A data-driven approach for steam load prediction in buildings

Predicting building energy load is important in energy management. This load is often the result of steam heating and cooling of buildings. In this paper, a data-driven approach for the development of a daily steam load model is presented. Data-mining algorithms are used to select significant parame...

Full description

Saved in:
Bibliographic Details
Published inApplied energy Vol. 87; no. 3; pp. 925 - 933
Main Authors Kusiak, Andrew, Li, Mingyang, Zhang, Zijun
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 01.03.2010
Elsevier
SeriesApplied Energy
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Predicting building energy load is important in energy management. This load is often the result of steam heating and cooling of buildings. In this paper, a data-driven approach for the development of a daily steam load model is presented. Data-mining algorithms are used to select significant parameters used to develop models. A neural network (NN) ensemble with five MLPs (multi-layer perceptrons) performed best among all data-mining algorithms tested and therefore was selected to develop a predictive model. To meet the constraints of the existing energy management applications, Monte Carlo simulation is used to investigate uncertainty propagation of the model built by using weather forecast data. Based on the formulated model and weather forecasting data, future steam consumption is estimated. The latter allows optimal decisions to be made while managing fuel purchasing, scheduling the steam boiler, and building energy consumption.
AbstractList Predicting building energy load is important in energy management. This load is often the result of steam heating and cooling of buildings. In this paper, a data-driven approach for the development of a daily steam load model is presented. Data-mining algorithms are used to select significant parameters used to develop models. A neural network (NN) ensemble with five MLPs (multi-layer perceptrons) performed best among all data-mining algorithms tested and therefore was selected to develop a predictive model. To meet the constraints of the existing energy management applications, Monte Carlo simulation is used to investigate uncertainty propagation of the model built by using weather forecast data. Based on the formulated model and weather forecasting data, future steam consumption is estimated. The latter allows optimal decisions to be made while managing fuel purchasing, scheduling the steam boiler, and building energy consumption.
Author Zhang, Zijun
Li, Mingyang
Kusiak, Andrew
Author_xml – sequence: 1
  givenname: Andrew
  surname: Kusiak
  fullname: Kusiak, Andrew
  email: andrew-kusiak@uiowa.edu
– sequence: 2
  givenname: Mingyang
  surname: Li
  fullname: Li, Mingyang
– sequence: 3
  givenname: Zijun
  surname: Zhang
  fullname: Zhang, Zijun
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22268567$$DView record in Pascal Francis
http://econpapers.repec.org/article/eeeappene/v_3a87_3ay_3a2010_3ai_3a3_3ap_3a925-933.htm$$DView record in RePEc
BookMark eNqFUU1v3CAURFUiZZP0L0S-tDdvH2BYkFqpUdRPReqlPSMMzwkrL3aBXWn_fbA2zaGXSG94l5kBZi7JWZwiEnJDYU2Byg_btZ0xYno4rhmAXi8D3RuyomrDWk2pOiMr4CBbJqm-IJc5bwGAUQYr8um28bbY1qdwwNjYeU6TdY_NMKUmF7S7Zpysb-aEPrgSptiE2PT7MPoQH_I1OR_smPHt874if75--X33vb3_9e3H3e1967oOSuuVtl4qLgVopq2i1OmeUnCdGDwXUkEv1OCclF5zx3GjQNMePIJkfc8kvyLvT771dX_3mIvZhexwHG3EaZ8NF1QwwXkl_jwRE87ozJzCzqajQcT6sxqSORhu1aYexwoGFOoKFbxirtBMGM25eSy7avbu-VabnR2HZKML-cWUMSaVkJvKkyeeS1POCYcXSrVfKjJb868is1RkloGuCj_-J3Sh2CXlkmwYX5d_PsmxRn8ImEx2AaOrVSV0xfgpvGbxBGf9sgo
CODEN APENDX
CitedBy_id crossref_primary_10_1016_j_jcss_2014_12_010
crossref_primary_10_1016_j_enbuild_2016_09_068
crossref_primary_10_1016_j_csite_2024_105484
crossref_primary_10_1016_j_enbuild_2020_110521
crossref_primary_10_1016_j_rser_2014_07_053
crossref_primary_10_1016_j_rser_2025_115374
crossref_primary_10_1890_ES14_00256_1
crossref_primary_10_1016_j_enbuild_2018_03_042
crossref_primary_10_1007_s10270_020_00856_9
crossref_primary_10_4028_www_scientific_net_AMM_796_137
crossref_primary_10_1016_j_jprocont_2022_08_014
crossref_primary_10_3390_s24144742
crossref_primary_10_20965_jaciii_2017_p0785
crossref_primary_10_3390_en14248505
crossref_primary_10_1016_j_buildenv_2013_11_016
crossref_primary_10_1016_j_eswa_2023_120109
crossref_primary_10_1016_j_energy_2021_122146
crossref_primary_10_1049_iet_gtd_2017_0354
crossref_primary_10_1016_j_apenergy_2017_04_029
crossref_primary_10_1016_j_apenergy_2018_12_026
crossref_primary_10_1016_j_energy_2019_05_138
