Predictions on the SERS enhancement factor of gold nanosphere aggregate samples

Colloidal gold nanostructures are nowadays widely involved in sensor applications. One of the most interesting techniques that takes advantage of them is certainly the Surface Enhanced Raman Scattering (SERS) effect, even if it is often considered a tricky technique due to structural constraints req...

Full description

Saved in:
Bibliographic Details
Published inPhysical chemistry chemical physics : PCCP Vol. 21; no. 28; pp. 15515 - 15522
Main Authors Litti, Lucio, Meneghetti, Moreno
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 17.07.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Colloidal gold nanostructures are nowadays widely involved in sensor applications. One of the most interesting techniques that takes advantage of them is certainly the Surface Enhanced Raman Scattering (SERS) effect, even if it is often considered a tricky technique due to structural constraints required by the nanostructured substrates to obtain high enhancement factors (EFs), i.e. the presence of hot spots. Because of the easy preparation and high number of hot spots, aggregated gold nanospheres seem to be the most efficient through the SERS colloids, but their characteristic high disorder makes them unpredictable and difficult to compare between different batches. For this reason, less SERS effective, but more regular and organized substrates are usually preferred. In this study, a method based on Boundary Element Method (BEM) simulation is used to accurately predict the colloidal SERS EFs of gold nanoparticle (AuNP) aggregates, starting from their experimental extinction spectra. Surprisingly, it was found that larger aggregates do not exhibit stronger hot spots, but rather higher amounts of them, influencing the overall predicted EFs, which well reflect the results obtained experimentally. A boundary element method simulation is used to accurately predict the SERS EFs of gold nanoparticle aggregates via their experimental extinction spectra.
AbstractList Colloidal gold nanostructures are nowadays widely involved in sensor applications. One of the most interesting techniques that takes advantage of them is certainly the Surface Enhanced Raman Scattering (SERS) effect, even if it is often considered a tricky technique due to structural constraints required by the nanostructured substrates to obtain high enhancement factors (EFs), i.e. the presence of hot spots. Because of the easy preparation and high number of hot spots, aggregated gold nanospheres seem to be the most efficient through the SERS colloids, but their characteristic high disorder makes them unpredictable and difficult to compare between different batches. For this reason, less SERS effective, but more regular and organized substrates are usually preferred. In this study, a method based on Boundary Element Method (BEM) simulation is used to accurately predict the colloidal SERS EFs of gold nanoparticle (AuNP) aggregates, starting from their experimental extinction spectra. Surprisingly, it was found that larger aggregates do not exhibit stronger hot spots, but rather higher amounts of them, influencing the overall predicted EFs, which well reflect the results obtained experimentally. A boundary element method simulation is used to accurately predict the SERS EFs of gold nanoparticle aggregates via their experimental extinction spectra.
Colloidal gold nanostructures are nowadays widely involved in sensor applications. One of the most interesting techniques that takes advantage of them is certainly the Surface Enhanced Raman Scattering (SERS) effect, even if it is often considered a tricky technique due to structural constraints required by the nanostructured substrates to obtain high enhancement factors (EFs), i.e. the presence of hot spots. Because of the easy preparation and high number of hot spots, aggregated gold nanospheres seem to be the most efficient through the SERS colloids, but their characteristic high disorder makes them unpredictable and difficult to compare between different batches. For this reason, less SERS effective, but more regular and organized substrates are usually preferred. In this study, a method based on Boundary Element Method (BEM) simulation is used to accurately predict the colloidal SERS EFs of gold nanoparticle (AuNP) aggregates, starting from their experimental extinction spectra. Surprisingly, it was found that larger aggregates do not exhibit stronger hot spots, but rather higher amounts of them, influencing the overall predicted EFs, which well reflect the results obtained experimentally.
Colloidal gold nanostructures are nowadays widely involved in sensor applications. One of the most interesting techniques that takes advantage of them is certainly the Surface Enhanced Raman Scattering (SERS) effect, even if it is often considered a tricky technique due to structural constraints required by the nanostructured substrates to obtain high enhancement factors (EFs), i.e. the presence of hot spots. Because of the easy preparation and high number of hot spots, aggregated gold nanospheres seem to be the most efficient through the SERS colloids, but their characteristic high disorder makes them unpredictable and difficult to compare between different batches. For this reason, less SERS effective, but more regular and organized substrates are usually preferred. In this study, a method based on Boundary Element Method (BEM) simulation is used to accurately predict the colloidal SERS EFs of gold nanoparticle (AuNP) aggregates, starting from their experimental extinction spectra. Surprisingly, it was found that larger aggregates do not exhibit stronger hot spots, but rather higher amounts of them, influencing the overall predicted EFs, which well reflect the results obtained experimentally.
