Preparation and characterization of sulfonated polysulfone/titanium dioxide composite membranes for proton exchange membrane fuel cells
In the present study, sulfonated polysulfone (sPS)/titanium dioxide (TiO 2) composite membranes for use in proton exchange membrane fuel cells (PEMFCs) were investigated. Polysulfone (PS) was sulfonated with trimethylsilyl chlorosulfonate in 1,2 dichloroethane at ambient temperatures. It was shown t...
Saved in:
Published in | International journal of hydrogen energy Vol. 34; no. 8; pp. 3467 - 3475 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Kidlington
Elsevier Ltd
01.05.2009
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In the present study, sulfonated polysulfone (sPS)/titanium dioxide (TiO
2) composite membranes for use in proton exchange membrane fuel cells (PEMFCs) were investigated. Polysulfone (PS) was sulfonated with trimethylsilyl chlorosulfonate in 1,2 dichloroethane at ambient temperatures. It was shown that the degree of sulfonation is increased with the molar ratio of the sulfonating agent to PS repeat unit. The degree of sulfonation was determined by elemental analysis and
1H NMR was performed to verify the sulfonation reaction on the PS. Sulfonation levels from 15 to 40% were easily achieved by varying the content of the sulfonating agent. Composite membranes were prepared by blending TiO
2 with sPS solution in DMAC (5
wt.%) by the solution casting procedure. The membranes have been characterized by thermal analysis, water uptake, proton conductivity measurements and single cell performance. The addition of TiO
2 increased the thermal stability but high filler concentrations decreased the miscibility of the composite component, and resulted in brittle membranes. The conductivity values in the range of 10
−3–10
−2
S/cm were obtained for composite membranes. The conductivities of the membranes show similar increasing trend as a function of operating temperature. The membranes were tested in a single cell operating at 60–85
°C in humidified H
2/O
2. Single fuel cell tests performed at different operating temperatures indicated that sPS/TiO
2 composite membrane is more hydrodynamically stable and also performed better than sPS membranes. The highest performance of 300
mA/cm
2 was obtained for sPS/TiO
2 membrane at 0.6
V for an H
2–O
2/PEMFC working at 1
atm and 85
°C. The results show that sPS/TiO
2 is a promising membrane material for possible use in proton exchange membrane fuel cells. |
---|---|
AbstractList | In the present study, sulfonated polysulfone (sPS)/titanium dioxide (TiO sub(2) composite membranes for use in proton exchange membrane fuel cells (PEMFCs) were investigated. Polysulfone (PS) was sulfonated with trimethylsilyl chlorosulfonate in 1,2 dichloroethane at ambient temperatures. It was shown that the degree of sulfonation is increased with the molar ratio of the sulfonating agent to PS repeat unit. The degree of sulfonation was determined by elemental analysis and ) super(1)H NMR was performed to verify the sulfonation reaction on the PS. Sulfonation levels from 15 to 40% were easily achieved by varying the content of the sulfonating agent. Composite membranes were prepared by blending TiO sub(2 with sPS solution in DMAC (5 wt.