crossref_primary_10_1146_annurev_chembioeng_060816_101555
crossref_primary_10_3390_en17235941
crossref_primary_10_1080_19392699_2022_2064454
crossref_primary_10_1016_j_enbuild_2021_111054
crossref_primary_10_1177_0143624417740858
crossref_primary_10_1016_j_catena_2018_12_011
crossref_primary_10_1007_s12665_022_10408_7
crossref_primary_10_3390_su141610230
crossref_primary_10_1007_s00253_020_10888_2
crossref_primary_10_3390_en17215277
crossref_primary_10_1088_1742_6596_2774_1_012007
crossref_primary_10_3390_en11061570
crossref_primary_10_3390_en14051331
crossref_primary_10_1117_1_JRS_17_024507
crossref_primary_10_3390_en10111818
crossref_primary_10_1016_j_apenergy_2014_10_026
crossref_primary_10_1016_j_buildenv_2017_09_030
crossref_primary_10_3233_IFS_152087
crossref_primary_10_1016_j_energy_2019_02_044
crossref_primary_10_4173_mic_2015_2_4
crossref_primary_10_1016_j_asoc_2014_05_015
crossref_primary_10_1007_s11277_015_2405_3
crossref_primary_10_1109_TII_2020_2970165
crossref_primary_10_1016_j_esr_2024_101560
crossref_primary_10_1155_2018_1714961
crossref_primary_10_1016_j_energy_2020_117454
crossref_primary_10_1016_j_apenergy_2011_12_048
crossref_primary_10_1109_TCST_2021_3094999
crossref_primary_10_1109_JSTARS_2015_2403297
crossref_primary_10_1016_j_enbuild_2014_07_037
crossref_primary_10_1016_j_apenergy_2014_06_054
crossref_primary_10_1016_j_jobe_2021_102401
crossref_primary_10_1007_s11277_020_07349_4
crossref_primary_10_1016_j_apenergy_2018_03_125
crossref_primary_10_1016_j_jobe_2017_11_021
crossref_primary_10_1007_s42461_023_00879_y
crossref_primary_10_1016_j_enconman_2015_06_073
crossref_primary_10_2139_ssrn_4133467
crossref_primary_10_1016_j_energy_2019_116193
crossref_primary_10_1016_j_applthermaleng_2023_120372
crossref_primary_10_1016_j_enbuild_2019_06_025
crossref_primary_10_1016_j_energy_2013_02_062
crossref_primary_10_3390_ma12020202
crossref_primary_10_1016_j_apenergy_2021_117913
crossref_primary_10_1016_j_enbuild_2020_110238
crossref_primary_10_1016_j_rser_2015_12_328
crossref_primary_10_1016_j_egypro_2015_11_704
crossref_primary_10_1016_j_scitotenv_2019_03_496
crossref_primary_10_1080_19401493_2016_1265590
crossref_primary_10_1061__ASCE_EY_1943_7897_0000405
crossref_primary_10_1016_j_ijepes_2015_08_006
crossref_primary_10_1155_2020_5919238
crossref_primary_10_3390_en14123608
crossref_primary_10_1016_j_enconman_2017_05_006
crossref_primary_10_1016_j_energy_2016_10_028
crossref_primary_10_1016_j_energy_2020_118045
crossref_primary_10_1109_TBDATA_2019_2907127
crossref_primary_10_1016_j_enbuild_2015_02_052
crossref_primary_10_1016_j_enbuild_2017_02_012
crossref_primary_10_1016_j_apenergy_2016_10_007
crossref_primary_10_1016_j_neucom_2016_07_034
crossref_primary_10_1061__ASCE_EY_1943_7897_0000092
crossref_primary_10_1155_2018_2908608
crossref_primary_10_1007_s11277_018_6017_6
crossref_primary_10_1016_j_rser_2024_114804
crossref_primary_10_1016_j_jobe_2023_106590
crossref_primary_10_1016_j_energy_2018_03_169
crossref_primary_10_3389_feart_2022_1041807
crossref_primary_10_1016_j_applthermaleng_2017_09_007
crossref_primary_10_3390_en11020407
crossref_primary_10_1016_j_segan_2021_100543
crossref_primary_10_1016_j_apenergy_2013_04_065
crossref_primary_10_1016_j_apenergy_2021_116452
crossref_primary_10_1016_j_energy_2011_08_024
crossref_primary_10_3390_en11071678
crossref_primary_10_1007_s12273_019_0599_0
crossref_primary_10_1016_j_enbuild_2015_02_045
crossref_primary_10_1007_s12273_020_0721_3
crossref_primary_10_1016_j_apenergy_2012_05_020
crossref_primary_10_1016_j_egyr_2022_01_162
crossref_primary_10_1016_j_enbuild_2018_01_066
crossref_primary_10_1016_j_enbuild_2018_06_044
crossref_primary_10_1007_s00477_015_1021_9
crossref_primary_10_1016_j_enbuild_2018_04_038
crossref_primary_10_3390_en14102779
crossref_primary_10_1016_j_enconman_2013_01_002
crossref_primary_10_1080_08839514_2015_1082279
crossref_primary_10_1007_s10845_024_02357_8
crossref_primary_10_1016_j_enbuild_2019_109424
crossref_primary_10_1016_j_enbuild_2022_112639
crossref_primary_10_3390_app10248968
crossref_primary_10_1016_j_jobe_2020_101504
crossref_primary_10_1016_j_autcon_2018_02_014
crossref_primary_10_1016_j_egyai_2020_100015
crossref_primary_10_1016_j_apenergy_2017_02_066
crossref_primary_10_1016_j_apenergy_2019_02_066
crossref_primary_10_1016_j_energy_2016_02_061
crossref_primary_10_1016_j_enbuild_2021_111436
crossref_primary_10_1016_j_jprocont_2021_10_004
crossref_primary_10_1016_j_rser_2016_11_132
crossref_primary_10_1002_ep_13895
crossref_primary_10_1016_j_fuproc_2014_09_001
