Second-Order Topological Phases in Non-Hermitian Systems

A d-dimensional second-order topological insulator (SOTI) can host topologically protected (d-2)-dimensional gapless boundary modes. Here, we show that a 2D non-Hermitian SOTI can host zero-energy modes at its corners. In contrast to the Hermitian case, these zero-energy modes can be localized only...

Full description

Saved in:
Bibliographic Details
Published inPhysical review letters Vol. 122; no. 7; p. 076801
Main Authors Liu, Tao, Zhang, Yu-Ran, Ai, Qing, Gong, Zongping, Kawabata, Kohei, Ueda, Masahito, Nori, Franco
Format Journal Article
LanguageEnglish
Published United States 22.02.2019
Online AccessGet more information

Cover

Loading…
Abstract A d-dimensional second-order topological insulator (SOTI) can host topologically protected (d-2)-dimensional gapless boundary modes. Here, we show that a 2D non-Hermitian SOTI can host zero-energy modes at its corners. In contrast to the Hermitian case, these zero-energy modes can be localized only at one corner. A 3D non-Hermitian SOTI is shown to support second-order boundary modes, which are localized not along hinges but anomalously at a corner. The usual bulk-corner (hinge) correspondence in the second-order 2D (3D) non-Hermitian system breaks down. The winding number (Chern number) based on complex wave vectors is used to characterize the second-order topological phases in 2D (3D). A possible experimental situation with ultracold atoms is also discussed. Our work lays the cornerstone for exploring higher-order topological phenomena in non-Hermitian systems.
AbstractList A d-dimensional second-order topological insulator (SOTI) can host topologically protected (d-2)-dimensional gapless boundary modes. Here, we show that a 2D non-Hermitian SOTI can host zero-energy modes at its corners. In contrast to the Hermitian case, these zero-energy modes can be localized only at one corner. A 3D non-Hermitian SOTI is shown to support second-order boundary modes, which are localized not along hinges but anomalously at a corner. The usual bulk-corner (hinge) correspondence in the second-order 2D (3D) non-Hermitian system breaks down. The winding number (Chern number) based on complex wave vectors is used to characterize the second-order topological phases in 2D (3D). A possible experimental situation with ultracold atoms is also discussed. Our work lays the cornerstone for exploring higher-order topological phenomena in non-Hermitian systems.
Author Nori, Franco
Ai, Qing
Ueda, Masahito
Zhang, Yu-Ran
Kawabata, Kohei
Liu, Tao
Gong, Zongping
Author_xml – sequence: 1
  givenname: Tao
  surname: Liu
  fullname: Liu, Tao
  organization: Theoretical Quantum Physics Laboratory, RIKEN Cluster for Pioneering Research, Wako-shi, Saitama 351-0198, Japan
– sequence: 2
  givenname: Yu-Ran
  surname: Zhang
  fullname: Zhang, Yu-Ran
  organization: Beijing Computational Science Research Center, Beijing 100193, China
– sequence: 3
  givenname: Qing
  surname: Ai
  fullname: Ai, Qing
  organization: Department of Physics, Applied Optics Beijing Area Major Laboratory, Beijing Normal University, Beijing 100875, China
– sequence: 4
  givenname: Zongping
  surname: Gong
  fullname: Gong, Zongping
  organization: Department of Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
