Full Matching in an Observational Study of Coaching for the SAT
Among matching techniques for observational studies, full matching is in principle the best, in the sense that its alignment of comparable treated and control subjects is as good as that of any alternate method, and potentially much better. This article evaluates the practical performance of full ma...
Saved in:
Published in | Journal of the American Statistical Association Vol. 99; no. 467; pp. 609 - 618 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Alexandria, VA
Taylor & Francis
01.09.2004
American Statistical Association Taylor & Francis Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Among matching techniques for observational studies, full matching is in principle the best, in the sense that its alignment of comparable treated and control subjects is as good as that of any alternate method, and potentially much better. This article evaluates the practical performance of full matching for the first time, modifying it in order to minimize variance as well as bias and then using it to compare coached and uncoached takers of the SAT. In this new version, with restrictions on the ratio of treated subjects to controls within matched sets, full matching makes use of many more observations than does pair matching, but achieves far closer matches than does matching with k≥ 2 controls. Prior to matching, the coached and uncoached groups are separated on the propensity score by 1.1 SDs. Full matching reduces this separation to 1% or 2% of an SD. In older literature comparing matching and regression, Cochran expressed doubts that any method of adjustment could substantially reduce observed bias of this magnitude.
To accommodate missing data, regression-based analyses by ETS researchers rejected a subset of the available sample that differed significantly from the subsample they analyzed. Full matching on the propensity score handles the same problem simply and without rejecting observations. In addition, it eases the detection and handling of nonconstancy of treatment effects, which the regression-based analyses had obscured, and it makes fuller use of covariate information. It estimates a somewhat larger effect of coaching on the math score than did ETS's methods. |
---|---|
AbstractList | Among matching techniques for observational studies, full matching is in principle the best, in the sense that its alignment of comparable treated and control subjects is as good as that of any alternate method, and potentially much better. This article evaluates the practical performance of full matching for the first time, modifying it in order to minimize variance as well as bias and then using it to compare coached and uncoached takers of the SAT. In this new version, with restrictions on the ratio of treated subjects to controls within matched sets, full matching makes use of many more observations than does pair matching, but achieves far closer matches than does matching with k ≥ controls. Prior to matching, the coached and uncoached groups are separated on the propensity score by 1.1 SDs. Full matching reduces this separation to 1% or 2% of an SD. In older literature comparing matching and regression. Cochran expressed doubts that any method of adjustment could substantially reduce observed bias of this magnitude. To accommodate missing data, regression-based analyses by ETS researchers rejected a subset of the available sample that differed significantly from the subsample they analyzed. Full matching on the propensity score handles the same problem simply and without rejecting observations. In addition, it eases the detection and handling of nonconstancy of treatment effects, which the regression-based analyses had obscured, and it makes fuller use of covariate information. It estimates a somewhat larger effect of coaching on the math score than did ETS's methods. Among matching techniques for observational studies, full matching is in principle the best, in the sense that its alignment of comparable treated and control subjects is as good as that of any alternate method, and potentially much better. This article evaluates the practical performance of full matching for the first time, modifying it in order to minimize variance as well as bias and then using it to compare coached and uncoached takers of the SAT. In this new version, with restrictions on the ratio of treated subjects to