Beetroot juice and exercise: pharmacodynamic and dose-response relationships

Dietary supplementation with beetroot juice (BR), containing approximately 5–8 mmol inorganic nitrate (NO 3 − ), increases plasma nitrite concentration ([NO 2 − ]), reduces blood pressure, and may positively influence the physiological responses to exercise. However, the dose-response relationship b...

Full description

Saved in:
Bibliographic Details
Published inJournal of applied physiology (1985) Vol. 115; no. 3; pp. 325 - 336
Main Authors Wylie, Lee J., Kelly, James, Bailey, Stephen J., Blackwell, Jamie R., Skiba, Philip F., Winyard, Paul G., Jeukendrup, Asker E., Vanhatalo, Anni, Jones, Andrew M.
Format Journal Article
LanguageEnglish
Published United States American Physiological Society 01.08.2013
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Dietary supplementation with beetroot juice (BR), containing approximately 5–8 mmol inorganic nitrate (NO 3 − ), increases plasma nitrite concentration ([NO 2 − ]), reduces blood pressure, and may positively influence the physiological responses to exercise. However, the dose-response relationship between the volume of BR ingested and the physiological effects invoked has not been investigated. In a balanced crossover design, 10 healthy men ingested 70, 140, or 280 ml concentrated BR (containing 4.2, 8.4, and 16.8 mmol NO 3 − , respectively) or no supplement to establish the effects of BR on resting plasma [NO 3 − ] and [NO 2 − ] over 24 h. Subsequently, on six separate occasions, 10 subjects completed moderate-intensity and severe-intensity cycle exercise tests, 2.5 h postingestion of 70, 140, and 280 ml BR or NO 3 − -depleted BR as placebo (PL). Following acute BR ingestion, plasma [NO 2 − ] increased in a dose-dependent manner, with the peak changes occurring at approximately 2–3 h. Compared with PL, 70 ml BR did not alter the physiological responses to exercise. However, 140 and 280 ml BR reduced the steady-state oxygen (O 2 ) uptake during moderate-intensity exercise by 1.7% ( P = 0.06) and 3.0% ( P < 0.05), whereas time-to-task failure was extended by 14% and 12% (both P < 0.05), respectively, compared with PL. The results indicate that whereas plasma [NO 2 − ] and the O 2 cost of moderate-intensity exercise are altered dose dependently with NO 3 − -rich BR, there is no additional improvement in exercise tolerance after ingesting BR containing 16.8 compared with 8.4 mmol NO 3 − . These findings have important implications for the use of BR to enhance cardiovascular health and exercise performance in young adults.
AbstractList Dietary supplementation with beetroot juice (BR), containing approximately 5-8 mmol inorganic nitrate (NO3-), increases plasma nitrite concentration ([NO2-]), reduces blood pressure, and may positively influence the physiological responses to exercise. However, the dose-response relationship between the volume of BR ingested and the physiological effects invoked has not been investigated. In a balanced crossover design, 10 healthy men ingested 70, 140, or 280 ml concentrated BR (containing 4.2, 8.4, and 16.8 mmol NO..., respectively) or no supplement to establish the effects of BR on resting plasma [NO3-] and [NO...] over 24 h. Subsequently, on six separate occasions, 10 subjects completed moderate-intensity and severe-intensity cycle exercise tests, 2.5 h postingestion of 70, 140, and 280 ml BR or NO...-depleted BR as placebo (PL). Following acute BR ingestion, plasma [NO...] increased in a dose-dependent manner, with the peak changes occurring at approximately 2-3 h. Compared with PL, 70 ml BR did not alter the physiological responses to exercise. However, 140 and 280 ml BR reduced the steady-state oxygen (O2) uptake during moderate-intensity exercise by 1.7% (P = 0.06) and 3.0% (P < 0.05), whereas time-to-task failure was extended by 14% and 12% (both P < 0.05), respectively, compared with PL. The results indicate that whereas plasma [NO...] and the O2 cost of moderate-intensity exercise are altered dose dependently with NO...-rich BR, there is no additional improvement in exercise tolerance after ingesting BR containing 16.8 compared with 8.4 mmol NO... These findings have important implications for the use of BR to enhance cardiovascular health and exercise performance in young adults. (ProQuest: ... denotes formulae/symbols omitted.)
Dietary supplementation with beetroot juice (BR), containing approximately 5–8 mmol inorganic nitrate (NO 3 − ), increases plasma nitrite concentration ([NO 2 − ]), reduces blood pressure, and may positively influence the physiological responses to exercise. However, the dose-response relationship between the volume of BR ingested and the physiological effects invoked has not been investigated. In a balanced crossover design, 10 healthy men ingested 70, 140, or 280 ml concentrated BR (containing 4.2, 8.4, and 16.8 mmol NO 3 − , respectively) or no supplement to establish the effects of BR on resting plasma [NO 3 − ] and [NO 2 − ] over 24 h. Subsequently, on six separate occasions, 10 subjects completed moderate-intensity and severe-intensity cycle exercise tests, 2.5 h postingestion of 70, 140, and 280 ml BR or NO 3 − -depleted BR as placebo (PL). Following acute BR ingestion, plasma [NO 2 − ] increased in a dose-dependent manner, with the peak changes occurring at approximately 2–3 h. Compared with PL, 70 ml BR did not alter the physiological responses to exercise. However, 140 and 280 ml BR reduced the steady-state oxygen (O 2 ) uptake during moderate-intensity exercise by 1.7% ( P = 0.06) and 3.0% ( P < 0.05), whereas time-to-task failure was extended by 14% and 12% (both P < 0.05), respectively, compared with PL. The results indicate that whereas plasma [NO 2 − ] and the O 2 cost of moderate-intensity exercise are altered dose dependently with NO 3 − -rich BR, there is no additional improvement in exercise tolerance after ingesting BR containing 16.8 compared with 8.4 mmol NO 3 − . These findings have important implications for the use of BR to enhance cardiovascular health and exercise performance in young adults.
