2, 8.4, and 16.8 mmol NO 3 − , respectively) or no supplement to establish the effects of BR on resting plasma [NO 3 − ] and [NO 2 − ] over 24 h. Subsequently, on six separate occasions, 10 subjects completed moderate-intensity and severe-intensity cycle exercise tests, 2.5 h postingestion of 70, 140, and 280 ml BR or NO 3 − -depleted BR as placebo (PL). Following acute BR ingestion, plasma [NO 2 − ] increased in a dose-dependent manner, with the peak changes occurring at approximately 2–3 h. Compared with PL, 70 ml BR did not alter the physiological responses to exercise. However, 140 and 280 ml BR reduced the steady-state oxygen (O 2 ) uptake during moderate-intensity exercise by 1.7% ( P = 0.06) and 3.0% ( P < 0.05), whereas time-to-task failure was extended by 14% and 12% (both P < 0.05), respectively, compared with PL. The results indicate that whereas plasma [NO 2 − ] and the O 2 cost of moderate-intensity exercise are altered dose dependently with NO 3 − -rich BR, there is no additional improvement in exercise tolerance after ingesting BR containing 16.8 compared with 8.4 mmol NO 3 − . These findings have important implications for the use of BR to enhance cardiovascular health and exercise performance in young adults. Dietary supplementation with beetroot juice (BR), containing approximately 5-8 mmol inorganic nitrate (NO3(-)), increases plasma nitrite concentration ([NO2(-)]), reduces blood pressure, and may positively influence the physiological responses to exercise. However, the dose-response relationship between the volume of BR ingested and the physiological effects invoked has not been investigated. In a balanced crossover design, 10 healthy men ingested 70, 140, or 280 ml concentrated BR (containing 4.2, 8.4, and 16.8 mmol NO3(-), respectively) or no supplement to establish the effects of BR on resting plasma [NO3(-)] and [NO2(-)] over 24 h. Subsequently, on six separate occasions, 10 subjects completed moderate-intensity and severe-intensity cycle exercise tests, 2.5 h postingestion of 70, 140, and 280 ml BR or NO3(-)-depleted BR as placebo (PL). Following acute BR ingestion, plasma [NO2(-)] increased in a dose-dependent manner, with the peak changes occurring at approximately 2-3 h. Compared with PL, 70 ml BR did not alter the physiological responses to exercise. However, 140 and 280 ml BR reduced the steady-state oxygen (O2) uptake during moderate-intensity exercise by 1.7% (P = 0.06) and 3.0% (P < 0.05), whereas time-to-task failure was extended by 14% and 12% (both P < 0.05), respectively, compared with PL. The results indicate that whereas plasma [NO2(-)] and the O2 cost of moderate-intensity exercise are altered dose dependently with NO3(-)-rich BR, there is no additional improvement in exercise tolerance after ingesting BR containing 16.8 compared with 8.4 mmol NO3(-). These findings have important implications for the use of BR to enhance cardiovascular health and exercise performance in young adults.Dietary supplementation with beetroot juice (BR), containing approximately 5-8 mmol inorganic nitrate (NO3(-)), increases plasma nitrite concentration ([NO2(-)]), reduces blood pressure, and may positively influence the physiological responses to exercise. However, the dose-response relationship between the volume of BR ingested and the physiological effects invoked has not been investigated. In a balanced crossover design, 10 healthy men ingested 70, 140, or 280 ml concentrated BR (containing 4.2, 8.4, and 16.8 mmol NO3(-), respectively) or no supplement to establish the effects of BR on resting plasma [NO3(-)] and [NO2(-)] over 24 h. Subsequently, on six separate occasions, 10 subjects completed moderate-intensity and severe-intensity cycle exercise tests, 2.5 h postingestion of 70, 140, and 280 ml BR or NO3(-)-depleted BR as placebo (PL). Following acute BR ingestion, plasma [NO2(-)] increased in a dose-dependent manner, with the peak changes occurring at approximately 2-3 h. Compared with PL, 70 ml BR did not alter the physiological responses to exercise. However, 140 and 280 ml BR reduced the steady-state oxygen (O2) uptake during moderate-intensity exercise by 1.7% (P = 0.06) and 