– sequence: 5
  givenname: Kohei
  surname: Kawabata
  fullname: Kawabata, Kohei
  organization: Department of Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
– sequence: 6
  givenname: Masahito
  surname: Ueda
  fullname: Ueda, Masahito
  organization: RIKEN Center for Emergent Matter Science (CEMS), Wako, Saitama 351-0198, Japan
– sequence: 7
  givenname: Franco
  surname: Nori
  fullname: Nori, Franco
  organization: Department of Physics, University of Michigan, Ann Arbor, Michigan 48109-1040, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30848648$$D View this record in MEDLINE/PubMed
BookMark eNo1j91KwzAYQIMo7kdfYfQFUr_8fY2XMtQJxQ03r0eapK7SJqWpQt_egXp1ztWBsyCXIQZPyIpBzhiIu91pSm_-u_TjmDPOcyhQA7sgcwbFPS0YkzOySOkTABhHfU1mArTUKPWc6L23MTi6HZwfskPsYxs_GmvabHcyyaesCdlrDHTjh64ZGxOy_ZRG36UbclWbNvnbPy7J-9PjYb2h5fb5Zf1QUisljNRjDUqBwUrpSgmwha6RoTOFk8CdsqpCLYyQyiHY2qD1QjHLEPEsSvIlWf12-6-q8-7YD01nhun4v8B_AFqMSm8
CitedBy_id crossref_primary_10_1103_PhysRevLett_129_180401
crossref_primary_10_1007_s43673_022_00065_0
crossref_primary_10_1088_2399_6528_abcab6
crossref_primary_10_1103_PhysRevB_107_045118
crossref_primary_10_1088_2040_8986_ac2e15
crossref_primary_10_1103_PhysRevResearch_2_043045
crossref_primary_10_1103_PhysRevB_100_054105
crossref_primary_10_1103_PhysRevResearch_2_043167
crossref_primary_10_1088_1402_4896_abc580
crossref_primary_10_1103_PhysRevA_106_042210
crossref_primary_10_1103_PhysRevB_103_134507
crossref_primary_10_1063_5_0101925
crossref_primary_10_1038_s41467_021_26414_5
crossref_primary_10_1088_1361_648X_abee3d
crossref_primary_10_1103_PhysRevB_105_165137
crossref_primary_10_1103_PhysRevA_109_022211
crossref_primary_10_1103_PhysRevB_107_125118
crossref_primary_10_1103_PhysRevB_109_045110
crossref_primary_10_1103_PhysRevB_101_144439
crossref_primary_10_1088_0256_307X_37_11_117303
crossref_primary_10_1103_PhysRevE_104_034107
crossref_primary_10_1103_PhysRevLett_132_063804
crossref_primary_10_3389_fphy_2022_861125
crossref_primary_10_1103_PhysRevA_109_063329
crossref_primary_10_1103_PhysRevB_102_134213
crossref_primary_10_1103_PhysRevB_109_064203
crossref_primary_10_1103_PhysRevResearch_2_043274
crossref_primary_10_1103_PhysRevB_102_235151
crossref_primary_10_1209_0295_5075_131_27002
crossref_primary_10_1364_OL_498084
crossref_primary_10_1080_00018732_2021_1876991
crossref_primary_10_1098_rspa_2021_0927
crossref_primary_10_1103_PhysRevB_108_045407
crossref_primary_10_1103_PhysRevB_104_045408
crossref_primary_10_1103_PhysRevB_107_115412
crossref_primary_10_1103_PhysRevB_101_245138
crossref_primary_10_1103_PhysRevB_102_100102
crossref_primary_10_1103_PhysRevLett_123_216803
crossref_primary_10_1103_PhysRevA_101_013625
crossref_primary_10_1103_PhysRevLett_124_023603
crossref_primary_10_1103_PhysRevResearch_4_033122
crossref_primary_10_1038_s41534_022_00629_w
crossref_primary_10_1103_PhysRevB_109_L201121
crossref_primary_10_1364_PRJ_450166
crossref_primary_10_1103_PhysRevB_103_035420
crossref_primary_10_1103_PhysRevX_9_041015
crossref_primary_10_1103_PhysRevB_104_L060401
crossref_primary_10_1103_PhysRevB_106_L140303
crossref_primary_10_1088_2399_6528_abb24c
crossref_primary_10_1364_OE_452216
crossref_primary_10_1515_nanoph_2023_0443
crossref_primary_10_1103_PhysRevB_103_224206
crossref_primary_10_1103_PhysRevResearch_1_023013