Author Litti, Lucio
Meneghetti, Moreno
AuthorAffiliation Department of Chemical Sciences
University of Padova
AuthorAffiliation_xml – name: Department of Chemical Sciences
– name: University of Padova
Author_xml – sequence: 1
  givenname: Lucio
  surname: Litti
  fullname: Litti, Lucio
– sequence: 2
  givenname: Moreno
  surname: Meneghetti
  fullname: Meneghetti, Moreno
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31259983$$D View this record in MEDLINE/PubMed
BookMark eNpF0MtLAzEQBvAgFfvQi3cl4E1YzWOTJkdd6gMKLVbPSzY7u21pkzXZHvzvXW2tpxmYH9_AN0Q95x0gdEnJHSVc31ttG8IIFcUJGtBU8kQTlfaO-1j20TDGNSGdofwM9TllQmvFB2g2D1CubLvyLmLvcLsEvJi8LTC4pXEWtuBaXBnb-oB9hWu_KbEzzsdmCQGwqesAtWkBR7NtNhDP0WllNhEuDnOEPp4m79lLMp09v2YP08SmKWkT0KVUlvK0VMVYSVIIYphhQlClhORlSokurWSFNYpqUxYKSDrWBRghC-CEj9DNPrcJ_nMHsc3Xfhdc9zJnTCipGUtpp273ygYfY4Aqb8Jqa8JXTkn-012e6Wz-291jh68PkbtiC-WR_pXVgas9CNEer__l829D7nQ8
CitedBy_id crossref_primary_10_1039_D4NR00172A
crossref_primary_10_1002_advs_201903638
crossref_primary_10_1039_D0NR08517K
crossref_primary_10_1002_adom_202102635
crossref_primary_10_3390_nano10112317
crossref_primary_10_1016_j_optlastec_2024_110882
crossref_primary_10_1039_D0CP04099A
crossref_primary_10_1039_D2NA00930G
crossref_primary_10_1039_D2RA06248H
crossref_primary_10_1021_acscatal_2c02076
crossref_primary_10_3390_s22229012
crossref_primary_10_1088_2632_959X_aba104
crossref_primary_10_1364_OE_419051
crossref_primary_10_1002_jrs_6043
crossref_primary_10_1016_j_aca_2021_338931
crossref_primary_10_1039_D1NH00228G
crossref_primary_10_1016_j_snb_2021_130594
crossref_primary_10_1364_OE_452665
crossref_primary_10_1039_C9NH00456D
crossref_primary_10_3390_s20247066
crossref_primary_10_1039_C9RA05399A
crossref_primary_10_1002_adhm_202200030
crossref_primary_10_1007_s13534_024_00381_4
crossref_primary_10_1021_acsanm_9b01982
crossref_primary_10_3390_app9235237
crossref_primary_10_1016_j_jcis_2023_05_137
crossref_primary_10_1021_acssensors_3c01648
crossref_primary_10_1088_1402_4896_ad49dd
crossref_primary_10_3390_bios13110977
crossref_primary_10_1002_adom_202300878
crossref_primary_10_1021_acs_jpcc_3c03624
crossref_primary_10_1186_s40580_024_00428_3
crossref_primary_10_1039_D1TC04796E
crossref_primary_10_1002_adfm_202307631
crossref_primary_10_1039_D2NA00917J
crossref_primary_10_1002_adfm_201909655
crossref_primary_10_1021_acs_nanolett_3c01311
crossref_primary_10_1021_acsanm_9b01392
crossref_primary_10_1039_D0NR04631K
crossref_primary_10_1039_D3NR05989H
crossref_primary_10_1021_acsami_3c14487
crossref_primary_10_1039_D3AN01899G
crossref_primary_10_1088_2040_8986_ace0cc
Cites_doi 10.1002/jrs.5411
10.1021/nl3005447
10.1016/j.cpc.2017.08.010
10.1021/nn401924n
10.1155/2018/2849175
10.1002/adma.200703214
10.1021/acsnano.9b00575
10.1002/anie.201205748
10.1103/PhysRevB.65.115418
10.1039/C7NR01406F
10.1021/ac401662r
10.1021/ac048176x
10.1016/j.aca.2017.08.020
10.1016/j.jcis.2018.08.107
10.1002/adhm.201700596
10.1021/ac0702084
10.1039/b711490g
10.1021/ja309300d