crossref_primary_10_1016_j_enbuild_2021_111794
crossref_primary_10_1016_j_enbuild_2021_111718
crossref_primary_10_1007_s12273_018_0431_2
crossref_primary_10_1016_j_engappai_2020_103753
crossref_primary_10_1016_j_rser_2012_02_049
crossref_primary_10_1016_j_enbuild_2020_110309
crossref_primary_10_1016_j_jhydrol_2013_09_034
crossref_primary_10_1016_j_enbuild_2024_114343
crossref_primary_10_1109_TEC_2012_2189887
crossref_primary_10_1016_j_buildenv_2024_111786
crossref_primary_10_3390_buildings12112039
crossref_primary_10_1016_j_conengprac_2021_104841
crossref_primary_10_1016_j_rser_2020_109980
crossref_primary_10_1061__ASCE_WR_1943_5452_0001119
crossref_primary_10_1016_j_mlwa_2022_100257
crossref_primary_10_1016_j_enbuild_2016_12_016
crossref_primary_10_1016_j_applthermaleng_2015_03_050
crossref_primary_10_1016_j_apenergy_2010_04_001
crossref_primary_10_1016_j_applthermaleng_2014_03_055
crossref_primary_10_1016_j_enbuild_2017_02_064
crossref_primary_10_1016_j_energy_2012_08_048
crossref_primary_10_1007_s11442_024_2259_2
crossref_primary_10_1016_j_energy_2024_134040
crossref_primary_10_1016_j_energy_2014_07_064
crossref_primary_10_1016_j_energy_2020_118872
crossref_primary_10_5659_JAIK_PD_2016_32_5_143
crossref_primary_10_1016_j_aei_2021_101357
crossref_primary_10_1016_j_buildenv_2018_07_037
crossref_primary_10_1016_j_esd_2021_11_002
crossref_primary_10_1016_j_rineng_2025_104086
crossref_primary_10_3390_en11010161
crossref_primary_10_3390_en11020358
crossref_primary_10_1016_j_apenergy_2015_12_015
crossref_primary_10_1016_j_autcon_2018_03_030
crossref_primary_10_1016_j_jobe_2020_101967
crossref_primary_10_1016_j_enbuild_2018_11_010
crossref_primary_10_1007_s11240_017_1353_x
crossref_primary_10_1061__ASCE_EY_1943_7897_0000051
crossref_primary_10_1016_j_egypro_2017_12_346
crossref_primary_10_1155_2016_9104735
Cites_doi 10.1016/j.enconman.2008.08.033
10.1115/1.3268223
10.1016/j.apenergy.2009.01.011
10.1016/S0925-2312(98)00076-9
10.1080/10789669.2006.10391182
10.1080/02664769100000005
10.1016/j.apenergy.2009.03.011
10.1023/A:1010933404324
10.1016/j.apenergy.2008.12.010
10.1016/0378-7796(95)00950-M
10.1109/TPAS.1970.292823
10.1016/j.apenergy.2008.11.020
10.2307/2986296
10.1109/TPAS.1982.317242
10.1109/59.76685
10.2307/2685263
10.1016/j.apenergy.2008.11.035
10.1214/aos/1176347963
10.2307/2280232
10.1016/j.apenergy.2009.01.016
10.2307/2281592
10.1109/TPAS.1971.293123
10.1016/j.enbuild.2005.02.005
10.1016/j.enbuild.2004.09.006
ContentType Journal Article
Copyright 2009 Elsevier Ltd
2015 INIST-CNRS
Copyright_xml – notice: 2009 Elsevier Ltd
– notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
DKI
X2L
7TA
8FD
JG9
DOI 10.1016/j.apenergy.2009.09.004
DatabaseName CrossRef
Pascal-Francis
RePEc IDEAS
RePEc
Materials Business File
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Materials Business File
DatabaseTitleList

Materials Research Database
Database_xml – sequence: 1
  dbid: DKI
  name: RePEc IDEAS
  url: http://ideas.repec.org/
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
Applied Sciences
EISSN 1872-9118
EndPage 933
ExternalDocumentID eeeappene_v_3a87_3ay_3a2010_3ai_3a3_3ap_3a925_933_htm
22268567
10_1016_j_apenergy_2009_09_004
S0306261909003808
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
AAYOK
ABEFU
ABFNM
ABJNI
ABMAC
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JARJE
JJJVA
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAC
SDF
SDG
SES
SEW
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
WUQ
ZY4
~02
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
EFKBS
IQODW
02
0R
1
8P
AAPBV
ABPTK
ADALY
DKI
G-
HZ
IPNFZ
K
M
X2L
7TA
8FD
JG9
ID FETCH-LOGICAL-c440t-d89ad683650929a811c9b110c45fd35680b58fcc66d93c3e78091b0de062bb263
IEDL.DBID .~1
ISSN 0306-2619
IngestDate Fri Jul 11 13:03:01 EDT 2025
Wed Aug 18 03:07:34 EDT 2021
Mon Jul 21 09:14:21 EDT 2025
Tue Jul 01 03:05:11 EDT 2025
Thu Apr 24 23:01:27 EDT 2025
Fri Feb 23 02:36:45 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Steam load prediction
Parameter selection
Neural network ensemble
Data mining
Building load estimation
Energy forecasting
Monte Carlo simulation
Energy consumption
Monte Carlo method
Steam heating
Uncertainty
Cooling
Buildings
Climatic data
Neural network
Algorithm
Forecasting
Simulation
Energy management
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c440t-d89ad683650929a811c9b110c45fd35680b58fcc66d93c3e78091b0de062bb263
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 35152533
PQPubID 23500
PageCount 9
ParticipantIDs proquest_miscellaneous_35152533
repec_primary_eeeappene_v_3a87_3ay_3a2010_3ai_3a3_3ap_3a925_933_htm
