A data-driven approach for steam load prediction in buildings
Predicting building energy load is important in energy management. This load is often the result of steam heating and cooling of buildings. In this paper, a data-driven approach for the development of a daily steam load model is presented. Data-mining algorithms are used to select significant parame...
Saved in:
Published in | Applied energy Vol. 87; no. 3; pp. 925 - 933 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Kidlington
Elsevier Ltd
01.03.2010
Elsevier |
Series | Applied Energy |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Predicting building energy load is important in energy management. This load is often the result of steam heating and cooling of buildings. In this paper, a data-driven approach for the development of a daily steam load model is presented. Data-mining algorithms are used to select significant parameters used to develop models. A neural network (NN) ensemble with five MLPs (multi-layer perceptrons) performed best among all data-mining algorithms tested and therefore was selected to develop a predictive model. To meet the constraints of the existing energy management applications, Monte Carlo simulation is used to investigate uncertainty propagation of the model built by using weather forecast data. Based on the formulated model and weather forecasting data, future steam consumption is estimated. The latter allows optimal decisions to be made while managing fuel purchasing, scheduling the steam boiler, and building energy consumption. |
---|---|
AbstractList | Predicting building energy load is important in energy management. This load is often the result of steam heating and cooling of buildings. In this paper, a data-driven approach for the development of a daily steam load model is presented. Data-mining algorithms are used to select significant parameters used to develop models. A neural network (NN) ensemble with five MLPs (multi-layer perceptrons) performed best among all data-mining algorithms tested and therefore was selected to develop a predictive model. To meet the constraints of the existing energy management applications, Monte Carlo simulation is used to investigate uncertainty propagation of the model built by using weather forecast data. Based on the formulated model and weather forecasting data, future steam consumption is estimated. The latter allows optimal decisions to be made while managing fuel purchasing, scheduling the steam boiler, and building energy consumption. |
Author | Zhang, Zijun Li, Mingyang Kusiak, Andrew |
Author_xml | – sequence: 1 givenname: Andrew surname: Kusiak fullname: Kusiak, Andrew email: andrew-kusiak@uiowa.edu – sequence: 2 givenname: Mingyang surname: Li fullname: Li, Mingyang – sequence: 3 givenname: Zijun surname: Zhang fullname: Zhang, Zijun |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22268567$$DView record in Pascal Francis http://econpapers.repec.org/article/eeeappene/v_3a87_3ay_3a2010_3ai_3a3_3ap_3a925-933.htm$$DView record in RePEc |
BookMark | eNqFUU1v3CAURFUiZZP0L0S-tDdvH2BYkFqpUdRPReqlPSMMzwkrL3aBXWn_fbA2zaGXSG94l5kBZi7JWZwiEnJDYU2Byg_btZ0xYno4rhmAXi8D3RuyomrDWk2pOiMr4CBbJqm-IJc5bwGAUQYr8um28bbY1qdwwNjYeU6TdY_NMKUmF7S7Zpysb-aEPrgSptiE2PT7MPoQH_I1OR_smPHt874if75--X33vb3_9e3H3e1967oOSuuVtl4qLgVopq2i1OmeUnCdGDwXUkEv1OCclF5zx3GjQNMePIJkfc8kvyLvT771dX_3mIvZhexwHG3EaZ8NF1QwwXkl_jwRE87ozJzCzqajQcT6sxqSORhu1aYexwoGFOoKFbxirtBMGM25eSy7avbu-VabnR2HZKML-cWUMSaVkJvKkyeeS1POCYcXSrVfKjJb868is1RkloGuCj_-J3Sh2CXlkmwYX5d_PsmxRn8ImEx2AaOrVSV0xfgpvGbxBGf9sgo |
CODEN | APENDX |
CitedBy_id | crossref_primary_10_1016_j_jcss_2014_12_010 crossref_primary_10_1016_j_enbuild_2016_09_068 crossref_primary_10_1016_j_csite_2024_105484 crossref_primary_10_1016_j_enbuild_2020_110521 crossref_primary_10_1016_j_rser_2014_07_053 crossref_primary_10_1016_j_rser_2025_115374 crossref_primary_10_1890_ES14_00256_1 crossref_primary_10_1016_j_enbuild_2018_03_042 crossref_primary_10_1007_s10270_020_00856_9 crossref_primary_10_4028_www_scientific_net_AMM_796_137 crossref_primary_10_1016_j_jprocont_2022_08_014 crossref_primary_10_3390_s24144742 crossref_primary_10_20965_jaciii_2017_p0785 crossref_primary_10_3390_en14248505 crossref_primary_10_1016_j_buildenv_2013_11_016 