Improved forest height estimation by fusion of simulated GEDI Lidar data and TanDEM-X InSAR data
Interferometric Synthetic Aperture Radar (InSAR) and lidar are increasingly used active remote sensing techniques for forest structure observation. The TanDEM-X (TDX) InSAR mission of German Aerospace Center (DLR) and the upcoming Global Ecosystem Dynamics Investigation (GEDI) of National Aeronautic...
Saved in:
Published in | Remote sensing of environment Vol. 221; pp. 621 - 634 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Elsevier Inc
01.02.2019
Elsevier BV |
Subjects | |
Online Access | Get full text |
ISSN | 0034-4257 1879-0704 |
DOI | 10.1016/j.rse.2018.11.035 |
Cover
Loading…
Abstract | Interferometric Synthetic Aperture Radar (InSAR) and lidar are increasingly used active remote sensing techniques for forest structure observation. The TanDEM-X (TDX) InSAR mission of German Aerospace Center (DLR) and the upcoming Global Ecosystem Dynamics Investigation (GEDI) of National Aeronautics and Space Administration (NASA) together may provide more accurate estimates of global forest structure and biomass via their synergic use. In this paper, we explored the efficacy of simulated GEDI data in improving height estimates from TDX InSAR data. Our study sites span three major forest types: a temperate forest, a mountainous conifer forest, and a tropical rainforest. The GEDI lidar coverage was simulated for the full nominal two-year mission duration, under both cloud-free and 50%-cloud conditions. We then used these GEDI data to parameterize the Random Volume over Ground (RVoG) model driven by TDX imagery. In particular, we explored the following three strategies for forest structure estimation: 1) TDX data alone; 2) TDX + GEDI-derived digital terrain model (DTM); and 3) TDX + GEDI DTM + GEDI canopy height. We then validated the retrieved forest heights against wall-to-wall airborne lidar measurements. We found relatively large biases at 90 [m] spatial resolution, from 4.2–11.9 [m], and root mean square errors (RMSEs), from 7.9–12.7 [m] when using TDX data alone under constrained RVoG assumptions of a fixed extinction coefficient (σ) and a zero ground-to-volume amplitude ratio (μ = 0). Results improved significantly with the aid of a DTM derived from GEDI data which enabled estimation of spatially-varying σ values (vs. fixed extinction) under a μ = 0 assumption, with biases reduced to 1.7–4.2 [m] and RMSEs to 4.9–8.6 [m] across cloudy and cloud-free cases. The best agreement was achieved in the third strategy by also incorporating information of GEDI-derived canopy height to further enhance the RVoG parameters. The improved model, when still assuming μ = 0, reduced biases to less than or close to 1 m and further reduced RMSEs to 4.0–6.7 [m]. Finally, we used GEDI data to estimate spatially-varying μ in the RVoG model. We found biases of between −0.7–0.9 [m] and RMSEs in the range from 2.6–7.1 [m] over the three sites. Our results suggest that use of GEDI data improves height inversion from TDX, providing heights at more accuracy than can be achieved by TDX alone, and enabling wall-to-wall height estimation at much finer spatial resolution than can be achieved by GEDI alone.
•TanDEM-X InSAR and GEDI lidar data are fused to provide improved forest height.•GEDI data are used to constrain the RVoG model parameters for TanDEM-X data.•Both GEDI elevation and canopy height data are of great use to improve the RVoG.•The fusion approach is promising to provide contiguous forest height maps globally. |
---|---|
AbstractList | Interferometric Synthetic Aperture Radar (InSAR) and lidar are increasingly used active remote sensing techniques for forest structure observation. The TanDEM-X (TDX) InSAR mission of German Aerospace Center (DLR) and the upcoming Global Ecosystem Dynamics Investigation (GEDI) of National Aeronautics and Space Administration (NASA) together may provide more accurate estimates of global forest structure and biomass via their synergic use. In this paper, we explored the efficacy of simulated GEDI data in improving height estimates from TDX InSAR data. Our study sites span three major forest types: a temperate forest, a mountainous conifer forest, and a tropical rainforest. The GEDI lidar coverage was simulated for the full nominal two-year mission duration, under both cloud-free and 50%-cloud conditions. We then used these GEDI data to parameterize the Random Volume over Ground (RVoG) model driven by TDX imagery. In particular, we explored the following three strategies for forest structure estimation: 1) TDX data alone; 2) TDX + GEDI-derived digital terrain model (DTM); and 3) TDX + GEDI DTM + GEDI canopy height. We then validated the retrieved forest heights against wall-to-wall airborne lidar measurements. We found relatively large biases at 90 [m] spatial resolution, from 4.2–11.9 [m], and root mean square errors (RMSEs), from 7.9–12.7 [m] when using TDX data alone under constrained RVoG assumptions of a fixed extinction coefficient (σ) and a zero ground-to-volume amplitude ratio (μ = 0). Results improved significantly with the aid of a DTM derived from GEDI data which enabled estimation of spatially-varying σ values (vs. fixed extinction) under a μ = 0 assumption, with biases reduced to 1.7–4.2 [m] and RMSEs to 4.9–8.6 [m] across cloudy and cloud-free cases. The best agreement was achieved in the third strategy by also incorporating information of GEDI-derived canopy height to further enhance the RVoG parameters. The improved model, when still assuming μ = 0, reduced biases to less than or close to 1 m and further reduced RMSEs to 4.0–6.7 [m]. Finally, we used GEDI data to estimate spatially-varying μ in the RVoG model. We found biases of between −0.7–0.9 [m] and RMSEs in the range from 2.6–7.1 [m] over the three sites. Our results suggest that use of GEDI data improves height inversion from TDX, providing heights at more accuracy than can be achieved by TDX alone, and enabling wall-to-wall height estimation at much finer spatial resolution than can be achieved by GEDI alone. Interferometric Synthetic Aperture Radar (InSAR) and lidar are increasingly used active remote sensing techniques for forest structure observation. The TanDEM-X (TDX) InSAR mission of German Aerospace Center (DLR) and the upcoming Global Ecosystem Dynamics Investigation (GEDI) of National Aeronautics and Space Administration (NASA) together may provide more accurate estimates of global forest structure and biomass via their synergic use. In this paper, we explored the efficacy of simulated GEDI data in improving height estimates from TDX InSAR data. Our study sites span three major forest types: a temperate forest, a mountainous conifer forest, and a tropical rainforest. The GEDI lidar coverage was simulated for the full nominal two-year mission duration, under both cloud-free and 50%-cloud conditions. We then used these GEDI data to parameterize the Random Volume over Ground (RVoG) model driven by TDX imagery. In particular, we explored the following three strategies for forest structure estimation: 1) TDX data alone; 2) TDX + GEDI-derived digital terrain model (DTM); and 3) TDX + GEDI DTM + GEDI canopy height. We then validated the retrieved forest heights against wall-to-wall airborne lidar measurements. We found relatively large biases at 90 [m] spatial resolution, from 4.2–11.9 [m], and root mean square errors (RMSEs), from 7.9–12.7 [m] when using TDX data alone under constrained RVoG assumptions of a fixed extinction coefficient (σ) and a zero ground-to-volume amplitude ratio (μ = 0). Results improved significantly with the aid of a DTM derived from GEDI data which enabled estimation of spatially-varying σ values (vs. fixed extinction) under a μ = 0 assumption, with biases reduced to 1.7–4.2 [m] and RMSEs to 4.9–8.6 [m] across cloudy and cloud-free cases. The best agreement was achieved in the third strategy by also incorporating information of GEDI-derived canopy height to further enhance the RVoG parameters. The improved model, when still assuming μ = 0, reduced biases to less than or close to 1 m and further reduced RMSEs to 4.0–6.7 [m]. Finally, we used GEDI data to estimate spatially-varying μ in the RVoG model. We found biases of between −0.7–0.9 [m] and RMSEs in the range from 2.6–7.1 [m] over the three sites. Our results suggest that use of GEDI data improves height inversion from TDX, providing heights at more accuracy than can be achieved by TDX alone, and enabling wall-to-wall height estimation at much finer spatial resolution than can be achieved by GEDI alone. •TanDEM-X InSAR and GEDI lidar data are fused to provide improved forest height.•GEDI data are used to constrain the RVoG model parameters for TanDEM-X data.•Both GEDI elevation and canopy height data are of great use to improve the RVoG.•The fusion approach is promising to provide contiguous forest height maps globally. |