pascalfrancis_primary_22268567
crossref_primary_10_1016_j_apenergy_2009_09_004
crossref_citationtrail_10_1016_j_apenergy_2009_09_004
elsevier_sciencedirect_doi_10_1016_j_apenergy_2009_09_004
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-03-01
PublicationDateYYYYMMDD 2010-03-01
PublicationDate_xml – month: 03
  year: 2010
  text: 2010-03-01
  day: 01
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationSeriesTitle Applied Energy
PublicationTitle Applied energy
PublicationYear 2010
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Desideri, Proietti, Sdringola (bib16) 2009; 86
Thompson (bib3) 1976; PAS-95
Islam, Al-Alawi, Ellithy (bib9) 1995; 34
Friedman (bib30) 1991; 19
Wang (bib22) 2003
Difs, Danestig, Trygg (bib14) 2009; 86
Elkateb, Solaiman, Al-Turki (bib18) 1998; 23
Casella, Berger (bib34) 1990
Zhai, Dai, Wu, Wang (bib13) 2009; 86
Goodman (bib36) 1960; 55
Christiaanse (bib2) 1971; PAS-90
Li, Meng, Cai, Yoshino, Mochida (bib20) 2009; 50
Kimbara, Kurosu, Endo (bib6) 1995; 101
Yang, Rivard, Zmeureanu (bib21) 2005; 37
Park, E1-Sharkawi, Marks (bib8) 1991; 6
Friedman (bib25) 1999
Frissari, Widergren, Yehsakul (bib4) 1982; PAS-101
Gonza´lez, Zamarreno (bib11) 2005; 37
Haykin (bib33) 1998
Tan, Steinbach, Kumar (bib24) 2005
Kawashima, Dorgan, Mitchell (bib10) 1996; 102
Hertz, Krogh, Palmer (bib32) 1999
Rodgers, Nicewander (bib23) 1988; 42
Yildiz, Güngör (bib15) 2009; 86
Toyoda, Chen (bib5) 1970; PAS-89
Breiman, Friedman, Olshen, Stone (bib27) 1984
Kass (bib28) 1980; 29
Metropolis, Ulam (bib35) 1949; 44
Bida, Kreider (bib1) 1987; 109
Ruan, Liu, Zhou, Firestone, Gao, Watanabe (bib17) 2009; 86
Breiman (bib31) 2001; 45
Bigss, Ville, Suen (bib29) 1991; 18
Kawashima, Dorgan, Mitchell (bib7) 1995; 101
Hastie, Tibshirani, Firedman (bib26) 2001
Hou, Lian, Yao, Yuan (bib19) 2006; 12
Li, Meng, Cai, Yoshino, Mochida (bib12) 2009; 86
Li (10.1016/j.apenergy.2009.09.004_bib20) 2009; 50
Rodgers (10.1016/j.apenergy.2009.09.004_bib23) 1988; 42
Islam (10.1016/j.apenergy.2009.09.004_bib9) 1995; 34
Breiman (10.1016/j.apenergy.2009.09.004_bib31) 2001; 45
Li (10.1016/j.apenergy.2009.09.004_bib12) 2009; 86
Difs (10.1016/j.apenergy.2009.09.004_bib14) 2009; 86
Wang (10.1016/j.apenergy.2009.09.004_bib22) 2003
Friedman (10.1016/j.apenergy.2009.09.004_bib30) 1991; 19
Bida (10.1016/j.apenergy.2009.09.004_bib1) 1987; 109
Kimbara (10.1016/j.apenergy.2009.09.004_bib6) 1995; 101
Gonza´lez (10.1016/j.apenergy.2009.09.004_bib11) 2005; 37
Zhai (10.1016/j.apenergy.2009.09.004_bib13) 2009; 86
Toyoda (10.1016/j.apenergy.2009.09.004_bib5) 1970; PAS-89
Hou (10.1016/j.apenergy.2009.09.004_bib19) 2006; 12
Hertz (10.1016/j.apenergy.2009.09.004_bib32) 1999
Yang (10.1016/j.apenergy.2009.09.004_bib21) 2005; 37
Tan (10.1016/j.apenergy.2009.09.004_bib24) 2005
Haykin (10.1016/j.apenergy.2009.09.004_bib33) 1998
Breiman (10.1016/j.apenergy.2009.09.004_bib27) 1984
Bigss (10.1016/j.apenergy.2009.09.004_bib29) 1991; 18
Ruan (10.1016/j.apenergy.2009.09.004_bib17) 2009; 86
Friedman (10.1016/j.apenergy.2009.09.004_bib25) 1999
Kass (10.1016/j.apenergy.2009.09.004_bib28) 1980; 29
Christiaanse (10.1016/j.apenergy.2009.09.004_bib2) 1971; PAS-90
Thompson (10.1016/j.apenergy.2009.09.004_bib3) 1976; PAS-95
Kawashima (10.1016/j.apenergy.2009.09.004_bib10) 1996; 102
Kawashima (10.1016/j.apenergy.2009.09.004_bib7) 1995; 101
Desideri (10.1016/j.apenergy.2009.09.004_bib16) 2009; 86
Metropolis (10.1016/j.apenergy.2009.09.004_bib35) 1949; 44
Goodman (10.1016/j.apenergy.2009.09.004_bib36) 1960; 55
Frissari (10.1016/j.apenergy.2009.09.004_bib4) 1982; PAS-101
Casella (10.1016/j.apenergy.2009.09.004_bib34) 1990
Hastie (10.1016/j.apenergy.2009.09.004_bib26) 2001
Yildiz (10.1016/j.apenergy.2009.09.004_bib15) 2009; 86
Park (10.1016/j.apenergy.2009.09.004_bib8) 1991; 6
Elkateb (10.1016/j.apenergy.2009.09.004_bib18) 1998; 23
References_xml – volume: 12
  start-page: 337
  year: 2006
  end-page: 352
  ident: bib19
  article-title: Cooling load prediction based on the combination of rough set theory and support vector machine
  publication-title: HVAC&R Res
– volume: 23
  start-page: 3
  year: 1998
  end-page: 13
  ident: bib18
  article-title: A comparative study of medium-weather-dependent load forecasting using enhanced artificial/fuzzy neural network and statistical techniques
  publication-title: Neurocomputing
– volume: 42
  start-page: 59
  year: 1988
  end-page: 66
  ident: bib23
  article-title: Thirteen ways to look at the correlation coefficient
  publication-title: Am Stat
– volume: PAS-90
  start-page: 900
  year: 1971
  end-page: 910