crossref_primary_10_1016_j_eswa_2023_120109 crossref_primary_10_1016_j_energy_2021_122146 crossref_primary_10_1049_iet_gtd_2017_0354 crossref_primary_10_1016_j_apenergy_2017_04_029 crossref_primary_10_1016_j_apenergy_2018_12_026 crossref_primary_10_1016_j_energy_2019_05_138 crossref_primary_10_1146_annurev_chembioeng_060816_101555 crossref_primary_10_3390_en17235941 crossref_primary_10_1080_19392699_2022_2064454 crossref_primary_10_1016_j_enbuild_2021_111054 crossref_primary_10_1177_0143624417740858 crossref_primary_10_1016_j_catena_2018_12_011 crossref_primary_10_1007_s12665_022_10408_7 crossref_primary_10_3390_su141610230 crossref_primary_10_1007_s00253_020_10888_2 crossref_primary_10_3390_en17215277 crossref_primary_10_1088_1742_6596_2774_1_012007 crossref_primary_10_3390_en11061570 crossref_primary_10_3390_en14051331 crossref_primary_10_1117_1_JRS_17_024507 crossref_primary_10_3390_en10111818 crossref_primary_10_1016_j_apenergy_2014_10_026 crossref_primary_10_1016_j_buildenv_2017_09_030 crossref_primary_10_3233_IFS_152087 crossref_primary_10_1016_j_energy_2019_02_044 crossref_primary_10_4173_mic_2015_2_4 crossref_primary_10_1016_j_asoc_2014_05_015 crossref_primary_10_1007_s11277_015_2405_3 crossref_primary_10_1109_TII_2020_2970165 crossref_primary_10_1016_j_esr_2024_101560 crossref_primary_10_1155_2018_1714961 crossref_primary_10_1016_j_energy_2020_117454 crossref_primary_10_1016_j_apenergy_2011_12_048 crossref_primary_10_1109_TCST_2021_3094999 crossref_primary_10_1109_JSTARS_2015_2403297 crossref_primary_10_1016_j_enbuild_2014_07_037 crossref_primary_10_1016_j_apenergy_2014_06_054 crossref_primary_10_1016_j_jobe_2021_102401 crossref_primary_10_1007_s11277_020_07349_4 crossref_primary_10_1016_j_apenergy_2018_03_125 crossref_primary_10_1016_j_jobe_2017_11_021 crossref_primary_10_1007_s42461_023_00879_y crossref_primary_10_1016_j_enconman_2015_06_073 crossref_primary_10_2139_ssrn_4133467 crossref_primary_10_1016_j_energy_2019_116193 crossref_primary_10_1016_j_applthermaleng_2023_120372 crossref_primary_10_1016_j_enbuild_2019_06_025 crossref_primary_10_1016_j_energy_2013_02_062 crossref_primary_10_3390_ma12020202 crossref_primary_10_1016_j_apenergy_2021_117913 crossref_primary_10_1016_j_enbuild_2020_110238 crossref_primary_10_1016_j_rser_2015_12_328 crossref_primary_10_1016_j_egypro_2015_11_704 crossref_primary_10_1016_j_scitotenv_2019_03_496 crossref_primary_10_1080_19401493_2016_1265590 crossref_primary_10_1061__ASCE_EY_1943_7897_0000405 crossref_primary_10_1016_j_ijepes_2015_08_006 crossref_primary_10_1155_2020_5919238 crossref_primary_10_3390_en14123608 crossref_primary_10_1016_j_enconman_2017_05_006 crossref_primary_10_1016_j_energy_2016_10_028 crossref_primary_10_1016_j_energy_2020_118045 crossref_primary_10_1109_TBDATA_2019_2907127 crossref_primary_10_1016_j_enbuild_2015_02_052 crossref_primary_10_1016_j_enbuild_2017_02_012 crossref_primary_10_1016_j_apenergy_2016_10_007 crossref_primary_10_1016_j_neucom_2016_07_034 crossref_primary_10_1061__ASCE_EY_1943_7897_0000092 crossref_primary_10_1155_2018_2908608 crossref_primary_10_1007_s11277_018_6017_6 crossref_primary_10_1016_j_rser_2024_114804 crossref_primary_10_1016_j_jobe_2023_106590 crossref_primary_10_1016_j_energy_2018_03_169 crossref_primary_10_3389_feart_2022_1041807 crossref_primary_10_1016_j_applthermaleng_2017_09_007 crossref_primary_10_3390_en11020407 crossref_primary_10_1016_j_segan_2021_100543 crossref_primary_10_1016_j_apenergy_2013_04_065 crossref_primary_10_1016_j_apenergy_2021_116452 crossref_primary_10_1016_j_energy_2011_08_024 crossref_primary_10_3390_en11071678 crossref_primary_10_1007_s12273_019_0599_0 crossref_primary_10_1016_j_enbuild_2015_02_045 crossref_primary_10_1007_s12273_020_0721_3 crossref_primary_10_1016_j_apenergy_2012_05_020 crossref_primary_10_1016_j_egyr_2022_01_162 crossref_primary_10_1016_j_enbuild_2018_01_066 crossref_primary_10_1016_j_enbuild_2018_06_044 crossref_primary_10_1007_s00477_015_1021_9 crossref_primary_10_1016_j_enbuild_2018_04_038 crossref_primary_10_3390_en14102779 crossref_primary_10_1016_j_enconman_2013_01_002 crossref_primary_10_1080_08839514_2015_1082279 crossref_primary_10_1007_s10845_024_02357_8 crossref_primary_10_1016_j_enbuild_2019_109424 crossref_primary_10_1016_j_enbuild_2022_112639 