Dietary supplementation with beetroot juice (BR), containing approximately 5-8 mmol inorganic nitrate (NO3(-)), increases plasma nitrite concentration ([NO2(-)]), reduces blood pressure, and may positively influence the physiological responses to exercise. However, the dose-response relationship between the volume of BR ingested and the physiological effects invoked has not been investigated. In a balanced crossover design, 10 healthy men ingested 70, 140, or 280 ml concentrated BR (containing 4.2, 8.4, and 16.8 mmol NO3(-), respectively) or no supplement to establish the effects of BR on resting plasma [NO3(-)] and [NO2(-)] over 24 h. Subsequently, on six separate occasions, 10 subjects completed moderate-intensity and severe-intensity cycle exercise tests, 2.5 h postingestion of 70, 140, and 280 ml BR or NO3(-)-depleted BR as placebo (PL). Following acute BR ingestion, plasma [NO2(-)] increased in a dose-dependent manner, with the peak changes occurring at approximately 2-3 h. Compared with PL, 70 ml BR did not alter the physiological responses to exercise. However, 140 and 280 ml BR reduced the steady-state oxygen (O2) uptake during moderate-intensity exercise by 1.7% (P = 0.06) and 3.0% (P < 0.05), whereas time-to-task failure was extended by 14% and 12% (both P < 0.05), respectively, compared with PL. The results indicate that whereas plasma [NO2(-)] and the O2 cost of moderate-intensity exercise are altered dose dependently with NO3(-)-rich BR, there is no additional improvement in exercise tolerance after ingesting BR containing 16.8 compared with 8.4 mmol NO3(-). These findings have important implications for the use of BR to enhance cardiovascular health and exercise performance in young adults.Dietary supplementation with beetroot juice (BR), containing approximately 5-8 mmol inorganic nitrate (NO3(-)), increases plasma nitrite concentration ([NO2(-)]), reduces blood pressure, and may positively influence the physiological responses to exercise. However, the dose-response relationship between the volume of BR ingested and the physiological effects invoked has not been investigated. In a balanced crossover design, 10 healthy men ingested 70, 140, or 280 ml concentrated BR (containing 4.2, 8.4, and 16.8 mmol NO3(-), respectively) or no supplement to establish the effects of BR on resting plasma [NO3(-)] and [NO2(-)] over 24 h. Subsequently, on six separate occasions, 10 subjects completed moderate-intensity and severe-intensity cycle exercise tests, 2.5 h postingestion of 70, 140, and 280 ml BR or NO3(-)-depleted BR as placebo (PL). Following acute BR ingestion, plasma [NO2(-)] increased in a dose-dependent manner, with the peak changes occurring at approximately 2-3 h. Compared with PL, 70 ml BR did not alter the physiological responses to exercise. However, 140 and 280 ml BR reduced the steady-state oxygen (O2) uptake during moderate-intensity exercise by 1.7% (P = 0.06) and 3.0% (P < 0.05), whereas time-to-task failure was extended by 14% and 12% (both P < 0.05), respectively, compared with PL. The results indicate that whereas plasma [NO2(-)] and the O2 cost of moderate-intensity exercise are altered dose dependently with NO3(-)-rich BR, there is no additional improvement in exercise tolerance after ingesting BR containing 16.8 compared with 8.4 mmol NO3(-). These findings have important implications for the use of BR to enhance cardiovascular health and exercise performance in young adults.
Dietary supplementation with beetroot juice (BR), containing approximately 5-8 mmol inorganic nitrate (NO3(-)), increases plasma nitrite concentration ([NO2(-)]), reduces blood pressure, and may positively influence the physiological responses to exercise. However, the dose-response relationship between the volume of BR ingested and the physiological effects invoked has not been investigated. In a balanced crossover design, 10 healthy men ingested 70, 140, or 280 ml concentrated BR (containing 4.2, 8.4, and 16.8 mmol NO3(-), respectively) or no supplement to establish the effects of BR on resting plasma [NO3(-)] and [NO2(-)] over 24 h. Subsequently, on six separate occasions, 10 subjects completed moderate-intensity and severe-intensity cycle exercise tests, 2.5 h postingestion of 70, 140, and 280 ml BR or NO3(-)-depleted BR as placebo (PL). Following acute BR ingestion, plasma [NO2(-)] increased in a dose-dependent manner, with the peak changes occurring at approximately 2-3 h. Compared with PL, 70 ml BR did not alter the physiological responses to exercise. However, 140 and 280 ml BR reduced the steady-state oxygen (O2) uptake during moderate-intensity exercise by 1.7% (P = 0.06) and 3.0% (P < 0.05), whereas time-to-task failure was extended by 14% and 12% (both P < 0.05), respectively, compared with PL. The results indicate that whereas plasma [NO2(-)] and the O2 cost of moderate-intensity exercise are altered dose dependently with NO3(-)-rich BR, there is no additional improvement in exercise tolerance after ingesting BR containing 16.8 compared with 8.4 mmol NO3(-). These findings have important implications for the use of BR to enhance cardiovascular health and exercise performance in young adults.
Author Wylie, Lee J.
Bailey, Stephen J.
Jeukendrup, Asker E.
Winyard, Paul G.
Vanhatalo, Anni
Blackwell, Jamie R.
Skiba, Philip F.
Kelly, James
Jones, Andrew M.