  ident: bib2
  article-title: Short-term load forecasting using exponential smoothing
  publication-title: IEEE Trans Power Ap Syst
– volume: 86
  start-page: 1395
  year: 2009
  end-page: 1404
  ident: bib13
  article-title: Energy and energy analyses on a novel hybrid solar heating, cooling and power generation system for remote areas
  publication-title: Appl Energy
– volume: 86
  start-page: 1939
  year: 2009
  end-page: 1948
  ident: bib15
  article-title: Energy and energy analyses of space heating in buildings
  publication-title: Appl Energy
– volume: 109
  start-page: 311
  year: 1987
  end-page: 320
  ident: bib1
  article-title: Monthly-averaged cooling load calculations-residential and small commercial buildings
  publication-title: ASME Trans: J Sol Energy Eng
– volume: 102
  start-page: 169
  year: 1996
  end-page: 1178
  ident: bib10
  article-title: Optimizing system control with load prediction by neural networks for an ice-storage system
  publication-title: ASHRAE Trans
– volume: 55
  start-page: 708
  year: 1960
  end-page: 713
  ident: bib36
  article-title: On the exact variance of products
  publication-title: J Am Stat Assoc
– volume: 6
  start-page: 442
  year: 1991
  end-page: 449
  ident: bib8
  article-title: Electric load forecasting using an artificial neural network
  publication-title: IEEE Trans Power Syst
– volume: 34
  start-page: 1
  year: 1995
  end-page: 9
  ident: bib9
  article-title: Forecasting monthly electric load and energy for a fast growing utility using an artificial neural network
  publication-title: Electr Power Syst Res
– year: 1990
  ident: bib34
  article-title: Statistical inference
– volume: 37
  start-page: 1250
  year: 2005
  end-page: 1259
  ident: bib21
  article-title: On-line building energy prediction using adaptive artificial neural network
  publication-title: Energy Build
– volume: 50
  start-page: 90
  year: 2009
  end-page: 96
  ident: bib20
  article-title: Predicting hourly cooling load in the building: a comparison of support vector machine and different artificial neural network
  publication-title: Energy Conver Manage
– volume: PAS-95
  start-page: 384
  year: 1976
  end-page: 393
  ident: bib3
  article-title: Weather sensitive demand and energy analysis on a large geographically diverse power system: application to short-term hourly electric demand forecasting
  publication-title: IEEE Trans Power Ap Syst
– volume: 37
  start-page: 585
  year: 2005
  end-page: 601
  ident: bib11
  article-title: Prediction of hourly energy consumption in buildings based on a feedback artificial neural network
  publication-title: Energy Build
– year: 2005
  ident: bib24
  article-title: Introduction to data mining
– year: 1999
  ident: bib25
  article-title: Stochastic gradient boosting
– volume: 44
  start-page: 335
  year: 1949
  end-page: 341
  ident: bib35
  article-title: The Monte Carlo method
  publication-title: J Am Stat Assoc
– volume: 101
  start-page: 186
  year: 1995
  end-page: 200
  ident: bib7
  article-title: Hourly thermal load prediction for the next 24
  publication-title: ASHRAE Trans
– year: 2001
  ident: bib26
  article-title: The elements of statistical learning
– volume: 101
  start-page: 198
  year: 1995
  end-page: 207
  ident: bib6
  article-title: On-line prediction for load profile of an air-conditioning system
  publication-title: ASHRAE Trans
– year: 1999
  ident: bib32
  article-title: Introduction to the theory of neural computation
– volume: 29
  start-page: 119
  year: 1980
  end-page: 127
  ident: bib28
  article-title: An exploratory technique for investigating large quantities of categorical data
  publication-title: Appl Stat
– year: 1998
  ident: bib33
  article-title: Neural networks: a comprehensive foundation
– volume: 86
  start-page: 1641
  year: 2009
  end-page: 1653
  ident: bib17
  article-title: Optimal option of distributed generation technologies for various commercial buildings
  publication-title: Appl Energy
– volume: 18
  start-page: 49
  year: 1991
  end-page: 62
  ident: bib29
  article-title: A method of choosing multiway partitions for classification and decision trees
  publication-title: J Appl Stat
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: bib31
  article-title: Random forests
  publication-title: Mach Learn
– volume: 86
  start-page: 2249
  year: 2009
  end-page: 2256
  ident: bib12
  article-title: Applying support vector machine to predict hourly cooling load in the building
  publication-title: Appl Energy
– volume: PAS-89
  start-page: 1678
  year: 1970