crossref_primary_10_3390_app10248968 crossref_primary_10_1016_j_jobe_2020_101504 crossref_primary_10_1016_j_autcon_2018_02_014 crossref_primary_10_1016_j_egyai_2020_100015 crossref_primary_10_1016_j_apenergy_2017_02_066 crossref_primary_10_1016_j_apenergy_2019_02_066 crossref_primary_10_1016_j_energy_2016_02_061 crossref_primary_10_1016_j_enbuild_2021_111436 crossref_primary_10_1016_j_jprocont_2021_10_004 crossref_primary_10_1016_j_rser_2016_11_132 crossref_primary_10_1002_ep_13895 crossref_primary_10_1016_j_fuproc_2014_09_001 crossref_primary_10_1016_j_enbuild_2021_111794 crossref_primary_10_1016_j_enbuild_2021_111718 crossref_primary_10_1007_s12273_018_0431_2 crossref_primary_10_1016_j_engappai_2020_103753 crossref_primary_10_1016_j_rser_2012_02_049 crossref_primary_10_1016_j_enbuild_2020_110309 crossref_primary_10_1016_j_jhydrol_2013_09_034 crossref_primary_10_1016_j_enbuild_2024_114343 crossref_primary_10_1109_TEC_2012_2189887 crossref_primary_10_1016_j_buildenv_2024_111786 crossref_primary_10_3390_buildings12112039 crossref_primary_10_1016_j_conengprac_2021_104841 crossref_primary_10_1016_j_rser_2020_109980 crossref_primary_10_1061__ASCE_WR_1943_5452_0001119 crossref_primary_10_1016_j_mlwa_2022_100257 crossref_primary_10_1016_j_enbuild_2016_12_016 crossref_primary_10_1016_j_applthermaleng_2015_03_050 crossref_primary_10_1016_j_apenergy_2010_04_001 crossref_primary_10_1016_j_applthermaleng_2014_03_055 crossref_primary_10_1016_j_enbuild_2017_02_064 crossref_primary_10_1016_j_energy_2012_08_048 crossref_primary_10_1007_s11442_024_2259_2 crossref_primary_10_1016_j_energy_2024_134040 crossref_primary_10_1016_j_energy_2014_07_064 crossref_primary_10_1016_j_energy_2020_118872 crossref_primary_10_5659_JAIK_PD_2016_32_5_143 crossref_primary_10_1016_j_aei_2021_101357 crossref_primary_10_1016_j_buildenv_2018_07_037 crossref_primary_10_1016_j_esd_2021_11_002 crossref_primary_10_1016_j_rineng_2025_104086 crossref_primary_10_3390_en11010161 crossref_primary_10_3390_en11020358 crossref_primary_10_1016_j_apenergy_2015_12_015 crossref_primary_10_1016_j_autcon_2018_03_030 crossref_primary_10_1016_j_jobe_2020_101967 crossref_primary_10_1016_j_enbuild_2018_11_010 crossref_primary_10_1007_s11240_017_1353_x crossref_primary_10_1061__ASCE_EY_1943_7897_0000051 crossref_primary_10_1016_j_egypro_2017_12_346 crossref_primary_10_1155_2016_9104735 |
Cites_doi | 10.1016/j.enconman.2008.08.033 10.1115/1.3268223 10.1016/j.apenergy.2009.01.011 10.1016/S0925-2312(98)00076-9 10.1080/10789669.2006.10391182 10.1080/02664769100000005 10.1016/j.apenergy.2009.03.011 10.1023/A:1010933404324 10.1016/j.apenergy.2008.12.010 10.1016/0378-7796(95)00950-M 10.1109/TPAS.1970.292823 10.1016/j.apenergy.2008.11.020 10.2307/2986296 10.1109/TPAS.1982.317242 10.1109/59.76685 10.2307/2685263 10.1016/j.apenergy.2008.11.035 10.1214/aos/1176347963 10.2307/2280232 10.1016/j.apenergy.2009.01.016 10.2307/2281592 10.1109/TPAS.1971.293123 10.1016/j.enbuild.2005.02.005 10.1016/j.enbuild.2004.09.006 |
ContentType | Journal Article |
Copyright | 2009 Elsevier Ltd 2015 INIST-CNRS |
Copyright_xml | – notice: 2009 Elsevier Ltd – notice: 2015 INIST-CNRS |
DBID | AAYXX CITATION IQODW DKI X2L 7TA 8FD JG9 |
DOI | 10.1016/j.apenergy.2009.09.004 |
DatabaseName | CrossRef Pascal-Francis RePEc IDEAS RePEc Materials Business File Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Technology Research Database Materials Business File |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: DKI name: RePEc IDEAS url: http://ideas.repec.org/ sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Environmental Sciences Applied Sciences |
EISSN | 1872-9118 |
EndPage | 933 |
ExternalDocumentID | eeeappene_v_3a87_3ay_3a2010_3ai_3a3_3ap_3a925_933_htm 22268567 10_1016_j_apenergy_2009_09_004 S0306261909003808 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AAXUO AAYOK ABEFU ABFNM ABJNI ABMAC ABTAH ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JARJE JJJVA KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAC SDF SDG SES SEW SPC SPCBC SSR SST SSZ T5K TN5 WUQ ZY4 ~02 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH EFKBS IQODW 02 0R 1 8P AAPBV ABPTK ADALY DKI G- HZ IPNFZ K M X2L 7TA 8FD JG9 |
ID | FETCH-LOGICAL-c440t-d89ad683650929a811c9b110c45fd35680b58fcc66d93c3e78091b0de062bb263 |