3.0% (P < 0.05), whereas time-to-task failure was extended by 14% and 12% (both P < 0.05), respectively, compared with PL. The results indicate that whereas plasma [NO2(-)] and the O2 cost of moderate-intensity exercise are altered dose dependently with NO3(-)-rich BR, there is no additional improvement in exercise tolerance after ingesting BR containing 16.8 compared with 8.4 mmol NO3(-). These findings have important implications for the use of BR to enhance cardiovascular health and exercise performance in young adults. Dietary supplementation with beetroot juice (BR), containing approximately 5-8 mmol inorganic nitrate (NO3(-)), increases plasma nitrite concentration ([NO2(-)]), reduces blood pressure, and may positively influence the physiological responses to exercise. However, the dose-response relationship between the volume of BR ingested and the physiological effects invoked has not been investigated. In a balanced crossover design, 10 healthy men ingested 70, 140, or 280 ml concentrated BR (containing 4.2, 8.4, and 16.8 mmol NO3(-), respectively) or no supplement to establish the effects of BR on resting plasma [NO3(-)] and [NO2(-)] over 24 h. Subsequently, on six separate occasions, 10 subjects completed moderate-intensity and severe-intensity cycle exercise tests, 2.5 h postingestion of 70, 140, and 280 ml BR or NO3(-)-depleted BR as placebo (PL). Following acute BR ingestion, plasma [NO2(-)] increased in a dose-dependent manner, with the peak changes occurring at approximately 2-3 h. Compared with PL, 70 ml BR did not alter the physiological responses to exercise. However, 140 and 280 ml BR reduced the steady-state oxygen (O2) uptake during moderate-intensity exercise by 1.7% (P = 0.06) and 3.0% (P < 0.05), whereas time-to-task failure was extended by 14% and 12% (both P < 0.05), respectively, compared with PL. The results indicate that whereas plasma [NO2(-)] and the O2 cost of moderate-intensity exercise are altered dose dependently with NO3(-)-rich BR, there is no additional improvement in exercise tolerance after ingesting BR containing 16.8 compared with 8.4 mmol NO3(-). These findings have important implications for the use of BR to enhance cardiovascular health and exercise performance in young adults. |
Author | Wylie, Lee J. Bailey, Stephen J. Jeukendrup, Asker E. Winyard, Paul G. Vanhatalo, Anni Blackwell, Jamie R. Skiba, Philip F. Kelly, James Jones, Andrew M. |
Author_xml | – sequence: 1 givenname: Lee J. surname: Wylie fullname: Wylie, Lee J. organization: Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, St. Luke's Campus, Exeter, United Kingdom – sequence: 2 givenname: James surname: Kelly fullname: Kelly, James organization: Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, St. Luke's Campus, Exeter, United Kingdom – sequence: 3 givenname: Stephen J. surname: Bailey fullname: Bailey, Stephen J. organization: Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, St. Luke's Campus, Exeter, United Kingdom – sequence: 4 givenname: Jamie R. surname: Blackwell fullname: Blackwell, Jamie R. organization: Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, St. Luke's Campus, Exeter, United Kingdom – sequence: 5 givenname: Philip F. surname: Skiba fullname: Skiba, Philip F. organization: Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, St. Luke's Campus, Exeter, United Kingdom – sequence: 6 givenname: Paul G. surname: Winyard fullname: Winyard, Paul G. organization: University of Exeter Medical School, St. Luke's Campus, Exeter, United Kingdom; and – sequence: 7 givenname: Asker E. surname: Jeukendrup fullname: Jeukendrup, Asker E. organization: Gatorade Sports Science Institute, Barrington, Illinois – sequence: 8 givenname: Anni surname: Vanhatalo fullname: Vanhatalo, Anni organization: Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, St. Luke's Campus, Exeter, United Kingdom – sequence: 9 givenname: Andrew M. surname: Jones fullname: Jones, Andrew M. organization: Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, St. Luke's Campus, Exeter, United Kingdom |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23640589$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkU1r3DAQhkVJaTZp_0Jq6CUXb0dfljaQQxPyUVjoJTkLWRqzWmzLlWzo_vt4NwmEXNLTvDDPO8PMe0KO-tgjId8pLCmV7OfWDkM7bHY5xHYJwBVbMqD8E1nMXVbSCugRWWgloVRSq2NykvMWgAoh6RdyzHglQOrVgqyvEMcU41hsp-CwsL0v8B8mFzJeFMPGps666He97YI7dH3MWCbMQ-wzFglbO4ZZbsKQv5LPjW0zfnupp-Tx9ubh-r5c_7n7ff1rXTohYCwbKuoGhNK-8mi5R6ex5mrlmZcgGqq5pLPmUoGzNatrlA1D2oi6ktrVjp-S8-e5Q4p_J8yj6UJ22La2xzhlQwUXwECB-A-UKskZlXv0xzt0G6fUz4fsqZXQWlWrmTp7oaa6Q2-GFDqbdub1pTNw-Qy4FHNO2BgXxsOPxmRDayiYfYTmbYTmEKHZRzj71Tv_64qPnE9xJqXu |