crossref_primary_10_21468_SciPostPhys_14_5_107
crossref_primary_10_3389_fphy_2022_866347
crossref_primary_10_1088_1674_1056_ad2502
crossref_primary_10_1103_PhysRevB_103_224203
crossref_primary_10_3389_fphy_2023_1123596
crossref_primary_10_1103_PhysRevA_102_033715
crossref_primary_10_1103_PhysRevB_104_245302
crossref_primary_10_1103_PhysRevB_105_075420
crossref_primary_10_1103_PhysRevB_108_075143
crossref_primary_10_1103_PhysRevA_103_012419
crossref_primary_10_1021_acsphotonics_0c00357
crossref_primary_10_1103_PhysRevB_103_235306
crossref_primary_10_1103_PhysRevB_105_245143
crossref_primary_10_1038_s42005_021_00668_3
crossref_primary_10_1103_PhysRevB_105_195127
crossref_primary_10_1103_PhysRevB_105_045122
crossref_primary_10_1103_PhysRevLett_122_195501
crossref_primary_10_1103_PhysRevA_106_L061302
crossref_primary_10_1103_PhysRevLett_123_246801
crossref_primary_10_1103_PhysRevLett_126_240402
crossref_primary_10_1002_andp_202300133
crossref_primary_10_1103_PhysRevB_107_165120
crossref_primary_10_1103_PhysRevB_108_205423
crossref_primary_10_1146_annurev_conmatphys_040521_033133
crossref_primary_10_1103_PhysRevLett_125_126402
crossref_primary_10_1103_PhysRevLett_125_126403
crossref_primary_10_1103_PhysRevB_103_144202
crossref_primary_10_1103_PhysRevB_105_195116
crossref_primary_10_1002_andp_201900307
crossref_primary_10_1038_s41467_022_30715_8
crossref_primary_10_1103_PhysRevB_104_L121108
crossref_primary_10_1103_PhysRevB_107_144204
crossref_primary_10_1103_PhysRevLett_124_250402
crossref_primary_10_1088_1367_2630_ac1287
crossref_primary_10_1038_s41598_023_35509_6
crossref_primary_10_1103_PhysRevB_103_L041102
crossref_primary_10_1002_adma_202307998
crossref_primary_10_1103_PhysRevLett_126_226802
crossref_primary_10_1103_PhysRevA_100_053820
crossref_primary_10_1103_PhysRevLett_123_066405
crossref_primary_10_1103_PhysRevB_106_115107
crossref_primary_10_1103_PhysRevA_102_012203
crossref_primary_10_1103_PhysRevB_102_201103
crossref_primary_10_1515_nanoph_2022_0211
crossref_primary_10_1103_PhysRevB_104_094201
crossref_primary_10_1103_PhysRevB_108_075122
crossref_primary_10_1103_PhysRevB_108_075121
crossref_primary_10_1103_PhysRevA_99_053806
crossref_primary_10_1103_PhysRevA_101_013812
crossref_primary_10_1103_PhysRevA_103_033305
crossref_primary_10_1103_PhysRevLett_123_066404
crossref_primary_10_1021_acs_chemrev_2c00800
crossref_primary_10_1088_1674_1056_ac3738
crossref_primary_10_1103_PhysRevA_103_063507
crossref_primary_10_1088_1367_2630_ab81b6
crossref_primary_10_1088_1361_648X_ac30b4
crossref_primary_10_1103_PhysRevB_101_121116
crossref_primary_10_1038_s41377_020_0331_y
crossref_primary_10_1103_PhysRevLett_131_116601
crossref_primary_10_1364_OL_44_005804
crossref_primary_10_1103_PhysRevB_102_041119
crossref_primary_10_1103_PhysRevA_107_012219
crossref_primary_10_1088_2515_7639_acf2ca
crossref_primary_10_1038_s41565_023_01380_9
crossref_primary_10_1103_PhysRevLett_123_097701
crossref_primary_10_3390_sym15091651
crossref_primary_10_1103_PhysRevB_104_195437
crossref_primary_10_1103_PhysRevLett_127_176601
crossref_primary_10_1088_1367_2630_abe6e4
crossref_primary_10_1103_PhysRevB_108_L241402
crossref_primary_10_1002_andp_202100443
crossref_primary_10_1103_PhysRevLett_127_250402
crossref_primary_10_1007_s11467_023_1337_8
crossref_primary_10_1103_PhysRevA_103_043329