10.1016/j.cpc.2013.12.010
10.1038/ncomms1806
10.1021/jp8082425
10.1038/nmat852
10.1016/j.cpc.2011.09.009
10.1039/C7NR07398D
10.1007/s00216-016-9315-4
10.1007/s00216-014-7622-1
10.1021/acs.nanolett.8b04950
10.1039/C7NR07844G
10.1002/aenm.201601703
10.1016/j.talanta.2018.01.049
10.1039/C7CS00238F
10.1021/acs.chemmater.6b02439
10.1021/jp5024444
10.1038/s41467-018-04118-7
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2019
Copyright_xml – notice: Copyright Royal Society of Chemistry 2019
DBID NPM
AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1039/c9cp02015b
DatabaseName PubMed
CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle PubMed
CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList
CrossRef
PubMed
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1463-9084
EndPage 15522
ExternalDocumentID 10_1039_C9CP02015B
31259983
c9cp02015b
Genre Journal Article
GroupedDBID -
0-7
0R
123
1TJ
29O
4.4
53G
70
705
70J
7~J
87K
AAEMU
AAGNR
AAIWI
AANOJ
ABDVN
ABFLS
ABGFH
ABRYZ
ACGFS
ACIWK
ACLDK
ACNCT
ADMRA
ADSRN
AENEX
AFVBQ
AGKEF
AGSTE
AGSWI
ALMA_UNASSIGNED_HOLDINGS
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
CKLOX
CS3
D0L
DU5
DZ
EBS
ECGLT
EE0
EF-
EJD
F5P
GNO
HZ
H~N
IDZ
IPNFZ
J3G
J3I
JG
M4U
N9A
NHB
O9-
OK1
P2P
R7B
R7C
RCNCU
RIG
RNS
RPMJG
RRA
RRC
RSCEA
SKA
SKF
SLH
TN5
TWZ
UCJ
UHB
VH6
WH7
X
YNT
---
-DZ
-JG
-~X
0R~
2WC
70~
AAJAE
AAMEH
AAWGC
AAXHV
AAXPP
ABASK
ABEMK
ABJNI
ABPDG
ABXOH
ACGFO
AEFDR
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AGEGJ
AGRSR
AHGCF
ANUXI
APEMP
GGIMP
H13
HZ~
NPM
RAOCF
AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-c440t-e9d68c134d8b7860b50a2a255188563d4109dc62bca819adb8e0479bea56be303
ISSN 1463-9076
IngestDate Thu Oct 10 17:43:09 EDT 2024
Thu Sep 12 17:02:12 EDT 2024
Wed Oct 16 00:52:04 EDT 2024
Sat Jan 08 03:56:20 EST 2022
IsPeerReviewed true
IsScholarly true
Issue 28
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c440t-e9d68c134d8b7860b50a2a255188563d4109dc62bca819adb8e0479bea56be303
Notes 10.1039/c9cp02015b
Electronic supplementary information (ESI) available: TEM images, analysis of other different clustered nanospheres, as well as all the structures and the simulated extinction spectra used in this study. See DOI
ORCID 0000-0001-6247-5456
0000-0003-3355-4811
PMID 31259983
PQID 2258692241
PQPubID 2047499
PageCount 8
ParticipantIDs proquest_journals_2258692241
rsc_primary_c9cp02015b
pubmed_primary_31259983
crossref_primary_10_1039_C9CP02015B
PublicationCentury 2000
PublicationDate 20190717
PublicationDateYYYYMMDD 2019-07-17
PublicationDate_xml – month: 7
  year: 2019
  text: 20190717
  day: 17
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle Physical chemistry chemical physics : PCCP
PublicationTitleAlternate Phys Chem Chem Phys
PublicationYear 2019
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Amendola (C9CP02015B-(cit33)/*[position()=1]) 2009; 113
Merkens (C9CP02015B-(cit15)/*[position()=1]) 2019; 13
Hohenester (C9CP02015B-(cit32)/*[position()=1]) 2014; 185