%) by the solution casting procedure. The membranes have been characterized by thermal analysis, water uptake, proton conductivity measurements and single cell performance. The addition of TiO) sub(2) increased the thermal stability but high filler concentrations decreased the miscibility of the composite component, and resulted in brittle membranes. The conductivity values in the range of 10 super(-3-10) super(-)2 S/cm were obtained for composite membranes. The conductivities of the membranes show similar increasing trend as a function of operating temperature. The membranes were tested in a single cell operating at 60-85 degree C in humidified H sub(2/O) sub(2). Single fuel cell tests performed at different operating temperatures indicated that sPS/TiO sub(2 composite membrane is more hydrodynamically stable and also performed better than sPS membranes. The highest performance of 300 mA/cm) super(2) was obtained for sPS/TiO sub(2 membrane at 0.6 V for an H) sub(2)-O sub(2/PEMFC working at 1 atm and 85 degree C. The results show that sPS/TiO) sub(2) is a promising membrane material for possible use in proton exchange membrane fuel cells. In the present study, sulfonated polysulfone (sPS)/titanium dioxide (TiO 2) composite membranes for use in proton exchange membrane fuel cells (PEMFCs) were investigated. Polysulfone (PS) was sulfonated with trimethylsilyl chlorosulfonate in 1,2 dichloroethane at ambient temperatures. It was shown that the degree of sulfonation is increased with the molar ratio of the sulfonating agent to PS repeat unit. The degree of sulfonation was determined by elemental analysis and 1H NMR was performed to verify the sulfonation reaction on the PS. Sulfonation levels from 15 to 40% were easily achieved by varying the content of the sulfonating agent. Composite membranes were prepared by blending TiO 2 with sPS solution in DMAC (5 wt.%) by the solution casting procedure. The membranes have been characterized by thermal analysis, water uptake, proton conductivity measurements and single cell performance. The addition of TiO 2 increased the thermal stability but high filler concentrations decreased the miscibility of the composite component, and resulted in brittle membranes. The conductivity values in the range of 10 −3–10 −2 S/cm were obtained for composite membranes. The conductivities of the membranes show similar increasing trend as a function of operating temperature. The membranes were tested in a single cell operating at 60–85 °C in humidified H 2/O 2. Single fuel cell tests performed at different operating temperatures indicated that sPS/TiO 2 composite membrane is more hydrodynamically stable and also performed better than sPS membranes. The highest performance of 300 mA/cm 2 was obtained for sPS/TiO 2 membrane at 0.6 V for an H 2–O 2/PEMFC working at 1 atm and 85 °C. The results show that sPS/TiO 2 is a promising membrane material for possible use in proton exchange membrane fuel cells. |
Author | Eroğlu, Inci Erkan, Serdar Baç, Nurcan Devrim, Yilser |
Author_xml | – sequence: 1 givenname: Yilser surname: Devrim fullname: Devrim, Yilser organization: Chemical Engineering Department, Middle East Technical University, 06531 Ankara, Turkey – sequence: 2 givenname: Serdar surname: Erkan fullname: Erkan, Serdar organization: Chemical Engineering Department, Middle East Technical University, 06531 Ankara, Turkey – sequence: 3 givenname: Nurcan surname: Baç fullname: Baç, Nurcan organization: Chemical Engineering Department, Yeditepe University, 34755 Istanbul, Turkey – sequence: 4 givenname: Inci surname: Eroğlu fullname: Eroğlu, Inci email: ieroglu@metu.edu.tr organization: Chemical Engineering Department, Middle East Technical University, 06531 Ankara, Turkey |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21433208$$DView record in Pascal Francis |
BookMark | eNqFkM1u3SAQhVGVSr1J-woVm6orO2BcMLtEUX8iRUoX7RphGBqubHAAV7l9gb52uXKSLrNCM5w5c-Y7RSchBkDoPSUtJZSf71u_vztYCNB2hMiWdC2h8hXa0UHIhvWDOEE7wjhpGJXyDTrNeU8IFaSXO_T3e4JFJ118DFgHi81drUyB5P9szehwXicXgy5g8RKnw1bCefFFB7_O2Pr44C1gE-clZl8AzzCPSQfI2MWElxRLdYKHah5-_f_FboUJG5im_Ba9dnrK8O7xPUM_v3z-cfWtubn9en11edOYvielsdQJbSUdqdZGQE86AXp0g7NcC945YSQXnPWfak9zC47oQXZSjuMgDRWMnaGPm2_NdL9CLmr2-ZigxolrVrIS5axaVSXflCbFnBM4tSQ_63RQlKgjeLVXT-DVEbwinarg6-CHxxU6Gz25eqnx-Xm6oz1jHRmq7mLTQb33t4eksvEQDFifwBRlo39p1T9nR6O5 |