Author_xml – sequence: 1
  givenname: Lee J.
  surname: Wylie
  fullname: Wylie, Lee J.
  organization: Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, St. Luke's Campus, Exeter, United Kingdom
– sequence: 2
  givenname: James
  surname: Kelly
  fullname: Kelly, James
  organization: Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, St. Luke's Campus, Exeter, United Kingdom
– sequence: 3
  givenname: Stephen J.
  surname: Bailey
  fullname: Bailey, Stephen J.
  organization: Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, St. Luke's Campus, Exeter, United Kingdom
– sequence: 4
  givenname: Jamie R.
  surname: Blackwell
  fullname: Blackwell, Jamie R.
  organization: Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, St. Luke's Campus, Exeter, United Kingdom
– sequence: 5
  givenname: Philip F.
  surname: Skiba
  fullname: Skiba, Philip F.
  organization: Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, St. Luke's Campus, Exeter, United Kingdom
– sequence: 6
  givenname: Paul G.
  surname: Winyard
  fullname: Winyard, Paul G.
  organization: University of Exeter Medical School, St. Luke's Campus, Exeter, United Kingdom; and
– sequence: 7
  givenname: Asker E.
  surname: Jeukendrup
  fullname: Jeukendrup, Asker E.
  organization: Gatorade Sports Science Institute, Barrington, Illinois
– sequence: 8
  givenname: Anni
  surname: Vanhatalo
  fullname: Vanhatalo, Anni
  organization: Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, St. Luke's Campus, Exeter, United Kingdom
– sequence: 9
  givenname: Andrew M.
  surname: Jones
  fullname: Jones, Andrew M.
  organization: Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, St. Luke's Campus, Exeter, United Kingdom
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23640589$$D View this record in MEDLINE/PubMed
BookMark eNqNkU1r3DAQhkVJaTZp_0Jq6CUXb0dfljaQQxPyUVjoJTkLWRqzWmzLlWzo_vt4NwmEXNLTvDDPO8PMe0KO-tgjId8pLCmV7OfWDkM7bHY5xHYJwBVbMqD8E1nMXVbSCugRWWgloVRSq2NykvMWgAoh6RdyzHglQOrVgqyvEMcU41hsp-CwsL0v8B8mFzJeFMPGps666He97YI7dH3MWCbMQ-wzFglbO4ZZbsKQv5LPjW0zfnupp-Tx9ubh-r5c_7n7ff1rXTohYCwbKuoGhNK-8mi5R6ex5mrlmZcgGqq5pLPmUoGzNatrlA1D2oi6ktrVjp-S8-e5Q4p_J8yj6UJ22La2xzhlQwUXwECB-A-UKskZlXv0xzt0G6fUz4fsqZXQWlWrmTp7oaa6Q2-GFDqbdub1pTNw-Qy4FHNO2BgXxsOPxmRDayiYfYTmbYTmEKHZRzj71Tv_64qPnE9xJqXu
CitedBy_id crossref_primary_10_3389_fphys_2022_827235
crossref_primary_10_1007_s00520_022_07520_6
crossref_primary_10_1113_JP281995
crossref_primary_10_1152_japplphysiol_00909_2016
crossref_primary_10_1515_jirspa_2022_0020
crossref_primary_10_1123_ijsnem_2023_0202
crossref_primary_10_3390_ijerph181910202
crossref_primary_10_3389_fphys_2017_00401
crossref_primary_10_1017_S0007114516002348
crossref_primary_10_1016_j_niox_2015_01_002
crossref_primary_10_1080_17461391_2016_1230892
crossref_primary_10_1139_apnm_2013_0336
crossref_primary_10_1519_JSC_0000000000003286
crossref_primary_10_18632_aging_101984
crossref_primary_10_1016_j_clnesp_2020_08_007
crossref_primary_10_1016_j_nicl_2022_103115
crossref_primary_10_1139_apnm_2013_0574
crossref_primary_10_3390_nu14235069
crossref_primary_10_3389_fphys_2015_00211
crossref_primary_10_1186_s12970_021_00472_y
crossref_primary_10_1080_17461391_2018_1445298
crossref_primary_10_4103_mgr_MEDGASRES_D_24_00104
crossref_primary_10_1016_j_niox_2023_06_004
crossref_primary_10_1111_sms_12199
crossref_primary_10_1093_ajcn_nqy245
crossref_primary_10_1007_s40279_017_0744_9
crossref_primary_10_1007_s00394_025_03616_x
crossref_primary_10_1152_japplphysiol_00772_2017
crossref_primary_10_1016_j_niox_2017_05_005
crossref_primary_10_1152_japplphysiol_00559_2023
crossref_primary_10_3390_ijerph19020762
crossref_primary_10_1016_j_pharmthera_2014_06_009
crossref_primary_10_1080_02640414_2024_2352681
crossref_primary_10_3390_nu11071683
crossref_primary_10_1016_j_tifs_2021_07_037
crossref_primary_10_1089_ham_2017_0039
crossref_primary_10_1016_j_jsams_2020_05_018
crossref_primary_10_52711_0974_360X_2021_01111
crossref_primary_10_1080_15438627_2022_2090250
crossref_primary_10_1080_17461391_2018_1433722
crossref_primary_10_1152_japplphysiol_00292_2019
crossref_primary_10_3390_sports7050120
crossref_primary_10_1152_japplphysiol_01053_2018
crossref_primary_10_1016_j_niox_2023_02_003
crossref_primary_10_1016_j_niox_2024_04_010
crossref_primary_10_1007_s12161_015_0275_7
crossref_primary_10_1016_j_clnu_2017_10_011
crossref_primary_10_3390_nu14214464
crossref_primary_10_3390_nu13020281
crossref_primary_10_1080_19390211_2022_2137269