crossref_primary_10_1103_PhysRevB_105_L100102
crossref_primary_10_1364_JOSAB_481963
crossref_primary_10_1038_s42005_019_0233_6
crossref_primary_10_1103_PhysRevB_106_035408
crossref_primary_10_1140_epjb_e2019_100393_5
crossref_primary_10_22331_q_2024_03_13_1277
crossref_primary_10_1103_PhysRevResearch_3_043064
crossref_primary_10_1038_s41467_021_22223_y
crossref_primary_10_1103_PhysRevResearch_2_023173
crossref_primary_10_1103_PhysRevB_108_195125
crossref_primary_10_1088_1367_2630_ac38ce
crossref_primary_10_1103_PhysRevB_101_115120
crossref_primary_10_7566_JPSJ_93_064702
crossref_primary_10_1103_PhysRevLett_131_207201
crossref_primary_10_1103_PhysRevB_102_241102
crossref_primary_10_1103_PhysRevResearch_6_023216
crossref_primary_10_1103_PhysRevLett_132_136401
crossref_primary_10_1088_1367_2630_ac652f
crossref_primary_10_1088_1751_8121_acfbc9
crossref_primary_10_1103_PhysRevA_103_033325
crossref_primary_10_1103_PhysRevB_109_L121403
crossref_primary_10_1038_s42005_023_01487_4
crossref_primary_10_1103_PhysRevLett_123_073601
crossref_primary_10_1103_PhysRevX_13_021007
crossref_primary_10_1103_PhysRevLett_125_186802
crossref_primary_10_1103_PhysRevB_103_L041115
crossref_primary_10_1103_PhysRevB_109_085430
crossref_primary_10_1103_PhysRevB_99_235112
crossref_primary_10_1088_1361_6633_ad4e64
crossref_primary_10_1063_5_0091778
crossref_primary_10_1103_PhysRevB_108_235422
crossref_primary_10_1126_sciadv_abj8905
crossref_primary_10_1103_PhysRevB_103_L241408
crossref_primary_10_1103_PhysRevApplied_13_064015
crossref_primary_10_1103_PhysRevB_101_235150
crossref_primary_10_1103_PhysRevA_102_013301
crossref_primary_10_1103_PhysRevResearch_2_013280
crossref_primary_10_1063_5_0042975
crossref_primary_10_1103_PhysRevB_102_035153
crossref_primary_10_1103_PhysRevB_102_094305
crossref_primary_10_1103_PhysRevB_109_165127
crossref_primary_10_1002_andp_202300291
crossref_primary_10_1007_s11467_021_1122_5
crossref_primary_10_1088_1361_648X_aca4b4
crossref_primary_10_1103_PhysRevB_103_205205
crossref_primary_10_1002_adma_201903639
crossref_primary_10_1103_PhysRevResearch_4_033109
crossref_primary_10_1103_PhysRevB_105_125421
crossref_primary_10_1002_adpr_202200087
crossref_primary_10_1103_PhysRevA_99_042111
crossref_primary_10_1002_pssr_202200264
crossref_primary_10_1103_PhysRevB_100_045141
crossref_primary_10_1103_PRXQuantum_4_030315
crossref_primary_10_7566_JPSJ_90_104703
crossref_primary_10_1103_RevModPhys_93_015005
crossref_primary_10_1021_acsphotonics_2c01367
crossref_primary_10_1515_nanoph_2022_0775
crossref_primary_10_1103_PhysRevB_102_241202
crossref_primary_10_1103_PhysRevA_106_053517
crossref_primary_10_1063_5_0153523
crossref_primary_10_1103_PhysRevB_107_L020202
crossref_primary_10_1088_2515_7639_ab4092
crossref_primary_10_1103_PhysRevLett_124_066602
crossref_primary_10_1103_PhysRevB_100_184314
crossref_primary_10_1103_PhysRevB_102_045110
crossref_primary_10_1103_PhysRevB_104_214502
crossref_primary_10_1103_PhysRevResearch_4_023160
crossref_primary_10_7498_aps_71_20221151
crossref_primary_10_1103_PhysRevA_106_043715
crossref_primary_10_1038_s41377_020_00352_1
crossref_primary_10_1103_PhysRevLett_128_223903
crossref_primary_10_1103_PhysRevB_106_045126
crossref_primary_10_1088_1361_648X_ad2c73
crossref_primary_10_1140_epjb_e2020_10036_3
crossref_primary_10_1364_OE_482836