Author | Armston, John Dubayah, Ralph Hancock, Steven Lee, Seung-Kuk Qi, Wenlu Luthcke, Scott Tang, Hao |
Author_xml | – sequence: 1 givenname: Wenlu orcidid: 0000-0002-5792-8577 surname: Qi fullname: Qi, Wenlu email: wqi@umd.edu organization: Department of Geographical Sciences, University of Maryland, College Park, MD, USA – sequence: 2 givenname: Seung-Kuk surname: Lee fullname: Lee, Seung-Kuk organization: NASA Goddard Space Flight Center, Greenbelt, MD, USA – sequence: 3 givenname: Steven surname: Hancock fullname: Hancock, Steven organization: Department of Geographical Sciences, University of Maryland, College Park, MD, USA – sequence: 4 givenname: Scott surname: Luthcke fullname: Luthcke, Scott organization: NASA Goddard Space Flight Center, Greenbelt, MD, USA – sequence: 5 givenname: Hao orcidid: 0000-0001-7935-5848 surname: Tang fullname: Tang, Hao organization: Department of Geographical Sciences, University of Maryland, College Park, MD, USA – sequence: 6 givenname: John surname: Armston fullname: Armston, John organization: Department of Geographical Sciences, University of Maryland, College Park, MD, USA – sequence: 7 givenname: Ralph surname: Dubayah fullname: Dubayah, Ralph organization: Department of Geographical Sciences, University of Maryland, College Park, MD, USA |
BookMark | eNp9kEFPHCEUgEljk662P6A3kl56mZHHDDtMejK62k22aaI28YYM86hsZsECY-K_L-t68uCJF_J95PEdkyMfPBLyFVgNDJan2zomrDkDWQPUrBEfyAJk11esY-0RWTDWtFXLRfeJHKe0ZQyE7GBB7te7xxiecKQ2REyZPqD7-5BpGd1OZxc8HZ6pndN-CpYmt5snnQt_tbpY040bdaSjzppqP9Jb7S9Wv6o7uvY3Z9cv95_JR6unhF9ezxPy53J1e_6z2vy-Wp-fbSrTtixXCIM2Ymh6g0s5WCZGYzoL2vBWat7D0IPgemgkjppDYwVYpm3PmUCLg-bNCfl-eLd8599c1lc7lwxOk_YY5qQ4yF4I0UlZ0G9v0G2Yoy_bFapbLvseZFMoOFAmhpQiWvUYS5L4rICpfXO1VaW52jdXAKo0L073xjEuv1TMUbvpXfPHwcTS6MlhVMk49AZHF9FkNQb3jv0fvxqdPw |
CitedBy_id | crossref_primary_10_1016_j_rse_2024_114519 crossref_primary_10_1111_cobi_14135 crossref_primary_10_14358_PERS_22_00116R2 crossref_primary_10_3390_rs14102426 crossref_primary_10_46830_writn_21_00111 crossref_primary_10_5194_bg_18_4117_2021 crossref_primary_10_3390_s19071699 crossref_primary_10_1016_j_ecoinf_2023_102404 crossref_primary_10_3390_rs17020320 crossref_primary_10_3390_rs15030664 crossref_primary_10_1109_JSTARS_2023_3244866 crossref_primary_10_3390_rs12203330 crossref_primary_10_3390_rs11040463 crossref_primary_10_1016_j_srs_2025_100195 crossref_primary_10_3390_rs13030442 crossref_primary_10_1016_j_rse_2021_112571 crossref_primary_10_1080_01431161_2020_1871101 crossref_primary_10_3390_rs14030452 crossref_primary_10_1016_j_rse_2021_112764 crossref_primary_10_3390_rs12081248 crossref_primary_10_3390_rs15235436 crossref_primary_10_3390_rs11222697 crossref_primary_10_1038_s43247_024_01246_5 crossref_primary_10_3390_rs15235517 crossref_primary_10_3390_su16051735 crossref_primary_10_3390_s25020308 crossref_primary_10_1016_j_ecoinf_2022_101748 crossref_primary_10_1007_s11771_020_4348_4 crossref_primary_10_3390_drones7030152 crossref_primary_10_3390_rs13152882 crossref_primary_10_3112_erdkunde_2023_01_03 crossref_primary_10_1016_j_srs_2022_100067 crossref_primary_10_1016_j_srs_2024_100181 crossref_primary_10_3389_frsen_2021_743320 crossref_primary_10_1007_s40725_024_00223_7 crossref_primary_10_1016_j_rse_2021_112760 crossref_primary_10_1016_j_isprsjprs_2022_02_008 crossref_primary_10_3390_rs14184434 crossref_primary_10_1007_s10666_023_09897_y crossref_primary_10_1016_j_rse_2020_112234 crossref_primary_10_3390_rs14102320 crossref_primary_10_3390_rs14236145 crossref_primary_10_1098_rsos_211166 crossref_primary_10_1007_s10661_023_12066_z crossref_primary_10_1109_JSTARS_2021_3058837 crossref_primary_10_1016_j_ecoinf_2023_102348 crossref_primary_10_1016_j_rse_2019_111283 crossref_primary_10_1016_j_asr_2021_04_017 crossref_primary_10_1111_2041_210X_13933 crossref_primary_10_1109_JSTARS_2023_3302026 crossref_primary_10_1016_j_rse_2024_114534 crossref_primary_10_34133_2021_9805364 crossref_primary_10_1016_j_rsase_2022_100882 crossref_primary_10_1016_j_ecolind_2024_112566 crossref_primary_10_1016_j_rse_2024_114306 crossref_primary_10_1109_JSTARS_2021_3060691 crossref_primary_10_1109_JSTARS_2024_3485882 crossref_primary_10_3390_rs12071160 crossref_primary_10_3390_s20247304 crossref_primary_10_1109_TGRS_2025_3536630 crossref_primary_10_1038_s41467_024_52468_2 crossref_primary_10_1109_LGRS_2019_2925901 crossref_primary_10_1111_ele_14272 crossref_primary_10_1002_eap_2208 crossref_primary_10_3390_rs16234597 crossref_primary_10_1016_j_fecs_2022_100006 crossref_primary_10_3390_rs11182158 crossref_primary_10_3390_rs17010085 crossref_primary_10_1111_jvs_13021 crossref_primary_10_1016_j_foreco_2019_117634 crossref_primary_10_1016_j_rse_2019_111231 crossref_primary_10_1016_j_rse_2019_111278 crossref_primary_10_1016_j_foreco_2023_120975 crossref_primary_10_1109_TGRS_2023_3274395 crossref_primary_10_3390_s24051651 crossref_primary_10_1109_JSTARS_2024_3398009 crossref_primary_10_1117_1_JRS_14_022203 crossref_primary_10_3390_rs12122048 crossref_primary_10_3390_rs15061522 crossref_primary_10_1016_j_rse_2020_111833 crossref_primary_10_3389_frsen_2025_1532280 crossref_primary_10_3390_rs14205158 crossref_primary_10_1109_JSTARS_2021_3080711 |
Cites_doi | 10.1109/TGRS.2007.900693 10.1111/j.1461-0248.2007.01134.x 10.3390/rs70505639 10.3390/rs9121253 10.1109/TGRS.2013.2296533 10.1109/LGRS.2014.2334140 10.3390/rs5042014 10.1016/j.rse.2007.08.021 10.1016/j.rse.2010.08.029 10.1016/j.rse.2010.08.027 10.1016/S0034-4257(01)00281-4 10.1109/JSTARS.2015.2501648 10.1139/X06-261 10.1016/j.rse.2013.12.007 10.1016/j.rse.2009.08.017 10.1016/j.rse.2014.11.016 10.1109/JPROC.2009.2034765 10.3390/rs6076111 10.3390/rs5115574 10.1109/TGRS.2015.2420996 10.1093/forestscience/51.3.266 10.1016/j.rse.2012.05.005 10.1016/S0022-1694(00)00144-X 10.1016/S0378-1127(00)00371-6 10.1109/36.964971 10.1109/36.851780 10.1016/j.rse.2015.06.021 10.1038/nclimate1354 10.1029/2009JG000933 10.1029/1999GL010484 10.1016/j.rse.2013.07.036 10.1126/science.1201609 10.1109/TGRS.2006.872074 10.1109/TGRS.2008.2009437 10.1046/j.1466-822X.2003.00010.x 10.1016/j.rse.2011.01.024 10.1016/j.optlastec.2014.11.001 10.1029/2009JG000937 10.1109/26.8924 10.1016/j.rse.2011.07.012 10.1016/S0378-1127(01)00509-6 10.1016/j.rse.2011.03.021 10.1111/geb.12371 10.14358/PERS.72.3.249 10.1109/TGRS.2015.2409066 10.1016/j.rse.2016.10.038 10.1080/01431161.2012.712224 10.1109/JSTARS.2015.2431646 10.1016/j.rse.2015.12.012 10.1073/pnas.1019576108 10.1109/TGRS.2011.2176133 10.1139/x11-063 10.1109/JSTARS.2016.2527360 10.1029/2008JG000883 10.1111/j.1654-1103.2012.01471.x 10.1109/JSTARS.2013.2253448 10.1016/j.rse.2016.10.018 |
ContentType | Journal Article |
Copyright | 2018 Elsevier Inc. Copyright Elsevier BV Feb 2019 |
Copyright_xml | – notice: 2018 Elsevier Inc. – notice: Copyright Elsevier BV Feb 2019 |
DBID | AAYXX CITATION 7QF 7QO 7QQ 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7TG 7U5 8BQ 8FD C1K F28 FR3 H8D H8G JG9 JQ2 KL. KR7 L7M L~C L~D P64 7S9 L.6 |
DOI | 10.1016/j.rse.2018.11.035 |
DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Meteorological & Geoastrophysical Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library Materials Research Database ProQuest Computer Science Collection Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Meteorological & Geoastrophysical Abstracts Biotechnology Research Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts Ecology Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Meteorological & Geoastrophysical Abstracts - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Geology Environmental Sciences |