controls within matched sets, full matching makes use of many more observations than does pair matching, but achieves far closer matches than does matching with k is greater than or equal to 2 controls. Prior to matching, the coached and uncoached groups are separated on the propensity score by 1.1 SDs. Full matching reduces this separation to 1% or 2% of an SD. In older literature comparing matching and regression, Cochran expressed doubts that any method of adjustment could substantially reduce observed bias of this magnitude. To accommodate missing data, regression-based analyses by ETS researchers rejected a subset of the available sample that differed significantly from the subsample they analyzed. Full matching on the propensity score handles the same problem simply and without rejecting observations. In addition, it eases the detection and handling of nonconstancy of treatment effects, which the regression-based analyses had obscured, and it makes fuller use of covariate information. It estimates a somewhat larger effect of coaching on the math score than did ETS's methods. [PUBLICATION ABSTRACT] Among matching techniques for observational studies, full matching is in principle the best, in the sense that its alignment of comparable treated and control subjects is as good as that of any alternate method, and potentially much better. This article evaluates the practical performance of full matching for the first time, modifying it in order to minimize variance as well as bias and then using it to compare coached and uncoached takers of the SAT. In this new version, with restrictions on the ratio of treated subjects to controls within matched sets, full matching makes use of many more observations than does pair matching, but achieves far closer matches than does matching with k≥ 2 controls. Prior to matching, the coached and uncoached groups are separated on the propensity score by 1.1 SDs. Full matching reduces this separation to 1% or 2% of an SD. In older literature comparing matching and regression, Cochran expressed doubts that any method of adjustment could substantially reduce observed bias of this magnitude. To accommodate missing data, regression-based analyses by ETS researchers rejected a subset of the available sample that differed significantly from the subsample they analyzed. Full matching on the propensity score handles the same problem simply and without rejecting observations. In addition, it eases the detection and handling of nonconstancy of treatment effects, which the regression-based analyses had obscured, and it makes fuller use of covariate information. It estimates a somewhat larger effect of coaching on the math score than did ETS's methods. |
Author | Hansen, Ben B |
Author_xml | – sequence: 1 givenname: Ben B surname: Hansen fullname: Hansen, Ben B |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16120221$$DView record in Pascal Francis |
BookMark | eNp9kU1LHTEUhoMoeNX-gYIQCu1uaj4nM4tS5FLbguJCC92FczOZmktuYpNMy_33zXXUhQWzyeI8zwvnPUdoP8RgEXpLyUdK--6M0JZRIYkgD68Vag8tqOSqYUr83EeLHdBUoj9ERzmvd5DqugX6fDF5j6-gmDsXfmEXMAR8vco2_YHiYgCPb8o0bHEc8TLCTI0x4XJn8c357Qk6GMFn--bxP0Y_Lr7cLr81l9dfvy_PLxsjBCnNqhNWKdbzfpCU0JEBWQmhWssNGDlwPg4dWxmpLCHA-67lwhJJVGs4SFmBY_Rhzr1P8fdkc9Ebl431HoKNU9Zc9VJQwSr47gW4jlOqe2Rdq-gYVZxX6P0jBNmAHxME47K-T24DaatpSxlhjFaumzmTYs7Jjtq48tBLSeC8pkTv6tf_119V9kJ9Tn9NOp2ldS4xPRtMyZ4ILuv80zx3od5gA39j8oMusPUxPS3BX8n_B3kgoT0 |
CODEN | JSTNAL |
CitedBy_id | crossref_primary_10_1016_j_ejim_2014_09_010 crossref_primary_10_1080_2330443X_2021_1919260 crossref_primary_10_1097_PRS_0000000000006381 crossref_primary_10_2139_ssrn_4457748 crossref_primary_10_1214_19_STS740 crossref_primary_10_1080_01443410_2014_950194 crossref_primary_10_1002_sim_10336 crossref_primary_10_3102_0162373711421958 crossref_primary_10_1007_s11577_014_0253_x crossref_primary_10_1187_cbe_21_12_0332 crossref_primary_10_3390_toxics10100600 crossref_primary_10_1080_00273171_2014_928492 crossref_primary_10_1111_1475_6773_12628 crossref_primary_10_1007_s40471_017_0131_y crossref_primary_10_1016_j_tfp_2025_100792 crossref_primary_10_1017_bec_2021_2 crossref_primary_10_1016_j_ejor_2022_01_046 crossref_primary_10_1017_gmh_2024_121 crossref_primary_10_1016_j_learninstruc_2020_101398 crossref_primary_10_1016_j_ajem_2022_07_030 crossref_primary_10_1093_biomet_asaa072 crossref_primary_10_1177_0898264318782096 crossref_primary_10_1007_s12561_023_09405_6 