CitedBy_id | crossref_primary_10_3389_fphys_2022_827235 crossref_primary_10_1007_s00520_022_07520_6 crossref_primary_10_1113_JP281995 crossref_primary_10_1152_japplphysiol_00909_2016 crossref_primary_10_1515_jirspa_2022_0020 crossref_primary_10_1123_ijsnem_2023_0202 crossref_primary_10_3390_ijerph181910202 crossref_primary_10_3389_fphys_2017_00401 crossref_primary_10_1017_S0007114516002348 crossref_primary_10_1016_j_niox_2015_01_002 crossref_primary_10_1080_17461391_2016_1230892 crossref_primary_10_1139_apnm_2013_0336 crossref_primary_10_1519_JSC_0000000000003286 crossref_primary_10_18632_aging_101984 crossref_primary_10_1016_j_clnesp_2020_08_007 crossref_primary_10_1016_j_nicl_2022_103115 crossref_primary_10_1139_apnm_2013_0574 crossref_primary_10_3390_nu14235069 crossref_primary_10_3389_fphys_2015_00211 crossref_primary_10_1186_s12970_021_00472_y crossref_primary_10_1080_17461391_2018_1445298 crossref_primary_10_4103_mgr_MEDGASRES_D_24_00104 crossref_primary_10_1016_j_niox_2023_06_004 crossref_primary_10_1111_sms_12199 crossref_primary_10_1093_ajcn_nqy245 crossref_primary_10_1007_s40279_017_0744_9 crossref_primary_10_1007_s00394_025_03616_x crossref_primary_10_1152_japplphysiol_00772_2017 crossref_primary_10_1016_j_niox_2017_05_005 crossref_primary_10_1152_japplphysiol_00559_2023 crossref_primary_10_3390_ijerph19020762 crossref_primary_10_1016_j_pharmthera_2014_06_009 crossref_primary_10_1080_02640414_2024_2352681 crossref_primary_10_3390_nu11071683 crossref_primary_10_1016_j_tifs_2021_07_037 crossref_primary_10_1089_ham_2017_0039 crossref_primary_10_1016_j_jsams_2020_05_018 crossref_primary_10_52711_0974_360X_2021_01111 crossref_primary_10_1080_15438627_2022_2090250 crossref_primary_10_1080_17461391_2018_1433722 crossref_primary_10_1152_japplphysiol_00292_2019 crossref_primary_10_3390_sports7050120 crossref_primary_10_1152_japplphysiol_01053_2018 crossref_primary_10_1016_j_niox_2023_02_003 crossref_primary_10_1016_j_niox_2024_04_010 crossref_primary_10_1007_s12161_015_0275_7 crossref_primary_10_1016_j_clnu_2017_10_011 crossref_primary_10_3390_nu14214464 crossref_primary_10_3390_nu13020281 crossref_primary_10_1080_19390211_2022_2137269 crossref_primary_10_3390_nu13093183 crossref_primary_10_1152_ajpregu_00068_2014 crossref_primary_10_1016_j_niox_2021_11_001 crossref_primary_10_1016_j_scispo_2020_12_007 crossref_primary_10_1017_S0007114518000132 crossref_primary_10_1139_apnm_2017_0828 crossref_primary_10_1152_ajpheart_00414_2017 crossref_primary_10_1136_bjsports_2018_099027 crossref_primary_10_1080_02640414_2020_1770409 crossref_primary_10_14814_phy2_14162 crossref_primary_10_1016_j_cdnut_2024_104408 crossref_primary_10_1016_j_niox_2016_06_008 crossref_primary_10_1139_apnm_2015_0458 crossref_primary_10_1177_0271678X20910053 crossref_primary_10_14814_phy2_13982 crossref_primary_10_1016_j_niox_2016_06_007 crossref_primary_10_1177_0260106018790428 crossref_primary_10_3389_fpsyg_2018_01867 crossref_primary_10_1007_s00210_016_1318_3 crossref_primary_10_1111_apha_13924 crossref_primary_10_1186_s13098_022_00830_z crossref_primary_10_1007_s00421_022_05071_6 crossref_primary_10_1080_19390211_2019_1650866 crossref_primary_10_1113_JP278494 crossref_primary_10_1016_j_niox_2017_12_001 crossref_primary_10_1007_s00421_018_3835_x crossref_primary_10_1016_j_mvr_2022_104469 crossref_primary_10_3390_nu9111270 crossref_primary_10_1038_s41430_022_01115_4 crossref_primary_10_1152_japplphysiol_00593_2023 crossref_primary_10_1016_j_freeradbiomed_2020_03_025 crossref_primary_10_3390_biomedicines10092124 crossref_primary_10_1016_j_niox_2018_03_009 crossref_primary_10_1519_JSC_0000000000000596 crossref_primary_10_1111_sms_12848 crossref_primary_10_1152_japplphysiol_00804_2018 