EISSN | 1879-0704 |
EndPage | 634 |
ExternalDocumentID | 10_1016_j_rse_2018_11_035 S003442571830542X |
GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29P 4.4 41~ 457 4G. 53G 5VS 6TJ 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO ABDPE ABEFU ABFNM ABFYP ABJNI ABLST ABMAC ABPPZ ABQEM ABQYD ABWVN ABXDB ACDAQ ACGFS ACIWK ACLVX ACPRK ACRLP ACRPL ACSBN ADBBV ADEZE ADMUD ADNMO ADVLN AEBSH AEGFY AEIPS AEKER AENEX AFFNX AFJKZ AFRAH AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AKIFW AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLECG BLXMC BNPGV CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 FA8 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMA HMC HVGLF HZ~ H~9 IHE IMUCA J1W KCYFY KOM LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OHT OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SEN SEP SES SEW SPC SPCBC SSE SSH SSJ SSZ T5K TN5 TWZ VOH WH7 WUQ XOL ZCA ZMT ~02 ~G- ~KM AAYWO AAYXX ACVFH ADCNI ADXHL AEUPX AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP APXCP CITATION 7QF 7QO 7QQ 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7TG 7U5 8BQ 8FD C1K EFKBS F28 FR3 H8D H8G JG9 JQ2 KL. KR7 L7M L~C L~D P64 7S9 EFLBG L.6 |
ID | FETCH-LOGICAL-c440t-e1bac5b39ce68bf05dcc7f1ac248a291b9152ab38eda213f51f0af9205efeba23 |
IEDL.DBID | .~1 |
ISSN | 0034-4257 |
IngestDate | Thu Sep 04 21:24:15 EDT 2025 Wed Aug 13 06:32:18 EDT 2025 Tue Jul 01 03:51:17 EDT 2025 Thu Apr 24 23:12:13 EDT 2025 Sun Apr 06 06:53:11 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | GEDI TanDEM-X Lidar ALS InSAR RVoG Forest height |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c440t-e1bac5b39ce68bf05dcc7f1ac248a291b9152ab38eda213f51f0af9205efeba23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-7935-5848 0000-0002-5792-8577 |
OpenAccessLink | http://hdl.handle.net/20.500.11820/5bdb7b8f-da81-4d34-8cc0-96d554fe240e |
PQID | 2176699183 |
PQPubID | 2045405 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_2189555788 proquest_journals_2176699183 crossref_primary_10_1016_j_rse_2018_11_035 crossref_citationtrail_10_1016_j_rse_2018_11_035 elsevier_sciencedirect_doi_10_1016_j_rse_2018_11_035 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-02-01 |
PublicationDateYYYYMMDD | 2019-02-01 |
PublicationDate_xml | – month: 02 year: 2019 text: 2019-02-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Remote sensing of environment |
PublicationYear | 2019 |
Publisher | Elsevier Inc Elsevier BV |
Publisher_xml | – name: Elsevier Inc – name: Elsevier BV |
References | Kugler, Sauer, Lee, Papathanassiou, Hajnsek (bb0220) 2010 NOAA (bb0275) 2011-2012 Goetz, Dubayah (bb0140) 2011; 2 Drake, Dubayah, Clark, Knox, Blair, Hofton, Chazdon, Weishampel, Prince (bb0110) 2002; 79 Hurtt, Fisk, Thomas, Dubayah, Moorcroft, Shugart (bb0195) 2010; 115 Huang, Goward, Masek, Thomas, Zhu, Vogelmann (bb0185) 2010; 114 Davidson, Sun (bb0100) 1988; 36 Pierce, Walker, Dobson, Hunsaker, Fites-Kaufman, Dubayah (bb0305) 2002 Rodriguez, Morris, Belz (bb0315) 2006; 72 Lee, Fatoyinbo, Qi, Hancock, Armston, Dubayah (bb0250) 2018 Soja, Ulander (bb0345) 2013 Papathanassiou, Cloude (bb0295) 2003 Sun, Ranson, Guo, Zhang, Montesano, Kimes (bb0365) 2011; 115 Schlund, von Poncet, Kuntz, Schmullius, Hoekman (bb0325) 2015; 158 Goovaerts (bb0145) 2000; 228 Siccama, Fahey, Johnson, Sherry, Denny, Girdler, Likens, Schwarz (bb0335) 2007; 37 Hall, Bergen, Blair, Dubayah, Houghton, Hurtt, Kellndorfer, Lefsky, Ranson, Saatchi, Shugart, Wickland (bb0155) 2011; 115 Maselli, Chiesi (bb0260) 2006; 44 Papathanassiou, Cloude (bb0290) 2001; 39 Schwarz, Fahey, Martin, Siccama, Bailey (bb0330) 2001; 144 Lee, Kugler, Papathanassiou, Hajnsek (bb0245) 2013; 6 Soja, Persson, Ulander (bb0350) 2014 Whitehurst, Swatantran, Blair, Hofton, Dubayah (bb0395) 2013; 5 Drake, Knox, Dubayah, Clark, Condit, Blair, Hofton (bb0115) 2003; 12 Clark, Olivas, Oberbauer, Clark, Ryan (bb0070) 2008; 11 Downs, Day (bb0105) 2005 Duncanson, Dubayah, Enquist (bb0130) 2015; 24 Bergen, Goetz, Dubayah, Henebry, Hunsaker, Imhoff, Nelson, Parker, Radeloff (bb0030) 2009; 114 Hu, Su, Xue, Liu, Zhao, Fang, Guo (bb0180) 2016; 8 Kugler, Lee, Hajnsek, Papathanassiou (bb0230) 2015; 53 Saatchi, Harris, Brown, Lefsky, Mitchard, Salas, Zutta, Buermann, Lewis, Hagen, Petrova, White, Silman, Morel (bb0320) 2011; 108 CEOS (bb0060) 2014 Isenberg (bb0200) 2011 Hoffman, Shaffer, Perkovic-Martin (bb0170) 2016 Clewley, Bunting, Shepherd, Gillingham, Flood, Dymond, Lucas, Armston, Moghaddam (bb0080) 2014; 6 Cloude, Chen, Goodenough (bb0090) 2013 Pan, Birdsey, Fang, Houghton, Kauppi, Kurz, Phillips, Shvidenko, Lewis, Canadell (bb0285) 2011; 333 Clark, Roberts, Ewel, Clark (bb0075) 2011; 115 Clark, Kellner (bb0065) 2012; 23 Abdalati, Zwally, Bindschadler, Csatho, Farrell, Fricker, Harding, Kwok, Lefsky, Markus, Marshak, Neumann, Palm, Schutz, Smith, Spinhirne, Webb (bb0005) 2010; 98 Abdullahi, Kugler, Pretzsch (bb0010) 2016; 174 Keller, Palace, Hurtt (bb0205) 2001; 154 Treuhaft, Goncalves, dos Santos, Keller, Palace, Madsen, Sullivan, Graca (bb0385) 2015; 12 Caicoya, Kugler, Hajnsek, Papathanassiou (bb0055) 2012 Neumann, Saatchi, Ulander, Fransson (bb0270) 2012; 50 Qi, Dubayah (bb0310) 2016; 187 Cloude, Papathanassiou (bb0085) 2003; 150 Hajnsek, Kugler, Lee, Papathanassiou (bb0150) 2009; 47 Kellndorfer, Walker, Lapoint, Bishop, Cormier, Fiske (bb0210) 2012 Hancock, Disney, Muller, Lewis, Foster (bb0160) 2011; 115 Van Doorn, Battles, Fahey, Siccama, Schwarz (bb0390) 2011; 41 Blackard, Finco, Helmer, Holden, Hoppus, Jacobs, Lister, Moisen, Nelson, Riemann, Ruefenacht, Salajanu, Weyermann, Winterberger, Brandeis, Czaplewski, McRoberts, Patterson, Tymcio (bb0035) 2008; 112 Lei, Siqueira (bb0255) 2015; 7 Tang, Dubayah, Swatantran, Hofton, Sheldon, Clark, Blair (bb0375) 2012; 124 Baccini, Goetz, Walker, Laporte, Sun, Sulla-Menashe, Hackler, Beck, Dubayah, Friedl, Samanta, Houghton (bb0025) 2012; 2 Nelson, Margolis, Montesano, Sun, Cook, Corp, Andersen, Dejong, Pellat, Fickel, Kauffman, Prisley (bb0265) 2017; 188 Abrams, Bailey, Tsu, Hato (bb0015) 2010; 76 Askne, Fransson, Santoro, Soja, Ulander (bb0020) 2013; 5 Lavalle, Hensley (bb0235) 2015; 53 Fatoyinbo, Simard (bb0135) 2013; 34 Brolly, Simard, Tang, Dubayah, Fisk (bb0050) 2016; 9 Krieger, Moreira, Fiedler, Hajnsek, Werner, Younis, Zink (bb0215) 2007; 45 Persson, Olsson, Soja, Ulander, Fransson (bb0300) 2017; 9 Tang, Brolly, Zhao, Strahler, Schaaf, Ganguly, Zhang, Dubayah (bb0380) 2014; 143 Bräutigam, Bachmann, Schulze, Tridon, Rizzoli, Martone, Gonzalez, Zink, Krieger (bb0045) 2014 Blair, Hofton (bb0040) 1999; 26 Duncanson, Dubayah, Cook, Rosette, Parker (bb0125) 2015; 168 Huang, Sun, Dubayah, Zhang, Ni (bb0190) 2012 Stysley, Coyle, Kay, Frederickson, Poulios, Cory, Clarke (bb0360) 2015; 68 Olesk, Voormansik, Vain, Noorma, Praks (bb0280) 2015; 8 Kugler, Schulze, Hajnsek, Pretzsch, Papathanassiou (bb0225) 2014; 52 Smith, Rizzo, North (bb0340) 2005; 51 Dubayah, Sheldon, Clark, Hofton, Blair, Hurtt, Chazdon (bb0120) 2010; 115 Swatantran, Dubayah, Roberts, Hofton, Blair (bb0370) 2011; 115 Lee, Fatoyinbo (bb0240) 2015; 8 Solberg, Astrup, Breidenbach, Nilsen, Weydahl (bb0355) 2013; 139 Coyle, Stysley, Poulios, Clarke, Kay (bb0095) 2015 Hancock, Armston, Hofton, Sun, Tang, Duncanson, Kellner, Dubayah (bb0165) 2019 Hofton, Minster, Blair (bb0175) 2000; 38 Cloude (10.1016/j.rse.2018.11.035_bb0085) 2003; 150 Kellndorfer (10.1016/j.rse.2018.11.035_bb0210) 2012 Clark (10.1016/j.rse.2018.11.035_bb0075) 2011; 115 Persson (10.1016/j.rse.2018.11.035_bb0300) 2017; 9 Rodriguez (10.1016/j.rse.2018.11.035_bb0315) 2006; 72 Kugler (10.1016/j.rse.2018.11.035_bb0220) 2010 Krieger (10.1016/j.rse.2018.11.035_bb0215) 2007; 45 Lee (10.1016/j.rse.2018.11.035_bb0245) 2013; 6 Siccama (10.1016/j.rse.2018.11.035_bb0335) 2007; 37 Drake (10.1016/j.rse.2018.11.035_bb0115) 2003; 12 Pan (10.1016/j.rse.2018.11.035_bb0285) 2011; 333 Hancock (10.1016/j.rse.2018.11.035_bb0160) 2011; 115 Baccini (10.1016/j.rse.2018.11.035_bb0025) 2012; 2 Duncanson (10.1016/j.rse.2018.11.035_bb0125) 2015; 168 Abdullahi (10.1016/j.rse.2018.11.035_bb0010) 2016; 174 