crossref_primary_10_1080_15236803_2018_1429821 crossref_primary_10_1007_s10464_012_9559_x crossref_primary_10_1080_03610918_2014_920882 crossref_primary_10_1093_europace_euw110 crossref_primary_10_1177_0038040711417009 crossref_primary_10_1080_01621459_2018_1549050 crossref_primary_10_1111_biom_13741 crossref_primary_10_1186_s13023_025_03662_y crossref_primary_10_1016_j_spl_2011_03_002 crossref_primary_10_1146_annurev_lawsocsci_102510_105423 crossref_primary_10_1214_20_AOAS1329 crossref_primary_10_1038_s43247_024_01845_2 crossref_primary_10_1111_rssb_12290 crossref_primary_10_7326_M21_4130 crossref_primary_10_1177_10575677221082071 crossref_primary_10_3390_cancers12103035 crossref_primary_10_1007_s40865_019_00131_6 crossref_primary_10_3389_fpsyg_2023_1210958 crossref_primary_10_1080_10824669_2010_495689 crossref_primary_10_1080_19345747_2016_1273412 crossref_primary_10_1214_19_AOAS1255 crossref_primary_10_1080_01621459_2020_1870476 crossref_primary_10_1097_MLR_0000000000001923 crossref_primary_10_1093_biomtc_ujae061 crossref_primary_10_7554_eLife_65133 crossref_primary_10_1002_sim_8754 crossref_primary_10_1093_aje_kwu469 crossref_primary_10_1016_j_brat_2019_103412 crossref_primary_10_1016_j_ijrobp_2018_01_069 crossref_primary_10_3945_ajcn_115_125914 crossref_primary_10_1016_j_jvs_2013_11_091 crossref_primary_10_1016_j_otsr_2024_103878 crossref_primary_10_1111_rssb_12027 crossref_primary_10_1177_20570473251323752 crossref_primary_10_1053_j_nainr_2009_12_010 crossref_primary_10_47040_sd0000060 crossref_primary_10_1002_ir_20065 crossref_primary_10_1176_appi_ajp_2011_11060948 crossref_primary_10_1177_10704965241305838 crossref_primary_10_2139_ssrn_3694749 crossref_primary_10_1007_s00134_016_4338_z crossref_primary_10_1186_s12874_023_01977_7 crossref_primary_10_1080_10888691_2014_977995 crossref_primary_10_1111_liv_13166 crossref_primary_10_1001_jamanetworkopen_2022_50401 crossref_primary_10_1001_jamanetworkopen_2024_18887 crossref_primary_10_1093_ehjacc_zuae012 crossref_primary_10_1093_pan_mpl013 crossref_primary_10_1016_j_jpedsurg_2024_08_016 crossref_primary_10_1080_10618600_2025_2461222 crossref_primary_10_5172_ijtr_2012_10_3_219 crossref_primary_10_1016_j_envres_2014_10_031 crossref_primary_10_1097_MAT_0000000000000629 crossref_primary_10_1111_ajps_12154 crossref_primary_10_1002_sim_8764 crossref_primary_10_2139_ssrn_2857703 crossref_primary_10_2139_ssrn_5095080 crossref_primary_10_1177_1532673X09333960 crossref_primary_10_1002_sim_8084 crossref_primary_10_1002_bimj_202100292 crossref_primary_10_1016_j_inteco_2022_08_005 crossref_primary_10_1177_2332858417743754 crossref_primary_10_1016_j_jtct_2024_05_016 crossref_primary_10_3390_ijerph17197228 crossref_primary_10_1002_pst_2336 crossref_primary_10_1080_19466315_2019_1647873 crossref_primary_10_1080_00273171_2011_568786 crossref_primary_10_1093_aje_kwn184 crossref_primary_10_1007_s40264_016_0412_2 crossref_primary_10_1007_s40264_022_01171_6 crossref_primary_10_1080_10618600_2019_1593179 crossref_primary_10_1002_sim_6593 crossref_primary_10_1002_sim_4057 crossref_primary_10_1016_j_brat_2017_01_005 crossref_primary_10_1093_bioinformatics_btn650 crossref_primary_10_1016_j_ejso_2020_09_038 crossref_primary_10_1111_ssqu_12040 crossref_primary_10_1177_26320843241310182 crossref_primary_10_1016_j_sciaf_2020_e00683 crossref_primary_10_1080_02671522_2014_919523 crossref_primary_10_3389_fpsyg_2021_770425 crossref_primary_10_3390_cancers14215307 crossref_primary_10_1056_NEJMsa1414953 crossref_primary_10_1080_07350015_2024_2403381 crossref_primary_10_1080_02699052_2020_1802663 crossref_primary_10_1007_s11162_024_09795_6 crossref_primary_10_1007_s00482_014_1476_5 crossref_primary_10_1007_s10742_019_00197_1 crossref_primary_10_47040_sd_sdpsych_v9i2_79 crossref_primary_10_1016_j_worlddev_2009_05_002 crossref_primary_10_1016_j_clcc_2018_04_001 crossref_primary_10_1093_epirev_mxab003 crossref_primary_10_1080_0376835X_2021_1984874 crossref_primary_10_1080_02664763_2016_1266468 crossref_primary_10_1097_JOM_0000000000003117 crossref_primary_10_1016_j_jsp_2019_07_015 crossref_primary_10_1177_0962280215584401 crossref_primary_10_1136_tsaco_2024_001439 crossref_primary_10_2139_ssrn_3691925 crossref_primary_10_1016_S2666_5247_23_00103_9 crossref_primary_10_1080_07350015_2019_1609974 crossref_primary_10_1371_journal_pdig_0000421 crossref_primary_10_3389_fgene_2020_585804 crossref_primary_10_1080_00031305_2021_1972835 