crossref_primary_10_14814_phy2_12089 crossref_primary_10_1007_s00421_015_3296_4 crossref_primary_10_1016_j_niox_2017_08_001 crossref_primary_10_1016_j_freeradbiomed_2024_11_010 crossref_primary_10_3109_09637486_2016_1147531 crossref_primary_10_1016_j_niox_2016_10_002 crossref_primary_10_1152_ajpregu_00121_2021 crossref_primary_10_1016_j_nutres_2015_05_017 crossref_primary_10_1016_j_jesf_2024_12_006 crossref_primary_10_1139_apnm_2021_0693 crossref_primary_10_1249_JES_0000000000000074 crossref_primary_10_3389_fnut_2023_1217192 crossref_primary_10_1080_07315724_2019_1601601 crossref_primary_10_52547_ajcm_28_3_176 crossref_primary_10_1093_jn_nxab157 crossref_primary_10_1152_ajpheart_00138_2014 crossref_primary_10_3390_medicina58111561 crossref_primary_10_1016_j_niox_2014_10_007 crossref_primary_10_1080_15438627_2019_1586707 crossref_primary_10_1152_japplphysiol_00747_2017 crossref_primary_10_1016_j_niox_2014_10_006 crossref_primary_10_1016_j_niox_2016_10_006 crossref_primary_10_1038_s41430_018_0140_z crossref_primary_10_1123_ijspp_2013_0207 crossref_primary_10_1152_japplphysiol_01116_2018 crossref_primary_10_1139_apnm_2014_0036 crossref_primary_10_1186_s40798_023_00632_1 crossref_primary_10_1152_japplphysiol_00220_2023 crossref_primary_10_1152_ajpregu_00263_2016 crossref_primary_10_3389_fmicb_2022_911243 crossref_primary_10_1007_s00421_021_04602_x crossref_primary_10_1017_S0954422417000063 crossref_primary_10_1016_j_pop_2019_10_002 crossref_primary_10_1152_japplphysiol_00367_2016 crossref_primary_10_1016_j_tjnut_2024_07_002 crossref_primary_10_1152_ajplung_00081_2015 crossref_primary_10_1007_s00421_015_3255_0 crossref_primary_10_1123_ijsnem_2020_0198 crossref_primary_10_1152_ajpheart_00389_2017 crossref_primary_10_1139_apnm_2019_0063 crossref_primary_10_3389_fphys_2016_00233 crossref_primary_10_1007_s40200_021_00798_z crossref_primary_10_1007_s00421_018_3889_9 crossref_primary_10_32892_jmri_192 crossref_primary_10_1080_07315724_2021_2021562 crossref_primary_10_1123_ijsnem_2021_0054 crossref_primary_10_3390_nu13082767 crossref_primary_10_1123_ijsnem_2024_0113 crossref_primary_10_1113_JP271252 crossref_primary_10_1152_japplphysiol_00293_2017 crossref_primary_10_1080_02640414_2018_1504369 crossref_primary_10_1016_j_niox_2023_11_003 crossref_primary_10_1007_s00421_019_04094_w crossref_primary_10_1146_annurev_nutr_082117_051622 crossref_primary_10_3390_nu11071642 crossref_primary_10_1016_j_tjnut_2023_12_018 crossref_primary_10_3390_antiox12010025 crossref_primary_10_1113_EP088834 crossref_primary_10_1519_JSC_0000000000002046 crossref_primary_10_1016_j_jfca_2015_03_005 crossref_primary_10_1113_JP270844 crossref_primary_10_3390_nu15030784 crossref_primary_10_1186_s13102_021_00292_2 crossref_primary_10_1249_MSS_0000000000002363 crossref_primary_10_1016_j_niox_2022_10_004 crossref_primary_10_1152_japplphysiol_00371_2019 crossref_primary_10_1155_2015_715859 crossref_primary_10_1186_s12970_020_00366_5 crossref_primary_10_3390_nu15061489 crossref_primary_10_1007_s00421_022_04946_y crossref_primary_10_1007_s13749_014_0006_5 crossref_primary_10_1152_japplphysiol_01036_2016 crossref_primary_10_3390_nu16101511 crossref_primary_10_1016_j_niox_2023_05_008 crossref_primary_10_1016_j_crphys_2021_07_002 crossref_primary_10_1152_ajpheart_00451_2016 crossref_primary_10_1152_japplphysiol_00658_2015 crossref_primary_10_1007_s00421_024_05552_w crossref_primary_10_17816_clinutr105659 crossref_primary_10_1016_j_foodchem_2018_08_022 crossref_primary_10_1016_j_niox_2023_05_003 crossref_primary_10_1080_15502783_2023_2206386 crossref_primary_10_1249_MSS_0000000000002470 crossref_primary_10_1371_journal_pone_0144504 crossref_primary_10_1080_17461391_2023_2230942 crossref_primary_10_3390_oxygen2040037 crossref_primary_10_1016_j_niox_2017_09_005 crossref_primary_10_1139_apnm_2021_0563 crossref_primary_10_1007_s00421_024_05415_4 crossref_primary_10_1016_j_foodchem_2020_127635 crossref_primary_10_1016_j_niox_2014_04_007 crossref_primary_10_3945_jn_116_229807 crossref_primary_10_1111_sms_14307 crossref_primary_10_1152_japplphysiol_00122_2020 crossref_primary_10_3390_app13116849 crossref_primary_10_4236_jbm_2019_73007 crossref_primary_10_3390_nu12010188 