Keller (10.1016/j.rse.2018.11.035_bb0205) 2001; 154 Coyle (10.1016/j.rse.2018.11.035_bb0095) 2015 Drake (10.1016/j.rse.2018.11.035_bb0110) 2002; 79 Lee (10.1016/j.rse.2018.11.035_bb0250) 2018 Smith (10.1016/j.rse.2018.11.035_bb0340) 2005; 51 Goovaerts (10.1016/j.rse.2018.11.035_bb0145) 2000; 228 Askne (10.1016/j.rse.2018.11.035_bb0020) 2013; 5 NOAA (10.1016/j.rse.2018.11.035_bb0275) 2011 Goetz (10.1016/j.rse.2018.11.035_bb0140) 2011; 2 Abrams (10.1016/j.rse.2018.11.035_bb0015) 2010; 76 Sun (10.1016/j.rse.2018.11.035_bb0365) 2011; 115 Clark (10.1016/j.rse.2018.11.035_bb0065) 2012; 23 Lei (10.1016/j.rse.2018.11.035_bb0255) 2015; 7 Nelson (10.1016/j.rse.2018.11.035_bb0265) 2017; 188 Tang (10.1016/j.rse.2018.11.035_bb0375) 2012; 124 Blair (10.1016/j.rse.2018.11.035_bb0040) 1999; 26 Lee (10.1016/j.rse.2018.11.035_bb0240) 2015; 8 Tang (10.1016/j.rse.2018.11.035_bb0380) 2014; 143 Hajnsek (10.1016/j.rse.2018.11.035_bb0150) 2009; 47 Kugler (10.1016/j.rse.2018.11.035_bb0230) 2015; 53 Davidson (10.1016/j.rse.2018.11.035_bb0100) 1988; 36 Papathanassiou (10.1016/j.rse.2018.11.035_bb0290) 2001; 39 Brolly (10.1016/j.rse.2018.11.035_bb0050) 2016; 9 Caicoya (10.1016/j.rse.2018.11.035_bb0055) 2012 Huang (10.1016/j.rse.2018.11.035_bb0185) 2010; 114 Blackard (10.1016/j.rse.2018.11.035_bb0035) 2008; 112 Maselli (10.1016/j.rse.2018.11.035_bb0260) 2006; 44 Cloude (10.1016/j.rse.2018.11.035_bb0090) 2013 Hall (10.1016/j.rse.2018.11.035_bb0155) 2011; 115 Lavalle (10.1016/j.rse.2018.11.035_bb0235) 2015; 53 Schlund (10.1016/j.rse.2018.11.035_bb0325) 2015; 158 Papathanassiou (10.1016/j.rse.2018.11.035_bb0295) 2003 Isenberg (10.1016/j.rse.2018.11.035_bb0200) Whitehurst (10.1016/j.rse.2018.11.035_bb0395) 2013; 5 Hofton (10.1016/j.rse.2018.11.035_bb0175) 2000; 38 Bergen (10.1016/j.rse.2018.11.035_bb0030) 2009; 114 Hoffman (10.1016/j.rse.2018.11.035_bb0170) 2016 Schwarz (10.1016/j.rse.2018.11.035_bb0330) 2001; 144 Kugler (10.1016/j.rse.2018.11.035_bb0225) 2014; 52 Swatantran (10.1016/j.rse.2018.11.035_bb0370) 2011; 115 Treuhaft (10.1016/j.rse.2018.11.035_bb0385) 2015; 12 Hu (10.1016/j.rse.2018.11.035_bb0180) 2016; 8 Huang (10.1016/j.rse.2018.11.035_bb0190) 2012 Neumann (10.1016/j.rse.2018.11.035_bb0270) 2012; 50 Solberg (10.1016/j.rse.2018.11.035_bb0355) 2013; 139 Clark (10.1016/j.rse.2018.11.035_bb0070) 2008; 11 Dubayah (10.1016/j.rse.2018.11.035_bb0120) 2010; 115 Soja (10.1016/j.rse.2018.11.035_bb0350) 2014 Pierce (10.1016/j.rse.2018.11.035_bb0305) 2002 Hurtt (10.1016/j.rse.2018.11.035_bb0195) 2010; 115 Fatoyinbo (10.1016/j.rse.2018.11.035_bb0135) 2013; 34 Qi (10.1016/j.rse.2018.11.035_bb0310) 2016; 187 Saatchi (10.1016/j.rse.2018.11.035_bb0320) 2011; 108 Abdalati (10.1016/j.rse.2018.11.035_bb0005) 2010; 98 Stysley (10.1016/j.rse.2018.11.035_bb0360) 2015; 68 Hancock (10.1016/j.rse.2018.11.035_bb0165) 2019 Soja (10.1016/j.rse.2018.11.035_bb0345) 2013 CEOS (10.1016/j.rse.2018.11.035_bb0060) 2014 Duncanson (10.1016/j.rse.2018.11.035_bb0130) 2015; 24 Bräutigam (10.1016/j.rse.2018.11.035_bb0045) 2014 Van Doorn (10.1016/j.rse.2018.11.035_bb0390) 2011; 41 Clewley (10.1016/j.rse.2018.11.035_bb0080) 2014; 6 Downs (10.1016/j.rse.2018.11.035_bb0105) 2005 Olesk (10.1016/j.rse.2018.11.035_bb0280) 2015; 8 |
References_xml | – volume: 51 start-page: 266 year: 2005 end-page: 275 ident: bb0340 article-title: Patterns of mortality in an old-growth mixed-conifer forest of the southern Sierra Nevada, California publication-title: Forest Sci. – year: 2011 ident: bb0200 article-title: LAStools—efficient tools for LiDAR processing – volume: 76 start-page: 344 year: 2010 end-page: 348 ident: bb0015 article-title: The aster global dem publication-title: Photogramm. Eng. Remote. Sens. – volume: 9 start-page: 5830 year: 2016 end-page: 5841 ident: bb0050 article-title: A lidar-radar framework to assess the impact of vertical forest structure on interferometric coherence publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. – start-page: 1889 year: 2013 end-page: 1892 ident: bb0090 article-title: Forest height estimation and validation using Tandem-X polinsar publication-title: IEEE International Geoscience and Remote Sensing Symposium (IGARSS) – year: 2005 ident: bb0105 article-title: National Geographic Almanac of Geography – volume: 44 start-page: 2239 year: 2006 end-page: 2250 ident: bb0260 article-title: Evaluation of statistical methods to estimate forest volume in a Mediterranean region publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 41 start-page: 1369 year: 2011 end-page: 1379 ident: bb0390 article-title: Links between biomass and tree demography in a northern hardwood forest: a decade of stability and change in Hubbard Brook Valley, New Hampshire publication-title: Can. J. For. Res. – volume: 187 start-page: 253 year: 2016 end-page: 266 ident: bb0310 article-title: Combining Tandem-X InSAR and simulated GEDI lidar observations for forest structure mapping publication-title: Remote Sens. Environ. – volume: 11 start-page: 163 year: 2008 end-page: 172 ident: bb0070 article-title: First direct landscape-scale measurement of tropical rain forest Leaf Area Index, a key driver of global primary productivity publication-title: Ecol. Lett. – start-page: 1 year: 2010 end-page: 4 ident: bb0220 article-title: Potential of TanDEM-X for forest parameter estimation publication-title: European Conference on Synthetic Aperture Radar (EUSAR) – volume: 124 start-page: 242 year: 2012 end-page: 250 ident: bb0375 article-title: Retrieval of vertical LAI profiles over tropical rain forests using waveform lidar at La Selva, Costa Rica publication-title: Remote Sens. Environ. – volume: 26 start-page: 2509 year: 1999 end-page: 2512 ident: bb0040 article-title: Modeling laser altimeter return waveforms over complex vegetation using high-resolution elevation data publication-title: Geophys. Res. Lett. – volume: 34 start-page: 668 year: 2013 end-page: 681 ident: bb0135 article-title: Height and biomass of mangroves in Africa from ICESat/GLAS and SRTM publication-title: Int. J. Remote Sens. – year: 2018 ident: bb0250 article-title: GEDI and TanDEM-X fusion for 3D forest structure parameter retrieval publication-title: International Geoscience and Remote Sensing Symposium – volume: 23 start-page: 1191 year: 2012 end-page: 1196 ident: bb0065 article-title: Tropical forest biomass estimation and the fallacy of misplaced concreteness publication-title: J. Veg. Sci. – volume: 12 start-page: 147 year: 2003 end-page: 159 ident: bb0115 article-title: Above-ground biomass estimation in closed canopy Neotropical forests using lidar remote sensing: factors affecting the generality of relationships publication-title: Glob. Ecol. Biogeogr. – start-page: 3398 year: 2014 end-page: 3401 ident: bb0350 article-title: Estimation of boreal forest biomass from two-level model inversion of interferometric TanDEM-X data publication-title: IEEE International Geoscience and Remote Sensing Symposium (IGARSS) – volume: 8 start-page: 565 year: 2016 ident: bb0180 article-title: Mapping Global Forest Aboveground Biomass With Spaceborne LiDAR, Optical Imagery, and Forest Inventory Data – volume: 143 start-page: 131 year: 2014 end-page: 141 ident: bb0380 article-title: Deriving and validating Leaf Area Index (LAI) at multiple spatial scales through lidar remote sensing: a case study in Sierra National Forest, CA publication-title: Remote Sens. Environ. – volume: 150 start-page: 125 year: 2003 end-page: 134 ident: bb0085 article-title: Three-stage inversion process for polarimetric SAR interferometry publication-title: IEE Proceedings-Radar, Sonar and Navigation – volume: 37 start-page: 737 year: 2007 end-page: 749 ident: bb0335 article-title: Population and biomass dynamics of trees in a northern hardwood forest at Hubbard Brook publication-title: Can. J. For. Res. – volume: 333 start-page: 988 year: 2011 end-page: 993 ident: bb0285 article-title: A large and persistent carbon sink in the world's forests publication-title: Science – volume: 53 start-page: 5294 year: 2015 end-page: 5311 ident: bb0230 article-title: Forest height estimation by means of Pol-InSAR data inversion: the role of the vertical wavenumber publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 