crossref_primary_10_3390_nu13093183
crossref_primary_10_1152_ajpregu_00068_2014
crossref_primary_10_1016_j_niox_2021_11_001
crossref_primary_10_1016_j_scispo_2020_12_007
crossref_primary_10_1017_S0007114518000132
crossref_primary_10_1139_apnm_2017_0828
crossref_primary_10_1152_ajpheart_00414_2017
crossref_primary_10_1136_bjsports_2018_099027
crossref_primary_10_1080_02640414_2020_1770409
crossref_primary_10_14814_phy2_14162
crossref_primary_10_1016_j_cdnut_2024_104408
crossref_primary_10_1016_j_niox_2016_06_008
crossref_primary_10_1139_apnm_2015_0458
crossref_primary_10_1177_0271678X20910053
crossref_primary_10_14814_phy2_13982
crossref_primary_10_1016_j_niox_2016_06_007
crossref_primary_10_1177_0260106018790428
crossref_primary_10_3389_fpsyg_2018_01867
crossref_primary_10_1007_s00210_016_1318_3
crossref_primary_10_1111_apha_13924
crossref_primary_10_1186_s13098_022_00830_z
crossref_primary_10_1007_s00421_022_05071_6
crossref_primary_10_1080_19390211_2019_1650866
crossref_primary_10_1113_JP278494
crossref_primary_10_1016_j_niox_2017_12_001
crossref_primary_10_1007_s00421_018_3835_x
crossref_primary_10_1016_j_mvr_2022_104469
crossref_primary_10_3390_nu9111270
crossref_primary_10_1038_s41430_022_01115_4
crossref_primary_10_1152_japplphysiol_00593_2023
crossref_primary_10_1016_j_freeradbiomed_2020_03_025
crossref_primary_10_3390_biomedicines10092124
crossref_primary_10_1016_j_niox_2018_03_009
crossref_primary_10_1519_JSC_0000000000000596
crossref_primary_10_1111_sms_12848
crossref_primary_10_1152_japplphysiol_00804_2018
crossref_primary_10_14814_phy2_12089
crossref_primary_10_1007_s00421_015_3296_4
crossref_primary_10_1016_j_niox_2017_08_001
crossref_primary_10_1016_j_freeradbiomed_2024_11_010
crossref_primary_10_3109_09637486_2016_1147531
crossref_primary_10_1016_j_niox_2016_10_002
crossref_primary_10_1152_ajpregu_00121_2021
crossref_primary_10_1016_j_nutres_2015_05_017
crossref_primary_10_1016_j_jesf_2024_12_006
crossref_primary_10_1139_apnm_2021_0693
crossref_primary_10_1249_JES_0000000000000074
crossref_primary_10_3389_fnut_2023_1217192
crossref_primary_10_1080_07315724_2019_1601601
crossref_primary_10_52547_ajcm_28_3_176
crossref_primary_10_1093_jn_nxab157
crossref_primary_10_1152_ajpheart_00138_2014
crossref_primary_10_3390_medicina58111561
crossref_primary_10_1016_j_niox_2014_10_007
crossref_primary_10_1080_15438627_2019_1586707
crossref_primary_10_1152_japplphysiol_00747_2017
crossref_primary_10_1016_j_niox_2014_10_006
crossref_primary_10_1016_j_niox_2016_10_006
crossref_primary_10_1038_s41430_018_0140_z
crossref_primary_10_1123_ijspp_2013_0207
crossref_primary_10_1152_japplphysiol_01116_2018
crossref_primary_10_1139_apnm_2014_0036
crossref_primary_10_1186_s40798_023_00632_1
crossref_primary_10_1152_japplphysiol_00220_2023
crossref_primary_10_1152_ajpregu_00263_2016
crossref_primary_10_3389_fmicb_2022_911243
crossref_primary_10_1007_s00421_021_04602_x
crossref_primary_10_1017_S0954422417000063
crossref_primary_10_1016_j_pop_2019_10_002
crossref_primary_10_1152_japplphysiol_00367_2016
crossref_primary_10_1016_j_tjnut_2024_07_002
crossref_primary_10_1152_ajplung_00081_2015
crossref_primary_10_1007_s00421_015_3255_0
crossref_primary_10_1123_ijsnem_2020_0198
crossref_primary_10_1152_ajpheart_00389_2017
crossref_primary_10_1139_apnm_2019_0063
crossref_primary_10_3389_fphys_2016_00233
crossref_primary_10_1007_s40200_021_00798_z
crossref_primary_10_1007_s00421_018_3889_9
crossref_primary_10_32892_jmri_192
crossref_primary_10_1080_07315724_2021_2021562
crossref_primary_10_1123_ijsnem_2021_0054
crossref_primary_10_3390_nu13082767
crossref_primary_10_1123_ijsnem_2024_0113
crossref_primary_10_1113_JP271252
crossref_primary_10_1152_japplphysiol_00293_2017
crossref_primary_10_1080_02640414_2018_1504369
crossref_primary_10_1016_j_niox_2023_11_003
crossref_primary_10_1007_s00421_019_04094_w
crossref_primary_10_1146_annurev_nutr_082117_051622
crossref_primary_10_3390_nu11071642
crossref_primary_10_1016_j_tjnut_2023_12_018
crossref_primary_10_3390_antiox12010025
crossref_primary_10_1113_EP088834
crossref_primary_10_1519_JSC_0000000000002046
crossref_primary_10_1016_j_jfca_2015_03_005
crossref_primary_10_1113_JP270844
crossref_primary_10_3390_nu15030784
crossref_primary_10_1186_s13102_021_00292_2
crossref_primary_10_1249_MSS_0000000000002363
crossref_primary_10_1016_j_niox_2022_10_004
crossref_primary_10_1152_japplphysiol_00371_2019
crossref_primary_10_1155_2015_715859
crossref_primary_10_1186_s12970_020_00366_5