CODEN | IJHEDX |
CitedBy_id | crossref_primary_10_1177_1847980420964368 crossref_primary_10_1016_j_ijhydene_2016_02_043 crossref_primary_10_1021_acsanm_9b00446 crossref_primary_10_1016_j_ijhydene_2011_04_209 crossref_primary_10_1177_0954008314558435 crossref_primary_10_3390_membranes13060590 crossref_primary_10_1016_j_renene_2019_01_107 crossref_primary_10_3390_polym15030502 crossref_primary_10_1002_er_2909 crossref_primary_10_3390_polym13060895 crossref_primary_10_1007_s11814_018_0178_6 crossref_primary_10_1016_j_electacta_2013_12_030 crossref_primary_10_1016_j_ijhydene_2020_02_101 crossref_primary_10_1080_01496395_2014_917105 crossref_primary_10_12989_mwt_2013_4_2_083 crossref_primary_10_1557_jmr_2012_385 crossref_primary_10_3390_en14206709 crossref_primary_10_1002_app_50530 crossref_primary_10_1016_j_ijhydene_2021_07_038 crossref_primary_10_1016_j_tsf_2018_03_054 crossref_primary_10_1016_j_ijhydene_2018_08_191 crossref_primary_10_1007_s10965_023_03856_7 crossref_primary_10_3390_membranes13070684 crossref_primary_10_1016_j_cjche_2023_11_028 crossref_primary_10_1016_j_ijhydene_2019_08_197 crossref_primary_10_1016_j_ijhydene_2021_03_033 crossref_primary_10_1016_j_synthmet_2012_01_025 crossref_primary_10_1002_pat_5494 crossref_primary_10_1016_j_ssi_2018_02_025 crossref_primary_10_1021_acsomega_1c00568 crossref_primary_10_1016_j_ijhydene_2011_01_060 crossref_primary_10_1016_j_matlet_2015_03_094 crossref_primary_10_1016_j_memsci_2013_02_009 crossref_primary_10_1080_03602559_2017_1289398 crossref_primary_10_3390_polym13030437 crossref_primary_10_1016_j_progpolymsci_2010_12_005 crossref_primary_10_4028_www_scientific_net_AMR_550_553_439 crossref_primary_10_1016_j_ssi_2021_115581 crossref_primary_10_1016_j_tca_2009_04_009 crossref_primary_10_3390_polym13122030 crossref_primary_10_4028_www_scientific_net_AMR_821_822_1261 crossref_primary_10_1002_mame_201800384 crossref_primary_10_1007_s13233_020_8070_8 crossref_primary_10_1115_1_4033098 crossref_primary_10_1590_S0104_14282011005000024 crossref_primary_10_1016_j_jpowsour_2021_229844 crossref_primary_10_1016_j_polymertesting_2015_06_004 crossref_primary_10_1016_j_ijhydene_2011_12_069 crossref_primary_10_1007_s10965_017_1436_8 crossref_primary_10_1515_ijmr_2021_8318 crossref_primary_10_1002_app_45954 crossref_primary_10_1016_j_ssi_2013_11_054 crossref_primary_10_1016_j_heliyon_2020_e03159 crossref_primary_10_1002_app_48826 crossref_primary_10_1016_j_memsci_2019_117544 crossref_primary_10_1007_s13233_013_1065_y crossref_primary_10_1016_j_ijhydene_2012_02_148 crossref_primary_10_1016_j_ijhydene_2020_04_013 crossref_primary_10_1016_j_jiec_2014_04_030 crossref_primary_10_1021_acs_iecr_8b00661 crossref_primary_10_1080_19443994_2014_984635 crossref_primary_10_1007_s10008_019_04290_w crossref_primary_10_1016_j_matchemphys_2013_11_012 crossref_primary_10_1021_acs_iecr_4c00825 crossref_primary_10_1016_j_jiec_2022_09_006 crossref_primary_10_1016_j_riit_2016_01_009 crossref_primary_10_1002_pi_4525 crossref_primary_10_1016_j_ijhydene_2017_10_092 crossref_primary_10_1016_j_memsci_2020_118972 crossref_primary_10_1149_1_3428725 crossref_primary_10_1016_j_jpowsour_2012_01_038 crossref_primary_10_1016_j_sajce_2024_02_009 crossref_primary_10_1016_j_jpowsour_2012_11_126 crossref_primary_10_1016_j_eurpolymj_2022_111601 crossref_primary_10_1016_j_seppur_2022_121085 crossref_primary_10_1002_pen_23968 crossref_primary_10_1016_j_eurpolymj_2023_112316 crossref_primary_10_1016_j_electacta_2019_01_112 crossref_primary_10_1039_C5CP03300D crossref_primary_10_1002_fuce_202000189 