crossref_primary_10_1519_SSC_0000000000000552 crossref_primary_10_3389_fphys_2024_1504978 crossref_primary_10_3390_nu6115224 crossref_primary_10_3389_fphys_2017_00240 crossref_primary_10_1080_10408398_2020_1844137 crossref_primary_10_1139_apnm_2014_0228 crossref_primary_10_18276_cej_2021_3_06 crossref_primary_10_1016_j_niox_2016_01_001 crossref_primary_10_1016_j_niox_2014_09_158 crossref_primary_10_1016_j_niox_2017_11_008 crossref_primary_10_1002_ejsc_12187 crossref_primary_10_1016_j_niox_2016_01_002 crossref_primary_10_1249_JES_0000000000000272 crossref_primary_10_14814_phy2_13572 crossref_primary_10_1017_S0007114522001337 crossref_primary_10_1016_j_niox_2020_06_001 crossref_primary_10_1080_02640414_2023_2176052 crossref_primary_10_1016_j_clnu_2019_03_006 crossref_primary_10_3390_nu15245123 crossref_primary_10_3390_nu6020605 crossref_primary_10_1097_NT_0000000000000431 crossref_primary_10_1016_j_niox_2018_01_009 crossref_primary_10_1139_apnm_2017_0081 crossref_primary_10_1152_ajpendo_00122_2016 crossref_primary_10_1007_s40279_019_01185_8 crossref_primary_10_3390_nu12092734 crossref_primary_10_1139_apnm_2018_0816 crossref_primary_10_1093_jn_nxab354 crossref_primary_10_3390_nu16193352 crossref_primary_10_1113_JP278076 crossref_primary_10_1016_j_jsams_2024_06_009 crossref_primary_10_3390_nu14142839 crossref_primary_10_1152_japplphysiol_00400_2021 crossref_primary_10_3390_antiox12061194 crossref_primary_10_1007_s00421_015_3166_0 crossref_primary_10_1152_japplphysiol_01141_2014 crossref_primary_10_1016_j_niox_2018_05_010 crossref_primary_10_1007_s00421_017_3580_6 crossref_primary_10_3390_nu14183703 crossref_primary_10_1123_ijsnem_2018_0271 crossref_primary_10_31680_gaunjss_805351 crossref_primary_10_1139_cjpp_2024_0061 crossref_primary_10_1097_MCO_0000000000000414 crossref_primary_10_1016_j_scispo_2022_02_004 crossref_primary_10_1016_j_niox_2016_08_001 crossref_primary_10_1139_apnm_2017_0198 crossref_primary_10_1139_apnm_2014_0470 crossref_primary_10_1139_apnm_2023_0606 crossref_primary_10_1016_j_freeradbiomed_2024_02_011 crossref_primary_10_1016_j_freeradbiomed_2025_01_048 crossref_primary_10_1016_j_niox_2020_03_007 crossref_primary_10_1152_japplphysiol_00662_2014 crossref_primary_10_1139_apnm_2017_0547 crossref_primary_10_1177_19417381221083590 crossref_primary_10_3390_nu13061986 crossref_primary_10_1249_MSS_0000000000003372 crossref_primary_10_56984_8ZG007D9ZWE crossref_primary_10_1016_j_niox_2022_11_006 crossref_primary_10_18502_espoch_v1i5_9564 crossref_primary_10_1016_j_freeradbiomed_2024_10_282 crossref_primary_10_1155_2021_5579864 crossref_primary_10_1007_s11897_016_0277_9 crossref_primary_10_1139_apnm_2016_0452 crossref_primary_10_1007_s00421_021_04621_8 crossref_primary_10_1155_2017_7853034 crossref_primary_10_1249_MSS_0000000000000548 crossref_primary_10_1016_j_niox_2020_10_002 crossref_primary_10_1111_joss_12789 crossref_primary_10_20463_jenb_2016_0029 crossref_primary_10_3390_sports5040080 crossref_primary_10_3390_nu12103022 crossref_primary_10_1017_S0007114520002226 crossref_primary_10_1007_s00421_023_05369_z crossref_primary_10_20463_jenb_2016_0031 crossref_primary_10_1016_j_niox_2021_05_002 crossref_primary_10_1016_j_mvr_2024_104706 crossref_primary_10_1017_S0029665116001129 crossref_primary_10_14814_phy2_13340 crossref_primary_10_1152_japplphysiol_01006_2017 crossref_primary_10_3390_nu12020584 crossref_primary_10_1080_10408398_2020_1798351 crossref_primary_10_1152_japplphysiol_00612_2013 crossref_primary_10_1017_S000711452300034X crossref_primary_10_1186_s40101_020_00231_z crossref_primary_10_1186_s12970_017_0172_0 crossref_primary_10_1016_j_niox_2016_04_004 crossref_primary_10_3390_nu15173763 crossref_primary_10_1007_s40279_022_01701_3 crossref_primary_10_3109_09637486_2015_1121469 crossref_primary_10_1139_apnm_2018_0050 crossref_primary_10_1016_j_ajsep_2022_06_003 crossref_primary_10_1080_10408398_2020_1746629 crossref_primary_10_1007_s00421_020_04389_3 crossref_primary_10_1007_s00421_021_04726_0 crossref_primary_10_1113_JP284701 crossref_primary_10_1007_s00421_018_3809_z crossref_primary_10_1016_j_jesf_2020_12_001 crossref_primary_10_1152_ajpregu_00083_2022 crossref_primary_10_1186_s12970_018_0255_6 