7 start-page: 5639 year: 2015 ident: bb0255 article-title: An automatic mosaicking algorithm for the generation of a large-scale forest height map using spaceborne repeat-pass InSAR correlation magnitude publication-title: Remote Sens. – volume: 50 start-page: 714 year: 2012 end-page: 726 ident: bb0270 article-title: Assessing performance of L-and P-band polarimetric interferometric SAR data in estimating boreal forest above-ground biomass publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 174 start-page: 197 year: 2016 end-page: 211 ident: bb0010 article-title: Prediction of stem volume in complex temperate forest stands using TanDEM-X SAR data publication-title: Remote Sens. Environ. – start-page: 165 year: 2013 end-page: 168 ident: bb0345 article-title: Digital canopy model estimation from TanDEM-X interferometry using high-resolution lidar DEM publication-title: IEEE International Geoscience and Remote Sensing Symposium (IGARSS) – start-page: 988108 year: 2016 ident: bb0170 article-title: NASA L-SAR instrument for the NISAR (NASA-ISRO) Synthetic Aperture Radar mission publication-title: Earth Observing Missions and Sensors: Development, Implementation, and Characterization IV – volume: 115 start-page: 2753 year: 2011 end-page: 2775 ident: bb0155 article-title: Characterizing 3D vegetation structure from space: mission requirements publication-title: Remote Sens. Environ. – volume: 12 start-page: 239 year: 2015 end-page: 243 ident: bb0385 article-title: Tropical-forest biomass estimation at X-band from the spaceborne TanDEM-X interferometer publication-title: IEEE Geosci. Remote Sens. Lett. – volume: 72 start-page: 249 year: 2006 end-page: 260 ident: bb0315 article-title: A global assessment of the SRTM performance publication-title: Photogramm. Eng. Remote Sens. – volume: 5 start-page: 2014 year: 2013 end-page: 2036 ident: bb0395 article-title: Characterization of canopy layering in forested ecosystems using full waveform lidar publication-title: Remote Sens. – volume: 115 start-page: 17 year: 2010 ident: bb0120 article-title: Estimation of tropical forest height and biomass dynamics using lidar remote sensing at La Selva, Costa Rica publication-title: J. Geophys. Res. Biogeosci. – volume: 24 start-page: 1465 year: 2015 end-page: 1475 ident: bb0130 article-title: Assessing the general patterns of forest structure: quantifying tree and forest allometric scaling relationships in the United States publication-title: Glob. Ecol. Biogeogr. – volume: 8 start-page: 5565 year: 2015 end-page: 5572 ident: bb0280 article-title: Seasonal differences in forest height estimation from interferometric TanDEM-X coherence data publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. – volume: 2 start-page: 182 year: 2012 end-page: 185 ident: bb0025 article-title: Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps publication-title: Nat. Clim. Chang. – volume: 6 start-page: 1351 year: 2013 end-page: 1367 ident: bb0245 article-title: Quantification of temporal decorrelation effects at L-band for polarimetric SAR interferometry applications publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. – volume: 79 start-page: 305 year: 2002 end-page: 319 ident: bb0110 article-title: Estimation of tropical forest structural characteristics using large-footprint lidar publication-title: Remote Sens. Environ. – volume: 115 start-page: 2917 year: 2011 end-page: 2930 ident: bb0370 article-title: Mapping biomass and stress in the Sierra Nevada using lidar and hyperspectral data fusion publication-title: Remote Sens. Environ. – volume: 6 start-page: 6111 year: 2014 end-page: 6135 ident: bb0080 article-title: A python-based open source system for geographic object-based image analysis (GEOBIA) utilizing raster attribute tables publication-title: Remote Sens. – volume: 114 start-page: 183 year: 2010 end-page: 198 ident: bb0185 article-title: An automated approach for reconstructing recent forest disturbance history using dense Landsat time series stacks publication-title: Remote Sens. Environ. – start-page: 1429 year: 2003 end-page: 1431 ident: bb0295 article-title: The effect of temporal decorrelation on the inversion of forest parameters from Pol-InSAR data publication-title: IEEE International Geoscience and Remote Sensing Symposium (IGARSS) – volume: 154 start-page: 371 year: 2001 end-page: 382 ident: bb0205 article-title: Biomass estimation in the Tapajos National Forest, Brazil - examination of sampling and allometric uncertainties publication-title: For. Ecol. Manag. – volume: 45 start-page: 3317 year: 2007 end-page: 3341 ident: bb0215 article-title: TanDEM-X: a satellite formation for high-resolution SAR interferometry publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 114 start-page: 13 year: 2009 ident: bb0030 article-title: Remote sensing of vegetation 3-D structure for biodiversity and habitat: review and implications for lidar and radar spaceborne missions publication-title: J. Geophys. Res. Biogeosci. – year: 2019 ident: bb0165 article-title: The GEDI Simulator: A Large-Footprint Waveform Lidar Simulator for Calibration and Validation of Spaceborne Missions – volume: 38 start-page: 1989 year: 2000 end-page: 1996 ident: bb0175 article-title: Decomposition of laser altimeter waveforms publication-title: IEEE Trans. Geosci. Remote Sens. – start-page: 3390 year: 2014 end-page: 3393 ident: bb0045 article-title: TanDEM-X global DEM3 quality status and acquisition completion publication-title: Geoscience and Remote Sensing Symposium (IGARSS) – volume: 2 start-page: 231 year: 2011 end-page: 244 ident: bb0140 article-title: Advances in remote sensing technology and implications for measuring and monitoring forest carbon stocks and change publication-title: Cardiol. Manag. – volume: 47 start-page: 481 year: 2009 end-page: 493 ident: bb0150 article-title: Tropical-forest-parameter estimation by means of Pol-InSAR: the INDREX-II campaign publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 115 start-page: 2931 year: 2011 end-page: 2942 ident: bb0075 article-title: Estimation of tropical rain forest aboveground biomass with small-footprint lidar and hyperspectral sensors publication-title: Remote Sens. Environ. – volume: 144 start-page: 201 year: 2001 end-page: 212 ident: bb0330 article-title: Structure and composition of three northern hardwood-conifer forests with differing disturbance histories publication-title: For. Ecol. Manag. – volume: 68 start-page: 67 year: 2015 end-page: 72 ident: bb0360 article-title: Long term performance of the high output maximum efficiency resonator (HOMER) laser for NASA's global ecosystem dynamics investigation (GEDI) lidar publication-title: Opt. Laser Technol. – start-page: 961208 year: 2015 ident: bb0095 article-title: Laser transmitter development for NASA's Global Ecosystem Dynamics Investigation (GEDI) lidar publication-title: Proc. SPIESPIE Optical Engineering+ Applications – volume: 112 start-page: 1658 year: 2008 end-page: 1677 ident: bb0035 article-title: Mapping US forest biomass using nationwide forest inventory data and moderate resolution information publication-title: Remote Sens. Environ. – year: 2012 ident: bb0210 article-title: NACP Aboveground Biomass and Carbon Baseline Data (NBCD 2000), U.S.A. Data Set – volume: 39 start-page: 2352 year: 2001 end-page: 2363 ident: bb0290 article-title: Single-baseline polarimetric SAR interferometry publication-title: IEEE Trans. Geosci. Remote Sens. – year: 2014 ident: bb0060 article-title: CEOS Strategy for Carbon Observations From Space. The Committee on Earth Observation Satellites (CEOS) Response to the Group on Earth Observations (GEO) Carbon Strategy – volume: 139 start-page: 60 year: 2013 end-page: 67 ident: bb0355 article-title: Monitoring spruce volume and biomass with InSAR data from TanDEM-X publication-title: Remote Sens. Environ. – volume: 115 start-page: 2906 year: 2011 end-page: 2916 ident: bb0365 article-title: Forest biomass mapping from lidar and radar synergies publication-title: Remote Sens. Environ. – volume: 228 start-page: 113 year: 2000 end-page: 129 ident: bb0145 article-title: Geostatistical approaches for incorporating elevation into the spatial