crossref_primary_10_1016_j_cedpsych_2016_06_001 crossref_primary_10_1177_09622802221133556 crossref_primary_10_1080_01621459_2020_1720693 crossref_primary_10_1097_JOM_0000000000002703 crossref_primary_10_1111_1475_6773_12156 crossref_primary_10_1080_03054985_2023_2187364 crossref_primary_10_1542_peds_2016_1692 crossref_primary_10_1080_00220973_2017_1409179 crossref_primary_10_1080_19466315_2021_1883474 crossref_primary_10_1515_jci_2022_0016 crossref_primary_10_1002_sim_3669 crossref_primary_10_1016_j_jamda_2011_03_004 crossref_primary_10_1007_s11233_018_09015_8 crossref_primary_10_1093_jrsssb_qkae033 crossref_primary_10_1177_0886260513505219 crossref_primary_10_2139_ssrn_3096855 crossref_primary_10_3102_0013189X19848724 crossref_primary_10_1007_s40264_018_0682_y crossref_primary_10_1177_23328584211033878 crossref_primary_10_1214_18_AOAS1153 crossref_primary_10_1080_00031305_2024_2303419 crossref_primary_10_1177_2380084419830655 crossref_primary_10_1080_19466315_2023_2182356 crossref_primary_10_1002_sim_6252 crossref_primary_10_1187_cbe_24_02_0047 crossref_primary_10_1093_aje_kwq224 crossref_primary_10_2139_ssrn_3942738 crossref_primary_10_3102_1076998620914003 crossref_primary_10_1177_0962280215601134 crossref_primary_10_1016_j_csda_2018_05_003 crossref_primary_10_1038_s41467_025_56287_x crossref_primary_10_1080_0164212X_2015_1104274 crossref_primary_10_1002_cjs_11783 crossref_primary_10_1214_24_AOAS1949 crossref_primary_10_1016_j_ssmph_2024_101629 crossref_primary_10_1002_rev3_3442 crossref_primary_10_1002_sim_7919 crossref_primary_10_1080_00273171_2011_540475 crossref_primary_10_2139_ssrn_4480617 crossref_primary_10_1016_j_seps_2023_101798 crossref_primary_10_1017_psrm_2015_74 crossref_primary_10_3389_fphar_2019_00973 crossref_primary_10_1007_s11199_013_0261_8 crossref_primary_10_1080_14999013_2018_1451415 crossref_primary_10_1214_22_AOAS1635 crossref_primary_10_1213_ANE_0000000000006038 crossref_primary_10_1016_j_ijedudev_2016_01_008 crossref_primary_10_1007_s00432_023_04654_w crossref_primary_10_1214_19_AOS1929 crossref_primary_10_1007_s12564_023_09906_5 crossref_primary_10_1016_j_jpubeco_2024_105121 crossref_primary_10_1198_tast_2011_08294 crossref_primary_10_2139_ssrn_3499808 crossref_primary_10_1097_QMH_0000000000000203 crossref_primary_10_1007_s41237_018_0058_8 crossref_primary_10_1371_journal_pone_0223360 crossref_primary_10_2139_ssrn_3057388 crossref_primary_10_1177_09622802241262527 crossref_primary_10_1016_j_jaccpubpol_2023_107080 crossref_primary_10_1002_sim_7808 crossref_primary_10_1002_sim_3207 crossref_primary_10_1177_0049124106289164 crossref_primary_10_1016_j_jbi_2021_103940 crossref_primary_10_1080_19345747_2014_911396 crossref_primary_10_1111_all_13156 crossref_primary_10_1146_annurev_statistics_031219_041058 crossref_primary_10_1080_00031305_2020_1867638 crossref_primary_10_1080_15512169_2014_985105 crossref_primary_10_1186_s40100_023_00292_5 crossref_primary_10_1007_s11109_013_9254_0 crossref_primary_10_1111_soc4_12344 crossref_primary_10_1002_sim_6276 crossref_primary_10_1080_07418825_2015_1016089 crossref_primary_10_1002_sim_5984 crossref_primary_10_3102_0013189X231179111 crossref_primary_10_1080_19345747_2020_1823538 crossref_primary_10_1002_sim_6030 crossref_primary_10_1007_s40264_015_0292_x crossref_primary_10_1080_00036846_2021_2002803 crossref_primary_10_1080_01621459_2012_703874 crossref_primary_10_1002_sim_10186 crossref_primary_10_1111_bcp_15144 crossref_primary_10_1007_s12630_023_02514_2 crossref_primary_10_21032_jhis_2022_47_S1_9 crossref_primary_10_1007_s12561_011_9036_3 crossref_primary_10_1002_sim_6602 crossref_primary_10_3390_cancers13071613 crossref_primary_10_1038_s41559_024_02458_w crossref_primary_10_1016_j_ssresearch_2015_01_007 crossref_primary_10_1007_s10742_006_0016_x crossref_primary_10_1080_01621459_2016_1138865 crossref_primary_10_1002_sim_9437 crossref_primary_10_3390_ijerph18136694 crossref_primary_10_1088_1748_9326_aafa8f crossref_primary_10_1177_0962280215570722 crossref_primary_10_21032_jhis_2022_47_S1_S9 crossref_primary_10_1080_0960085X_2020_1850185 crossref_primary_10_1177_13691481221124850 crossref_primary_10_1093_aje_kwad196 crossref_primary_10_2196_38680 crossref_primary_10_1016_j_csda_2021_107364 crossref_primary_10_1111_1468_0009_12355 crossref_primary_10_1186_s12889_019_6945_4 crossref_primary_10_1515_jci_2022_0055 crossref_primary_10_1007_s42001_024_00316_0 crossref_primary_10_1177_1866802X1801000202 