Bertorelle (C9CP02015B-(cit12)/*[position()=1]) 2018; 10
Kleinman (C9CP02015B-(cit26)/*[position()=1]) 2012; 135
Saviello (C9CP02015B-(cit3)/*[position()=1]) 2019; 50
De Abajo (C9CP02015B-(cit23)/*[position()=1]) 2002; 65
Grzelczak (C9CP02015B-(cit6)/*[position()=1]) 2008; 37
Haiss (C9CP02015B-(cit34)/*[position()=1]) 2007; 79
Chen (C9CP02015B-(cit36)/*[position()=1]) 2018; 9
Maier (C9CP02015B-(cit5)/*[position()=1]) 2003; 2
Amendola (C9CP02015B-(cit27)/*[position()=1]) 2013; 85
Baffou (C9CP02015B-(cit31)/*[position()=1]) 2013; 7
Bonifacio (C9CP02015B-(cit9)/*[position()=1]) 2014; 406
Biscaglia (C9CP02015B-(cit13)/*[position()=1]) 2017; 6
Litti (C9CP02015B-(cit14)/*[position()=1]) 2018; 10
Hohenester (C9CP02015B-(cit24)/*[position()=1]) 2018; 222
Kuttner (C9CP02015B-(cit7)/*[position()=1]) 2018
Schlücker (C9CP02015B-(cit22)/*[position()=1]) 2014; 53
Calzavara (C9CP02015B-(cit1)/*[position()=1]) 2018; 2018
Litti (C9CP02015B-(cit11)/*[position()=1]) 2019; 533
Laurence (C9CP02015B-(cit20)/*[position()=1]) 2012; 12
Scarabelli (C9CP02015B-(cit16)/*[position()=1]) 2017; 29
Orendorff (C9CP02015B-(cit37)/*[position()=1]) 2005; 77
Lamberti (C9CP02015B-(cit25)/*[position()=1]) 2017; 7
Barbara (C9CP02015B-(cit19)/*[position()=1]) 2014; 118
Saviello (C9CP02015B-(cit2)/*[position()=1]) 2018; 181
Sciutto (C9CP02015B-(cit10)/*[position()=1]) 2017; 991
Esteban (C9CP02015B-(cit30)/*[position()=1]) 2012; 3
Litti (C9CP02015B-(cit18)/*[position()=1]) 2016; 408
Lin (C9CP02015B-(cit28)/*[position()=1]) 2018
Pensa (C9CP02015B-(cit4)/*[position()=1]) 2019; 19
Ding (C9CP02015B-(cit8)/*[position()=1]) 2017; 46
Reguera (C9CP02015B-(cit17)/*[position()=1]) 2017; 9
Myroshnychenko (C9CP02015B-(cit21)/*[position()=1]) 2008; 20
Amendola (C9CP02015B-(cit29)/*[position()=1]) 2017; 29
Hohenester (C9CP02015B-(cit35)/*[position()=1]) 2012; 183
References_xml – issn: 2018
  publication-title: Plasmonics
  doi: Kuttner
– volume: 29
  start-page: 203002
  year: 2017
  ident: C9CP02015B-(cit29)/*[position()=1]
  publication-title: J. Phys.: Condens. Matter
  contributor:
    fullname: Amendola
– volume: 50
  start-page: 222
  year: 2019
  ident: C9CP02015B-(cit3)/*[position()=1]
  publication-title: J. Raman Spectrosc.
  doi: 10.1002/jrs.5411
  contributor:
    fullname: Saviello
– volume: 12
  start-page: 2912
  year: 2012
  ident: C9CP02015B-(cit20)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl3005447
  contributor:
    fullname: Laurence
– volume: 222
  start-page: 209
  year: 2018
  ident: C9CP02015B-(cit24)/*[position()=1]
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2017.08.010
  contributor:
    fullname: Hohenester
– volume: 7
  start-page: 6478
  year: 2013
  ident: C9CP02015B-(cit31)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn401924n
  contributor:
    fullname: Baffou
– volume: 2018
  start-page: 2849175
  year: 2018
  ident: C9CP02015B-(cit1)/*[position()=1]
  publication-title: Adv. Condens. Matter Phys.