crossref_primary_10_1038_s41377_021_00607_5
crossref_primary_10_1088_1361_648X_ab11b3
crossref_primary_10_1103_PhysRevB_108_245114
crossref_primary_10_1103_PhysRevB_104_125109
crossref_primary_10_7566_JPSJ_90_053703
crossref_primary_10_1103_PhysRevB_107_085407
crossref_primary_10_1088_0256_307X_37_8_081101
crossref_primary_10_1142_S0217979220501465
crossref_primary_10_1103_PhysRevResearch_6_013213
crossref_primary_10_1088_1361_648X_ab6f8b
crossref_primary_10_1103_PhysRevB_99_121411
crossref_primary_10_1103_PhysRevResearch_2_033521
crossref_primary_10_1103_PhysRevA_101_063839
crossref_primary_10_1364_OE_399893
crossref_primary_10_1103_PhysRevLett_128_157601
crossref_primary_10_1007_s11467_024_1412_9
crossref_primary_10_1103_PhysRevB_100_201406
crossref_primary_10_1038_s41467_020_14994_7
crossref_primary_10_1103_PhysRevB_106_L201302
crossref_primary_10_1103_PhysRevB_106_245105
crossref_primary_10_1103_PhysRevB_100_075423
crossref_primary_10_1038_s41566_019_0452_0
crossref_primary_10_1103_PhysRevB_108_205135
crossref_primary_10_1103_PhysRevA_100_062118
crossref_primary_10_1103_PhysRevResearch_2_033052
crossref_primary_10_1103_PhysRevB_101_045415
crossref_primary_10_1103_PhysRevB_103_L201406
crossref_primary_10_1103_PhysRevB_100_075415
crossref_primary_10_1103_PhysRevB_108_035410
crossref_primary_10_1002_lpor_202300204
crossref_primary_10_1007_s11433_020_1521_9
crossref_primary_10_1103_PhysRevB_108_245140
crossref_primary_10_1103_PhysRevResearch_5_043073
crossref_primary_10_1002_adma_202403108
crossref_primary_10_1021_acsphotonics_1c01171
crossref_primary_10_1021_acs_jpclett_2c02683
crossref_primary_10_1364_OE_466106
crossref_primary_10_1038_s41566_019_0561_9
crossref_primary_10_1515_nanoph_2020_0434
crossref_primary_10_1088_0256_307X_40_9_097403
crossref_primary_10_1103_PhysRevApplied_17_014034
crossref_primary_10_1103_PhysRevLett_124_185501
crossref_primary_10_1364_OE_438474
crossref_primary_10_1063_5_0196844
crossref_primary_10_1103_PhysRevB_102_205118
crossref_primary_10_1103_PhysRevLett_123_170401
crossref_primary_10_1007_s10773_021_04726_y
crossref_primary_10_1103_PhysRevB_102_205116
crossref_primary_10_1103_PhysRevB_106_134511
crossref_primary_10_1002_lpor_202100300
crossref_primary_10_1103_PhysRevLett_127_116801
crossref_primary_10_1103_PhysRevB_103_115118
crossref_primary_10_1093_ptep_ptaa059
crossref_primary_10_1103_PhysRevB_100_155117
crossref_primary_10_1103_PhysRevB_100_075403
crossref_primary_10_1103_PhysRevB_102_064206
crossref_primary_10_1103_PhysRevA_101_063612
crossref_primary_10_1103_PhysRevB_107_085426
crossref_primary_10_1038_s41566_019_0523_2
crossref_primary_10_1103_PhysRevB_109_214311
crossref_primary_10_1088_1367_2630_ac40cb
crossref_primary_10_1103_PhysRevB_106_045142
crossref_primary_10_1103_PhysRevB_107_125302
crossref_primary_10_1088_1367_2630_ac61d0
crossref_primary_10_1103_PhysRevLett_125_033603
crossref_primary_10_1103_PhysRevA_109_063518
crossref_primary_10_1103_PhysRevB_103_075126
crossref_primary_10_1103_PhysRevB_106_125310
crossref_primary_10_1021_acsphotonics_3c01651
crossref_primary_10_1103_PhysRevB_101_041109
crossref_primary_10_1103_PhysRevB_108_075401
crossref_primary_10_1002_adom_202300986
crossref_primary_10_1103_PhysRevB_109_054312
crossref_primary_10_1103_PhysRevResearch_2_033391