crossref_primary_10_1093_aje_kwv280 crossref_primary_10_1002_sim_6735 crossref_primary_10_1016_j_cstp_2024_101203 crossref_primary_10_1111_cobi_14393 crossref_primary_10_3102_1076998620946272 crossref_primary_10_1111_j_1540_6288_2007_00177_x crossref_primary_10_1080_01621459_2020_1737078 crossref_primary_10_1214_08_AOAS233 crossref_primary_10_3389_fpsyg_2016_01096 crossref_primary_10_1080_10618600_2020_1753532 crossref_primary_10_1002_ueg2_12735 crossref_primary_10_1287_mnsc_2019_3430 crossref_primary_10_1080_10543406_2021_1918140 crossref_primary_10_1111_ajps_12685 crossref_primary_10_1186_s12889_021_11705_9 crossref_primary_10_1080_10543406_2016_1226328 crossref_primary_10_1111_rssb_12424 crossref_primary_10_1007_s40865_023_00233_2 crossref_primary_10_1186_s12874_021_01454_z crossref_primary_10_1001_jamanetworkopen_2024_57300 crossref_primary_10_1093_biomet_asae036 crossref_primary_10_1509_jm_09_0081 crossref_primary_10_2139_ssrn_2032645 crossref_primary_10_1007_s11162_013_9325_4 crossref_primary_10_1007_s11336_012_9262_8 crossref_primary_10_1198_106186006X137047 crossref_primary_10_1111_j_1467_9531_2008_00204_x crossref_primary_10_1016_j_cedpsych_2018_09_004 crossref_primary_10_1007_s10742_023_00304_3 crossref_primary_10_1016_j_ecresq_2014_06_005 crossref_primary_10_1080_01402382_2024_2421661 crossref_primary_10_1016_j_ecolecon_2024_108178 crossref_primary_10_1002_sim_9698 crossref_primary_10_1007_s11292_022_09532_y crossref_primary_10_1016_j_jeconom_2012_11_006 crossref_primary_10_1016_j_jpeds_2016_11_039 crossref_primary_10_1177_1178221819874351 crossref_primary_10_1002_cncr_30448 crossref_primary_10_1002_sim_8489 crossref_primary_10_1214_15_AOAS894 crossref_primary_10_1093_aje_kwz093 crossref_primary_10_1111_j_1467_985X_2010_00673_x crossref_primary_10_1111_j_1541_0420_2009_01364_x crossref_primary_10_5351_KJAS_2024_37_5_675 crossref_primary_10_1017_S0007123421000028 crossref_primary_10_4137_CIN_S16352 crossref_primary_10_1146_annurev_polisci_11_060606_135444 crossref_primary_10_1177_1091142113482570 crossref_primary_10_3389_fpsyg_2023_1212556 crossref_primary_10_1161_CIRCINTERVENTIONS_114_001880 crossref_primary_10_1186_s40536_016_0022_6 crossref_primary_10_1111_ans_18848 crossref_primary_10_1080_01621459_2015_1112802 crossref_primary_10_1136_jim_2016_000218 crossref_primary_10_1017_pan_2020_32 crossref_primary_10_1080_00031305_2022_2051605 crossref_primary_10_1111_biom_12077 crossref_primary_10_1177_1708538116684942 crossref_primary_10_1002_sce_21926 crossref_primary_10_1080_10509674_2013_801385 crossref_primary_10_1002_hec_4149 crossref_primary_10_1016_j_bas_2023_102702 crossref_primary_10_1177_0013164414565006 crossref_primary_10_1007_s12564_024_09957_2 crossref_primary_10_1038_mp_2010_42 crossref_primary_10_1080_00031305_2020_1737229 crossref_primary_10_1162_REST_a_00318 crossref_primary_10_1002_sim_8147 crossref_primary_10_1002_pst_1580 crossref_primary_10_1080_01621459_2012_682537 crossref_primary_10_1214_24_STS945 crossref_primary_10_1111_rssc_12443 crossref_primary_10_1002_sim_5795 crossref_primary_10_1016_j_pmip_2017_07_003 crossref_primary_10_2139_ssrn_3256746 crossref_primary_10_1007_s11162_008_9103_x crossref_primary_10_2139_ssrn_3037012 crossref_primary_10_1093_pan_mps025 crossref_primary_10_1093_biomet_asaa024 crossref_primary_10_1080_15427609_2017_1370967 crossref_primary_10_1111_spsr_12120 crossref_primary_10_1177_0010414013512601 crossref_primary_10_1080_01621459_2019_1609973 crossref_primary_10_1097_EDE_0000000000001517 crossref_primary_10_1016_j_gloenvcha_2024_102838 crossref_primary_10_1111_peps_12020 crossref_primary_10_1016_j_vaccine_2019_09_024 crossref_primary_10_1093_jnci_djae188 crossref_primary_10_1162_rest_89_4_761 crossref_primary_10_1007_s11127_010_9690_x crossref_primary_10_1136_bmjgh_2023_013787 crossref_primary_10_3390_math11214506 crossref_primary_10_1214_16_AOAS962 crossref_primary_10_3150_22_BEJ1533 crossref_primary_10_1177_1476718X13507445 crossref_primary_10_1002_sim_6532 crossref_primary_10_1198_106186008X385806 crossref_primary_10_1093_biomet_asz050 crossref_primary_10_1007_s10995_012_1088_6 crossref_primary_10_1017_bca_2018_17 crossref_primary_10_1016_j_rcot_2024_03_012 crossref_primary_10_2139_ssrn_2385856 crossref_primary_10_1177_0733464819901094 crossref_primary_10_1177_0962280218799540 crossref_primary_10_1111_j_1540_5907_2011_00544_x crossref_primary_10_1038_s41893_019_0277_3 