crossref_primary_10_3390_polym15234499 crossref_primary_10_1021_acssuschemeng_9b01850 crossref_primary_10_1016_j_ijhydene_2019_01_035 crossref_primary_10_1016_j_ijhydene_2011_10_056 crossref_primary_10_1177_09540083221144257 crossref_primary_10_1016_j_electacta_2014_08_131 crossref_primary_10_1016_j_memsci_2023_121879 crossref_primary_10_1016_j_electacta_2009_11_095 crossref_primary_10_1016_j_tca_2010_05_015 crossref_primary_10_1155_2015_790173 crossref_primary_10_1002_app_50216 crossref_primary_10_1016_j_progpolymsci_2015_11_004 crossref_primary_10_1007_s10854_018_8521_6 crossref_primary_10_1016_j_ijhydene_2024_04_278 crossref_primary_10_3390_en13051180 crossref_primary_10_1016_j_ijhydene_2015_02_005 crossref_primary_10_1016_j_ijhydene_2017_12_010 crossref_primary_10_1007_s12588_011_9015_z crossref_primary_10_1016_j_desal_2012_04_006 crossref_primary_10_1080_03602559_2016_1275688 crossref_primary_10_3390_polym12010025 crossref_primary_10_1016_j_ijhydene_2017_07_077 crossref_primary_10_1002_app_39922 crossref_primary_10_1016_j_electacta_2016_12_009 crossref_primary_10_1016_j_memsci_2019_04_073 crossref_primary_10_1007_s10562_015_1551_2 crossref_primary_10_1016_j_synthmet_2012_12_031 crossref_primary_10_1007_s11814_016_0107_5 crossref_primary_10_1016_j_apsusc_2013_03_038 crossref_primary_10_1016_j_eurpolymj_2019_07_041 crossref_primary_10_1088_1757_899X_1053_1_012025 crossref_primary_10_1016_j_jpowsour_2014_12_014 crossref_primary_10_3390_en17092097 crossref_primary_10_1016_j_memsci_2015_05_031 crossref_primary_10_3390_polym12051125 crossref_primary_10_1016_S1452_3981_23_06683_X crossref_primary_10_1016_j_colsurfa_2012_11_029 crossref_primary_10_3390_polym14020300 crossref_primary_10_1002_er_6058 crossref_primary_10_1016_j_memsci_2021_119336 crossref_primary_10_1021_acs_iecr_8b00114 crossref_primary_10_1016_j_ijhydene_2010_08_085 crossref_primary_10_1016_j_ijhydene_2011_01_134 crossref_primary_10_1016_j_ijhydene_2010_02_019 crossref_primary_10_1016_j_ijhydene_2019_09_216 crossref_primary_10_1021_ie4038449 crossref_primary_10_1002_cphc_201900191 crossref_primary_10_1016_j_ssi_2018_02_019 crossref_primary_10_1002_app_40107 crossref_primary_10_1021_cr200035s crossref_primary_10_31202_ecjse_983144 crossref_primary_10_1016_j_memsci_2017_12_007 crossref_primary_10_3390_polym15020323 crossref_primary_10_1016_j_chemosphere_2022_135204 crossref_primary_10_1016_j_ijhydene_2013_06_041 crossref_primary_10_1007_s10008_013_2309_7 crossref_primary_10_1016_j_progpolymsci_2011_01_003 crossref_primary_10_1089_ees_2016_0023 crossref_primary_10_1016_j_mtchem_2020_100302 crossref_primary_10_1039_C8RA01731J crossref_primary_10_3390_ma13133004 crossref_primary_10_1080_03602559_2016_1233563 crossref_primary_10_3390_molecules25071712 crossref_primary_10_1002_ep_12430 crossref_primary_10_1007_s10965_019_1758_9 crossref_primary_10_1016_j_mtchem_2019_100212 crossref_primary_10_1021_acssuschemeng_1c01922 crossref_primary_10_3390_membranes11050351 crossref_primary_10_1016_j_enbuild_2024_113949 crossref_primary_10_1039_c2cs15269j crossref_primary_10_1016_j_electacta_2017_10_002 crossref_primary_10_3390_polym13060959 crossref_primary_10_3724_SP_J_1105_2010_09403 crossref_primary_10_1016_j_ijhydene_2020_02_197 crossref_primary_10_1007_s13233_016_4150_1 crossref_primary_10_1002_app_52388 crossref_primary_10_1007_s13738_019_01638_x |
ContentType | Journal Article |
Copyright | 2009 International Association for Hydrogen Energy 2009 INIST-CNRS |
Copyright_xml | – notice: 2009 International Association for Hydrogen Energy – notice: 2009 INIST-CNRS |
DBID | IQODW AAYXX CITATION 7SP 8FD H8D L7M |
DOI | 10.1016/j.ijhydene.2009.02.019 |
DatabaseName | Pascal-Francis CrossRef Electronics & Communications Abstracts Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Applied Sciences |