crossref_primary_10_1016_j_jand_2020_02_014 crossref_primary_10_1097_MCO_0000000000000222 crossref_primary_10_1152_ajpregu_00017_2018 crossref_primary_10_1016_j_freeradbiomed_2015_05_014 crossref_primary_10_1124_pr_120_019240 crossref_primary_10_1093_gerona_glaa311 crossref_primary_10_1139_apnm_2023_0236 crossref_primary_10_1152_ajpendo_00230_2016 crossref_primary_10_1007_s00394_016_1173_5 crossref_primary_10_1007_s00394_024_03440_9 crossref_primary_10_1249_MSS_0000000000001655 crossref_primary_10_1152_ajpregu_00295_2013 crossref_primary_10_3390_nu14173645 crossref_primary_10_3390_oxygen3010010 crossref_primary_10_3390_nu12082227 crossref_primary_10_18826_useeabd_1104040 crossref_primary_10_4081_jphia_2022_2406 crossref_primary_10_3390_nu9121359 crossref_primary_10_1161_CIRCULATIONAHA_114_012957 crossref_primary_10_1177_0271678X211058261 crossref_primary_10_1007_s40279_016_0617_7 crossref_primary_10_3390_nu15102371 crossref_primary_10_1080_15502783_2024_2334680 crossref_primary_10_1093_advances_nmac054 crossref_primary_10_1139_apnm_2013_0263 crossref_primary_10_14814_phy2_13475 crossref_primary_10_56984_8ZG020AQYL crossref_primary_10_1016_j_niox_2015_04_006 crossref_primary_10_1152_japplphysiol_00953_2016 crossref_primary_10_1016_j_niox_2016_12_006 crossref_primary_10_1080_19390211_2024_2405825 crossref_primary_10_1113_EP087493 crossref_primary_10_1136_bmjresp_2021_000948 crossref_primary_10_3389_fnut_2021_660150 crossref_primary_10_1016_j_niox_2016_12_008 crossref_primary_10_1186_s13063_023_07117_2 crossref_primary_10_1016_j_niox_2015_04_003 crossref_primary_10_2174_1871525719666210427130511 crossref_primary_10_1016_j_physbeh_2015_05_035 crossref_primary_10_3390_nu9121360 crossref_primary_10_3177_jnsv_70_441 crossref_primary_10_1089_ham_2018_0114 crossref_primary_10_3390_nu11061327 crossref_primary_10_1007_s00421_018_3886_z crossref_primary_10_1139_apnm_2018_0277 crossref_primary_10_1152_japplphysiol_00232_2015 crossref_primary_10_1152_ajpregu_00099_2015 crossref_primary_10_1152_japplphysiol_01004_2018 crossref_primary_10_1016_j_niox_2022_01_003 crossref_primary_10_3390_nu15112493 crossref_primary_10_1152_ajpgi_00203_2016 crossref_primary_10_3389_fphys_2022_839996 crossref_primary_10_1016_j_niox_2022_01_005 crossref_primary_10_1136_thoraxjnl_2019_214278 crossref_primary_10_2147_NSS_S279395 crossref_primary_10_1007_s40279_025_02194_6 crossref_primary_10_1080_02640414_2022_2052471 crossref_primary_10_1123_ijspp_2018_0654 crossref_primary_10_1152_japplphysiol_00047_2018 crossref_primary_10_17816_RCF14178_88 crossref_primary_10_3390_ijms20092277 crossref_primary_10_1039_D3FO03749E crossref_primary_10_1007_s40279_015_0323_x crossref_primary_10_1016_j_scispo_2022_04_010 crossref_primary_10_1139_apnm_2016_0525 crossref_primary_10_3390_nu15245128 crossref_primary_10_1152_japplphysiol_00453_2020 crossref_primary_10_3390_nu9030314 crossref_primary_10_1016_j_freeradbiomed_2023_11_039 crossref_primary_10_1016_j_jchf_2015_12_013 crossref_primary_10_1249_MSS_0000000000000577 crossref_primary_10_1152_japplphysiol_00850_2019 |
Cites_doi | 10.1113/jphysiol.2012.232777 10.1123/ijsnem.22.1.64 10.1123/ijsnem.22.6.470 10.1161/HYPERTENSIONAHA.110.153536 10.1016/j.niox.2012.03.008 10.1136/bmj.326.7404.1427 10.1007/s00421-012-2397-6 10.1152/japplphysiol.01070.2010 10.1152/japplphysiol.00722.2009 10.1007/s10863-007-9074-1 10.1152/japplphysiol.00046.2010 10.1111/sms.12005 10.1016/S0014-5793(98)01460-4 10.1152/japplphysiol.00024.2003 10.1113/jphysiol.2012.243121 10.1016/0014-5793(96)00003-8 10.1111/j.1748-1716.2007.01713.x 10.1152/ajpregu.00206.2010 10.1097/00004872-200304000-00013 10.1016/j.cmet.2011.01.004 10.1038/nm954 10.1007/s00424-013-1220-5 10.1046/j.1365-201X.1998.0303f.x 10.1113/jphysiol.2011.216341 10.1152/japplphysiol.00612.2013 10.1038/368502a0 10.1093/cvr/cvq325 10.1249/MSS.0b013e318217d439 10.1007/s00421-013-2589-8 10.1161/HYPERTENSIONAHA.107.103523 10.1152/ajpheart.00374.2008 10.1016/0140-6736(90)90878-9 10.1016/S0140-6736(02)11911-8 10.1152/physrev.2001.81.1.209 10.1016/j.bcmd.2004.02.002 10.1074/jbc.M806654200 10.1016/j.niox.2008.08.003 10.1249/MSS.0b013e31821597b4 10.1016/j.freeradbiomed.2009.11.006 10.1080/17461390500422796 10.1056/NEJMc062800 |