crossref_primary_10_1103_PhysRevLett_127_066401
crossref_primary_10_1103_PhysRevResearch_5_L022032
crossref_primary_10_1038_s41467_021_24948_2
crossref_primary_10_1364_OE_419852
crossref_primary_10_1002_lpor_202200499
crossref_primary_10_1002_andp_202100297
crossref_primary_10_1103_PhysRevB_101_195147
crossref_primary_10_1103_PhysRevB_106_195146
crossref_primary_10_1038_s41377_023_01196_1
crossref_primary_10_1038_s41598_021_99213_z
crossref_primary_10_1103_PhysRevB_107_155117
crossref_primary_10_1103_PhysRevLett_124_086801
crossref_primary_10_1103_PhysRevX_14_021011
crossref_primary_10_1103_PhysRevB_106_075112
crossref_primary_10_1103_PhysRevLett_123_206404
crossref_primary_10_1103_PhysRevA_100_062131
crossref_primary_10_1103_PhysRevA_106_052216
crossref_primary_10_1103_PhysRevB_108_115114
crossref_primary_10_1103_PhysRevB_102_104109
crossref_primary_10_1103_PhysRevB_109_115406
crossref_primary_10_3390_nano11051170
crossref_primary_10_1103_PhysRevB_109_045145
crossref_primary_10_1103_PhysRevB_103_045420
crossref_primary_10_1103_PhysRevLett_126_086401
crossref_primary_10_1103_PhysRevB_106_214432
crossref_primary_10_1103_PhysRevB_109_094306
crossref_primary_10_1103_PhysRevB_108_L220301
crossref_primary_10_1364_OME_483361
crossref_primary_10_1103_PhysRevB_102_161101
crossref_primary_10_1103_PhysRevB_108_L121302
crossref_primary_10_1103_PhysRevB_99_201411
crossref_primary_10_1103_PhysRevLett_131_066601
crossref_primary_10_1103_PhysRevB_105_024514
crossref_primary_10_1103_PhysRevB_104_L161116
crossref_primary_10_1103_PhysRevA_109_022236
crossref_primary_10_1103_PhysRevB_107_115166
crossref_primary_10_1103_PhysRevLett_127_196801
crossref_primary_10_1103_PhysRevB_104_L161117
crossref_primary_10_1103_PhysRevA_99_062112
crossref_primary_10_1103_PhysRevB_101_125418
crossref_primary_10_1103_PhysRevLett_132_113802
crossref_primary_10_1103_PhysRevA_101_043833
crossref_primary_10_1103_PhysRevLett_123_177001
crossref_primary_10_1103_PhysRevLett_123_016805
crossref_primary_10_1103_PhysRevLett_124_036803
crossref_primary_10_1103_PhysRevB_99_081302
crossref_primary_10_1103_PhysRevB_109_125420
crossref_primary_10_1103_PhysRevLett_131_036402
crossref_primary_10_1364_OME_477926
crossref_primary_10_1364_OL_468157
crossref_primary_10_1103_PhysRevA_105_033512
crossref_primary_10_1103_PhysRevB_106_205146
crossref_primary_10_1038_s41467_020_16350_1
crossref_primary_10_1140_epjb_s10051_022_00364_3
crossref_primary_10_1038_s42254_021_00323_4
crossref_primary_10_1103_PhysRevB_107_064307
crossref_primary_10_1103_PhysRevB_109_165402
crossref_primary_10_1103_PhysRevB_101_020201
crossref_primary_10_1038_s41467_022_30161_6
crossref_primary_10_1038_s41524_022_00761_3
crossref_primary_10_1103_PhysRevLett_126_216405
crossref_primary_10_1515_nanoph_2023_0590
crossref_primary_10_1103_PhysRevA_103_042418
crossref_primary_10_1093_ptep_ptaa094
crossref_primary_10_1103_PhysRevB_107_195112
ContentType Journal Article
DBID NPM
DOI 10.1103/PhysRevLett.122.076801
DatabaseName PubMed
DatabaseTitle PubMed
DatabaseTitleList PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Physics
EISSN 1079-7114
ExternalDocumentID 30848648
Genre Journal Article
GroupedDBID ---
-DZ
-~X
123
2-P
29O
3MX
5VS
85S
8NH
ACBEA
ACGFO
ACNCT
AENEX
AEQTI
AFFNX
AFGMR
AGDNE
AJQPL
ALMA_UNASSIGNED_HOLDINGS
APKKM
AUAIK
CS3
D0L
DU5
EBS
EJD
ER.