  end-page: 1688,
  ident: bib5
  article-title: An application of state estimation to short-term load forecasting, Parts 1 and 2
  publication-title: IEEE Trans Power Ap Syst
– volume: 86
  start-page: 1376
  year: 2009
  end-page: 1386
  ident: bib16
  article-title: Solar-powered cooling systems: technical and economic analysis on industrial refrigeration and air-conditioning applications
  publication-title: Appl Energy
– volume: 86
  start-page: 2327
  year: 2009
  end-page: 2334
  ident: bib14
  article-title: Increased use of district heating in industrial processes – impacts on heat load duration
  publication-title: Appl Energy
– volume: 19
  start-page: 1
  year: 1991
  end-page: 67
  ident: bib30
  article-title: Multivariate adaptive regression spline
  publication-title: Ann Stat
– volume: PAS-101
  start-page: 71
  year: 1982
  end-page: 78
  ident: bib4
  article-title: On-line load forecasting for energy control center application
  publication-title: IEEE Trans Power Ap Syst
– year: 2003
  ident: bib22
  article-title: Data mining: opportunities and challenges
– year: 1984
  ident: bib27
  article-title: Classification and regression trees
– volume: 50
  start-page: 90
  issue: 1
  year: 2009
  ident: 10.1016/j.apenergy.2009.09.004_bib20
  article-title: Predicting hourly cooling load in the building: a comparison of support vector machine and different artificial neural network
  publication-title: Energy Conver Manage
  doi: 10.1016/j.enconman.2008.08.033
– volume: 109
  start-page: 311
  issue: 4
  year: 1987
  ident: 10.1016/j.apenergy.2009.09.004_bib1
  article-title: Monthly-averaged cooling load calculations-residential and small commercial buildings
  publication-title: ASME Trans: J Sol Energy Eng
  doi: 10.1115/1.3268223
– volume: 86
  start-page: 1376
  issue: 9
  year: 2009
  ident: 10.1016/j.apenergy.2009.09.004_bib16
  article-title: Solar-powered cooling systems: technical and economic analysis on industrial refrigeration and air-conditioning applications
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2009.01.011
– volume: 23
  start-page: 3
  issue: 1–3
  year: 1998
  ident: 10.1016/j.apenergy.2009.09.004_bib18
  article-title: A comparative study of medium-weather-dependent load forecasting using enhanced artificial/fuzzy neural network and statistical techniques
  publication-title: Neurocomputing
  doi: 10.1016/S0925-2312(98)00076-9
– volume: 12
  start-page: 337
  issue: 2
  year: 2006
  ident: 10.1016/j.apenergy.2009.09.004_bib19
  article-title: Cooling load prediction based on the combination of rough set theory and support vector machine
  publication-title: HVAC&R Res
  doi: 10.1080/10789669.2006.10391182
– volume: 18
  start-page: 49
  issue: 1
  year: 1991
  ident: 10.1016/j.apenergy.2009.09.004_bib29
  article-title: A method of choosing multiway partitions for classification and decision trees
  publication-title: J Appl Stat
  doi: 10.1080/02664769100000005
– year: 1999
  ident: 10.1016/j.apenergy.2009.09.004_bib32
– year: 1990
  ident: 10.1016/j.apenergy.2009.09.004_bib34
– volume: PAS-95
  start-page: 384
  year: 1976
  ident: 10.1016/j.apenergy.2009.09.004_bib3
  article-title: Weather sensitive demand and energy analysis on a large geographically diverse power system: application to short-term hourly electric demand forecasting
  publication-title: IEEE Trans Power Ap Syst
– volume: 86
  start-page: 2327
  issue: 11
  year: 2009
  ident: 10.1016/j.apenergy.2009.09.004_bib14
  article-title: Increased use of district heating in industrial processes – impacts on heat load duration
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2009.03.011
– volume: 101
  start-page: 186
  year: 1995
  ident: 10.1016/j.apenergy.2009.09.004_bib7
  article-title: Hourly thermal load prediction for the next 24h by ARIMA, EWMA, LR, and an artificial neural network (Part 1)
  publication-title: ASHRAE Trans
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  ident: 10.1016/j.apenergy.2009.09.004_bib31
  article-title: Random forests
  publication-title: Mach Learn
  doi: 10.1023/A:1010933404324
– volume: 102
  start-page: 169
  issue: 1
  year: 1996
  ident: 10.1016/j.apenergy.2009.09.004_bib10
  article-title: Optimizing system control with load prediction by neural networks for an ice-storage system
  publication-title: ASHRAE Trans
– volume: 86
  start-page: 1939
  issue: 10
  year: 2009
  ident: 10.1016/j.apenergy.2009.09.004_bib15
  article-title: Energy and energy analyses of space heating in buildings
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2008.12.010