IEDL.DBID | .~1 |
ISSN | 0306-2619 |
IngestDate | Fri Jul 11 13:03:01 EDT 2025 Wed Aug 18 03:07:34 EDT 2021 Mon Jul 21 09:14:21 EDT 2025 Tue Jul 01 03:05:11 EDT 2025 Thu Apr 24 23:01:27 EDT 2025 Fri Feb 23 02:36:45 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Steam load prediction Parameter selection Neural network ensemble Data mining Building load estimation Energy forecasting Monte Carlo simulation Energy consumption Monte Carlo method Steam heating Uncertainty Cooling Buildings Climatic data Neural network Algorithm Forecasting Simulation Energy management |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c440t-d89ad683650929a811c9b110c45fd35680b58fcc66d93c3e78091b0de062bb263 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PQID | 35152533 |
PQPubID | 23500 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_35152533 repec_primary_eeeappene_v_3a87_3ay_3a2010_3ai_3a3_3ap_3a925_933_htm pascalfrancis_primary_22268567 crossref_primary_10_1016_j_apenergy_2009_09_004 crossref_citationtrail_10_1016_j_apenergy_2009_09_004 elsevier_sciencedirect_doi_10_1016_j_apenergy_2009_09_004 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2010-03-01 |
PublicationDateYYYYMMDD | 2010-03-01 |
PublicationDate_xml | – month: 03 year: 2010 text: 2010-03-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Kidlington |
PublicationPlace_xml | – name: Kidlington |
PublicationSeriesTitle | Applied Energy |
PublicationTitle | Applied energy |
PublicationYear | 2010 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Desideri, Proietti, Sdringola (bib16) 2009; 86 Thompson (bib3) 1976; PAS-95 Islam, Al-Alawi, Ellithy (bib9) 1995; 34 Friedman (bib30) 1991; 19 Wang (bib22) 2003 Difs, Danestig, Trygg (bib14) 2009; 86 Elkateb, Solaiman, Al-Turki (bib18) 1998; 23 Casella, Berger (bib34) 1990 Zhai, Dai, Wu, Wang (bib13) 2009; 86 Goodman (bib36) 1960; 55 Christiaanse (bib2) 1971; PAS-90 Li, Meng, Cai, Yoshino, Mochida (bib20) 2009; 50 Kimbara, Kurosu, Endo (bib6) 1995; 101 Yang, Rivard, Zmeureanu (bib21) 2005; 37 Park, E1-Sharkawi, Marks (bib8) 1991; 6 Friedman (bib25) 1999 Frissari, Widergren, Yehsakul (bib4) 1982; PAS-101 Gonza´lez, Zamarreno (bib11) 2005; 37 Haykin (bib33) 1998 Tan, Steinbach, Kumar (bib24) 2005 Kawashima, Dorgan, Mitchell (bib10) 1996; 102 Hertz, Krogh, Palmer (bib32) 1999 Rodgers, Nicewander (bib23) 1988; 42 Yildiz, Güngör (bib15) 2009; 86 Toyoda, Chen (bib5) 1970; PAS-89 Breiman, Friedman, Olshen, Stone (bib27) 1984 Kass (bib28) 1980; 29 Metropolis, Ulam (bib35) 1949; 44 Bida, Kreider (bib1) 1987; 109 Ruan, Liu, Zhou, Firestone, Gao, Watanabe (bib17) 2009; 86 Breiman (bib31) 2001; 45 Bigss, Ville, Suen (bib29) 1991; 18 Kawashima, Dorgan, Mitchell (bib7) 1995; 101 Hastie, Tibshirani, Firedman (bib26) 2001 Hou, Lian, Yao, Yuan (bib19) 2006; 12 Li, Meng, Cai, Yoshino, Mochida (bib12) 2009; 86 Li (10.1016/j.apenergy.2009.09.004_bib20) 2009; 50 Rodgers (10.1016/j.apenergy.2009.09.004_bib23) 1988; 42 Islam (10.1016/j.apenergy.2009.09.004_bib9) 1995; 34 Breiman (10.1016/j.apenergy.2009.09.004_bib31) 2001; 45 Li (10.1016/j.apenergy.2009.09.004_bib12) 2009; 86 Difs (10.1016/j.apenergy.2009.09.004_bib14) 2009; 86 Wang (10.1016/j.apenergy.2009.09.004_bib22) 2003 Friedman (10.1016/j.apenergy.2009.09.004_bib30) 1991; 19 Bida (10.1016/j.apenergy.2009.09.004_bib1) 1987; 109 Kimbara (10.1016/j.apenergy.2009.09.004_bib6) 1995; 101 Gonza´lez (10.1016/j.apenergy.2009.09.004_bib11) 2005; 37 Zhai (10.1016/j.apenergy.2009.09.004_bib13) 2009; 86 Toyoda (10.1016/j.apenergy.2009.09.004_bib5) 1970; PAS-89 Hou (10.1016/j.apenergy.2009.09.004_bib19) 2006; 12 Hertz (10.1016/j.apenergy.2009.09.004_bib32) 1999 Yang (10.1016/j.apenergy.2009.09.004_bib21) 2005; 37 Tan (10.1016/j.apenergy.2009.09.004_bib24) 2005 Haykin (10.1016/j.apenergy.2009.09.004_bib33) 1998 Breiman (10.1016/j.apenergy.2009.09.004_bib27) 1984 Bigss (10.1016/j.apenergy.2009.09.004_bib29) 1991; 18 Ruan (10.1016/j.apenergy.2009.09.004_bib17) 2009; 86 Friedman (10.1016/j.apenergy.2009.09.004_bib25) 1999 Kass (10.1016/j.apenergy.2009.09.004_bib28) 1980; 29 Christiaanse (10.1016/j.apenergy.2009.09.004_bib2) 1971; PAS-90 Thompson (10.1016/j.apenergy.2009.09.004_bib3) 1976; PAS-95 Kawashima (10.1016/j.apenergy.2009.09.004_bib10) 1996; 102 Kawashima (10.1016/j.apenergy.2009.09.004_bib7) 1995; 101 Desideri (10.1016/j.apenergy.2009.09.004_bib16) 2009; 86 Metropolis (10.1016/j.apenergy.2009.09.004_bib35) 1949; 44 Goodman (10.1016/j.apenergy.2009.09.004_bib36) 1960; 55 Frissari (10.1016/j.apenergy.2009.09.004_bib4) 1982; PAS-101 Casella (10.1016/j.apenergy.2009.09.004_bib34) 1990 Hastie (10.1016/j.apenergy.2009.09.004_bib26) 2001 Yildiz (10.1016/j.apenergy.2009.09.004_bib15) 2009; 86 Park (10.1016/j.apenergy.2009.09.004_bib8) 1991; 6 Elkateb (10.1016/j.apenergy.2009.09.004_bib18) 1998; 23 |