F5P
MVM
N9A
NPBMV
NPM
OK1
P2P
ROL
S7W
SJN
TN5
UBE
UCJ
VQA
WH7
XSW
YNT
ZPR
~02
ID FETCH-LOGICAL-c440t-e6f0550a6b58b530c78f616da7d402d5c5b683a345d60cfa6ce351c1666e35542
IngestDate Wed Oct 16 00:51:48 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c440t-e6f0550a6b58b530c78f616da7d402d5c5b683a345d60cfa6ce351c1666e35542
OpenAccessLink https://link.aps.org/accepted/10.1103/PhysRevLett.122.076801
PMID 30848648
ParticipantIDs pubmed_primary_30848648
PublicationCentury 2000
PublicationDate 2019-Feb-22
PublicationDateYYYYMMDD 2019-02-22
PublicationDate_xml – month: 02
  year: 2019
  text: 2019-Feb-22
  day: 22
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Physical review letters
PublicationTitleAlternate Phys Rev Lett
PublicationYear 2019
SSID ssj0001268
Score 2.7377908
Snippet A d-dimensional second-order topological insulator (SOTI) can host topologically protected (d-2)-dimensional gapless boundary modes. Here, we show that a 2D...
SourceID pubmed
SourceType Index Database
StartPage 076801
Title Second-Order Topological Phases in Non-Hermitian Systems
URI https://www.ncbi.nlm.nih.gov/pubmed/30848648
Volume 122
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwGA1eUPYi3u_SB98kNUubpHsUUYbovE1QXyRJUxxoN3DzwV_vl6TdqlNRX9qSbKHNOU2_fM05RWiXc6rqTGeY0zTFcUYaWEoJR9Z8LtLACGdffNbizZv45JbdjhaxO3VJX4X67UtdyX9QhTLA1apk_4DssFEogGPAF7aAMGx_hfG1nc2m-NzaZ-61_ecOXKdfPMLDya10bXVz3LQLXvydXPEnLyLSixKoQsTy5PQ9w0j7tDNwkMruWIr5boCvRtw6cMsCLssnobPc97-7h32vLC8SDFbTRLHXCofGD4pENLCoe7HncNSktEIPURkD7bs9n6AYH56JtYmwF3ZlXq1eKYRmwvE_QDf3nh1okfX7596M8-faT7bZZdUkmhSJHfpaNo1TK5NvPCnk4nBK-1-fUA3Nlo18mnO42KM9j-aKSUNw4BmwgCZMvohmPHIvSyip8iCo8CDwPAg6efCBB0HBg2V0c3zUPmzi4osYWMcx6WPDMwJTSskVSxSLiBZJxus8lSKNCU2ZZoonkYxilnKiM8m1iVhd21fDxgaWdAVN5d3crKFAGm3d4xTlgsSZYEqSTDRUlBrDqEqidbTqL_mh521PHsrO2Pi2ZhPVRgTaQtMZ3GdmG4K2vtpxALwDPg8_kg
link.rule.ids 786
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Second-Order+Topological+Phases+in+Non-Hermitian+Systems&rft.jtitle=Physical+review+letters&rft.au=Liu%2C+Tao&rft.au=Zhang%2C+Yu-Ran&rft.au=Ai%2C+Qing&rft.au=Gong%2C+Zongping&rft.date=2019-02-22&rft.eissn=1079-7114&rft.volume=122&rft.issue=7&rft.spage=076801&rft_id=info:doi/10.1103%2FPhysRevLett.122.076801&rft_id=info%3Apmid%2F30848648&rft_id=info%3Apmid%2F30848648&rft.externalDocID=30848648