crossref_primary_10_3390_nu15061489
crossref_primary_10_1007_s00421_022_04946_y
crossref_primary_10_1007_s13749_014_0006_5
crossref_primary_10_1152_japplphysiol_01036_2016
crossref_primary_10_3390_nu16101511
crossref_primary_10_1016_j_niox_2023_05_008
crossref_primary_10_1016_j_crphys_2021_07_002
crossref_primary_10_1152_ajpheart_00451_2016
crossref_primary_10_1152_japplphysiol_00658_2015
crossref_primary_10_1007_s00421_024_05552_w
crossref_primary_10_17816_clinutr105659
crossref_primary_10_1016_j_foodchem_2018_08_022
crossref_primary_10_1016_j_niox_2023_05_003
crossref_primary_10_1080_15502783_2023_2206386
crossref_primary_10_1249_MSS_0000000000002470
crossref_primary_10_1371_journal_pone_0144504
crossref_primary_10_1080_17461391_2023_2230942
crossref_primary_10_3390_oxygen2040037
crossref_primary_10_1016_j_niox_2017_09_005
crossref_primary_10_1139_apnm_2021_0563
crossref_primary_10_1007_s00421_024_05415_4
crossref_primary_10_1016_j_foodchem_2020_127635
crossref_primary_10_1016_j_niox_2014_04_007
crossref_primary_10_3945_jn_116_229807
crossref_primary_10_1111_sms_14307
crossref_primary_10_1152_japplphysiol_00122_2020
crossref_primary_10_3390_app13116849
crossref_primary_10_4236_jbm_2019_73007
crossref_primary_10_3390_nu12010188
crossref_primary_10_1519_SSC_0000000000000552
crossref_primary_10_3389_fphys_2024_1504978
crossref_primary_10_3390_nu6115224
crossref_primary_10_3389_fphys_2017_00240
crossref_primary_10_1080_10408398_2020_1844137
crossref_primary_10_1139_apnm_2014_0228
crossref_primary_10_18276_cej_2021_3_06
crossref_primary_10_1016_j_niox_2016_01_001
crossref_primary_10_1016_j_niox_2014_09_158
crossref_primary_10_1016_j_niox_2017_11_008
crossref_primary_10_1002_ejsc_12187
crossref_primary_10_1016_j_niox_2016_01_002
crossref_primary_10_1249_JES_0000000000000272
crossref_primary_10_14814_phy2_13572
crossref_primary_10_1017_S0007114522001337
crossref_primary_10_1016_j_niox_2020_06_001
crossref_primary_10_1080_02640414_2023_2176052
crossref_primary_10_1016_j_clnu_2019_03_006
crossref_primary_10_3390_nu15245123
crossref_primary_10_3390_nu6020605
crossref_primary_10_1097_NT_0000000000000431
crossref_primary_10_1016_j_niox_2018_01_009
crossref_primary_10_1139_apnm_2017_0081
crossref_primary_10_1152_ajpendo_00122_2016
crossref_primary_10_1007_s40279_019_01185_8
crossref_primary_10_3390_nu12092734
crossref_primary_10_1139_apnm_2018_0816
crossref_primary_10_1093_jn_nxab354
crossref_primary_10_3390_nu16193352
crossref_primary_10_1113_JP278076
crossref_primary_10_1016_j_jsams_2024_06_009
crossref_primary_10_3390_nu14142839
crossref_primary_10_1152_japplphysiol_00400_2021
crossref_primary_10_3390_antiox12061194
crossref_primary_10_1007_s00421_015_3166_0
crossref_primary_10_1152_japplphysiol_01141_2014
crossref_primary_10_1016_j_niox_2018_05_010
crossref_primary_10_1007_s00421_017_3580_6
crossref_primary_10_3390_nu14183703
crossref_primary_10_1123_ijsnem_2018_0271
crossref_primary_10_31680_gaunjss_805351
crossref_primary_10_1139_cjpp_2024_0061
crossref_primary_10_1097_MCO_0000000000000414
crossref_primary_10_1016_j_scispo_2022_02_004
crossref_primary_10_1016_j_niox_2016_08_001
crossref_primary_10_1139_apnm_2017_0198
crossref_primary_10_1139_apnm_2014_0470
crossref_primary_10_1139_apnm_2023_0606
crossref_primary_10_1016_j_freeradbiomed_2024_02_011
crossref_primary_10_1016_j_freeradbiomed_2025_01_048
crossref_primary_10_1016_j_niox_2020_03_007
crossref_primary_10_1152_japplphysiol_00662_2014
crossref_primary_10_1139_apnm_2017_0547
crossref_primary_10_1177_19417381221083590
crossref_primary_10_3390_nu13061986
crossref_primary_10_1249_MSS_0000000000003372
crossref_primary_10_56984_8ZG007D9ZWE
crossref_primary_10_1016_j_niox_2022_11_006
crossref_primary_10_18502_espoch_v1i5_9564
crossref_primary_10_1016_j_freeradbiomed_2024_10_282
crossref_primary_10_1155_2021_5579864
crossref_primary_10_1007_s11897_016_0277_9
crossref_primary_10_1139_apnm_2016_0452
crossref_primary_10_1007_s00421_021_04621_8
crossref_primary_10_1155_2017_7853034
crossref_primary_10_1249_MSS_0000000000000548
crossref_primary_10_1016_j_niox_2020_10_002
crossref_primary_10_1111_joss_12789
crossref_primary_10_20463_jenb_2016_0029
crossref_primary_10_3390_sports5040080
crossref_primary_10_3390_nu12103022
crossref_primary_10_1017_S0007114520002226
crossref_primary_10_1007_s00421_023_05369_z
crossref_primary_10_20463_jenb_2016_0031
crossref_primary_10_1016_j_niox_2021_05_002
crossref_primary_10_1016_j_mvr_2024_104706