– year: 1999
  ident: 10.1016/j.apenergy.2009.09.004_bib25
– volume: 34
  start-page: 1
  issue: 1
  year: 1995
  ident: 10.1016/j.apenergy.2009.09.004_bib9
  article-title: Forecasting monthly electric load and energy for a fast growing utility using an artificial neural network
  publication-title: Electr Power Syst Res
  doi: 10.1016/0378-7796(95)00950-M
– year: 1998
  ident: 10.1016/j.apenergy.2009.09.004_bib33
– volume: PAS-89
  start-page: 1678
  year: 1970
  ident: 10.1016/j.apenergy.2009.09.004_bib5
  article-title: An application of state estimation to short-term load forecasting, Parts 1 and 2
  publication-title: IEEE Trans Power Ap Syst
  doi: 10.1109/TPAS.1970.292823
– volume: 86
  start-page: 1395
  issue: 9
  year: 2009
  ident: 10.1016/j.apenergy.2009.09.004_bib13
  article-title: Energy and energy analyses on a novel hybrid solar heating, cooling and power generation system for remote areas
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2008.11.020
– volume: 29
  start-page: 119
  issue: 2
  year: 1980
  ident: 10.1016/j.apenergy.2009.09.004_bib28
  article-title: An exploratory technique for investigating large quantities of categorical data
  publication-title: Appl Stat
  doi: 10.2307/2986296
– volume: PAS-101
  start-page: 71
  year: 1982
  ident: 10.1016/j.apenergy.2009.09.004_bib4
  article-title: On-line load forecasting for energy control center application
  publication-title: IEEE Trans Power Ap Syst
  doi: 10.1109/TPAS.1982.317242
– volume: 6
  start-page: 442
  issue: 2
  year: 1991
  ident: 10.1016/j.apenergy.2009.09.004_bib8
  article-title: Electric load forecasting using an artificial neural network
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/59.76685
– year: 2001
  ident: 10.1016/j.apenergy.2009.09.004_bib26
– volume: 42
  start-page: 59
  issue: 1
  year: 1988
  ident: 10.1016/j.apenergy.2009.09.004_bib23
  article-title: Thirteen ways to look at the correlation coefficient
  publication-title: Am Stat
  doi: 10.2307/2685263
– volume: 86
  start-page: 2249
  issue: 10
  year: 2009
  ident: 10.1016/j.apenergy.2009.09.004_bib12
  article-title: Applying support vector machine to predict hourly cooling load in the building
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2008.11.035
– volume: 19
  start-page: 1
  issue: 1
  year: 1991
  ident: 10.1016/j.apenergy.2009.09.004_bib30
  article-title: Multivariate adaptive regression spline
  publication-title: Ann Stat
  doi: 10.1214/aos/1176347963
– volume: 44
  start-page: 335
  issue: 247
  year: 1949
  ident: 10.1016/j.apenergy.2009.09.004_bib35
  article-title: The Monte Carlo method
  publication-title: J Am Stat Assoc
  doi: 10.2307/2280232
– year: 2003
  ident: 10.1016/j.apenergy.2009.09.004_bib22
– volume: 86
  start-page: 1641
  issue: 9
  year: 2009
  ident: 10.1016/j.apenergy.2009.09.004_bib17
  article-title: Optimal option of distributed generation technologies for various commercial buildings
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2009.01.016
– volume: 101
  start-page: 198
  issue: 2
  year: 1995
  ident: 10.1016/j.apenergy.2009.09.004_bib6
  article-title: On-line prediction for load profile of an air-conditioning system
  publication-title: ASHRAE Trans
– year: 1984
  ident: 10.1016/j.apenergy.2009.09.004_bib27
– volume: 55
  start-page: 708
  issue: 292
  year: 1960
  ident: 10.1016/j.apenergy.2009.09.004_bib36
  article-title: On the exact variance of products
  publication-title: J Am Stat Assoc
  doi: 10.2307/2281592
– volume: PAS-90
  start-page: 900
  year: 1971
  ident: 10.1016/j.apenergy.2009.09.004_bib2
  article-title: Short-term load forecasting using exponential smoothing
  publication-title: IEEE Trans Power Ap Syst
  doi: 10.1109/TPAS.1971.293123
– volume: 37
  start-page: 1250
  issue: 12
  year: 2005
  ident: 10.1016/j.apenergy.2009.09.004_bib21
  article-title: On-line building energy prediction using adaptive artificial neural network
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2005.02.005
– volume: 37
  start-page: 585
  issue: 6
  year: 2005
  ident: 10.1016/j.apenergy.2009.09.004_bib11
  article-title: Prediction of hourly energy consumption in buildings based on a feedback artificial neural network
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2004.09.006
– year: 2005
  ident: 10.1016/j.apenergy.2009.09.004_bib24
SSID ssj0002120
Score 2.403226
Snippet Predicting building energy load is important in energy management. This load is often the result of steam heating and cooling of buildings. In this paper, a...