References_xml | – volume: 12 start-page: 337 year: 2006 end-page: 352 ident: bib19 article-title: Cooling load prediction based on the combination of rough set theory and support vector machine publication-title: HVAC&R Res – volume: 23 start-page: 3 year: 1998 end-page: 13 ident: bib18 article-title: A comparative study of medium-weather-dependent load forecasting using enhanced artificial/fuzzy neural network and statistical techniques publication-title: Neurocomputing – volume: 42 start-page: 59 year: 1988 end-page: 66 ident: bib23 article-title: Thirteen ways to look at the correlation coefficient publication-title: Am Stat – volume: PAS-90 start-page: 900 year: 1971 end-page: 910 ident: bib2 article-title: Short-term load forecasting using exponential smoothing publication-title: IEEE Trans Power Ap Syst – volume: 86 start-page: 1395 year: 2009 end-page: 1404 ident: bib13 article-title: Energy and energy analyses on a novel hybrid solar heating, cooling and power generation system for remote areas publication-title: Appl Energy – volume: 86 start-page: 1939 year: 2009 end-page: 1948 ident: bib15 article-title: Energy and energy analyses of space heating in buildings publication-title: Appl Energy – volume: 109 start-page: 311 year: 1987 end-page: 320 ident: bib1 article-title: Monthly-averaged cooling load calculations-residential and small commercial buildings publication-title: ASME Trans: J Sol Energy Eng – volume: 102 start-page: 169 year: 1996 end-page: 1178 ident: bib10 article-title: Optimizing system control with load prediction by neural networks for an ice-storage system publication-title: ASHRAE Trans – volume: 55 start-page: 708 year: 1960 end-page: 713 ident: bib36 article-title: On the exact variance of products publication-title: J Am Stat Assoc – volume: 6 start-page: 442 year: 1991 end-page: 449 ident: bib8 article-title: Electric load forecasting using an artificial neural network publication-title: IEEE Trans Power Syst – volume: 34 start-page: 1 year: 1995 end-page: 9 ident: bib9 article-title: Forecasting monthly electric load and energy for a fast growing utility using an artificial neural network publication-title: Electr Power Syst Res – year: 1990 ident: bib34 article-title: Statistical inference – volume: 37 start-page: 1250 year: 2005 end-page: 1259 ident: bib21 article-title: On-line building energy prediction using adaptive artificial neural network publication-title: Energy Build – volume: 50 start-page: 90 year: 2009 end-page: 96 ident: bib20 article-title: Predicting hourly cooling load in the building: a comparison of support vector machine and different artificial neural network publication-title: Energy Conver Manage – volume: PAS-95 start-page: 384 year: 1976 end-page: 393 ident: bib3 article-title: Weather sensitive demand and energy analysis on a large geographically diverse power system: application to short-term hourly electric demand forecasting publication-title: IEEE Trans Power Ap Syst – volume: 37 start-page: 585 year: 2005 end-page: 601 ident: bib11 article-title: Prediction of hourly energy consumption in buildings based on a feedback artificial neural network publication-title: Energy Build – year: 2005 ident: bib24 article-title: Introduction to data mining – year: 1999 ident: bib25 article-title: Stochastic gradient boosting – volume: 44 start-page: 335 year: 1949 end-page: 341 ident: bib35 article-title: The Monte Carlo method publication-title: J Am Stat Assoc – volume: 101 start-page: 186 year: 1995 end-page: 200 ident: bib7 article-title: Hourly thermal load prediction for the next 24 publication-title: ASHRAE Trans – year: 2001 ident: bib26 article-title: The elements of statistical learning – volume: 101 start-page: 198 year: 1995 end-page: 207 ident: bib6 article-title: On-line prediction for load profile of an air-conditioning system publication-title: ASHRAE Trans – year: 1999 ident: bib32 article-title: Introduction to the theory of neural computation – volume: 29 start-page: 119 year: 1980 end-page: 127 ident: bib28 article-title: An exploratory technique for investigating large quantities of categorical data publication-title: Appl Stat – year: 1998 ident: bib33 article-title: Neural networks: a comprehensive foundation – volume: 86 start-page: 1641 year: 2009 end-page: 1653 ident: bib17 article-title: Optimal option of distributed generation technologies for various commercial buildings publication-title: Appl Energy – volume: 18 start-page: 49 year: 1991 end-page: 62 ident: bib29 article-title: A method of choosing multiway partitions for classification and decision trees publication-title: J Appl Stat – volume: 45 start-page: 5 year: 2001 end-page: 32 ident: bib31 article-title: Random forests publication-title: Mach Learn – volume: 86 start-page: 2249 year: 2009 end-page: 2256 ident: bib12 article-title: Applying support vector machine to predict hourly cooling load in the building publication-title: Appl Energy – volume: PAS-89 start-page: 1678 year: 1970 end-page: 1688, ident: bib5 article-title: An application of state estimation to short-term load forecasting, Parts 1 and 2 publication-title: IEEE Trans Power Ap Syst – volume: 86 start-page: 1376 year: 2009 end-page: 1386 ident: bib16 article-title: Solar-powered cooling systems: technical and economic analysis on industrial refrigeration and air-conditioning applications publication-title: Appl Energy – volume: 86 start-page: 2327 year: 2009 end-page: 2334 ident: bib14 article-title: Increased use of district heating in industrial processes – impacts on heat load duration publication-title: Appl Energy – volume: 19 start-page: 1 year: 1991 end-page: 67 ident: bib30 article-title: Multivariate adaptive regression spline publication-title: Ann Stat – volume: PAS-101 start-page: 71 year: 1982 end-page: 78 ident: bib4 article-title: On-line load forecasting for energy control center application publication-title: IEEE Trans Power Ap Syst – year: 2003 ident: bib22 article-title: Data mining: opportunities and challenges – year: 1984 ident: bib27 article-title: Classification and regression trees – volume: 50 start-page: 90 issue: 1 year: 2009 ident: 10.1016/j.apenergy.2009.09.004_bib20 article-title: Predicting hourly cooling load in the building: a comparison of support vector machine and different artificial neural network publication-title: Energy Conver Manage doi: 10.1016/j.enconman.2008.08.033 – volume: 109 start-page: 311 issue: 4 year: 1987 ident: 10.1016/j.apenergy.2009.09.004_bib1 article-title: Monthly-averaged cooling load calculations-residential and small commercial buildings publication-title: ASME Trans: J Sol Energy Eng doi: 10.1115/1.3268223 – volume: 86 start-page: 1376 issue: 9 year: 2009 ident: 10.1016/j.apenergy.2009.09.004_bib16 article-title: Solar-powered cooling systems: technical and economic analysis on industrial refrigeration and air-conditioning applications publication-title: Appl Energy doi: 10.1016/j.apenergy.2009.01.011 – volume: 23 start-page: 3 issue: 1–3 year: 1998 ident: 10.1016/j.apenergy.2009.09.004_bib18 article-title: A comparative study of medium-weather-dependent load forecasting using enhanced artificial/fuzzy neural network and statistical techniques publication-title: Neurocomputing doi: 10.1016/S0925-2312(98)00076-9 – volume: 12 start-page: 337 issue: 2 year: 2006 ident: 10.1016/j.apenergy.2009.09.004_bib19 article-title: Cooling load prediction based on the combination of rough set theory and support vector machine publication-title: HVAC&R Res doi: 10.1080/10789669.2006.10391182 – volume: 18 start-page: 49 issue: 1 year: 1991 ident: 10.1016/j.apenergy.2009.09.004_bib29 article-title: A method of choosing multiway partitions for classification and decision trees publication-title: J Appl Stat doi: 10.1080/02664769100000005 – year: 1999 ident: 10.1016/j.apenergy.2009.09.004_bib32 – year: 1990 ident: 10.1016/j.apenergy.2009.09.004_bib34 – volume: PAS-95 start-page: 384 year: 1976 