crossref_primary_10_1017_S0029665116001129
crossref_primary_10_14814_phy2_13340
crossref_primary_10_1152_japplphysiol_01006_2017
crossref_primary_10_3390_nu12020584
crossref_primary_10_1080_10408398_2020_1798351
crossref_primary_10_1152_japplphysiol_00612_2013
crossref_primary_10_1017_S000711452300034X
crossref_primary_10_1186_s40101_020_00231_z
crossref_primary_10_1186_s12970_017_0172_0
crossref_primary_10_1016_j_niox_2016_04_004
crossref_primary_10_3390_nu15173763
crossref_primary_10_1007_s40279_022_01701_3
crossref_primary_10_3109_09637486_2015_1121469
crossref_primary_10_1139_apnm_2018_0050
crossref_primary_10_1016_j_ajsep_2022_06_003
crossref_primary_10_1080_10408398_2020_1746629
crossref_primary_10_1007_s00421_020_04389_3
crossref_primary_10_1007_s00421_021_04726_0
crossref_primary_10_1113_JP284701
crossref_primary_10_1007_s00421_018_3809_z
crossref_primary_10_1016_j_jesf_2020_12_001
crossref_primary_10_1152_ajpregu_00083_2022
crossref_primary_10_1186_s12970_018_0255_6
crossref_primary_10_1016_j_jand_2020_02_014
crossref_primary_10_1097_MCO_0000000000000222
crossref_primary_10_1152_ajpregu_00017_2018
crossref_primary_10_1016_j_freeradbiomed_2015_05_014
crossref_primary_10_1124_pr_120_019240
crossref_primary_10_1093_gerona_glaa311
crossref_primary_10_1139_apnm_2023_0236
crossref_primary_10_1152_ajpendo_00230_2016
crossref_primary_10_1007_s00394_016_1173_5
crossref_primary_10_1007_s00394_024_03440_9
crossref_primary_10_1249_MSS_0000000000001655
crossref_primary_10_1152_ajpregu_00295_2013
crossref_primary_10_3390_nu14173645
crossref_primary_10_3390_oxygen3010010
crossref_primary_10_3390_nu12082227
crossref_primary_10_18826_useeabd_1104040
crossref_primary_10_4081_jphia_2022_2406
crossref_primary_10_3390_nu9121359
crossref_primary_10_1161_CIRCULATIONAHA_114_012957
crossref_primary_10_1177_0271678X211058261
crossref_primary_10_1007_s40279_016_0617_7
crossref_primary_10_3390_nu15102371
crossref_primary_10_1080_15502783_2024_2334680
crossref_primary_10_1093_advances_nmac054
crossref_primary_10_1139_apnm_2013_0263
crossref_primary_10_14814_phy2_13475
crossref_primary_10_56984_8ZG020AQYL
crossref_primary_10_1016_j_niox_2015_04_006
crossref_primary_10_1152_japplphysiol_00953_2016
crossref_primary_10_1016_j_niox_2016_12_006
crossref_primary_10_1080_19390211_2024_2405825
crossref_primary_10_1113_EP087493
crossref_primary_10_1136_bmjresp_2021_000948
crossref_primary_10_3389_fnut_2021_660150
crossref_primary_10_1016_j_niox_2016_12_008
crossref_primary_10_1186_s13063_023_07117_2
crossref_primary_10_1016_j_niox_2015_04_003
crossref_primary_10_2174_1871525719666210427130511
crossref_primary_10_1016_j_physbeh_2015_05_035
crossref_primary_10_3390_nu9121360
crossref_primary_10_3177_jnsv_70_441
crossref_primary_10_1089_ham_2018_0114
crossref_primary_10_3390_nu11061327
crossref_primary_10_1007_s00421_018_3886_z
crossref_primary_10_1139_apnm_2018_0277
crossref_primary_10_1152_japplphysiol_00232_2015
crossref_primary_10_1152_ajpregu_00099_2015
crossref_primary_10_1152_japplphysiol_01004_2018
crossref_primary_10_1016_j_niox_2022_01_003
crossref_primary_10_3390_nu15112493
crossref_primary_10_1152_ajpgi_00203_2016
crossref_primary_10_3389_fphys_2022_839996
crossref_primary_10_1016_j_niox_2022_01_005
crossref_primary_10_1136_thoraxjnl_2019_214278
crossref_primary_10_2147_NSS_S279395
crossref_primary_10_1007_s40279_025_02194_6
crossref_primary_10_1080_02640414_2022_2052471
crossref_primary_10_1123_ijspp_2018_0654
crossref_primary_10_1152_japplphysiol_00047_2018
crossref_primary_10_17816_RCF14178_88
crossref_primary_10_3390_ijms20092277
crossref_primary_10_1039_D3FO03749E
crossref_primary_10_1007_s40279_015_0323_x
crossref_primary_10_1016_j_scispo_2022_04_010
crossref_primary_10_1139_apnm_2016_0525
crossref_primary_10_3390_nu15245128
crossref_primary_10_1152_japplphysiol_00453_2020
crossref_primary_10_3390_nu9030314
crossref_primary_10_1016_j_freeradbiomed_2023_11_039
crossref_primary_10_1016_j_jchf_2015_12_013
crossref_primary_10_1249_MSS_0000000000000577
crossref_primary_10_1152_japplphysiol_00850_2019
Cites_doi 10.1113/jphysiol.2012.232777
10.1123/ijsnem.22.1.64
10.1123/ijsnem.22.6.470
10.1161/HYPERTENSIONAHA.110.153536
10.1016/j.niox.2012.03.008
10.1136/bmj.326.7404.1427
10.1007/s00421-012-2397-6
10.1152/japplphysiol.01070.2010
10.1152/japplphysiol.00722.2009
10.1007/s10863-007-9074-1
10.1152/japplphysiol.00046.2010
10.1111/sms.12005
10.1016/S0014-5793(98)01460-4
10.1152/japplphysiol.00024.2003
10.1113/jphysiol.2012.243121