  doi: 10.1155/2018/2849175
  contributor:
    fullname: Calzavara
– volume: 20
  start-page: 4288
  year: 2008
  ident: C9CP02015B-(cit21)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200703214
  contributor:
    fullname: Myroshnychenko
– volume: 13
  start-page: 6596
  issue: 6
  year: 2019
  ident: C9CP02015B-(cit15)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b00575
  contributor:
    fullname: Merkens
– volume: 53
  start-page: 4756
  year: 2014
  ident: C9CP02015B-(cit22)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201205748
  contributor:
    fullname: Schlücker
– volume: 65
  start-page: 115418
  year: 2002
  ident: C9CP02015B-(cit23)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.65.115418
  contributor:
    fullname: De Abajo
– volume: 9
  start-page: 9467
  year: 2017
  ident: C9CP02015B-(cit17)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C7NR01406F
  contributor:
    fullname: Reguera
– volume: 85
  start-page: 11747
  year: 2013
  ident: C9CP02015B-(cit27)/*[position()=1]
  publication-title: Anal. Chem.
  doi: 10.1021/ac401662r
  contributor:
    fullname: Amendola
– volume: 77
  start-page: 3261
  year: 2005
  ident: C9CP02015B-(cit37)/*[position()=1]
  publication-title: Anal. Chem.
  doi: 10.1021/ac048176x
  contributor:
    fullname: Orendorff
– volume: 991
  start-page: 104
  year: 2017
  ident: C9CP02015B-(cit10)/*[position()=1]
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2017.08.020
  contributor:
    fullname: Sciutto
– volume: 533
  start-page: 621
  year: 2019
  ident: C9CP02015B-(cit11)/*[position()=1]
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2018.08.107
  contributor:
    fullname: Litti
– volume: 6
  start-page: 1700596
  year: 2017
  ident: C9CP02015B-(cit13)/*[position()=1]
  publication-title: Adv. Healthcare Mater.
  doi: 10.1002/adhm.201700596
  contributor:
    fullname: Biscaglia
– volume: 79
  start-page: 4215
  year: 2007
  ident: C9CP02015B-(cit34)/*[position()=1]
  publication-title: Anal. Chem.
  doi: 10.1021/ac0702084
  contributor:
    fullname: Haiss
– volume: 37
  start-page: 1783
  year: 2008
  ident: C9CP02015B-(cit6)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/b711490g
  contributor:
    fullname: Grzelczak
– volume: 135
  start-page: 301
  year: 2012
  ident: C9CP02015B-(cit26)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja309300d
  contributor:
    fullname: Kleinman
– volume-title: Plasmonics
  year: 2018
  ident: C9CP02015B-(cit7)/*[position()=1]
  contributor:
    fullname: Kuttner
– volume: 185
  start-page: 1177
  year: 2014
  ident: C9CP02015B-(cit32)/*[position()=1]
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2013.12.010
  contributor:
    fullname: Hohenester
– volume: 3
  start-page: 825
  year: 2012
  ident: C9CP02015B-(cit30)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms1806
  contributor:
    fullname: Esteban
– volume: 113
  start-page: 4277
  year: 2009
  ident: C9CP02015B-(cit33)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp8082425
  contributor:
    fullname: Amendola
– volume: 2
  start-page: 229
  year: 2003
  ident: C9CP02015B-(cit5)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/nmat852
  contributor:
    fullname: Maier
– volume: 183
  start-page: 370
  year: 2012
  ident: C9CP02015B-(cit35)/*[position()=1]
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2011.09.009
  contributor:
    fullname: Hohenester
– volume: 10
  start-page: 1272
  year: 2018
  ident: C9CP02015B-(cit14)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C7NR07398D
  contributor:
    fullname: Litti
– start-page: eaaq0591
  year: 2018
  ident: C9CP02015B-(cit28)/*[position()=1]
  publication-title: Science
  contributor:
    fullname: Lin
– volume: 408
  start-page: 2123
  year: 2016
  ident: C9CP02015B-(cit18)/*[position()=1]
  publication-title: Anal. Bioanal. Chem.
  doi: 10.1007/s00216-016-9315-4
  contributor:
    fullname: Litti
– volume: 406
  start-page: 2355
  year: 2014
  ident: C9CP02015B-(cit9)/*[position()=1]
  publication-title: Anal. Bioanal. Chem.