interpolation of rainfall publication-title: J. Hydrol. – volume: 158 start-page: 255 year: 2015 end-page: 266 ident: bb0325 article-title: TanDEM-X data for aboveground biomass retrieval in a tropical peat swamp forest publication-title: Remote Sens. Environ. – volume: 98 start-page: 735 year: 2010 end-page: 751 ident: bb0005 article-title: The ICESat-2 laser altimetry mission publication-title: Proc. IEEE – volume: 52 start-page: 6404 year: 2014 end-page: 6422 ident: bb0225 article-title: TanDEM-X Pol-InSAR performance for forest height estimation publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 9 start-page: 1253 year: 2017 ident: bb0300 article-title: Experiences from large-scale forest mapping of Sweden using TanDEM-X data publication-title: Remote Sens. – volume: 108 start-page: 9899 year: 2011 end-page: 9904 ident: bb0320 article-title: Benchmark map of forest carbon stocks in tropical regions across three continents publication-title: Proc. Natl. Acad. Sci. – volume: 188 start-page: 127 year: 2017 end-page: 140 ident: bb0265 article-title: Lidar-based estimates of aboveground biomass in the continental US and Mexico using ground, airborne, and satellite observations publication-title: Remote Sens. Environ. – start-page: 3439 year: 2012 end-page: 3442 ident: bb0055 article-title: Boreal forest biomass classification with TanDEM-X publication-title: Geoscience and Remote Sensing Symposium (IGARSS) – volume: 168 start-page: 102 year: 2015 end-page: 112 ident: bb0125 article-title: The importance of spatial detail: assessing the utility of individual crown information and scaling approaches for lidar-based biomass density estimation publication-title: Remote Sens. Environ. – volume: 53 start-page: 4752 year: 2015 end-page: 4767 ident: bb0235 article-title: Extraction of structural and dynamic properties of forests from polarimetric-interferometric SAR data affected by temporal decorrelation publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 8 start-page: 3608 year: 2015 end-page: 3618 ident: bb0240 article-title: TanDEM-X Pol-InSAR inversion for mangrove canopy height estimation publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. – volume: 5 start-page: 5574 year: 2013 end-page: 5597 ident: bb0020 article-title: Model-based biomass estimation of a hemi-boreal forest from multitemporal TanDEM-X acquisitions publication-title: Remote Sens. – year: 2011-2012 ident: bb0275 article-title: Daily Record of Climatological Observations publication-title: National Oceanic and Atmospheric Administration – start-page: 6561 year: 2012 end-page: 6564 ident: bb0190 article-title: Mapping forest above-ground biomass and its changes from LVIS waveform data publication-title: IEEE International Geoscience and Remote Sensing Symposium (IGARSS) – volume: 36 start-page: 1185 year: 1988 end-page: 1192 ident: bb0100 article-title: Gaussian approximation versus nearly exact performance analysis of optical communication systems with PPM signaling and APD receivers publication-title: IEEE Trans. Commun. – start-page: 1771 year: 2002 end-page: 1773 ident: bb0305 article-title: Fusion of optical and SAR data for forestry applications in the Sierra Nevada of California publication-title: IEEE International Geoscience and Remote Sensing Symposium (IGARSS) – volume: 115 start-page: 11 year: 2010 ident: bb0195 article-title: Linking models and data on vegetation structure publication-title: J. Geophys. Res. Biogeosci. – volume: 115 start-page: 3286 year: 2011 end-page: 3297 ident: bb0160 article-title: A threshold insensitive method for locating the forest canopy top with waveform lidar publication-title: Remote Sens. Environ. – volume: 45 start-page: 3317 year: 2007 ident: 10.1016/j.rse.2018.11.035_bb0215 article-title: TanDEM-X: a satellite formation for high-resolution SAR interferometry publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2007.900693 – volume: 11 start-page: 163 year: 2008 ident: 10.1016/j.rse.2018.11.035_bb0070 article-title: First direct landscape-scale measurement of tropical rain forest Leaf Area Index, a key driver of global primary productivity publication-title: Ecol. Lett. doi: 10.1111/j.1461-0248.2007.01134.x – volume: 7 start-page: 5639 year: 2015 ident: 10.1016/j.rse.2018.11.035_bb0255 article-title: An automatic mosaicking algorithm for the generation of a large-scale forest height map using spaceborne repeat-pass InSAR correlation magnitude publication-title: Remote Sens. doi: 10.3390/rs70505639 – volume: 9 start-page: 1253 year: 2017 ident: 10.1016/j.rse.2018.11.035_bb0300 article-title: Experiences from large-scale forest mapping of Sweden using TanDEM-X data publication-title: Remote Sens. doi: 10.3390/rs9121253 – volume: 52 start-page: 6404 year: 2014 ident: 10.1016/j.rse.2018.11.035_bb0225 article-title: TanDEM-X Pol-InSAR performance for forest height estimation publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2013.2296533 – year: 2005 ident: 10.1016/j.rse.2018.11.035_bb0105 – volume: 12 start-page: 239 year: 2015 ident: 10.1016/j.rse.2018.11.035_bb0385 article-title: Tropical-forest biomass estimation at X-band from the spaceborne TanDEM-X interferometer publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2014.2334140 – volume: 5 start-page: 2014 year: 2013 ident: 10.1016/j.rse.2018.11.035_bb0395 article-title: Characterization of canopy layering in forested ecosystems using full waveform lidar publication-title: Remote Sens. doi: 10.3390/rs5042014 – volume: 112 start-page: 1658 year: 2008 ident: 10.1016/j.rse.2018.11.035_bb0035 article-title: Mapping US forest biomass using nationwide forest inventory data and moderate resolution information publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2007.08.021 – start-page: 165 year: 2013 ident: 10.1016/j.rse.2018.11.035_bb0345 article-title: Digital canopy model estimation from TanDEM-X interferometry using high-resolution lidar DEM – volume: 2 start-page: 231 year: 2011 ident: 10.1016/j.rse.2018.11.035_bb0140 article-title: Advances in remote sensing technology and implications for measuring and monitoring forest carbon stocks and change publication-title: Cardiol. Manag. – year: 2019 ident: 10.1016/j.rse.2018.11.035_bb0165 – volume: 150 start-page: 125 year: 2003 ident: 10.1016/j.rse.2018.11.035_bb0085 article-title: Three-stage inversion process for polarimetric SAR interferometry – volume: 115 start-page: 2931 year: 2011 ident: 10.1016/j.rse.2018.11.035_bb0075 article-title: Estimation of tropical rain forest aboveground biomass with small-footprint lidar and hyperspectral sensors publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2010.08.029 – volume: 115 start-page: 2917 year: 2011 ident: 10.1016/j.rse.2018.11.035_bb0370 article-title: Mapping biomass and stress in the Sierra Nevada using lidar and hyperspectral data fusion publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2010.08.027 – start-page: 1429 year: 2003 ident: 10.1016/j.rse.2018.11.035_bb0295 article-title: The effect of temporal decorrelation on the inversion of forest parameters from Pol-InSAR data – volume: 79 start-page: 305 year: 2002 ident: 10.1016/j.rse.2018.11.035_bb0110 article-title: Estimation of tropical forest structural characteristics using large-footprint lidar publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(01)00281-4 – volume: 8 start-page: 5565 year: 2015 ident: 10.1016/j.rse.2018.11.035_bb0280 article-title: Seasonal differences in forest height estimation from interferometric TanDEM-X coherence data publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2015.2501648 – volume: 37 start-page: 737 year: 2007 ident: 10.1016/j.rse.2018.11.035_bb0335 article-title: Population and biomass dynamics of trees in a northern hardwood forest at Hubbard Brook publication-title: Can. J. For. Res. doi: 10.1139/X06-261 – volume: 143 start-page: 131 year: 2014 ident: 10.1016/j.rse.2018.11.035_bb0380 article-title: Deriving and validating Leaf Area Index (LAI) at multiple spatial scales through lidar remote sensing: a case study in Sierra National Forest, CA publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2013.12.007 – volume: 114 start-page: 183 year: 2010 