10.1016/0014-5793(96)00003-8
10.1111/j.1748-1716.2007.01713.x
10.1152/ajpregu.00206.2010
10.1097/00004872-200304000-00013
10.1016/j.cmet.2011.01.004
10.1038/nm954
10.1007/s00424-013-1220-5
10.1046/j.1365-201X.1998.0303f.x
10.1113/jphysiol.2011.216341
10.1152/japplphysiol.00612.2013
10.1038/368502a0
10.1093/cvr/cvq325
10.1249/MSS.0b013e318217d439
10.1007/s00421-013-2589-8
10.1161/HYPERTENSIONAHA.107.103523
10.1152/ajpheart.00374.2008
10.1016/0140-6736(90)90878-9
10.1016/S0140-6736(02)11911-8
10.1152/physrev.2001.81.1.209
10.1016/j.bcmd.2004.02.002
10.1074/jbc.M806654200
10.1016/j.niox.2008.08.003
10.1249/MSS.0b013e31821597b4
10.1016/j.freeradbiomed.2009.11.006
10.1080/17461390500422796
10.1056/NEJMc062800
ContentType Journal Article
Copyright Copyright American Physiological Society Aug 1, 2013
Copyright_xml – notice: Copyright American Physiological Society Aug 1, 2013
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7QR
7TK
7TS
7U7
8FD
C1K
FR3
P64
7X8
7T2
DOI 10.1152/japplphysiol.00372.2013
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Physical Education Index
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
Health and Safety Science Abstracts (Full archive)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
Toxicology Abstracts
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Physical Education Index
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
Health & Safety Science Abstracts
DatabaseTitleList Health & Safety Science Abstracts
CrossRef
Technology Research Database
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1522-1601
EndPage 336
ExternalDocumentID 3042477121
23640589
10_1152_japplphysiol_00372_2013
Genre Randomized Controlled Trial
Research Support, Non-U.S. Gov't
Journal Article
Feature
GroupedDBID ---
-~X
.55
18M
29J
2WC
4.4
53G
5VS
85S
AAFWJ
AAYXX
ABCQX
ABDNZ
ABHWK
ABJNI
ABKWE
ABOCM
ACBEA
ACGFO
ACGFS
ACIWK
ACPRK
ADBBV
ADFNX
AEILP
AENEX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BKKCC
BTFSW
CITATION
CS3
DIK
DU5
E3Z
EBS
EJD
EMOBN
F5P
FRP
GX1
H13
H~9
ITBOX
KQ8
L7B
OK1
P-O
P2P
P6G
PQQKQ
RAP
RHI
RPL
RPRKH
SJN
TR2
UHB
UKR
UPT
W8F
WH7
WOQ
X7M
XSW
YBH
YQT
YWH
~02
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7QR
7TK
7TS
7U7
8FD
C1K
FR3
P64
7X8
7T2
ID FETCH-LOGICAL-c440t-f14bf0478d6dea3dec8eb379d2d504f18351d2d3570cab2bbe5f2e1f4b658cbc3
ISSN 8750-7587
1522-1601
IngestDate Fri Jul 11 04:24:18 EDT 2025
Fri Jul 11 02:29:53 EDT 2025
Mon Jun 30 08:44:37 EDT 2025
Thu Apr 03 06:56:01 EDT 2025
Tue Jul 01 01:13:39 EDT 2025
Thu Apr 24 23:05:51 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords blood pressure
nitric oxide
nitrite
O2 uptake
exercise tolerance
nitrate
exercise economy
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c440t-f14bf0478d6dea3dec8eb379d2d504f18351d2d3570cab2bbe5f2e1f4b658cbc3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ObjectType-Undefined-3
PMID 23640589
PQID 1419488769
PQPubID 40905
PageCount 12
ParticipantIDs proquest_miscellaneous_1434020704
proquest_miscellaneous_1417532154
proquest_journals_1419488769
pubmed_primary_23640589
crossref_citationtrail_10_1152_japplphysiol_00372_2013
crossref_primary_10_1152_japplphysiol_00372_2013
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-08-01
2013-Aug-01
20130801
PublicationDateYYYYMMDD 2013-08-01
PublicationDate_xml – month: 08
  year: 2013
  text: 2013-08-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Bethesda
PublicationTitle Journal of applied physiology (1985)
PublicationTitleAlternate J Appl Physiol (1985)
PublicationYear 2013
Publisher American Physiological Society
Publisher_xml – name: American Physiological Society
References B21
B22
B23
B24
B25
B26
B27
B28
B29
B5a
B30
B31
B10
B32
B11
B33
B12
B34
B13
B35
B14
B36
B15
B37
B16
B38
B17
B39
B18
B19
B1
B2
B3
B4
Kelly J (B20)
B5
B6
B7
B8
B9
B40
B41
23743401 - J Appl Physiol (1985). 2013 Aug 1;115(3):311-2
References_xml – ident: B17
  doi: 10.1113/jphysiol.2012.232777
– ident: B6
  doi: 10.1123/ijsnem.22.1.64
– ident: B7
  doi: 10.1123/ijsnem.22.6.470
– ident: B19
  doi: 10.1161/HYPERTENSIONAHA.110.153536
– ident: B33
  doi: 10.1016/j.niox.2012.03.008
– ident: B27
  doi: 10.1136/bmj.326.7404.1427
– ident: B40
  doi: 10.1007/s00421-012-2397-6
– ident: B22
  doi: 10.1152/japplphysiol.01070.2010
– ident: B3
  doi: 10.1152/japplphysiol.00722.2009
– ident: B9
  doi: 10.1007/s10863-007-9074-1
– ident: B2
  doi: 10.1152/japplphysiol.00046.2010
– ident: B8
  doi: 10.1111/sms.12005
– ident: B18