crossref_primary_10_1002_gepi_21611 crossref_primary_10_1177_0002716217734810 crossref_primary_10_1002_gepi_20403 crossref_primary_10_1007_s12103_010_9088_9 crossref_primary_10_1177_0193841X09334028 crossref_primary_10_1002_sim_5339 crossref_primary_10_1007_s00180_012_0306_4 crossref_primary_10_1111_tri_13416 crossref_primary_10_1186_s12872_020_01506_0 crossref_primary_10_1024_1010_0652_a000001 crossref_primary_10_1145_3648356 crossref_primary_10_1016_j_breast_2019_10_003 crossref_primary_10_1016_j_jcrimjus_2014_05_004 crossref_primary_10_1080_00461520_2016_1207177 crossref_primary_10_1111_j_1465_7287_2011_00258_x crossref_primary_10_1371_journal_pone_0169756 crossref_primary_10_1214_09_STS313 crossref_primary_10_1007_s00270_017_1736_8 crossref_primary_10_1186_1471_2431_14_104 crossref_primary_10_3102_0013189X07303396 crossref_primary_10_3389_fpubh_2024_1412670 crossref_primary_10_1080_01621459_2015_1120675 crossref_primary_10_1002_nav_21897 crossref_primary_10_1002_sim_9010 |
Cites_doi | 10.1080/09332480.2001.10542245 |
ContentType | Journal Article |
Copyright | American Statistical Association 2004 Copyright 2004 American Statistical Association 2004 INIST-CNRS Copyright American Statistical Association Sep 2004 |
Copyright_xml | – notice: American Statistical Association 2004 – notice: Copyright 2004 American Statistical Association – notice: 2004 INIST-CNRS – notice: Copyright American Statistical Association Sep 2004 |
DBID | AAYXX CITATION IQODW 3V. 7WY 7WZ 7X7 7XB 87Z 88E 88I 8AF 8BJ 8C1 8FE 8FG 8FI 8FJ 8FK 8FL 8G5 ABJCF ABUWG AFKRA AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FQK FRNLG FYUFA F~G GHDGH GNUQQ GUQSH HCIFZ JBE K60 K6~ K9- K9. L.- L6V M0C M0R M0S M0T M1P M2O M2P M7S MBDVC PADUT PHGZM PHGZT PJZUB PKEHL PPXIY PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYYUZ Q9U S0X |
DOI | 10.1198/016214504000000647 |
DatabaseName | CrossRef Pascal-Francis ProQuest Central (Corporate) ABI/INFORM Collection ABI/INFORM Global (PDF only) Health & Medical Collection ProQuest Central (purchase pre-March 2016) ABI/INFORM Global (Alumni) Medical Database (Alumni Edition) Science Database (Alumni Edition) STEM Database International Bibliography of the Social Sciences (IBSS) Public Health Database ProQuest SciTech Collection ProQuest Technology Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Research Library Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central Business Premium Collection Technology Collection ProQuest One Community College ProQuest Central International Bibliography of the Social Sciences Business Premium Collection (Alumni) Health Research Premium Collection ABI/INFORM Global (Corporate) Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library SciTech Premium Collection International Bibliography of the Social Sciences ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Consumer Health Database (Alumni) ProQuest Health & Medical Complete (Alumni) ABI/INFORM Professional Advanced ProQuest Engineering Collection ABI/INFORM Global Consumer Health Database ProQuest Health & Medical Collection Healthcare Administration Database Medical Database Research Library Science Database Engineering Database Research Library (Corporate) Research Library China ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ABI/INFORM Collection China ProQuest Central Basic SIRS Editorial |
DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) Research Library Prep ProQuest Central Student ProQuest Central Essentials ProQuest AP Science SciTech Premium Collection ProQuest Central China ABI/INFORM Complete ProQuest One Applied & Life Sciences Health Research Premium Collection Health & Medical Research Collection ProQuest Central (New) Research Library China ProQuest Medical Library (Alumni) Engineering Collection Business Premium Collection ABI/INFORM Global Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Family Health ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) ProQuest Business Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection ProQuest One Academic Middle East (New) SIRS Editorial ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Family Health (Alumni Edition) ProQuest Central ABI/INFORM Professional Advanced ProQuest Health & Medical Research Collection ProQuest Engineering Collection International Bibliography of the Social Sciences (IBSS) Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Research Library ABI/INFORM Complete (Alumni Edition) ProQuest Public Health ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Health Management ABI/INFORM China ProQuest SciTech Collection ProQuest Medical Library Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