ident: 10.1016/j.apenergy.2009.09.004_bib3 article-title: Weather sensitive demand and energy analysis on a large geographically diverse power system: application to short-term hourly electric demand forecasting publication-title: IEEE Trans Power Ap Syst – volume: 86 start-page: 2327 issue: 11 year: 2009 ident: 10.1016/j.apenergy.2009.09.004_bib14 article-title: Increased use of district heating in industrial processes – impacts on heat load duration publication-title: Appl Energy doi: 10.1016/j.apenergy.2009.03.011 – volume: 101 start-page: 186 year: 1995 ident: 10.1016/j.apenergy.2009.09.004_bib7 article-title: Hourly thermal load prediction for the next 24h by ARIMA, EWMA, LR, and an artificial neural network (Part 1) publication-title: ASHRAE Trans – volume: 45 start-page: 5 issue: 1 year: 2001 ident: 10.1016/j.apenergy.2009.09.004_bib31 article-title: Random forests publication-title: Mach Learn doi: 10.1023/A:1010933404324 – volume: 102 start-page: 169 issue: 1 year: 1996 ident: 10.1016/j.apenergy.2009.09.004_bib10 article-title: Optimizing system control with load prediction by neural networks for an ice-storage system publication-title: ASHRAE Trans – volume: 86 start-page: 1939 issue: 10 year: 2009 ident: 10.1016/j.apenergy.2009.09.004_bib15 article-title: Energy and energy analyses of space heating in buildings publication-title: Appl Energy doi: 10.1016/j.apenergy.2008.12.010 – year: 1999 ident: 10.1016/j.apenergy.2009.09.004_bib25 – volume: 34 start-page: 1 issue: 1 year: 1995 ident: 10.1016/j.apenergy.2009.09.004_bib9 article-title: Forecasting monthly electric load and energy for a fast growing utility using an artificial neural network publication-title: Electr Power Syst Res doi: 10.1016/0378-7796(95)00950-M – year: 1998 ident: 10.1016/j.apenergy.2009.09.004_bib33 – volume: PAS-89 start-page: 1678 year: 1970 ident: 10.1016/j.apenergy.2009.09.004_bib5 article-title: An application of state estimation to short-term load forecasting, Parts 1 and 2 publication-title: IEEE Trans Power Ap Syst doi: 10.1109/TPAS.1970.292823 – volume: 86 start-page: 1395 issue: 9 year: 2009 ident: 10.1016/j.apenergy.2009.09.004_bib13 article-title: Energy and energy analyses on a novel hybrid solar heating, cooling and power generation system for remote areas publication-title: Appl Energy doi: 10.1016/j.apenergy.2008.11.020 – volume: 29 start-page: 119 issue: 2 year: 1980 ident: 10.1016/j.apenergy.2009.09.004_bib28 article-title: An exploratory technique for investigating large quantities of categorical data publication-title: Appl Stat doi: 10.2307/2986296 – volume: PAS-101 start-page: 71 year: 1982 ident: 10.1016/j.apenergy.2009.09.004_bib4 article-title: On-line load forecasting for energy control center application publication-title: IEEE Trans Power Ap Syst doi: 10.1109/TPAS.1982.317242 – volume: 6 start-page: 442 issue: 2 year: 1991 ident: 10.1016/j.apenergy.2009.09.004_bib8 article-title: Electric load forecasting using an artificial neural network publication-title: IEEE Trans Power Syst doi: 10.1109/59.76685 – year: 2001 ident: 10.1016/j.apenergy.2009.09.004_bib26 – volume: 42 start-page: 59 issue: 1 year: 1988 ident: 10.1016/j.apenergy.2009.09.004_bib23 article-title: Thirteen ways to look at the correlation coefficient publication-title: Am Stat doi: 10.2307/2685263 – volume: 86 start-page: 2249 issue: 10 year: 2009 ident: 10.1016/j.apenergy.2009.09.004_bib12 article-title: Applying support vector machine to predict hourly cooling load in the building publication-title: Appl Energy doi: 10.1016/j.apenergy.2008.11.035 – volume: 19 start-page: 1 issue: 1 year: 1991 ident: 10.1016/j.apenergy.2009.09.004_bib30 article-title: Multivariate adaptive regression spline publication-title: Ann Stat doi: 10.1214/aos/1176347963 – volume: 44 start-page: 335 issue: 247 year: 1949 ident: 10.1016/j.apenergy.2009.09.004_bib35 article-title: The Monte Carlo method publication-title: J Am Stat Assoc doi: 10.2307/2280232 – year: 2003 ident: 10.1016/j.apenergy.2009.09.004_bib22 – volume: 86 start-page: 1641 issue: 9 year: 2009 ident: 10.1016/j.apenergy.2009.09.004_bib17 article-title: Optimal option of distributed generation technologies for various commercial buildings publication-title: Appl Energy doi: 