ident: 10.1016/j.rse.2018.11.035_bb0185 article-title: An automated approach for reconstructing recent forest disturbance history using dense Landsat time series stacks publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2009.08.017 – volume: 158 start-page: 255 year: 2015 ident: 10.1016/j.rse.2018.11.035_bb0325 article-title: TanDEM-X data for aboveground biomass retrieval in a tropical peat swamp forest publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2014.11.016 – volume: 98 start-page: 735 year: 2010 ident: 10.1016/j.rse.2018.11.035_bb0005 article-title: The ICESat-2 laser altimetry mission publication-title: Proc. IEEE doi: 10.1109/JPROC.2009.2034765 – volume: 6 start-page: 6111 year: 2014 ident: 10.1016/j.rse.2018.11.035_bb0080 article-title: A python-based open source system for geographic object-based image analysis (GEOBIA) utilizing raster attribute tables publication-title: Remote Sens. doi: 10.3390/rs6076111 – volume: 5 start-page: 5574 year: 2013 ident: 10.1016/j.rse.2018.11.035_bb0020 article-title: Model-based biomass estimation of a hemi-boreal forest from multitemporal TanDEM-X acquisitions publication-title: Remote Sens. doi: 10.3390/rs5115574 – volume: 53 start-page: 5294 year: 2015 ident: 10.1016/j.rse.2018.11.035_bb0230 article-title: Forest height estimation by means of Pol-InSAR data inversion: the role of the vertical wavenumber publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2015.2420996 – volume: 51 start-page: 266 year: 2005 ident: 10.1016/j.rse.2018.11.035_bb0340 article-title: Patterns of mortality in an old-growth mixed-conifer forest of the southern Sierra Nevada, California publication-title: Forest Sci. doi: 10.1093/forestscience/51.3.266 – volume: 124 start-page: 242 year: 2012 ident: 10.1016/j.rse.2018.11.035_bb0375 article-title: Retrieval of vertical LAI profiles over tropical rain forests using waveform lidar at La Selva, Costa Rica publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2012.05.005 – volume: 228 start-page: 113 year: 2000 ident: 10.1016/j.rse.2018.11.035_bb0145 article-title: Geostatistical approaches for incorporating elevation into the spatial interpolation of rainfall publication-title: J. Hydrol. doi: 10.1016/S0022-1694(00)00144-X – volume: 144 start-page: 201 year: 2001 ident: 10.1016/j.rse.2018.11.035_bb0330 article-title: Structure and composition of three northern hardwood-conifer forests with differing disturbance histories publication-title: For. Ecol. Manag. doi: 10.1016/S0378-1127(00)00371-6 – start-page: 961208 year: 2015 ident: 10.1016/j.rse.2018.11.035_bb0095 article-title: Laser transmitter development for NASA's Global Ecosystem Dynamics Investigation (GEDI) lidar – volume: 39 start-page: 2352 year: 2001 ident: 10.1016/j.rse.2018.11.035_bb0290 article-title: Single-baseline polarimetric SAR interferometry publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/36.964971 – volume: 38 start-page: 1989 year: 2000 ident: 10.1016/j.rse.2018.11.035_bb0175 article-title: Decomposition of laser altimeter waveforms publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/36.851780 – volume: 168 start-page: 102 year: 2015 ident: 10.1016/j.rse.2018.11.035_bb0125 article-title: The importance of spatial detail: assessing the utility of individual crown information and scaling approaches for lidar-based biomass density estimation publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2015.06.021 – volume: 2 start-page: 182 year: 2012 ident: 10.1016/j.rse.2018.11.035_bb0025 article-title: Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps publication-title: Nat. Clim. Chang. doi: 10.1038/nclimate1354 – volume: 115 start-page: 17 year: 2010 ident: 10.1016/j.rse.2018.11.035_bb0120 article-title: Estimation of tropical forest height and biomass dynamics using lidar remote sensing at La Selva, Costa Rica publication-title: J. Geophys. Res. Biogeosci. doi: 10.1029/2009JG000933 – volume: 26 start-page: 2509 year: 1999 ident: 10.1016/j.rse.2018.11.035_bb0040 article-title: Modeling laser altimeter return waveforms over complex vegetation using high-resolution elevation data publication-title: Geophys. Res. Lett. doi: 10.1029/1999GL010484 – volume: 139 start-page: 60 year: 2013 ident: 10.1016/j.rse.2018.11.035_bb0355 article-title: Monitoring spruce volume and biomass with InSAR data from TanDEM-X publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2013.07.036 – start-page: 6561 year: 2012 ident: 10.1016/j.rse.2018.11.035_bb0190 article-title: Mapping forest above-ground biomass and its changes from LVIS waveform data – start-page: 1 year: 2010 ident: 10.1016/j.rse.2018.11.035_bb0220 article-title: Potential of TanDEM-X for forest parameter estimation – volume: 333 start-page: 988 year: 2011 ident: 10.1016/j.rse.2018.11.035_bb0285 article-title: A large and persistent carbon sink in the world's forests publication-title: Science doi: 10.1126/science.1201609 – volume: 44 start-page: 2239 year: 2006 ident: 10.1016/j.rse.2018.11.035_bb0260 article-title: Evaluation of statistical methods to estimate forest volume in a Mediterranean region publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2006.872074 – volume: 47 start-page: 481 year: 2009 ident: 10.1016/j.rse.2018.11.035_bb0150 article-title: Tropical-forest-parameter estimation by means of Pol-InSAR: the INDREX-II campaign publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2008.2009437 – start-page: 3439 year: 2012 ident: 10.1016/j.rse.2018.11.035_bb0055 article-title: Boreal forest biomass classification with TanDEM-X – volume: 12 start-page: 147 year: 2003 ident: 10.1016/j.rse.2018.11.035_bb0115 article-title: Above-ground biomass estimation in closed canopy Neotropical forests using lidar remote sensing: factors affecting the generality of relationships publication-title: Glob. Ecol. Biogeogr. doi: 10.1046/j.1466-822X.2003.00010.x – volume: 115 start-page: 2753 year: 2011 ident: 10.1016/j.rse.2018.11.035_bb0155 article-title: Characterizing 3D vegetation structure from space: mission requirements publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2011.01.024 – volume: 68 start-page: 67 year: 2015 ident: 10.1016/j.rse.2018.11.035_bb0360 article-title: Long term performance of the high output maximum efficiency resonator (HOMER) laser for NASA's global ecosystem dynamics investigation (GEDI) lidar publication-title: Opt. Laser Technol. doi: 10.1016/j.optlastec.2014.11.001 – volume: 115 start-page: 11 year: 2010 ident: 10.1016/j.rse.2018.11.035_bb0195 article-title: Linking models and data on vegetation structure publication-title: J. Geophys. Res. Biogeosci. doi: 10.1029/2009JG000937 – volume: 36 start-page: 1185 year: 1988 ident: 10.1016/j.rse.2018.11.035_bb0100 article-title: Gaussian approximation versus nearly exact performance analysis of optical communication systems with PPM signaling and APD receivers publication-title: IEEE Trans. Commun. doi: 10.1109/26.8924 – year: 2018 ident: 10.1016/j.rse.2018.11.035_bb0250 article-title: GEDI and TanDEM-X fusion for 3D forest structure parameter retrieval – volume: 115 start-page: 3286 year: 2011 ident: 10.1016/j.rse.2018.11.035_bb0160 article-title: A threshold insensitive method for locating the forest canopy top with waveform lidar publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2011.07.012 – volume: 154 start-page: 371 year: 2001 ident: 10.1016/j.rse.2018.11.035_bb0205 article-title: Biomass estimation in the Tapajos National Forest, Brazil - examination of sampling and allometric uncertainties publication-title: For. Ecol. Manag. doi: 10.1016/S0378-1127(01)00509-6 – year: 2012 ident: 10.1016/j.rse.2018.11.035_bb0210 – volume: 115 start-page: 2906 year: 2011 ident: 10.1016/j.rse.2018.11.035_bb0365 article-title: Forest biomass mapping from lidar and radar synergies publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2011.03.021 – volume: 24 start-page: 1465 year: 2015 ident: 10.1016/j.rse.2018.11.035_bb0130 article-title: Assessing the general patterns of forest structure: quantifying tree and forest allometric scaling relationships in the United States publication-title: Glob. Ecol. Biogeogr. doi: 10.1111/geb.12371 – volume: 72 start-page: 