DatabaseTitleList | ProQuest Business Collection (Alumni Edition) |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics Mathematics |
EISSN | 1537-274X |
EndPage | 618 |
ExternalDocumentID | 699070821 16120221 10_1198_016214504000000647 27590435 10709611 |
Genre | Article Feature |
GroupedDBID | -DZ -~X ..I .7F .GJ .QJ 0BK 0R~ 29L 2AX 30N 3R3 3V. 4.4 5GY 5RE 692 7WY 7X7 85S 88E 88I 8AF 8C1 8FE 8FG 8FI 8FJ 8FL 8G5 8R4 8R5 AABCJ AAENE AAHBH AAJMT AALDU AAMIU AAPUL AAQRR ABBHK ABCCY ABEHJ ABFAN ABFIM ABJCF ABJNI ABLIJ ABLJU ABPAQ ABPEM ABPFR ABPPZ ABPQH ABTAI ABUWG ABXSQ ABXUL ABXYU ABYAD ABYWD ACAGQ ACGFO ACGFS ACGOD ACIWK ACMTB ACNCT ACTIO ACTMH ACTWD ACUBG ADBBV ADCVX ADGTB ADLSF ADMHG ADODI ADULT AEISY AELPN AENEX AEOZL AEPSL AEUPB AEYOC AFFNX AFKRA AFSUE AFVYC AFXHP AGDLA AGMYJ AGROQ AHDZW AHMOU AI. AIJEM AKBVH AKOOK ALCKM ALIPV ALMA_UNASSIGNED_HOLDINGS ALQZU ALRMG AMEWO AQRUH AQUVI AVBZW AWYRJ AZQEC BENPR BEZIV BGLVJ BKNYI BKOMP BLEHA BPHCQ BVXVI CCCUG CCPQU CJ0 CRFIH CS3 D0L DGEBU DKSSO DMQIW DQDLB DSRWC DU5 DWQXO EBS ECEWR EJD E~A E~B F5P FEDTE FJW FRNLG FVMVE FYUFA GNUQQ GROUPED_ABI_INFORM_COMPLETE GROUPED_ABI_INFORM_RESEARCH GTTXZ GUQSH H13 HCIFZ HF~ HMCUK HQ6 HVGLF HZ~ H~9 H~P IAO IEA IGG IOF IPO IPSME J.P JAAYA JAS JBMMH JBZCM JENOY JHFFW JKQEH JLEZI JLXEF JMS JPL JSODD JST K60 K6~ K9- KYCEM L6V LU7 M0C M0R M0T M1P M2O M2P M4Z M7S MS~ MVM MW2 N95 NA5 NY~ O9- OFU OK1 P-O P2P PADUT PQBIZ PQBZA PQQKQ PRG PROAC PSQYO PTHSS Q2X QCRFL RIG RNANH RNS ROSJB RTWRZ RWL RXW S-T S0X SA0 SJN SNACF TAE TBQAZ TDBHL TEJ TFL TFT TFW TN5 TOXWX TTHFI TUROJ U5U UKHRP UPT UT5 UU3 VH1 VOH WH7 WHG WZA YQT YYM YYP ZGOLN ~S~ AAGDL AAHIA AAWIL ABAWQ ACHJO ADYSH AFRVT AGLNM AIHAF AIYEW AMPGV PHGZM PHGZT .-4 07G 1OL AAAVZ AAFWJ AAIKQ AAKBW AAYXX ABEFU ABRLO ACGEE ADXHL AEUMN AFQQW AGCQS AGLEN AMATQ AMVHM AMXXU BCCOT BPLKW C06 CITATION DWIFK E.L HGD IPNFZ IVXBP KQ8 LJTGL NHB NUSFT TAQ TFMCV UB9 UQL YXB ZCG ZGI ZUP ZXP IQODW PJZUB PPXIY PQGLB TASJS 7XB 8BJ 8FK FQK JBE K9. L.- MBDVC PKEHL PQEST PQUKI PRINS Q9U |
ID | FETCH-LOGICAL-c440t-b84e772939d5101f2a0b4476e3cac5d33fd82bc57e00a398634e05076c3a555d3 |
IEDL.DBID | 7X7 |
ISSN | 0162-1459 |
IngestDate | Fri Jul 11 00:11:39 EDT 2025 Wed Aug 13 06:41:00 EDT 2025 Mon Jul 21 09:15:28 EDT 2025 Tue Jul 01 01:32:55 EDT 2025 Thu Apr 24 23:02:11 EDT 2025 Thu Jun 19 14:56:23 EDT 2025 Wed Dec 25 09:07:31 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 467 |
Keywords | Data analysis Prior distribution Treatment efficiency Bias Regression analysis Covariate Variance Statistical method Statistical regression Missing data Treatment effect Application Biased estimation |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c440t-b84e772939d5101f2a0b4476e3cac5d33fd82bc57e00a398634e05076c3a555d3 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 |
PQID | 274821733 |
PQPubID | 41715 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_37954142 proquest_journals_274821733 pascalfrancis_primary_16120221 crossref_citationtrail_10_1198_016214504000000647 informaworld_taylorfrancis_310_1198_016214504000000647 crossref_primary_10_1198_016214504000000647 jstor_primary_27590435 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2004-09-01 |
PublicationDateYYYYMMDD | 2004-09-01 |
PublicationDate_xml | – month: 09 year: 2004 text: 2004-09-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Alexandria, VA |
PublicationPlace_xml | – name: Alexandria, VA – name: Alexandria |
PublicationTitle | Journal of the American Statistical Association |
PublicationYear | 2004 |
Publisher | Taylor & Francis American Statistical Association Taylor & Francis Ltd |
Publisher_xml | – name: Taylor & Francis – name: American Statistical Association – name: Taylor & Francis Ltd |
References | (p_17); 58 Propensity Score Using Subclassification (p_28); 79 (p_12); 94 (p_3); 14 (p_14); 2 Journal (p_6); 128 (p_30); 39 Has Been Variable That (p_25); 147 |