ContentType | Journal Article |
Copyright | Copyright American Physiological Society Aug 1, 2013 |
Copyright_xml | – notice: Copyright American Physiological Society Aug 1, 2013 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QP 7QR 7TK 7TS 7U7 8FD C1K FR3 P64 7X8 7T2 |
DOI | 10.1152/japplphysiol.00372.2013 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Neurosciences Abstracts Physical Education Index Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic Health and Safety Science Abstracts (Full archive) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Technology Research Database Toxicology Abstracts Chemoreception Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Physical Education Index Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic Health & Safety Science Abstracts |
DatabaseTitleList | Health & Safety Science Abstracts CrossRef Technology Research Database MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
EISSN | 1522-1601 |
EndPage | 336 |
ExternalDocumentID | 3042477121 23640589 10_1152_japplphysiol_00372_2013 |
Genre | Randomized Controlled Trial Research Support, Non-U.S. Gov't Journal Article Feature |
GroupedDBID | --- -~X .55 18M 29J 2WC 4.4 53G 5VS 85S AAFWJ AAYXX ABCQX ABDNZ ABHWK ABJNI ABKWE ABOCM ACBEA ACGFO ACGFS ACIWK ACPRK ADBBV ADFNX AEILP AENEX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS BAWUL BKKCC BTFSW CITATION CS3 DIK DU5 E3Z EBS EJD EMOBN F5P FRP GX1 H13 H~9 ITBOX KQ8 L7B OK1 P-O P2P P6G PQQKQ RAP RHI RPL RPRKH SJN TR2 UHB UKR UPT W8F WH7 WOQ X7M XSW YBH YQT YWH ~02 CGR CUY CVF ECM EIF NPM 7QP 7QR 7TK 7TS 7U7 8FD C1K FR3 P64 7X8 7T2 |
ID | FETCH-LOGICAL-c440t-f14bf0478d6dea3dec8eb379d2d504f18351d2d3570cab2bbe5f2e1f4b658cbc3 |
ISSN | 8750-7587 1522-1601 |
IngestDate | Fri Jul 11 04:24:18 EDT 2025 Fri Jul 11 02:29:53 EDT 2025 Mon Jun 30 08:44:37 EDT 2025 Thu Apr 03 06:56:01 EDT 2025 Tue Jul 01 01:13:39 EDT 2025 Thu Apr 24 23:05:51 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | blood pressure nitric oxide nitrite O2 uptake exercise tolerance nitrate exercise economy |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c440t-f14bf0478d6dea3dec8eb379d2d504f18351d2d3570cab2bbe5f2e1f4b658cbc3 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 ObjectType-Undefined-3 |
PMID | 23640589 |
PQID | 1419488769 |
PQPubID | 40905 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_1434020704 proquest_miscellaneous_1417532154 proquest_journals_1419488769 pubmed_primary_23640589 crossref_citationtrail_10_1152_japplphysiol_00372_2013 crossref_primary_10_1152_japplphysiol_00372_2013 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-08-01 2013-Aug-01 20130801 |
PublicationDateYYYYMMDD | 2013-08-01 |
PublicationDate_xml | – month: 08 year: 2013 text: 2013-08-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Bethesda |
PublicationTitle | Journal of applied physiology (1985) |
PublicationTitleAlternate | J Appl Physiol (1985) |
PublicationYear | 2013 |
Publisher | American Physiological Society |
Publisher_xml | – name: American Physiological Society |
References | B21 B22 B23 B24 B25 B26 B27 B28 B29 B5a B30 B31 B10 B32 B11 B33 B12 B34 B13 B35 B14 B36 B15 B37 B16 B38 B17 B39 B18 B19 B1 B2 B3 B4 Kelly J (B20) B5 B6 B7 B8 B9 B40 B41 23743401 - J Appl Physiol (1985). 2013 Aug 1;115(3):311-2 |
References_xml | – ident: B17 doi: 10.1113/jphysiol.2012.232777 – ident: B6 doi: 10.1123/ijsnem.22.1.64 – ident: B7 doi: 10.1123/ijsnem.22.6.470 – ident: B19 doi: 10.1161/HYPERTENSIONAHA.110.153536 – ident: B33 doi: 10.1016/j.niox.2012.03.008 – ident: B27 doi: 10.1136/bmj.326.7404.1427 – ident: B40 doi: 10.1007/s00421-012-2397-6 – ident: B22 doi: 10.1152/japplphysiol.01070.2010 – ident: B3 doi: 10.1152/japplphysiol.00722.2009 – ident: B9 doi: 10.1007/s10863-007-9074-1 – ident: B2 doi: 10.1152/japplphysiol.00046.2010 – ident: B8 doi: 10.1111/sms.12005 – ident: B18 doi: 10.1016/S0014-5793(98)01460-4 – ident: B11 doi: 10.1152/japplphysiol.00024.2003 – ident: B14 doi: 10.1113/jphysiol.2012.243121 – ident: B32 doi: 10.1016/0014-5793(96)00003-8 – ident: B26 doi: 10.1111/j.1748-1716.2007.01713.x – ident: B37 doi: 10.1152/ajpregu.00206.2010 – ident: B20 publication-title: Med Sci Sports Exerc – ident: B28 doi: 10.1097/00004872-200304000-00013 – ident: B24 doi: 10.1016/j.cmet.2011.01.004 – ident: B10 doi: 10.1038/nm954 – ident: B15 doi: 10.1007/s00424-013-1220-5 – ident: B35 doi: 10.1046/j.1365-201X.1998.0303f.x – ident: B38 doi: 10.1113/jphysiol.2011.216341 – ident: B5a doi: 10.1152/japplphysiol.00612.2013 – ident: B4 doi: 10.1038/368502a0 – ident: B30 doi: 10.1093/cvr/cvq325 – ident: B5 doi: 10.1249/MSS.0b013e318217d439 – ident: B41 doi: 10.1007/s00421-013-2589-8 – ident: B39 doi: 10.1161/HYPERTENSIONAHA.107.103523 – ident: B1 doi: 10.1152/ajpheart.00374.2008 – ident: B31 doi: 10.1016/0140-6736(90)90878-9 – ident: B29 doi: 10.1016/S0140-6736(02)11911-8 – ident: B36 doi: 10.1152/physrev.2001.81.1.209 – ident: B12 doi: 10.1016/j.bcmd.2004.02.002 – ident: B13 doi: 10.1074/jbc.M806654200 – ident: B16 doi: 10.1016/j.niox.2008.08.003 – ident: B21 doi: 10.1249/MSS.0b013e31821597b4 – ident: B25 doi: 10.1016/j.freeradbiomed.2009.11.006 – ident: B34 doi: 10.1080/17461390500422796 – ident: B23 doi: 10.1056/NEJMc062800 – reference: 23743401 - J Appl Physiol (1985). 2013 Aug 1;115(3):311-2 |
SSID | ssj0014451 |
Score | 2.5739384 |
Snippet | Dietary supplementation with beetroot juice (BR), containing approximately 5–8 mmol inorganic nitrate (NO
3
−
), increases plasma nitrite concentration ([NO
2... Dietary supplementation with beetroot juice (BR), containing approximately 5-8 mmol inorganic nitrate (NO3(-)), increases plasma nitrite concentration... Dietary supplementation with beetroot juice (BR), containing approximately 5-8 mmol inorganic nitrate (NO3-), increases plasma nitrite concentration ([NO2-]),... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 325 |
SubjectTerms | Adult Algorithms Analysis of Variance Beta vulgaris - physiology Beverages Blood pressure Blood Pressure - physiology Body Mass Index Carbon Dioxide - blood Dietary Supplements Dose-Response Relationship, Drug Exercise Exercise - physiology Female Heart Rate - physiology Humans Ingestion Lactic Acid - blood Male Nitrates Nitrates - blood Nitrites - blood Nitrogen dioxide Oxygen Oxygen - blood Oxygen Consumption - physiology Oxygen uptake Physiological responses Physiology Plasma Vegetable juices Young Adult Young adults |
Title | Beetroot juice and exercise: pharmacodynamic and dose-response relationships |
URI | https://www.ncbi.nlm.nih.gov/pubmed/23640589 https://www.proquest.com/docview/1419488769 https://www.proquest.com/docview/1417532154 https://www.proquest.com/docview/1434020704 |
Volume | 115 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLfKkBAXBBuwwkBBQlyqlCS2k5jbQKBpMARoE7tFcfIiFZV0WtPD-Hv4Q3m2X9JkUMa4RGliW25-L-8r74Ox56KKiwQFsZ9EOvZFkoKveRrgT1NALJC5ApM7fPQxPjgRh6fydDT62YtaWjV6Wvz4Y17J_6CK1xBXkyV7DWS7RfECniO-eESE8fhPGL8GaFDzbSbfVjMK_G9bKBlL_4zKUpeu67y9Xy6W4J-7wFigTBYXsrXcoKfmpKdaH4ir2GSKO6lU9rwIXy_m1LIZYHI4XbNx6mRtg3HXXtPZfBBj1pvRORRp1gwmX6Z914RpE5G2rok2ehNRlyRRgTgsWr9hTMNaFuxSOonWeI-hcpcWTbKZu2Ipv7N9Gdl2A_hA6GFMTWEdk2jnMl2HhbYvCcAuLNEaRDLK-gtldqHMLHSD3YzQGDHc9P3n9bcqU-LNeZHdn6UoQlzo5YYdDXWgDYaNVXCO77I7hLi378jsHhtBvc129uu8WXy_8F54nzr8t9mtIwrJ2GEfWiL0LBF6SGReS4SvvEskaO8OSNAbkOB9dvLu7fGbA59adPiFEEHjV6HQlSnwVMYl5LyEIgXNE1VGpQxEhfJChnjOZRIUuY60BllFEFZCo-Zb6II_YFv1ooZd5vFCahXksdKCi6gSechRPCSQBipVSpZjFrcPLSuofr1pozLProBtzIJu4pkr4XL1lL0WlYze9yUayaFCcZfEasyedbeRG5tPbHkNi5Udg_Y_qtHib2O4cdokAY556BDv9mXaOZhGn4-uv-fH7Pb6HdxjW835Cp6gwtzop5ZefwHjvMH5 |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Beetroot+juice+and+exercise%3A+pharmacodynamic+and+dose-response+relationships&rft.jtitle=Journal+of+applied+physiology+%281985%29&rft.au=Wylie%2C+Lee+J.&rft.au=Kelly%2C+James&rft.au=Bailey%2C+Stephen+J.&rft.au=Blackwell%2C+Jamie+R.&rft.date=2013-08-01&rft.issn=8750-7587&rft.eissn=1522-1601&rft.volume=115&rft.issue=3&rft.spage=325&rft.epage=336&rft_id=info:doi/10.1152%2Fjapplphysiol.00372.2013&rft.externalDBID=n%2Fa&rft.externalDocID=10_1152_japplphysiol_00372_2013 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=8750-7587&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=8750-7587&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=8750-7587&client=summon |