EISSN | 1879-3487 |
EndPage | 3475 |
ExternalDocumentID | 10_1016_j_ijhydene_2009_02_019 21433208 S0360319909002213 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AARLI AAXUO ABFNM ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADECG ADEZE ADMUD AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHIDL AIEXJ AIKHN AITUG AJBFU AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FLBIZ FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SAC SCB SCC SDF SDG SES SEW SPC SPCBC SSK SSM SSR SSZ T5K T9H TN5 WUQ XPP ZMT ~G- ABPIF ABPTK IQODW AAXKI AAYXX AFJKZ AKRWK CITATION 7SP 8FD H8D L7M |
ID | FETCH-LOGICAL-c440t-d1f7ad91b1aac7e4027eabf8fd6a762f7c9676345bf8a6def0a89299bb89c1733 |
IEDL.DBID | .~1 |
ISSN | 0360-3199 |
IngestDate | Fri Oct 25 10:21:48 EDT 2024 Thu Sep 26 17:35:57 EDT 2024 Sun Oct 22 16:04:43 EDT 2023 Fri Feb 23 02:27:26 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | Sulfonated polysulfone Polysulfone TiO 2 Composite membrane PEM fuel cell Measurement Stability Sulfone polymer Hydrogen Composite material Characterization Preparation Proton conductivity Thermal conductivity Membrane Thermal analysis Nuclear magnetic resonance Titanium oxide Performance Proton exchange membrane fuel cells TiO2 |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c440t-d1f7ad91b1aac7e4027eabf8fd6a762f7c9676345bf8a6def0a89299bb89c1733 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PQID | 901663762 |
PQPubID | 23500 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_901663762 crossref_primary_10_1016_j_ijhydene_2009_02_019 pascalfrancis_primary_21433208 elsevier_sciencedirect_doi_10_1016_j_ijhydene_2009_02_019 |
PublicationCentury | 2000 |
PublicationDate | 2009-05-01 |
PublicationDateYYYYMMDD | 2009-05-01 |
PublicationDate_xml | – month: 05 year: 2009 text: 2009-05-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Kidlington |
PublicationPlace_xml | – name: Kidlington |
PublicationTitle | International journal of hydrogen energy |
PublicationYear | 2009 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Chao HS, Elsey DR. Process for preparing sulfonated poly(arylether)resins. US patent number 4,625,000; 1986. Hill, Kim, Einsla, McGrath (bib15) 2006; 283 Jian-hua, Peng-fei, Zhi-yuan, Wen-hui, Zhong-qiang (bib29) 2008; 33 Wang, Meng, Wang, Hay (bib6) 2004; 42 Inzelt, Pineri, Schultze, Vorotyntsev (bib4) 2000; 45 Lee, Marvel (bib9) 1984; 22 Kim, Lee, Cho, Park (bib26) 2002; 199 Yang, Zhang, Wang, Zheng, Li (bib30) 2007; 288 Hamciuc, Bruma, Klapper (bib8) 2001; 38 Silva, Schirmer, Reissner, Ruffmann, Silva, Mendes (bib11) 2005; 140 Yang, Srinivasan, Arico, Creti, Baglio, Antonucci (bib16) 2001; 4 Bae, Miyatake, Watanabe (bib2) 2008; 310 Wang, Hickner, Kim, Zawodzinski, McGrath (bib24) 2002; 197 Barbir (bib33) 2005 on performance of PEMFC with Nafion/TiO Elmer, Jannasch (bib21) 2005; 46 Chen SY, Han CC, Tsai CH, Huang J, Chen-Yang YW. Effect of morphological properties of ionic liquid-templated mesoporous anatase TiO Tsai, Kuo, Chen (bib31) 2007; 174 Kalappa, Lee (bib32) 2007; 56 Zhang, Shen, Shao (bib18) 1997; 5 Bayrakçeken, Erkan, Türker, Eroğlu (bib22) 2008; 33 Tian, Wasterlain, Endichi, Candusso, Harel, François (bib34) 2008; 182 Sengul E, Erdener H, Akay RG, Yücel H, Bac N, Eroğlu I. Effects of sulfonated polyether–etherketone (SPEEK) and composite membranes on the proton exchange membrane fuel cell (PEMFC) performance. Int J Hydrogen Energy, in press Kim, Spinks, Too, Wallace, Bae, Ogata (bib20) 2000; 44 Kordesch, Simader (bib1) 1996 Babir, Gomez (bib3) 1996; 21 Vona, Ahmed, Bellitto, Lenci, Traversa, Licoccia (bib14) 2007; 296 Lufrano, Squadrito, Patti, Passalacqua (bib27) 