249 year: 2006 ident: 10.1016/j.rse.2018.11.035_bb0315 article-title: A global assessment of the SRTM performance publication-title: Photogramm. Eng. Remote Sens. doi: 10.14358/PERS.72.3.249 – volume: 53 start-page: 4752 year: 2015 ident: 10.1016/j.rse.2018.11.035_bb0235 article-title: Extraction of structural and dynamic properties of forests from polarimetric-interferometric SAR data affected by temporal decorrelation publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2015.2409066 – volume: 188 start-page: 127 year: 2017 ident: 10.1016/j.rse.2018.11.035_bb0265 article-title: Lidar-based estimates of aboveground biomass in the continental US and Mexico using ground, airborne, and satellite observations publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2016.10.038 – volume: 34 start-page: 668 year: 2013 ident: 10.1016/j.rse.2018.11.035_bb0135 article-title: Height and biomass of mangroves in Africa from ICESat/GLAS and SRTM publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2012.712224 – volume: 8 start-page: 3608 year: 2015 ident: 10.1016/j.rse.2018.11.035_bb0240 article-title: TanDEM-X Pol-InSAR inversion for mangrove canopy height estimation publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2015.2431646 – volume: 174 start-page: 197 year: 2016 ident: 10.1016/j.rse.2018.11.035_bb0010 article-title: Prediction of stem volume in complex temperate forest stands using TanDEM-X SAR data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2015.12.012 – volume: 108 start-page: 9899 year: 2011 ident: 10.1016/j.rse.2018.11.035_bb0320 article-title: Benchmark map of forest carbon stocks in tropical regions across three continents publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1019576108 – ident: 10.1016/j.rse.2018.11.035_bb0200 – volume: 50 start-page: 714 year: 2012 ident: 10.1016/j.rse.2018.11.035_bb0270 article-title: Assessing performance of L-and P-band polarimetric interferometric SAR data in estimating boreal forest above-ground biomass publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2011.2176133 – year: 2011 ident: 10.1016/j.rse.2018.11.035_bb0275 article-title: Daily Record of Climatological Observations – volume: 41 start-page: 1369 year: 2011 ident: 10.1016/j.rse.2018.11.035_bb0390 article-title: Links between biomass and tree demography in a northern hardwood forest: a decade of stability and change in Hubbard Brook Valley, New Hampshire publication-title: Can. J. For. Res. doi: 10.1139/x11-063 – volume: 9 start-page: 5830 year: 2016 ident: 10.1016/j.rse.2018.11.035_bb0050 article-title: A lidar-radar framework to assess the impact of vertical forest structure on interferometric coherence publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. doi: 10.1109/JSTARS.2016.2527360 – volume: 76 start-page: 344 year: 2010 ident: 10.1016/j.rse.2018.11.035_bb0015 article-title: The aster global dem publication-title: Photogramm. Eng. Remote. Sens. – start-page: 988108 year: 2016 ident: 10.1016/j.rse.2018.11.035_bb0170 article-title: NASA L-SAR instrument for the NISAR (NASA-ISRO) Synthetic Aperture Radar mission – year: 2014 ident: 10.1016/j.rse.2018.11.035_bb0060 – start-page: 1771 year: 2002 ident: 10.1016/j.rse.2018.11.035_bb0305 article-title: Fusion of optical and SAR data for forestry applications in the Sierra Nevada of California – start-page: 3390 year: 2014 ident: 10.1016/j.rse.2018.11.035_bb0045 article-title: TanDEM-X global DEM3 quality status and acquisition completion – volume: 8 start-page: 565 year: 2016 ident: 10.1016/j.rse.2018.11.035_bb0180 – start-page: 3398 year: 2014 ident: 10.1016/j.rse.2018.11.035_bb0350 article-title: Estimation of boreal forest biomass from two-level model inversion of interferometric TanDEM-X data – volume: 114 start-page: 13 year: 2009 ident: 10.1016/j.rse.2018.11.035_bb0030 article-title: Remote sensing of vegetation 3-D structure for biodiversity and habitat: review and implications for lidar and radar spaceborne missions publication-title: J. Geophys. Res. Biogeosci. doi: 10.1029/2008JG000883 – volume: 23 start-page: 1191 year: 2012 ident: 10.1016/j.rse.2018.11.035_bb0065 article-title: Tropical forest biomass estimation and the fallacy of misplaced concreteness publication-title: J. Veg. Sci. doi: 10.1111/j.1654-1103.2012.01471.x – volume: 6 start-page: 1351 year: 2013 ident: 10.1016/j.rse.2018.11.035_bb0245 article-title: Quantification of temporal decorrelation effects at L-band for polarimetric SAR interferometry applications publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2013.2253448 – volume: 187 start-page: 253 year: 2016 ident: 10.1016/j.rse.2018.11.035_bb0310 article-title: Combining Tandem-X InSAR and simulated GEDI lidar observations for forest structure mapping publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2016.10.018 – start-page: 1889 year: 2013 ident: 10.1016/j.rse.2018.11.035_bb0090 article-title: Forest height estimation and validation using Tandem-X polinsar |
SSID | ssj0015871 |
Score | 2.5703075 |
Snippet | Interferometric Synthetic Aperture Radar (InSAR) and lidar are increasingly used active remote sensing techniques for forest structure observation. The... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 621 |
SubjectTerms | Aeronautics Airborne sensing ALS biomass Canopies canopy height Clouds Computer simulation Coniferous forests Ecosystem dynamics ecosystems Extinction coefficient Forest height Forests GEDI Imagery InSAR Interferometric synthetic aperture radar landscapes Lidar Lidar measurements mountains National Aeronautics and Space Administration Radar Radar data Rainforests Remote observing Remote sensing Remote sensing techniques RVoG Sensing techniques Spatial resolution Synthetic aperture radar Synthetic aperture radar interferometry TanDEM-X Temperate forests Terrain models tropical rain forests |
Title | Improved forest height estimation by fusion of simulated GEDI Lidar data and TanDEM-X InSAR data |
URI | https://dx.doi.org/10.1016/j.rse.2018.11.035 https://www.proquest.com/docview/2176699183 https://www.proquest.com/docview/2189555788 |
Volume | 221 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxEB5VrRBcEAQqQh8yEiekbddrO2sfozZtAqgHaKXcjO211VSwqfI45NLfzti7mwqEeuC49lheecYzY3vmG4CP1HkXaGCZFQ4PKNbJzFBWZj54qoRRg-BTtMXVYHzDP0_FdAfOulyYGFbZ6v5Gpydt3bactqt5ej-bxRxfxqPEoVCi31FMYwY7LyN-_snDNsyDClk2VfMYzyJ197KZYrwWy4iUSeVJBPJMFd_-aZv-0tLJ9Fy8gpetz0iGzW-9hh1f92B_9Jiihp3tHl324Hlb1_x204Nnl6lw7-YN_GhuD3xF0EvFOchtuhMlEWSjyV4kdkPCOl6ekXkgy9mvWNgL6S9H5xPydVaZBYnhpMTUFbk2NTIwm5JJ_X34LbW_hZuL0fXZOGurK2SO83yVeWqNE5Yp5wfShlxUzpWBGldwaQpFrULTbiyTvjIFZUHQkJugilwgH60p2D7s1vPavwOCLgfjlbXC0oiHllvrBLWls6rKDc9tH_JuXbVrocdjBYyfuosxu9PICh1ZgUcSjazow6ftkPsGd-MpYt4xS_8hPBrtwlPDDjvG6nbnLnURETPRaZasDx-23bjn4kOKqf18HWmkEgJ1nXz_fzMfwAv8Uk309yHsrhZrf4TOzcoeJ-k9hr3h5Mv46je9xfkC |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxEB6VIlQuCAJVAwWMxAlp2_XaznqPVUmbQOgBUik3Y3ttNQg2VR6HXPjtjL3eIBDqgas9li1_45mxPQ-At9Q666lnmREWLyjGykxTVmbOO1oJXQ28i94WV4PRNf8wE7M9OO9iYYJbZZL9rUyP0jq1nKbdPL2dz0OML-OB45Ap0e4oZvfgPhesDKx98nPn50GFLNuyeYxngbz72oxOXstVSJVJ5UnI5BlLvv1TOf0lpqPuuXgMj5LRSM7adT2BPdf04HD4O0YNO9MhXfXgIBU2v9n24MFlrNy7fQpf2-cDVxM0U3EOchMfRUnIstGGLxKzJX4TXs_IwpPV_Eeo7IX0l8P3YzKZ13pJgj8p0U1NprpBBLMZGTdfzj7H9mdwfTGcno-yVF4hs5zn68xRo60wrLJuII3PRW1t6am2BZe6qKipULdrw6SrdUGZF9Tn2ldFLhBIowt2CPvNonFHQNDmYLw2RhgaEqLlxlhBTWlNVeea56YPebevyqbc46EExnfVOZl9UwiFClDgnUQhFH14txty2ybeuIuYd2CpP7hHoWK4a9hxB6xKR3elipAyE61myfrwZteNhy78pOjGLTaBRlZCoLCTz_9v5tdwMJp-mqjJ-OrjC3iIPVXrCn4M--vlxr1ES2dtXkVO_gV_svqY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+forest+height+estimation+by+fusion+of+simulated+GEDI+Lidar+data+and+TanDEM-X+InSAR+data&rft.jtitle=Remote+sensing+of+environment&rft.au=Qi%2C+Wenlu&rft.au=Lee%2C+Seung-Kuk&rft.au=Hancock%2C+Steven&rft.au=Luthcke%2C+Scott&rft.date=2019-02-01&rft.issn=0034-4257&rft.volume=221&rft.spage=621&rft.epage=634&rft_id=info:doi/10.1016%2Fj.rse.2018.11.035&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_rse_2018_11_035 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0034-4257&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0034-4257&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0034-4257&client=summon |