  doi: 10.1016/S0014-5793(98)01460-4
– ident: B11
  doi: 10.1152/japplphysiol.00024.2003
– ident: B14
  doi: 10.1113/jphysiol.2012.243121
– ident: B32
  doi: 10.1016/0014-5793(96)00003-8
– ident: B26
  doi: 10.1111/j.1748-1716.2007.01713.x
– ident: B37
  doi: 10.1152/ajpregu.00206.2010
– ident: B20
  publication-title: Med Sci Sports Exerc
– ident: B28
  doi: 10.1097/00004872-200304000-00013
– ident: B24
  doi: 10.1016/j.cmet.2011.01.004
– ident: B10
  doi: 10.1038/nm954
– ident: B15
  doi: 10.1007/s00424-013-1220-5
– ident: B35
  doi: 10.1046/j.1365-201X.1998.0303f.x
– ident: B38
  doi: 10.1113/jphysiol.2011.216341
– ident: B5a
  doi: 10.1152/japplphysiol.00612.2013
– ident: B4
  doi: 10.1038/368502a0
– ident: B30
  doi: 10.1093/cvr/cvq325
– ident: B5
  doi: 10.1249/MSS.0b013e318217d439
– ident: B41
  doi: 10.1007/s00421-013-2589-8
– ident: B39
  doi: 10.1161/HYPERTENSIONAHA.107.103523
– ident: B1
  doi: 10.1152/ajpheart.00374.2008
– ident: B31
  doi: 10.1016/0140-6736(90)90878-9
– ident: B29
  doi: 10.1016/S0140-6736(02)11911-8
– ident: B36
  doi: 10.1152/physrev.2001.81.1.209
– ident: B12
  doi: 10.1016/j.bcmd.2004.02.002
– ident: B13
  doi: 10.1074/jbc.M806654200
– ident: B16
  doi: 10.1016/j.niox.2008.08.003
– ident: B21
  doi: 10.1249/MSS.0b013e31821597b4
– ident: B25
  doi: 10.1016/j.freeradbiomed.2009.11.006
– ident: B34
  doi: 10.1080/17461390500422796
– ident: B23
  doi: 10.1056/NEJMc062800
– reference: 23743401 - J Appl Physiol (1985). 2013 Aug 1;115(3):311-2
SSID ssj0014451
Score 2.5739384
Snippet Dietary supplementation with beetroot juice (BR), containing approximately 5–8 mmol inorganic nitrate (NO 3 − ), increases plasma nitrite concentration ([NO 2...
Dietary supplementation with beetroot juice (BR), containing approximately 5-8 mmol inorganic nitrate (NO3(-)), increases plasma nitrite concentration...
Dietary supplementation with beetroot juice (BR), containing approximately 5-8 mmol inorganic nitrate (NO3-), increases plasma nitrite concentration ([NO2-]),...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 325
SubjectTerms Adult
Algorithms
Analysis of Variance
Beta vulgaris - physiology
Beverages
Blood pressure
Blood Pressure - physiology
Body Mass Index
Carbon Dioxide - blood
Dietary Supplements
Dose-Response Relationship, Drug
Exercise
Exercise - physiology
Female
Heart Rate - physiology
Humans
Ingestion
Lactic Acid - blood
Male
Nitrates
Nitrates - blood
Nitrites - blood
Nitrogen dioxide
Oxygen
Oxygen - blood
Oxygen Consumption - physiology
Oxygen uptake
Physiological responses
Physiology
Plasma
Vegetable juices
Young Adult
Young adults
Title Beetroot juice and exercise: pharmacodynamic and dose-response relationships
URI https://www.ncbi.nlm.nih.gov/pubmed/23640589
https://www.proquest.com/docview/1419488769
https://www.proquest.com/docview/1417532154
https://www.proquest.com/docview/1434020704
Volume 115
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLfKkBAXBBuwwkBBQlyqlCS2k5jbQKBpMARoE7tFcfIiFZV0WtPD-Hv4Q3m2X9JkUMa4RGliW25-L-8r74Ox56KKiwQFsZ9EOvZFkoKveRrgT1NALJC5ApM7fPQxPjgRh6fydDT62YtaWjV6Wvz4Y17J_6CK1xBXkyV7DWS7RfECniO-eESE8fhPGL8GaFDzbSbfVjMK_G9bKBlL_4zKUpeu67y9Xy6W4J-7wFigTBYXsrXcoKfmpKdaH4ir2GSKO6lU9rwIXy_m1LIZYHI4XbNx6mRtg3HXXtPZfBBj1pvRORRp1gwmX6Z914RpE5G2rok2ehNRlyRRgTgsWr9hTMNaFuxSOonWeI-hcpcWTbKZu2Ipv7N9Gdl2A_hA6GFMTWEdk2jnMl2HhbYvCcAuLNEaRDLK-gtldqHMLHSD3YzQGDHc9P3n9bcqU-LNeZHdn6UoQlzo5YYdDXWgDYaNVXCO77I7hLi378jsHhtBvc129uu8WXy_8F54nzr8t9mtIwrJ2GEfWiL0LBF6SGReS4SvvEskaO8OSNAbkOB9dvLu7fGbA59adPiFEEHjV6HQlSnwVMYl5LyEIgXNE1VGpQxEhfJChnjOZRIUuY60BllFEFZCo-Zb6II_YFv1ooZd5vFCahXksdKCi6gSechRPCSQBipVSpZjFrcPLSuofr1pozLProBtzIJu4pkr4XL1lL0WlYze9yUayaFCcZfEasyedbeRG5tPbHkNi5Udg_Y_qtHib2O4cdokAY556BDv9mXaOZhGn4-uv-fH7Pb6HdxjW835Cp6gwtzop5ZefwHjvMH5
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Beetroot+juice+and+exercise%3A+pharmacodynamic+and+dose-response+relationships&rft.jtitle=Journal+of+applied+physiology+%281985%29&rft.au=Wylie%2C+Lee+J.&rft.au=Kelly%2C+James&rft.au=Bailey%2C+Stephen+J.&rft.au=Blackwell%2C+Jamie+R.&rft.date=2013-08-01&rft.issn=8750-7587&rft.eissn=1522-1601&rft.volume=115&rft.issue=3&rft.spage=325&rft.epage=336&rft_id=info:doi/10.1152%2Fjapplphysiol.00372.2013&rft.externalDBID=n%2Fa&rft.externalDocID=10_1152_japplphysiol_00372_2013
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=8750-7587&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=8750-7587&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=8750-7587&client=summon