References_xml | – volume: 128 start-page: 234 ident: p_6 publication-title: Royal Statistical Society – volume: 94 start-page: 1053 ident: p_12 publication-title: Statistical Association – volume: 39 start-page: 33 ident: p_30 publication-title: Statistician – volume: 58 start-page: 690 ident: p_17 publication-title: Association – volume: 2 start-page: 405 ident: p_14 publication-title: Graphical Statistics – volume: 14 start-page: 10 ident: p_3 publication-title: Chance doi: 10.1080/09332480.2001.10542245 – volume: 147 start-page: 656 ident: p_25 publication-title: Ser. A – volume: 79 start-page: 516 ident: p_28 publication-title: American Statistical Association |
SSID | ssj0000788 |
Score | 2.3551714 |
SecondaryResourceType | review_article |
Snippet | Among matching techniques for observational studies, full matching is in principle the best, in the sense that its alignment of comparable treated and control... |
SourceID | proquest pascalfrancis crossref jstor informaworld |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 609 |
SubjectTerms | Algorithms Applications Applications and Case Studies Attitudes Coaching Control groups Data analysis Data collection Exact sciences and technology General topics Graph algorithm Intelligence Linear inference, regression Matching with multiple controls Mathematics Men Methodology Modeling Multivariate analysis Network flow Observational studies Optimal matching Pretests Probability Probability and statistics Propensity score Quasiexperiment SAT assessment Sciences and techniques of general use Secondary school mathematics Socioeconomic status Standardized tests Statistical methods Statistics |
Title | Full Matching in an Observational Study of Coaching for the SAT |
URI | https://www.tandfonline.com/doi/abs/10.1198/016214504000000647 https://www.jstor.org/stable/27590435 https://www.proquest.com/docview/274821733 https://www.proquest.com/docview/37954142 |
Volume | 99 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDLZgu3BBPEV5jBy4oYo2aZv0hMbEmJA2EA9ptypNUwkJtcDGgX-P3RcgpF16SGs1shPns_vVBjjLZGQwyjAY5HAqqo3LWAc-BiupkoJbKQJNCf3pLJo8B7fzcN5wcxYNrbL1iZWjzkpDOfILjJ4UwmchLt_eXWoaRR9Xmw4a69CnymXE6JJz-eOIZdV2EkENd_0gjNt_ZmJ1QWM4RCu48tjUXeXXufSnamnLVCTapF6g5vK65cU_710dSeMt2GywJBvWxt-GNVvswAbBx7r68i5cUoTJpuhuKdHEXgqmC3aXdplYlCYi4RcrczYqa14lwzkxhIXscfi0B8_j66fRxG1aJriocW_ppiqwhJdFnNFmy7n20iCQkRVGmzATIs8UT00oredpEatIBNZDSBgZocMQH9iHXlEW9gAYz2MU1ManAjih8pSxVEs_Uibl3ObWAb9VWGKaeuLU1uI1qeKKWCX_lezAeSfzVlfTWPl09NsOybLKYTTaT8Qqwf3KYt07uAxjD4GhA4M_JvyZBAI9RDO-A0etTZNmMy-Sbuk5cNrdxV1In1Z0YctPnIyMqZ86P1wpfwQbNfGHKGrH0Ft-fNoTxDTLdFCtXLyqkU_X8c0A-lfXs_uHb4xM7j0 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT-QwDLZgOCwXxGMR5ZkDnFBFm7RNekAI8dDwGDjsIM2tm6aptNKqBWYQmh_Ff8TuCxDS3Li2cRvFjv3ZcWyA_UxGBr0Mg04Op6LaKMY68NFZSZUU3EoRaAroD-6i_kNwPQpHc_DW3oWhtMpWJ1aKOisNxciP0HtSCJ-FOHl8cqlpFB2uth00aqm4sdNX9NjGx1fnyN4Dzi8vhmd9t2kq4OKcvImbqsASohRxRuKYc-2lQSAjK4w2YSZEnimemlBaz9MiVpEIrIegKTJChyEOwO_OwwLaXY82lBzJD8UvqzaXCKK46wdh3N7RidURPcNHtGMqC0HdXD7ZwS9VUtvMSErT1GPkVF632PhmLSoTeLkMSw12Zae1sK3AnC1WYZHgal3teQ1OyKNlA1TvFNhi_wqmC3afdpFfpKbExSkrc3ZW1nmcDOfEEIayP6fD3_DwI6u5Dr2iLOwGMJ7HSKiNTwV3QuUpY6l2f6RMyrnNrQN-u2CJaeqXUxuN_0nlx8Qq-b7IDhx2NI919Y6Zo6PPfEgmVcykWf1EzCJcrzjW_YPLMPYQiDqw-4WFH5NAYInoyXdgq-Vp0iiPcdKJugN73Vvc9XSUowtbvuBkZEz92_nmTPo9-NUfDm6T26u7my1YrJOOKD1uG3qT5xe7g3hqku5WUszg709vm3cGtCZo |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDCb6AIpe1m5rMa-P6LDbkNaRZEs-FUG6oGvXdMASoDdDlmVg2OAUi3PYfv1Iy06WZughZ4u2HiT9kaY_AnzIVWwxyrAY5HAi1UY1NrKHwUqmleBOCWkooX8_im8m8vYxemwSbrOmrJJi6MITRdS-moz7KS-8gSf6ElEK8WuT-tXuVqpt2I2JOZx-4QhHS0-s6r6TNL6LAkn708x_77HyYlqhLW1LFalu0sxw6wrf82LNfdfvpOEBpO1qfCnKj4t5lV3YP8-IHjdf7iG8auAq63v9eg1brnwD-4RQPcHzW7iiIJbdo0enXBb7XjJTsodskexFaapV_M2mBRtMfekmw1UzRJ7sW398BJPhp_Hgptt0ZejioYZVN9PSESQXSU72XHATZlKq2AlrbJQLUeSaZzZSLgyNSHQspAsRdcZWmCjCAcewU05L9w4YLxIUNLZHHDuRDrV1RNcfa5tx7goXQK89ktQ2lOXUOeNnWocuiU7X9yaAjwuZJ0_Y8eLo-N-TTqs6TdKcbypeEjyudWLxDK6iJETsGcD5ipIsJ4FYEgFTL4CTVmvSxl_MUFpqDA6FCKCzuIqGTl9vTOmmc5yMSqhlO3-_6ZQ7sPf1eph--Ty6O4F9X4FEtXKnsFP9mrszBFdVdl5b0F9BTxCV |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Full+Matching+in+an+Observational+Study+of+Coaching+for+the+SAT&rft.jtitle=Journal+of+the+American+Statistical+Association&rft.au=Hansen%2C+Ben+B&rft.date=2004-09-01&rft.pub=Taylor+%26+Francis&rft.issn=0162-1459&rft.eissn=1537-274X&rft.volume=99&rft.issue=467&rft.spage=609&rft.epage=618&rft_id=info:doi/10.1198%2F016214504000000647&rft.externalDocID=10709611 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-1459&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-1459&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-1459&client=summon |