2000; 77 . Gao, Robertson, Guiver, Jian, Mikhailenko, Wang (bib25) 2003; 41 composite membrane at elevated temperature and low relative humidity. Journal of Power Sources 2007; 171: 363–72. Sacc`a, Carbone, Passalacqua, D'Epifanio, Licoccia, Traversa (bib17) 2005; 152 Iojoiu, Genova-Dimitrova, Maŕechal, Sanchez (bib23) 2006; 51 Li, Zhao, Lu, Wang, Na (bib7) 2005; 46 Lafitte, Karlsson, Jannasch (bib5) 2002; 23 Nolte, Ledjeff, Bauer, Mulhaupt (bib10) 1993; 83 Carbone, Sacca, Gatto, Pedicini, Passalacqua (bib35) 2008; 33 Lufrano, Gatto, Staiti, Antonucci, Passalacqua (bib28) 2001; 145 |
References_xml | – volume: 33 start-page: 5686 year: 2008 end-page: 5690 ident: bib29 article-title: Preparation and performance evaluation of a Nafion-TiO publication-title: Int J Hydrogen Energy contributor: fullname: Zhong-qiang – volume: 296 start-page: 156 year: 2007 end-page: 161 ident: bib14 article-title: SPEEK–TiO publication-title: J Membr Sci contributor: fullname: Licoccia – volume: 77 start-page: 1250 year: 2000 end-page: 1256 ident: bib27 article-title: Sulfonated polysulfone as promising membranes for polymer electrolyte fuel cells publication-title: J Appl Polym Sci contributor: fullname: Passalacqua – volume: 44 start-page: 245 year: 2000 end-page: 258 ident: bib20 article-title: Incorporation of novel polyelectrolyte dopants into conducting polymers publication-title: React Funct Polym contributor: fullname: Ogata – volume: 140 start-page: 41 year: 2005 end-page: 49 ident: bib11 article-title: Proton electrolyte membrane properties and direct methanol fuel cell performance: II. Fuel cell performance and membrane properties effects publication-title: J Power Sources contributor: fullname: Mendes – volume: 197 start-page: 231 year: 2002 end-page: 242 ident: bib24 article-title: Direct polymerization of sulfonated poly(arylene ether sulfone) random (statistical) copolymers: candidates for new proton exchange membranes publication-title: J Membr Sci contributor: fullname: McGrath – volume: 4 start-page: A31 year: 2001 ident: bib16 article-title: Composite Nafion/zirconium phosphate membranes for direct methanol fuel cell operation at high temperature publication-title: Electrochem Solid State Lett contributor: fullname: Antonucci – volume: 33 start-page: 165 year: 2008 end-page: 170 ident: bib22 article-title: Effects of membrane electrode assembly components on proton exchange membrane fuel cell performance publication-title: Int J Hydrogen Energy contributor: fullname: Eroğlu – volume: 46 start-page: 5820 year: 2005 end-page: 5827 ident: bib7 article-title: Direct synthesis of sulfonated poly(ether ether ketone ketone)s (SPEEKKs) proton exchange membranes for fuel cell application publication-title: Polymer contributor: fullname: Na – year: 2005 ident: bib33 article-title: PEM fuel cells: theory and practice contributor: fullname: Barbir – volume: 23 start-page: 896 year: 2002 end-page: 900 ident: bib5 article-title: Sulfophenylation of polysulfones for proton-conducting fuel cell membranes publication-title: Macromol Rapid Commun contributor: fullname: Jannasch – volume: 41 start-page: 2731 year: 2003 end-page: 2742 ident: bib25 article-title: Direct copolymerization of sulfonated poly(phthalazinone arylene ether)s for proton-exchange-membrane materials publication-title: J Polym Sci Part A Polym Chem contributor: fullname: Wang – volume: 288 start-page: 231 year: 2007 end-page: 238 ident: bib30 article-title: The influence of nano-sized TiO publication-title: J Membr Sci contributor: fullname: Li – volume: 51 start-page: 4789 year: 2006 end-page: 4801 ident: bib23 article-title: Chemical and physicochemical characterizations of ionomers publication-title: Electrochim Acta contributor: fullname: Sanchez – volume: 199 start-page: 135 year: 2002 end-page: 145 ident: bib26 article-title: Surface modification of polysulfone ultrafiltration membrane by oxygen plasma treatment publication-title: J Membr Sci contributor: fullname: Park – volume: 174 start-page: 103 year: 2007 end-page: 113 ident: bib31 article-title: Synthesis and properties of novel HMS-based sulfonated poly (arylene ether sulfone)/silica nano-composite membranes for DMFC applications publication-title: J Power Sources contributor: fullname: Chen – volume: 83 start-page: 211 year: 1993 end-page: 220 ident: bib10 article-title: Polyaromatic ether–ketone sulfonamides prepared from polydiphenyl ether–ketones by chlorosulfonation and treatment with secondary amines publication-title: J Membr Sci contributor: fullname: Mulhaupt – volume: 21 start-page: 891 year: 1996 ident: bib3 article-title: Efficiency and economics of proton exchange membrane (PEM) fuel cell publication-title: Int J Hydrogen Energy contributor: fullname: Gomez – volume: 182 start-page: 449 year: 2008 end-page: 461 ident: bib34 publication-title: Diagnosis methods dedicated to the localisation of failed cells within PEMFC stacks. J Power Sources contributor: fullname: François – volume: 22 start-page: 295 year: 1984 end-page: 301 ident: bib9 article-title: Polyaromatic ether–ketone sulfonamides prepared from polydiphenyl ether–ketones by chlorosulfonation and treatment with secondary amines publication-title: J Polym Sci Polym Chem Ed contributor: fullname: Marvel – volume: 310 start-page: 110 year: 2008 end-page: 118 ident: bib2 article-title: Sulfonated poly(arylene ether sulfone) ionomers containing fluorenyl groups for fuel cell applications publication-title: J Membr Sci contributor: fullname: Watanabe – volume: 38 start-page: 659 year: 2001 end-page: 671 ident: bib8 article-title: Sulfonated poly(ether–ketone)s containing hexafluoroisopropylidene groups publication-title: J Macromol Sci Pure Appl Chem contributor: fullname: Klapper – volume: 33 start-page: 3153 year: 2008 end-page: 3158 ident: bib35 article-title: Investigation on composite S-PEEK/H-BETA MEAs for medium temperature PEFC publication-title: Int J Hydrogen Energy contributor: fullname: Passalacqua – volume: 42 start-page: 1779 year: 2004 ident: bib6 article-title: Synthesis and sulfonation of poly(arylene ether)s containing tetraphenyl methane moieties publication-title: J Polym Sci Part A Polym Chem contributor: fullname: Hay – volume: 45 start-page: 2403 year: 2000 ident: bib4 article-title: Electron and proton conducting polymers: recent developments and prospects publication-title: Electrochim Acta contributor: fullname: Vorotyntsev – volume: 152 start-page: 16 year: 2005 end-page: 21 ident: bib17 article-title: Nafion–TiO publication-title: J Power Sources contributor: fullname: Traversa – volume: 46 start-page: 7896 year: 2005 ident: bib21 article-title: Gel electrolyte membranes derived from co-continuous polymer blends publication-title: Polymer contributor: fullname: Jannasch – volume: 56 start-page: 371 year: 2007 end-page: 375 ident: bib32 article-title: Proton conducting membranes based on sulfonated poly(ether ether ketone)/TiO publication-title: Polym Int contributor: fullname: Lee – volume: 283 start-page: 102 year: 2006 end-page: 108 ident: bib15 article-title: Zirconium hydrogen phosphate/disulfonated poly(arylene ether sulfone) copolymer composite membranes for proton exchange membrane fuel cells publication-title: J Membr Sci contributor: fullname: McGrath – volume: 5 start-page: 13 year: 1997 end-page: 15 ident: bib18 article-title: The adsorption and organic modification of titanium dioxide publication-title: China Surf Detergent Cosmet contributor: fullname: Shao – year: 1996 ident: bib1 article-title: Fuel for the fuel cell technology fuel cells and their applications contributor: fullname: Simader – volume: 145 start-page: 47 year: 2001 end-page: 51 ident: bib28 article-title: Sulfonated polysulfone ionomer membranes for fuel cells publication-title: Solid State Ionics contributor: fullname: Passalacqua |
SSID | ssj0017049 |
Score | 2.4164212 |
Snippet | In the present study, sulfonated polysulfone (sPS)/titanium dioxide (TiO
2) composite membranes for use in proton exchange membrane fuel cells (PEMFCs) were... In the present study, sulfonated polysulfone (sPS)/titanium dioxide (TiO sub(2) composite membranes for use in proton exchange membrane fuel cells (PEMFCs)... |
SourceID | proquest crossref pascalfrancis elsevier |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 3467 |
SubjectTerms | Applied sciences Composite membrane Energy Energy. Thermal use of fuels Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc Exact sciences and technology Fuel cells Hydrogen embrittlement Membranes Operating temperature PEM fuel cell Polystyrene resins Polysulfone Polysulfone resins Spark plasma sintering Sulfonated polysulfone TiO 2 Titanium dioxide |
Title | Preparation and characterization of sulfonated polysulfone/titanium dioxide composite membranes for proton exchange membrane fuel cells |
URI | https://dx.doi.org/10.1016/j.ijhydene.2009.02.019 https://search.proquest.com/docview/901663762 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA-iF0XET5wfIwev3Zoua5ujiDIVh6CCt5BP7Nja4VbQi1f_bV-adkwUPHhsmjbpe8n7aN77PYTONE1lIlMSEGpYQCOiAqn6NNCU9qwgsP1Cl5x8N4wHT_Tmuf-8gi6aXBgXVlnLfi_TK2ldt3RrananWdZ9ANnrUnBYyJwiqirXUlB_sKY7H4swD5LUJjB0DlzvpSzhUScbvbzD9jY1bmXUqRB3fldQm1MxA7JZX-_ih-iu9NHVNtqqDUl87ue6g1ZMvos2luAF99Dn_avx0N5FjkWusVqgM_vkS1xYPCvH1v1BNxpPi_G7vzSuKpLIs3KCdVa8ZdpgF3vuArwMnpgJuNggIjEYvNgBPcCbzJtPIV7cxbY0Y-zOBWb76Onq8vFiENSFFwJFaTgPNLGJ0IxIIoRKDLiYiRHSplbHArhnE8VikEu0D20i1saGIgUzi0mZMkWSXu8AreYw10OEqerHKtJhJCyhkWWyp6xSkUxScJXiVLZQt6E2n3p8Dd4Eno14wx9XLJPxMOLAnxZiDVP4t5XCQQn8-Wz7GxcXQ0bE4biFaQvhhq0c9pkjElCsKGcc7CYwzuDrj_4x_jFa96dRLmDyBK3OX0tzCkbNXLarVdtGa-fXt4PhF3ZO_L0 |
link.rule.ids | 315,783,787,4509,24128,27936,27937,45597,45691 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwELYQHHYRQvtCFFjWh72mjVM3iY8IUZWnVlqQuFl-alO1SUUbCS5c-dvM1ElFtSvtgWMcJ3Zm7PHneOYbQn5anutM5yxi3ImIJ8xE2gx4ZDnve8Vg-sUYnHx9k47u-MX94H6DnLaxMOhW2dj-YNOX1rop6TXS7M2KovcbbC-G4IhY4EKEmWu3OOJjGNTd55WfB8saDAy1I6z-Jkx43C3Gf55gfruGuDLpLil3_r1C7czUHOTmQ8KLv2z3ckEafiK7DZKkJ6Gzn8mGK7-Q7Tf8gl_Jy68HF7i9q5Kq0lKzomcO0Ze08nReTzz-QneWzqrJU7h0mBZJlUU9pbaoHgvrKDqfo4eXo1M3hT022EgKiJci0wO8yT2GGOLVXeprN6F4MDD_Ru6GZ7eno6jJvBAZzuNFZJnPlBVMM6VM5mCPmTmlfe5tqkB9PjMiBcPEB1CmUut8rHLAWULrXBiW9ft7ZLOEvu4Tys0gNYmNE-UZT7zQfeONSXSWw14pzXWH9Fppy1kg2JCt59lYtvrBbJlCxokE_XSIaJUi14aKhFXgv88er2lx1WTCkMgtzjuEtmqVMNFQSCCxqp5LAE6AzuDrD97R_g_yYXR7fSWvzm8uD8nHcDSF3pNHZHPxULvvgHAW-ng5gl8BTIf-Vg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Preparation+and+characterization+of+sulfonated+polysulfone%2F+titanium+dioxide+composite+membranes+for+proton+exchange+membrane+fuel+cells&rft.jtitle=International+journal+of+hydrogen+energy&rft.au=DEVRIM%2C+Yilser&rft.au=ERKAN%2C+Serdar&rft.au=BAC%2C+Nurcan&rft.au=EROGLU%2C+Inci&rft.date=2009-05-01&rft.pub=Elsevier&rft.issn=0360-3199&rft.eissn=1879-3487&rft.volume=34&rft.issue=8&rft.spage=3467&rft.epage=3475&rft_id=info:doi/10.1016%2Fj.ijhydene.2009.02.019&rft.externalDBID=n%2Fa&rft.externalDocID=21433208 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-3199&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-3199&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-3199&client=summon |