  doi: 10.1007/s00216-014-7622-1
  contributor:
    fullname: Bonifacio
– volume: 19
  start-page: 1867
  issue: 3
  year: 2019
  ident: C9CP02015B-(cit4)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.8b04950
  contributor:
    fullname: Pensa
– volume: 10
  start-page: 976
  year: 2018
  ident: C9CP02015B-(cit12)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C7NR07844G
  contributor:
    fullname: Bertorelle
– volume: 7
  start-page: 1601703
  year: 2017
  ident: C9CP02015B-(cit25)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201601703
  contributor:
    fullname: Lamberti
– volume: 181
  start-page: 448
  year: 2018
  ident: C9CP02015B-(cit2)/*[position()=1]
  publication-title: Talanta
  doi: 10.1016/j.talanta.2018.01.049
  contributor:
    fullname: Saviello
– volume: 46
  start-page: 4042
  year: 2017
  ident: C9CP02015B-(cit8)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C7CS00238F
  contributor:
    fullname: Ding
– volume: 29
  start-page: 15
  year: 2017
  ident: C9CP02015B-(cit16)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.6b02439
  contributor:
    fullname: Scarabelli
– volume: 118
  start-page: 17922
  year: 2014
  ident: C9CP02015B-(cit19)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp5024444
  contributor:
    fullname: Barbara
– volume: 9
  start-page: 1733
  year: 2018
  ident: C9CP02015B-(cit36)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-04118-7
  contributor:
    fullname: Chen
SSID ssj0001513
Score 2.5457976
Snippet Colloidal gold nanostructures are nowadays widely involved in sensor applications. One of the most interesting techniques that takes advantage of them is...
SourceID proquest
crossref
pubmed
rsc
SourceType Aggregation Database
Index Database
Publisher
StartPage 15515
SubjectTerms Aggregates
Boundary element method
Colloids
Extinction
Gold
Mathematical analysis
Nanoparticles
Nanospheres
Predictions
Raman spectra
Substrates
Title Predictions on the SERS enhancement factor of gold nanosphere aggregate samples
URI https://www.ncbi.nlm.nih.gov/pubmed/31259983
https://www.proquest.com/docview/2258692241
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZge4BLRYHShYIswW0V8MaPxscqKiqIwkpspd4iv7I9VEm1u73w6xk_8qDtoeUSRV7Fq_j7Yn_j8cwg9IkQVxeEqUwoVWfMcg7zoDWZ0fPc5ETlNKRrOvspTs_Z9wt-cSu6ZKs_mz_3xpX8D6rQBrj6KNlHINt3Cg1wD_jCFRCG64MwXqy9myWdZYvnFX_7kAHXXHowg58_FtTxmnDVXtlZo3xycADKzdQKbG2_izbbKJ8jeDMWqosOP9NVhIt3vinuhmzCbsKiLIf6x97dEQz9GxOPdwUoYTZdXbr001m7dk073msI4U1ZDK1M0yMTNANzOiWvHrfFQm_dnBqjnhN3UvR3nCG9ROOj5dangMvvncsJ9alQS1kuQNLO-eDR6b30txay_nhhcKxTWQ3PPkU7-ZHkfIJ2jk-W3370izUIHhoD0OKLdRlsqfwyPP2vZrljiIAsWXflYoIsWb5Au8mewMeRHHvoiWteomdlB9or9GtEEtw2GEiCPUnwiCQ4kgS3NfYkwQNJcE8SnEjyGp1_PVmWp1mqopEZxsg2c9KKwswps4U-KgTRHL5AlYdMfFxQy-ZEWiNybRSoQ2V14XzZAe0UF9qBwtlHk6Zt3AHCTtC8LpSVxChGmVEC7A0Q6Ko2yhHFpuhjN07VdUyWUt3FYooOuyGs0se0qWBZKYT0enKK3sRh7bugIMKlLOgU7cM4981GmuvQo377oP99h54PnD5Ek-36xr0HRbnVHxIr_gJZPnPl
link.rule.ids 315,786,790,27955,27956
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predictions+on+the+SERS+enhancement+factor+of+gold+nanosphere+aggregate+samples&rft.jtitle=Physical+chemistry+chemical+physics+%3A+PCCP&rft.au=Litti%2C+Lucio&rft.au=Meneghetti%2C+Moreno&rft.date=2019-07-17&rft.issn=1463-9076&rft.eissn=1463-9084&rft.volume=21&rft.issue=28&rft.spage=15515&rft.epage=15522&rft_id=info:doi/10.1039%2FC9CP02015B&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_C9CP02015B
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1463-9076&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1463-9076&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1463-9076&client=summon