SourceID proquest
repec
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 925
SubjectTerms Applied sciences
Building load estimation
Data mining
Data mining Building load estimation Steam load prediction Neural network ensemble Energy forecasting Monte Carlo simulation Parameter selection
Economic data
Energy
Energy economics
Energy forecasting
Energy policy
Exact sciences and technology
General, economic and professional studies
Methodology. Modelling
Monte Carlo simulation
Neural network ensemble
Parameter selection
Steam load prediction
Title A data-driven approach for steam load prediction in buildings
URI https://dx.doi.org/10.1016/j.apenergy.2009.09.004
http://econpapers.repec.org/article/eeeappene/v_3a87_3ay_3a2010_3ai_3a3_3ap_3a925-933.htm
https://www.proquest.com/docview/35152533
Volume 87
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF5V7QWEEBQqQiHsgasb2_vw-sAhCq1SKnqBSr2t9ilStY6VpEhc-tuZiddpckA9IHlt2drR2jO7M5-88yDks6ti4UMUGVNWZLwMRWaVtJmpeeEMTILcY4Dz90s5veLfrsX1Hpn0sTDoVpl0f6fT19o6PRklbo7a2Wz0A9Eu4v8cf8apdcAv5xXO8pOHRzePMqVmhM4Z9t6KEr45MW1YR9ilvJWYupL_y0C9aM0S2Ba7ehc7gPRgEdrgtuzS2SvyMgFKOu7e-TXZC80heb6VZvCQHJ0-RrNB17Scl2_IlzFFD9HML1Dn0T6_OAUgS1H6d_R2bjxtF7ibgxKks4baVEh7-ZZcnZ3-nEyzVE8hc5znq8yr2nipGCbNK2ujisLVFsy_4yJ6JqTKrVDROSl9zRwLlQIwYXMfgM_WlpIdkf1m3oR3hBppczR_1hrLQ4ym5MaIGCOA9dJ4MyCiZ6J2Kdk41ry41b1X2Y3umY-VMGuNR84HZLSha7t0G09S1L2M9M7E0WATnqQd7gh1MySAJqmErAbkUy9lDcsO91JME-b3S80EFo5ibEAma-FvSEMIIC0YS__WzKgKTn-godMBXGbQGLQWWl0KXTOmf63u3v_HRxyTZ51HA_rFfSD7q8V9-AhAaWWH65UwJAfj84vpJdx9vTj_C8u_FQA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LTtww0KJwaKuqamlRtw_woT2GTWI76xw4IApayuNSkLi5fopFkI02Sysu_an-YGc2zrJ7qDhUSJlEiuLYmRnPjON5EPLZDkLmfBAJk0YkPPdZYmRhEl3yzGpggtRhgPPJaTE8598uxMUK-dPFwqBbZZT9rUyfSet4px-x2a9Ho_53tHbR_k_xZ5xMZfSsPPJ3v2Dd1uwcfgUif8nzg_2zvWESSwsklvN0mjhZaldIhvnj8lLLLLOlAU1ouQiOiUKmRshgbVG4klnmBxL0qkmdhy6NyQsG731C1jiICyybsP373q8kj7kgYXQJDm8hLPlqW9d-FtIXE2Virkz-L434otYN0Cm0BTaWLOC1ia-9XVCEB6_Iy2jB0t0WSa_Jiq_WyfOFvIbrZGP_PnwOHo3yo3lDdnYpuqQmboJClnYJzSlYzhTZ7YZej7Wj9QS3j5Bl6KiiJlbubt6S80fB8gZZrcaVf0eoLkyK-tYYbbgPQedcaxFCgNVBrp3uEdEhUdmY3RyLbFyrzo3tSnXIx9KbpcIj5T3Sn7er2_weD7YoOxqpJU5VoIQebLu5RNR5l2ClFVIUgx7Z6qisYJ7j5o2u_Pi2UUxgpSrGemRvRvx5U-89UAv6Uj8V03IApzsA9HKAywiAAdQAZS5UyZi6nN68_4-P2CJPh2cnx-r48PToA3nWulOgU95Hsjqd3PpPYKVNzeZsVlDy47Gn4V_JUU5R
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+data-driven+approach+for+steam+load+prediction+in+buildings&rft.jtitle=Applied+energy&rft.au=Kusiak%2C+Andrew&rft.au=Li%2C+Mingyang&rft.au=Zhang%2C+Zijun&rft.date=2010-03-01&rft.issn=0306-2619&rft.volume=87&rft.issue=3&rft.spage=925&rft.epage=933&rft_id=info:doi/10.1016%2Fj.apenergy.2009.09.004&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon