Preparation and characterization of sulfonated polysulfone/titanium dioxide composite membranes for proton exchange membrane fuel cells

In the present study, sulfonated polysulfone (sPS)/titanium dioxide (TiO 2) composite membranes for use in proton exchange membrane fuel cells (PEMFCs) were investigated. Polysulfone (PS) was sulfonated with trimethylsilyl chlorosulfonate in 1,2 dichloroethane at ambient temperatures. It was shown t...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of hydrogen energy Vol. 34; no. 8; pp. 3467 - 3475
Main Authors Devrim, Yilser, Erkan, Serdar, Baç, Nurcan, Eroğlu, Inci
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 01.05.2009
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In the present study, sulfonated polysulfone (sPS)/titanium dioxide (TiO 2) composite membranes for use in proton exchange membrane fuel cells (PEMFCs) were investigated. Polysulfone (PS) was sulfonated with trimethylsilyl chlorosulfonate in 1,2 dichloroethane at ambient temperatures. It was shown that the degree of sulfonation is increased with the molar ratio of the sulfonating agent to PS repeat unit. The degree of sulfonation was determined by elemental analysis and 1H NMR was performed to verify the sulfonation reaction on the PS. Sulfonation levels from 15 to 40% were easily achieved by varying the content of the sulfonating agent. Composite membranes were prepared by blending TiO 2 with sPS solution in DMAC (5 wt.%) by the solution casting procedure. The membranes have been characterized by thermal analysis, water uptake, proton conductivity measurements and single cell performance. The addition of TiO 2 increased the thermal stability but high filler concentrations decreased the miscibility of the composite component, and resulted in brittle membranes. The conductivity values in the range of 10 −3–10 −2 S/cm were obtained for composite membranes. The conductivities of the membranes show similar increasing trend as a function of operating temperature. The membranes were tested in a single cell operating at 60–85 °C in humidified H 2/O 2. Single fuel cell tests performed at different operating temperatures indicated that sPS/TiO 2 composite membrane is more hydrodynamically stable and also performed better than sPS membranes. The highest performance of 300 mA/cm 2 was obtained for sPS/TiO 2 membrane at 0.6 V for an H 2–O 2/PEMFC working at 1 atm and 85 °C. The results show that sPS/TiO 2 is a promising membrane material for possible use in proton exchange membrane fuel cells.
AbstractList In the present study, sulfonated polysulfone (sPS)/titanium dioxide (TiO sub(2) composite membranes for use in proton exchange membrane fuel cells (PEMFCs) were investigated. Polysulfone (PS) was sulfonated with trimethylsilyl chlorosulfonate in 1,2 dichloroethane at ambient temperatures. It was shown that the degree of sulfonation is increased with the molar ratio of the sulfonating agent to PS repeat unit. The degree of sulfonation was determined by elemental analysis and ) super(1)H NMR was performed to verify the sulfonation reaction on the PS. Sulfonation levels from 15 to 40% were easily achieved by varying the content of the sulfonating agent. Composite membranes were prepared by blending TiO sub(2 with sPS solution in DMAC (5 wt.%) by the solution casting procedure. The membranes have been characterized by thermal analysis, water uptake, proton conductivity measurements and single cell performance. The addition of TiO) sub(2) increased the thermal stability but high filler concentrations decreased the miscibility of the composite component, and resulted in brittle membranes. The conductivity values in the range of 10 super(-3-10) super(-)2 S/cm were obtained for composite membranes. The conductivities of the membranes show similar increasing trend as a function of operating temperature. The membranes were tested in a single cell operating at 60-85 degree C in humidified H sub(2/O) sub(2). Single fuel cell tests performed at different operating temperatures indicated that sPS/TiO sub(2 composite membrane is more hydrodynamically stable and also performed better than sPS membranes. The highest performance of 300 mA/cm) super(2) was obtained for sPS/TiO sub(2 membrane at 0.6 V for an H) sub(2)-O sub(2/PEMFC working at 1 atm and 85 degree C. The results show that sPS/TiO) sub(2) is a promising membrane material for possible use in proton exchange membrane fuel cells.
In the present study, sulfonated polysulfone (sPS)/titanium dioxide (TiO 2) composite membranes for use in proton exchange membrane fuel cells (PEMFCs) were investigated. Polysulfone (PS) was sulfonated with trimethylsilyl chlorosulfonate in 1,2 dichloroethane at ambient temperatures. It was shown that the degree of sulfonation is increased with the molar ratio of the sulfonating agent to PS repeat unit. The degree of sulfonation was determined by elemental analysis and 1H NMR was performed to verify the sulfonation reaction on the PS. Sulfonation levels from 15 to 40% were easily achieved by varying the content of the sulfonating agent. Composite membranes were prepared by blending TiO 2 with sPS solution in DMAC (5 wt.%) by the solution casting procedure. The membranes have been characterized by thermal analysis, water uptake, proton conductivity measurements and single cell performance. The addition of TiO 2 increased the thermal stability but high filler concentrations decreased the miscibility of the composite component, and resulted in brittle membranes. The conductivity values in the range of 10 −3–10 −2 S/cm were obtained for composite membranes. The conductivities of the membranes show similar increasing trend as a function of operating temperature. The membranes were tested in a single cell operating at 60–85 °C in humidified H 2/O 2. Single fuel cell tests performed at different operating temperatures indicated that sPS/TiO 2 composite membrane is more hydrodynamically stable and also performed better than sPS membranes. The highest performance of 300 mA/cm 2 was obtained for sPS/TiO 2 membrane at 0.6 V for an H 2–O 2/PEMFC working at 1 atm and 85 °C. The results show that sPS/TiO 2 is a promising membrane material for possible use in proton exchange membrane fuel cells.
Author Eroğlu, Inci
Erkan, Serdar
Baç, Nurcan
Devrim, Yilser
Author_xml – sequence: 1
  givenname: Yilser
  surname: Devrim
  fullname: Devrim, Yilser
  organization: Chemical Engineering Department, Middle East Technical University, 06531 Ankara, Turkey
– sequence: 2
  givenname: Serdar
  surname: Erkan
  fullname: Erkan, Serdar
  organization: Chemical Engineering Department, Middle East Technical University, 06531 Ankara, Turkey
– sequence: 3
  givenname: Nurcan
  surname: Baç
  fullname: Baç, Nurcan
  organization: Chemical Engineering Department, Yeditepe University, 34755 Istanbul, Turkey
– sequence: 4
  givenname: Inci
  surname: Eroğlu
  fullname: Eroğlu, Inci
  email: ieroglu@metu.edu.tr
  organization: Chemical Engineering Department, Middle East Technical University, 06531 Ankara, Turkey
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21433208$$DView record in Pascal Francis
BookMark eNqFkM1u3SAQhVGVSr1J-woVm6orO2BcMLtEUX8iRUoX7RphGBqubHAAV7l9gb52uXKSLrNCM5w5c-Y7RSchBkDoPSUtJZSf71u_vztYCNB2hMiWdC2h8hXa0UHIhvWDOEE7wjhpGJXyDTrNeU8IFaSXO_T3e4JFJ118DFgHi81drUyB5P9szehwXicXgy5g8RKnw1bCefFFB7_O2Pr44C1gE-clZl8AzzCPSQfI2MWElxRLdYKHah5-_f_FboUJG5im_Ba9dnrK8O7xPUM_v3z-cfWtubn9en11edOYvielsdQJbSUdqdZGQE86AXp0g7NcC945YSQXnPWfak9zC47oQXZSjuMgDRWMnaGPm2_NdL9CLmr2-ZigxolrVrIS5axaVSXflCbFnBM4tSQ_63RQlKgjeLVXT-DVEbwinarg6-CHxxU6Gz25eqnx-Xm6oz1jHRmq7mLTQb33t4eksvEQDFifwBRlo39p1T9nR6O5
CODEN IJHEDX
CitedBy_id crossref_primary_10_1177_1847980420964368
crossref_primary_10_1016_j_ijhydene_2016_02_043
crossref_primary_10_1021_acsanm_9b00446
crossref_primary_10_1016_j_ijhydene_2011_04_209
crossref_primary_10_1177_0954008314558435
crossref_primary_10_3390_membranes13060590
crossref_primary_10_1016_j_renene_2019_01_107
crossref_primary_10_3390_polym15030502
crossref_primary_10_1002_er_2909
crossref_primary_10_3390_polym13060895
crossref_primary_10_1007_s11814_018_0178_6
crossref_primary_10_1016_j_electacta_2013_12_030
crossref_primary_10_1016_j_ijhydene_2020_02_101
crossref_primary_10_1080_01496395_2014_917105
crossref_primary_10_12989_mwt_2013_4_2_083
crossref_primary_10_1557_jmr_2012_385
crossref_primary_10_3390_en14206709
crossref_primary_10_1002_app_50530
crossref_primary_10_1016_j_ijhydene_2021_07_038
crossref_primary_10_1016_j_tsf_2018_03_054
crossref_primary_10_1016_j_ijhydene_2018_08_191
crossref_primary_10_1007_s10965_023_03856_7
crossref_primary_10_3390_membranes13070684
crossref_primary_10_1016_j_cjche_2023_11_028
crossref_primary_10_1016_j_ijhydene_2019_08_197
crossref_primary_10_1016_j_ijhydene_2021_03_033
crossref_primary_10_1016_j_synthmet_2012_01_025
crossref_primary_10_1002_pat_5494
crossref_primary_10_1016_j_ssi_2018_02_025
crossref_primary_10_1021_acsomega_1c00568
crossref_primary_10_1016_j_ijhydene_2011_01_060
crossref_primary_10_1016_j_matlet_2015_03_094
crossref_primary_10_1016_j_memsci_2013_02_009
crossref_primary_10_1080_03602559_2017_1289398
crossref_primary_10_3390_polym13030437
crossref_primary_10_1016_j_progpolymsci_2010_12_005
crossref_primary_10_4028_www_scientific_net_AMR_550_553_439
crossref_primary_10_1016_j_ssi_2021_115581
crossref_primary_10_1016_j_tca_2009_04_009
crossref_primary_10_3390_polym13122030
crossref_primary_10_4028_www_scientific_net_AMR_821_822_1261
crossref_primary_10_1002_mame_201800384
crossref_primary_10_1007_s13233_020_8070_8
crossref_primary_10_1115_1_4033098
crossref_primary_10_1590_S0104_14282011005000024
crossref_primary_10_1016_j_jpowsour_2021_229844
crossref_primary_10_1016_j_polymertesting_2015_06_004
crossref_primary_10_1016_j_ijhydene_2011_12_069
crossref_primary_10_1007_s10965_017_1436_8
crossref_primary_10_1515_ijmr_2021_8318
crossref_primary_10_1002_app_45954
crossref_primary_10_1016_j_ssi_2013_11_054
crossref_primary_10_1016_j_heliyon_2020_e03159
crossref_primary_10_1002_app_48826
crossref_primary_10_1016_j_memsci_2019_117544
crossref_primary_10_1007_s13233_013_1065_y
crossref_primary_10_1016_j_ijhydene_2012_02_148
crossref_primary_10_1016_j_ijhydene_2020_04_013
crossref_primary_10_1016_j_jiec_2014_04_030
crossref_primary_10_1021_acs_iecr_8b00661
crossref_primary_10_1080_19443994_2014_984635
crossref_primary_10_1007_s10008_019_04290_w
crossref_primary_10_1016_j_matchemphys_2013_11_012
crossref_primary_10_1021_acs_iecr_4c00825
crossref_primary_10_1016_j_jiec_2022_09_006
crossref_primary_10_1016_j_riit_2016_01_009
crossref_primary_10_1002_pi_4525
crossref_primary_10_1016_j_ijhydene_2017_10_092
crossref_primary_10_1016_j_memsci_2020_118972
crossref_primary_10_1149_1_3428725
crossref_primary_10_1016_j_jpowsour_2012_01_038
crossref_primary_10_1016_j_sajce_2024_02_009
crossref_primary_10_1016_j_jpowsour_2012_11_126
crossref_primary_10_1016_j_eurpolymj_2022_111601
crossref_primary_10_1016_j_seppur_2022_121085
crossref_primary_10_1002_pen_23968
crossref_primary_10_1016_j_eurpolymj_2023_112316
crossref_primary_10_1016_j_electacta_2019_01_112
crossref_primary_10_1039_C5CP03300D
crossref_primary_10_1002_fuce_202000189
crossref_primary_10_3390_polym15234499
crossref_primary_10_1021_acssuschemeng_9b01850
crossref_primary_10_1016_j_ijhydene_2019_01_035
crossref_primary_10_1016_j_ijhydene_2011_10_056
crossref_primary_10_1177_09540083221144257
crossref_primary_10_1016_j_electacta_2014_08_131
crossref_primary_10_1016_j_memsci_2023_121879
crossref_primary_10_1016_j_electacta_2009_11_095
crossref_primary_10_1016_j_tca_2010_05_015
crossref_primary_10_1155_2015_790173
crossref_primary_10_1002_app_50216
crossref_primary_10_1016_j_progpolymsci_2015_11_004
crossref_primary_10_1007_s10854_018_8521_6
crossref_primary_10_1016_j_ijhydene_2024_04_278
crossref_primary_10_3390_en13051180
crossref_primary_10_1016_j_ijhydene_2015_02_005
crossref_primary_10_1016_j_ijhydene_2017_12_010
crossref_primary_10_1007_s12588_011_9015_z
crossref_primary_10_1016_j_desal_2012_04_006
crossref_primary_10_1080_03602559_2016_1275688
crossref_primary_10_3390_polym12010025
crossref_primary_10_1016_j_ijhydene_2017_07_077
crossref_primary_10_1002_app_39922
crossref_primary_10_1016_j_electacta_2016_12_009
crossref_primary_10_1016_j_memsci_2019_04_073
crossref_primary_10_1007_s10562_015_1551_2
crossref_primary_10_1016_j_synthmet_2012_12_031
crossref_primary_10_1007_s11814_016_0107_5
crossref_primary_10_1016_j_apsusc_2013_03_038
crossref_primary_10_1016_j_eurpolymj_2019_07_041
crossref_primary_10_1088_1757_899X_1053_1_012025
crossref_primary_10_1016_j_jpowsour_2014_12_014
crossref_primary_10_3390_en17092097
crossref_primary_10_1016_j_memsci_2015_05_031
crossref_primary_10_3390_polym12051125
crossref_primary_10_1016_S1452_3981_23_06683_X
crossref_primary_10_1016_j_colsurfa_2012_11_029
crossref_primary_10_3390_polym14020300
crossref_primary_10_1002_er_6058
crossref_primary_10_1016_j_memsci_2021_119336
crossref_primary_10_1021_acs_iecr_8b00114
crossref_primary_10_1016_j_ijhydene_2010_08_085
crossref_primary_10_1016_j_ijhydene_2011_01_134
crossref_primary_10_1016_j_ijhydene_2010_02_019
crossref_primary_10_1016_j_ijhydene_2019_09_216
crossref_primary_10_1021_ie4038449
crossref_primary_10_1002_cphc_201900191
crossref_primary_10_1016_j_ssi_2018_02_019
crossref_primary_10_1002_app_40107
crossref_primary_10_1021_cr200035s
crossref_primary_10_31202_ecjse_983144
crossref_primary_10_1016_j_memsci_2017_12_007
crossref_primary_10_3390_polym15020323
crossref_primary_10_1016_j_chemosphere_2022_135204
crossref_primary_10_1016_j_ijhydene_2013_06_041
crossref_primary_10_1007_s10008_013_2309_7
crossref_primary_10_1016_j_progpolymsci_2011_01_003
crossref_primary_10_1089_ees_2016_0023
crossref_primary_10_1016_j_mtchem_2020_100302
crossref_primary_10_1039_C8RA01731J
crossref_primary_10_3390_ma13133004
crossref_primary_10_1080_03602559_2016_1233563
crossref_primary_10_3390_molecules25071712
crossref_primary_10_1002_ep_12430
crossref_primary_10_1007_s10965_019_1758_9
crossref_primary_10_1016_j_mtchem_2019_100212
crossref_primary_10_1021_acssuschemeng_1c01922
crossref_primary_10_3390_membranes11050351
crossref_primary_10_1016_j_enbuild_2024_113949
crossref_primary_10_1039_c2cs15269j
crossref_primary_10_1016_j_electacta_2017_10_002
crossref_primary_10_3390_polym13060959
crossref_primary_10_3724_SP_J_1105_2010_09403
crossref_primary_10_1016_j_ijhydene_2020_02_197
crossref_primary_10_1007_s13233_016_4150_1
crossref_primary_10_1002_app_52388
crossref_primary_10_1007_s13738_019_01638_x
ContentType Journal Article
Copyright 2009 International Association for Hydrogen Energy
2009 INIST-CNRS
Copyright_xml – notice: 2009 International Association for Hydrogen Energy
– notice: 2009 INIST-CNRS
DBID IQODW
AAYXX
CITATION
7SP
8FD
H8D
L7M
DOI 10.1016/j.ijhydene.2009.02.019
DatabaseName Pascal-Francis
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Aerospace Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
EISSN 1879-3487
EndPage 3475
ExternalDocumentID 10_1016_j_ijhydene_2009_02_019
21433208
S0360319909002213
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AARLI
AAXUO
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADECG
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FLBIZ
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SAC
SCB
SCC
SDF
SDG
SES
SEW
SPC
SPCBC
SSK
SSM
SSR
SSZ
T5K
T9H
TN5
WUQ
XPP
ZMT
~G-
ABPIF
ABPTK
IQODW
AAXKI
AAYXX
AFJKZ
AKRWK
CITATION
7SP
8FD
H8D
L7M
ID FETCH-LOGICAL-c440t-d1f7ad91b1aac7e4027eabf8fd6a762f7c9676345bf8a6def0a89299bb89c1733
IEDL.DBID .~1
ISSN 0360-3199
IngestDate Fri Oct 25 10:21:48 EDT 2024
Thu Sep 26 17:35:57 EDT 2024
Sun Oct 22 16:04:43 EDT 2023
Fri Feb 23 02:27:26 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Sulfonated polysulfone
Polysulfone
TiO 2
Composite membrane
PEM fuel cell
Measurement
Stability
Sulfone polymer
Hydrogen
Composite material
Characterization
Preparation
Proton conductivity
Thermal conductivity
Membrane
Thermal analysis
Nuclear magnetic resonance
Titanium oxide
Performance
Proton exchange membrane fuel cells
TiO2
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c440t-d1f7ad91b1aac7e4027eabf8fd6a762f7c9676345bf8a6def0a89299bb89c1733
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 901663762
PQPubID 23500
PageCount 9
ParticipantIDs proquest_miscellaneous_901663762
crossref_primary_10_1016_j_ijhydene_2009_02_019
pascalfrancis_primary_21433208
elsevier_sciencedirect_doi_10_1016_j_ijhydene_2009_02_019
PublicationCentury 2000
PublicationDate 2009-05-01
PublicationDateYYYYMMDD 2009-05-01
PublicationDate_xml – month: 05
  year: 2009
  text: 2009-05-01
  day: 01
PublicationDecade 2000
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle International journal of hydrogen energy
PublicationYear 2009
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Chao HS, Elsey DR. Process for preparing sulfonated poly(arylether)resins. US patent number 4,625,000; 1986.
Hill, Kim, Einsla, McGrath (bib15) 2006; 283
Jian-hua, Peng-fei, Zhi-yuan, Wen-hui, Zhong-qiang (bib29) 2008; 33
Wang, Meng, Wang, Hay (bib6) 2004; 42
Inzelt, Pineri, Schultze, Vorotyntsev (bib4) 2000; 45
Lee, Marvel (bib9) 1984; 22
Kim, Lee, Cho, Park (bib26) 2002; 199
Yang, Zhang, Wang, Zheng, Li (bib30) 2007; 288
Hamciuc, Bruma, Klapper (bib8) 2001; 38
Silva, Schirmer, Reissner, Ruffmann, Silva, Mendes (bib11) 2005; 140
Yang, Srinivasan, Arico, Creti, Baglio, Antonucci (bib16) 2001; 4
Bae, Miyatake, Watanabe (bib2) 2008; 310
Wang, Hickner, Kim, Zawodzinski, McGrath (bib24) 2002; 197
Barbir (bib33) 2005
on performance of PEMFC with Nafion/TiO
Elmer, Jannasch (bib21) 2005; 46
Chen SY, Han CC, Tsai CH, Huang J, Chen-Yang YW. Effect of morphological properties of ionic liquid-templated mesoporous anatase TiO
Tsai, Kuo, Chen (bib31) 2007; 174
Kalappa, Lee (bib32) 2007; 56
Zhang, Shen, Shao (bib18) 1997; 5
Bayrakçeken, Erkan, Türker, Eroğlu (bib22) 2008; 33
Tian, Wasterlain, Endichi, Candusso, Harel, François (bib34) 2008; 182
Sengul E, Erdener H, Akay RG, Yücel H, Bac N, Eroğlu I. Effects of sulfonated polyether–etherketone (SPEEK) and composite membranes on the proton exchange membrane fuel cell (PEMFC) performance. Int J Hydrogen Energy, in press
Kim, Spinks, Too, Wallace, Bae, Ogata (bib20) 2000; 44
Kordesch, Simader (bib1) 1996
Babir, Gomez (bib3) 1996; 21
Vona, Ahmed, Bellitto, Lenci, Traversa, Licoccia (bib14) 2007; 296
Lufrano, Squadrito, Patti, Passalacqua (bib27) 2000; 77
.
Gao, Robertson, Guiver, Jian, Mikhailenko, Wang (bib25) 2003; 41
composite membrane at elevated temperature and low relative humidity. Journal of Power Sources 2007; 171: 363–72.
Sacc`a, Carbone, Passalacqua, D'Epifanio, Licoccia, Traversa (bib17) 2005; 152
Iojoiu, Genova-Dimitrova, Maŕechal, Sanchez (bib23) 2006; 51
Li, Zhao, Lu, Wang, Na (bib7) 2005; 46
Lafitte, Karlsson, Jannasch (bib5) 2002; 23
Nolte, Ledjeff, Bauer, Mulhaupt (bib10) 1993; 83
Carbone, Sacca, Gatto, Pedicini, Passalacqua (bib35) 2008; 33
Lufrano, Gatto, Staiti, Antonucci, Passalacqua (bib28) 2001; 145
References_xml – volume: 33
  start-page: 5686
  year: 2008
  end-page: 5690
  ident: bib29
  article-title: Preparation and performance evaluation of a Nafion-TiO
  publication-title: Int J Hydrogen Energy
  contributor:
    fullname: Zhong-qiang
– volume: 296
  start-page: 156
  year: 2007
  end-page: 161
  ident: bib14
  article-title: SPEEK–TiO
  publication-title: J Membr Sci
  contributor:
    fullname: Licoccia
– volume: 77
  start-page: 1250
  year: 2000
  end-page: 1256
  ident: bib27
  article-title: Sulfonated polysulfone as promising membranes for polymer electrolyte fuel cells
  publication-title: J Appl Polym Sci
  contributor:
    fullname: Passalacqua
– volume: 44
  start-page: 245
  year: 2000
  end-page: 258
  ident: bib20
  article-title: Incorporation of novel polyelectrolyte dopants into conducting polymers
  publication-title: React Funct Polym
  contributor:
    fullname: Ogata
– volume: 140
  start-page: 41
  year: 2005
  end-page: 49
  ident: bib11
  article-title: Proton electrolyte membrane properties and direct methanol fuel cell performance: II. Fuel cell performance and membrane properties effects
  publication-title: J Power Sources
  contributor:
    fullname: Mendes
– volume: 197
  start-page: 231
  year: 2002
  end-page: 242
  ident: bib24
  article-title: Direct polymerization of sulfonated poly(arylene ether sulfone) random (statistical) copolymers: candidates for new proton exchange membranes
  publication-title: J Membr Sci
  contributor:
    fullname: McGrath
– volume: 4
  start-page: A31
  year: 2001
  ident: bib16
  article-title: Composite Nafion/zirconium phosphate membranes for direct methanol fuel cell operation at high temperature
  publication-title: Electrochem Solid State Lett
  contributor:
    fullname: Antonucci
– volume: 33
  start-page: 165
  year: 2008
  end-page: 170
  ident: bib22
  article-title: Effects of membrane electrode assembly components on proton exchange membrane fuel cell performance
  publication-title: Int J Hydrogen Energy
  contributor:
    fullname: Eroğlu
– volume: 46
  start-page: 5820
  year: 2005
  end-page: 5827
  ident: bib7
  article-title: Direct synthesis of sulfonated poly(ether ether ketone ketone)s (SPEEKKs) proton exchange membranes for fuel cell application
  publication-title: Polymer
  contributor:
    fullname: Na
– year: 2005
  ident: bib33
  article-title: PEM fuel cells: theory and practice
  contributor:
    fullname: Barbir
– volume: 23
  start-page: 896
  year: 2002
  end-page: 900
  ident: bib5
  article-title: Sulfophenylation of polysulfones for proton-conducting fuel cell membranes
  publication-title: Macromol Rapid Commun
  contributor:
    fullname: Jannasch
– volume: 41
  start-page: 2731
  year: 2003
  end-page: 2742
  ident: bib25
  article-title: Direct copolymerization of sulfonated poly(phthalazinone arylene ether)s for proton-exchange-membrane materials
  publication-title: J Polym Sci Part A Polym Chem
  contributor:
    fullname: Wang
– volume: 288
  start-page: 231
  year: 2007
  end-page: 238
  ident: bib30
  article-title: The influence of nano-sized TiO
  publication-title: J Membr Sci
  contributor:
    fullname: Li
– volume: 51
  start-page: 4789
  year: 2006
  end-page: 4801
  ident: bib23
  article-title: Chemical and physicochemical characterizations of ionomers
  publication-title: Electrochim Acta
  contributor:
    fullname: Sanchez
– volume: 199
  start-page: 135
  year: 2002
  end-page: 145
  ident: bib26
  article-title: Surface modification of polysulfone ultrafiltration membrane by oxygen plasma treatment
  publication-title: J Membr Sci
  contributor:
    fullname: Park
– volume: 174
  start-page: 103
  year: 2007
  end-page: 113
  ident: bib31
  article-title: Synthesis and properties of novel HMS-based sulfonated poly (arylene ether sulfone)/silica nano-composite membranes for DMFC applications
  publication-title: J Power Sources
  contributor:
    fullname: Chen
– volume: 83
  start-page: 211
  year: 1993
  end-page: 220
  ident: bib10
  article-title: Polyaromatic ether–ketone sulfonamides prepared from polydiphenyl ether–ketones by chlorosulfonation and treatment with secondary amines
  publication-title: J Membr Sci
  contributor:
    fullname: Mulhaupt
– volume: 21
  start-page: 891
  year: 1996
  ident: bib3
  article-title: Efficiency and economics of proton exchange membrane (PEM) fuel cell
  publication-title: Int J Hydrogen Energy
  contributor:
    fullname: Gomez
– volume: 182
  start-page: 449
  year: 2008
  end-page: 461
  ident: bib34
  publication-title: Diagnosis methods dedicated to the localisation of failed cells within PEMFC stacks. J Power Sources
  contributor:
    fullname: François
– volume: 22
  start-page: 295
  year: 1984
  end-page: 301
  ident: bib9
  article-title: Polyaromatic ether–ketone sulfonamides prepared from polydiphenyl ether–ketones by chlorosulfonation and treatment with secondary amines
  publication-title: J Polym Sci Polym Chem Ed
  contributor:
    fullname: Marvel
– volume: 310
  start-page: 110
  year: 2008
  end-page: 118
  ident: bib2
  article-title: Sulfonated poly(arylene ether sulfone) ionomers containing fluorenyl groups for fuel cell applications
  publication-title: J Membr Sci
  contributor:
    fullname: Watanabe
– volume: 38
  start-page: 659
  year: 2001
  end-page: 671
  ident: bib8
  article-title: Sulfonated poly(ether–ketone)s containing hexafluoroisopropylidene groups
  publication-title: J Macromol Sci Pure Appl Chem
  contributor:
    fullname: Klapper
– volume: 33
  start-page: 3153
  year: 2008
  end-page: 3158
  ident: bib35
  article-title: Investigation on composite S-PEEK/H-BETA MEAs for medium temperature PEFC
  publication-title: Int J Hydrogen Energy
  contributor:
    fullname: Passalacqua
– volume: 42
  start-page: 1779
  year: 2004
  ident: bib6
  article-title: Synthesis and sulfonation of poly(arylene ether)s containing tetraphenyl methane moieties
  publication-title: J Polym Sci Part A Polym Chem
  contributor:
    fullname: Hay
– volume: 45
  start-page: 2403
  year: 2000
  ident: bib4
  article-title: Electron and proton conducting polymers: recent developments and prospects
  publication-title: Electrochim Acta
  contributor:
    fullname: Vorotyntsev
– volume: 152
  start-page: 16
  year: 2005
  end-page: 21
  ident: bib17
  article-title: Nafion–TiO
  publication-title: J Power Sources
  contributor:
    fullname: Traversa
– volume: 46
  start-page: 7896
  year: 2005
  ident: bib21
  article-title: Gel electrolyte membranes derived from co-continuous polymer blends
  publication-title: Polymer
  contributor:
    fullname: Jannasch
– volume: 56
  start-page: 371
  year: 2007
  end-page: 375
  ident: bib32
  article-title: Proton conducting membranes based on sulfonated poly(ether ether ketone)/TiO
  publication-title: Polym Int
  contributor:
    fullname: Lee
– volume: 283
  start-page: 102
  year: 2006
  end-page: 108
  ident: bib15
  article-title: Zirconium hydrogen phosphate/disulfonated poly(arylene ether sulfone) copolymer composite membranes for proton exchange membrane fuel cells
  publication-title: J Membr Sci
  contributor:
    fullname: McGrath
– volume: 5
  start-page: 13
  year: 1997
  end-page: 15
  ident: bib18
  article-title: The adsorption and organic modification of titanium dioxide
  publication-title: China Surf Detergent Cosmet
  contributor:
    fullname: Shao
– year: 1996
  ident: bib1
  article-title: Fuel for the fuel cell technology fuel cells and their applications
  contributor:
    fullname: Simader
– volume: 145
  start-page: 47
  year: 2001
  end-page: 51
  ident: bib28
  article-title: Sulfonated polysulfone ionomer membranes for fuel cells
  publication-title: Solid State Ionics
  contributor:
    fullname: Passalacqua
SSID ssj0017049
Score 2.4164212
Snippet In the present study, sulfonated polysulfone (sPS)/titanium dioxide (TiO 2) composite membranes for use in proton exchange membrane fuel cells (PEMFCs) were...
In the present study, sulfonated polysulfone (sPS)/titanium dioxide (TiO sub(2) composite membranes for use in proton exchange membrane fuel cells (PEMFCs)...
SourceID proquest
crossref
pascalfrancis
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 3467
SubjectTerms Applied sciences
Composite membrane
Energy
Energy. Thermal use of fuels
Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc
Exact sciences and technology
Fuel cells
Hydrogen embrittlement
Membranes
Operating temperature
PEM fuel cell
Polystyrene resins
Polysulfone
Polysulfone resins
Spark plasma sintering
Sulfonated polysulfone
TiO 2
Titanium dioxide
Title Preparation and characterization of sulfonated polysulfone/titanium dioxide composite membranes for proton exchange membrane fuel cells
URI https://dx.doi.org/10.1016/j.ijhydene.2009.02.019
https://search.proquest.com/docview/901663762
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA-iF0XET5wfIwev3Zoua5ujiDIVh6CCt5BP7Nja4VbQi1f_bV-adkwUPHhsmjbpe8n7aN77PYTONE1lIlMSEGpYQCOiAqn6NNCU9qwgsP1Cl5x8N4wHT_Tmuf-8gi6aXBgXVlnLfi_TK2ldt3RrananWdZ9ANnrUnBYyJwiqirXUlB_sKY7H4swD5LUJjB0DlzvpSzhUScbvbzD9jY1bmXUqRB3fldQm1MxA7JZX-_ih-iu9NHVNtqqDUl87ue6g1ZMvos2luAF99Dn_avx0N5FjkWusVqgM_vkS1xYPCvH1v1BNxpPi_G7vzSuKpLIs3KCdVa8ZdpgF3vuArwMnpgJuNggIjEYvNgBPcCbzJtPIV7cxbY0Y-zOBWb76Onq8vFiENSFFwJFaTgPNLGJ0IxIIoRKDLiYiRHSplbHArhnE8VikEu0D20i1saGIgUzi0mZMkWSXu8AreYw10OEqerHKtJhJCyhkWWyp6xSkUxScJXiVLZQt6E2n3p8Dd4Eno14wx9XLJPxMOLAnxZiDVP4t5XCQQn8-Wz7GxcXQ0bE4biFaQvhhq0c9pkjElCsKGcc7CYwzuDrj_4x_jFa96dRLmDyBK3OX0tzCkbNXLarVdtGa-fXt4PhF3ZO_L0
link.rule.ids 315,783,787,4509,24128,27936,27937,45597,45691
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwELYQHHYRQvtCFFjWh72mjVM3iY8IUZWnVlqQuFl-alO1SUUbCS5c-dvM1ElFtSvtgWMcJ3Zm7PHneOYbQn5anutM5yxi3ImIJ8xE2gx4ZDnve8Vg-sUYnHx9k47u-MX94H6DnLaxMOhW2dj-YNOX1rop6TXS7M2KovcbbC-G4IhY4EKEmWu3OOJjGNTd55WfB8saDAy1I6z-Jkx43C3Gf55gfruGuDLpLil3_r1C7czUHOTmQ8KLv2z3ckEafiK7DZKkJ6Gzn8mGK7-Q7Tf8gl_Jy68HF7i9q5Kq0lKzomcO0Ze08nReTzz-QneWzqrJU7h0mBZJlUU9pbaoHgvrKDqfo4eXo1M3hT022EgKiJci0wO8yT2GGOLVXeprN6F4MDD_Ru6GZ7eno6jJvBAZzuNFZJnPlBVMM6VM5mCPmTmlfe5tqkB9PjMiBcPEB1CmUut8rHLAWULrXBiW9ft7ZLOEvu4Tys0gNYmNE-UZT7zQfeONSXSWw14pzXWH9Fppy1kg2JCt59lYtvrBbJlCxokE_XSIaJUi14aKhFXgv88er2lx1WTCkMgtzjuEtmqVMNFQSCCxqp5LAE6AzuDrD97R_g_yYXR7fSWvzm8uD8nHcDSF3pNHZHPxULvvgHAW-ng5gl8BTIf-Vg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Preparation+and+characterization+of+sulfonated+polysulfone%2F+titanium+dioxide+composite+membranes+for+proton+exchange+membrane+fuel+cells&rft.jtitle=International+journal+of+hydrogen+energy&rft.au=DEVRIM%2C+Yilser&rft.au=ERKAN%2C+Serdar&rft.au=BAC%2C+Nurcan&rft.au=EROGLU%2C+Inci&rft.date=2009-05-01&rft.pub=Elsevier&rft.issn=0360-3199&rft.eissn=1879-3487&rft.volume=34&rft.issue=8&rft.spage=3467&rft.epage=3475&rft_id=info:doi/10.1016%2Fj.ijhydene.2009.02.019&rft.externalDBID=n%2Fa&rft.externalDocID=21433208
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-3199&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-3199&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-3199&client=summon