10.1016/j.apenergy.2009.01.016 – volume: 101 start-page: 198 issue: 2 year: 1995 ident: 10.1016/j.apenergy.2009.09.004_bib6 article-title: On-line prediction for load profile of an air-conditioning system publication-title: ASHRAE Trans – year: 1984 ident: 10.1016/j.apenergy.2009.09.004_bib27 – volume: 55 start-page: 708 issue: 292 year: 1960 ident: 10.1016/j.apenergy.2009.09.004_bib36 article-title: On the exact variance of products publication-title: J Am Stat Assoc doi: 10.2307/2281592 – volume: PAS-90 start-page: 900 year: 1971 ident: 10.1016/j.apenergy.2009.09.004_bib2 article-title: Short-term load forecasting using exponential smoothing publication-title: IEEE Trans Power Ap Syst doi: 10.1109/TPAS.1971.293123 – volume: 37 start-page: 1250 issue: 12 year: 2005 ident: 10.1016/j.apenergy.2009.09.004_bib21 article-title: On-line building energy prediction using adaptive artificial neural network publication-title: Energy Build doi: 10.1016/j.enbuild.2005.02.005 – volume: 37 start-page: 585 issue: 6 year: 2005 ident: 10.1016/j.apenergy.2009.09.004_bib11 article-title: Prediction of hourly energy consumption in buildings based on a feedback artificial neural network publication-title: Energy Build doi: 10.1016/j.enbuild.2004.09.006 – year: 2005 ident: 10.1016/j.apenergy.2009.09.004_bib24 |
SSID | ssj0002120 |
Score | 2.403226 |
Snippet | Predicting building energy load is important in energy management. This load is often the result of steam heating and cooling of buildings. In this paper, a... |
SourceID | proquest repec pascalfrancis crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 925 |
SubjectTerms | Applied sciences Building load estimation Data mining Data mining Building load estimation Steam load prediction Neural network ensemble Energy forecasting Monte Carlo simulation Parameter selection Economic data Energy Energy economics Energy forecasting Energy policy Exact sciences and technology General, economic and professional studies Methodology. Modelling Monte Carlo simulation Neural network ensemble Parameter selection Steam load prediction |
Title | A data-driven approach for steam load prediction in buildings |
URI | https://dx.doi.org/10.1016/j.apenergy.2009.09.004 http://econpapers.repec.org/article/eeeappene/v_3a87_3ay_3a2010_3ai_3a3_3ap_3a925-933.htm https://www.proquest.com/docview/35152533 |
Volume | 87 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF5V7QWEEBQqQiHsgasb2_vw-sAhCq1SKnqBSr2t9ilStY6VpEhc-tuZiddpckA9IHlt2drR2jO7M5-88yDks6ti4UMUGVNWZLwMRWaVtJmpeeEMTILcY4Dz90s5veLfrsX1Hpn0sTDoVpl0f6fT19o6PRklbo7a2Wz0A9Eu4v8cf8apdcAv5xXO8pOHRzePMqVmhM4Z9t6KEr45MW1YR9ilvJWYupL_y0C9aM0S2Ba7ehc7gPRgEdrgtuzS2SvyMgFKOu7e-TXZC80heb6VZvCQHJ0-RrNB17Scl2_IlzFFD9HML1Dn0T6_OAUgS1H6d_R2bjxtF7ibgxKks4baVEh7-ZZcnZ3-nEyzVE8hc5znq8yr2nipGCbNK2ujisLVFsy_4yJ6JqTKrVDROSl9zRwLlQIwYXMfgM_WlpIdkf1m3oR3hBppczR_1hrLQ4ym5MaIGCOA9dJ4MyCiZ6J2Kdk41ry41b1X2Y3umY-VMGuNR84HZLSha7t0G09S1L2M9M7E0WATnqQd7gh1MySAJqmErAbkUy9lDcsO91JME-b3S80EFo5ibEAma-FvSEMIIC0YS__WzKgKTn-godMBXGbQGLQWWl0KXTOmf63u3v_HRxyTZ51HA_rFfSD7q8V9-AhAaWWH65UwJAfj84vpJdx9vTj_C8u_FQA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LTtww0KJwaKuqamlRtw_woT2GTWI76xw4IApayuNSkLi5fopFkI02Sysu_an-YGc2zrJ7qDhUSJlEiuLYmRnPjON5EPLZDkLmfBAJk0YkPPdZYmRhEl3yzGpggtRhgPPJaTE8598uxMUK-dPFwqBbZZT9rUyfSet4px-x2a9Ho_53tHbR_k_xZ5xMZfSsPPJ3v2Dd1uwcfgUif8nzg_2zvWESSwsklvN0mjhZaldIhvnj8lLLLLOlAU1ouQiOiUKmRshgbVG4klnmBxL0qkmdhy6NyQsG731C1jiICyybsP373q8kj7kgYXQJDm8hLPlqW9d-FtIXE2Virkz-L434otYN0Cm0BTaWLOC1ia-9XVCEB6_Iy2jB0t0WSa_Jiq_WyfOFvIbrZGP_PnwOHo3yo3lDdnYpuqQmboJClnYJzSlYzhTZ7YZej7Wj9QS3j5Bl6KiiJlbubt6S80fB8gZZrcaVf0eoLkyK-tYYbbgPQedcaxFCgNVBrp3uEdEhUdmY3RyLbFyrzo3tSnXIx9KbpcIj5T3Sn7er2_weD7YoOxqpJU5VoIQebLu5RNR5l2ClFVIUgx7Z6qisYJ7j5o2u_Pi2UUxgpSrGemRvRvx5U-89UAv6Uj8V03IApzsA9HKAywiAAdQAZS5UyZi6nN68_4-P2CJPh2cnx-r48PToA3nWulOgU95Hsjqd3PpPYKVNzeZsVlDy47Gn4V_JUU5R |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+data-driven+approach+for+steam+load+prediction+in+buildings&rft.jtitle=Applied+energy&rft.au=Kusiak%2C+Andrew&rft.au=Li%2C+Mingyang&rft.au=Zhang%2C+Zijun&rft.date=2010-03-01&rft.issn=0306-2619&rft.volume=87&rft.issue=3&rft.spage=925&rft.epage=933&rft_id=info:doi/10.1016%2Fj.apenergy.2009.09.004&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon |