Full Matching in an Observational Study of Coaching for the SAT

Among matching techniques for observational studies, full matching is in principle the best, in the sense that its alignment of comparable treated and control subjects is as good as that of any alternate method, and potentially much better. This article evaluates the practical performance of full ma...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Statistical Association Vol. 99; no. 467; pp. 609 - 618
Main Author Hansen, Ben B
Format Journal Article
LanguageEnglish
Published Alexandria, VA Taylor & Francis 01.09.2004
American Statistical Association
Taylor & Francis Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Among matching techniques for observational studies, full matching is in principle the best, in the sense that its alignment of comparable treated and control subjects is as good as that of any alternate method, and potentially much better. This article evaluates the practical performance of full matching for the first time, modifying it in order to minimize variance as well as bias and then using it to compare coached and uncoached takers of the SAT. In this new version, with restrictions on the ratio of treated subjects to controls within matched sets, full matching makes use of many more observations than does pair matching, but achieves far closer matches than does matching with k≥ 2 controls. Prior to matching, the coached and uncoached groups are separated on the propensity score by 1.1 SDs. Full matching reduces this separation to 1% or 2% of an SD. In older literature comparing matching and regression, Cochran expressed doubts that any method of adjustment could substantially reduce observed bias of this magnitude. To accommodate missing data, regression-based analyses by ETS researchers rejected a subset of the available sample that differed significantly from the subsample they analyzed. Full matching on the propensity score handles the same problem simply and without rejecting observations. In addition, it eases the detection and handling of nonconstancy of treatment effects, which the regression-based analyses had obscured, and it makes fuller use of covariate information. It estimates a somewhat larger effect of coaching on the math score than did ETS's methods.
AbstractList Among matching techniques for observational studies, full matching is in principle the best, in the sense that its alignment of comparable treated and control subjects is as good as that of any alternate method, and potentially much better. This article evaluates the practical performance of full matching for the first time, modifying it in order to minimize variance as well as bias and then using it to compare coached and uncoached takers of the SAT. In this new version, with restrictions on the ratio of treated subjects to controls within matched sets, full matching makes use of many more observations than does pair matching, but achieves far closer matches than does matching with k ≥ controls. Prior to matching, the coached and uncoached groups are separated on the propensity score by 1.1 SDs. Full matching reduces this separation to 1% or 2% of an SD. In older literature comparing matching and regression. Cochran expressed doubts that any method of adjustment could substantially reduce observed bias of this magnitude. To accommodate missing data, regression-based analyses by ETS researchers rejected a subset of the available sample that differed significantly from the subsample they analyzed. Full matching on the propensity score handles the same problem simply and without rejecting observations. In addition, it eases the detection and handling of nonconstancy of treatment effects, which the regression-based analyses had obscured, and it makes fuller use of covariate information. It estimates a somewhat larger effect of coaching on the math score than did ETS's methods.
Among matching techniques for observational studies, full matching is in principle the best, in the sense that its alignment of comparable treated and control subjects is as good as that of any alternate method, and potentially much better. This article evaluates the practical performance of full matching for the first time, modifying it in order to minimize variance as well as bias and then using it to compare coached and uncoached takers of the SAT. In this new version, with restrictions on the ratio of treated subjects to controls within matched sets, full matching makes use of many more observations than does pair matching, but achieves far closer matches than does matching with k is greater than or equal to 2 controls. Prior to matching, the coached and uncoached groups are separated on the propensity score by 1.1 SDs. Full matching reduces this separation to 1% or 2% of an SD. In older literature comparing matching and regression, Cochran expressed doubts that any method of adjustment could substantially reduce observed bias of this magnitude. To accommodate missing data, regression-based analyses by ETS researchers rejected a subset of the available sample that differed significantly from the subsample they analyzed. Full matching on the propensity score handles the same problem simply and without rejecting observations. In addition, it eases the detection and handling of nonconstancy of treatment effects, which the regression-based analyses had obscured, and it makes fuller use of covariate information. It estimates a somewhat larger effect of coaching on the math score than did ETS's methods. [PUBLICATION ABSTRACT]
Among matching techniques for observational studies, full matching is in principle the best, in the sense that its alignment of comparable treated and control subjects is as good as that of any alternate method, and potentially much better. This article evaluates the practical performance of full matching for the first time, modifying it in order to minimize variance as well as bias and then using it to compare coached and uncoached takers of the SAT. In this new version, with restrictions on the ratio of treated subjects to controls within matched sets, full matching makes use of many more observations than does pair matching, but achieves far closer matches than does matching with k≥ 2 controls. Prior to matching, the coached and uncoached groups are separated on the propensity score by 1.1 SDs. Full matching reduces this separation to 1% or 2% of an SD. In older literature comparing matching and regression, Cochran expressed doubts that any method of adjustment could substantially reduce observed bias of this magnitude. To accommodate missing data, regression-based analyses by ETS researchers rejected a subset of the available sample that differed significantly from the subsample they analyzed. Full matching on the propensity score handles the same problem simply and without rejecting observations. In addition, it eases the detection and handling of nonconstancy of treatment effects, which the regression-based analyses had obscured, and it makes fuller use of covariate information. It estimates a somewhat larger effect of coaching on the math score than did ETS's methods.
Author Hansen, Ben B
Author_xml – sequence: 1
  givenname: Ben B
  surname: Hansen
  fullname: Hansen, Ben B
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16120221$$DView record in Pascal Francis
BookMark eNp9kU1LHTEUhoMoeNX-gYIQCu1uaj4nM4tS5FLbguJCC92FczOZmktuYpNMy_33zXXUhQWzyeI8zwvnPUdoP8RgEXpLyUdK--6M0JZRIYkgD68Vag8tqOSqYUr83EeLHdBUoj9ERzmvd5DqugX6fDF5j6-gmDsXfmEXMAR8vco2_YHiYgCPb8o0bHEc8TLCTI0x4XJn8c357Qk6GMFn--bxP0Y_Lr7cLr81l9dfvy_PLxsjBCnNqhNWKdbzfpCU0JEBWQmhWssNGDlwPg4dWxmpLCHA-67lwhJJVGs4SFmBY_Rhzr1P8fdkc9Ebl431HoKNU9Zc9VJQwSr47gW4jlOqe2Rdq-gYVZxX6P0jBNmAHxME47K-T24DaatpSxlhjFaumzmTYs7Jjtq48tBLSeC8pkTv6tf_119V9kJ9Tn9NOp2ldS4xPRtMyZ4ILuv80zx3od5gA39j8oMusPUxPS3BX8n_B3kgoT0
CODEN JSTNAL
CitedBy_id crossref_primary_10_1016_j_ejim_2014_09_010
crossref_primary_10_1080_2330443X_2021_1919260
crossref_primary_10_1097_PRS_0000000000006381
crossref_primary_10_2139_ssrn_4457748
crossref_primary_10_1214_19_STS740
crossref_primary_10_1080_01443410_2014_950194
crossref_primary_10_1002_sim_10336
crossref_primary_10_3102_0162373711421958
crossref_primary_10_1007_s11577_014_0253_x
crossref_primary_10_1187_cbe_21_12_0332
crossref_primary_10_3390_toxics10100600
crossref_primary_10_1080_00273171_2014_928492
crossref_primary_10_1111_1475_6773_12628
crossref_primary_10_1007_s40471_017_0131_y
crossref_primary_10_1016_j_tfp_2025_100792
crossref_primary_10_1017_bec_2021_2
crossref_primary_10_1016_j_ejor_2022_01_046
crossref_primary_10_1017_gmh_2024_121
crossref_primary_10_1016_j_learninstruc_2020_101398
crossref_primary_10_1016_j_ajem_2022_07_030
crossref_primary_10_1093_biomet_asaa072
crossref_primary_10_1177_0898264318782096
crossref_primary_10_1007_s12561_023_09405_6
crossref_primary_10_1080_15236803_2018_1429821
crossref_primary_10_1007_s10464_012_9559_x
crossref_primary_10_1080_03610918_2014_920882
crossref_primary_10_1093_europace_euw110
crossref_primary_10_1177_0038040711417009
crossref_primary_10_1080_01621459_2018_1549050
crossref_primary_10_1111_biom_13741
crossref_primary_10_1186_s13023_025_03662_y
crossref_primary_10_1016_j_spl_2011_03_002
crossref_primary_10_1146_annurev_lawsocsci_102510_105423
crossref_primary_10_1214_20_AOAS1329
crossref_primary_10_1038_s43247_024_01845_2
crossref_primary_10_1111_rssb_12290
crossref_primary_10_7326_M21_4130
crossref_primary_10_1177_10575677221082071
crossref_primary_10_3390_cancers12103035
crossref_primary_10_1007_s40865_019_00131_6
crossref_primary_10_3389_fpsyg_2023_1210958
crossref_primary_10_1080_10824669_2010_495689
crossref_primary_10_1080_19345747_2016_1273412
crossref_primary_10_1214_19_AOAS1255
crossref_primary_10_1080_01621459_2020_1870476
crossref_primary_10_1097_MLR_0000000000001923
crossref_primary_10_1093_biomtc_ujae061
crossref_primary_10_7554_eLife_65133
crossref_primary_10_1002_sim_8754
crossref_primary_10_1093_aje_kwu469
crossref_primary_10_1016_j_brat_2019_103412
crossref_primary_10_1016_j_ijrobp_2018_01_069
crossref_primary_10_3945_ajcn_115_125914
crossref_primary_10_1016_j_jvs_2013_11_091
crossref_primary_10_1016_j_otsr_2024_103878
crossref_primary_10_1111_rssb_12027
crossref_primary_10_1177_20570473251323752
crossref_primary_10_1053_j_nainr_2009_12_010
crossref_primary_10_47040_sd0000060
crossref_primary_10_1002_ir_20065
crossref_primary_10_1176_appi_ajp_2011_11060948
crossref_primary_10_1177_10704965241305838
crossref_primary_10_2139_ssrn_3694749
crossref_primary_10_1007_s00134_016_4338_z
crossref_primary_10_1186_s12874_023_01977_7
crossref_primary_10_1080_10888691_2014_977995
crossref_primary_10_1111_liv_13166
crossref_primary_10_1001_jamanetworkopen_2022_50401
crossref_primary_10_1001_jamanetworkopen_2024_18887
crossref_primary_10_1093_ehjacc_zuae012
crossref_primary_10_1093_pan_mpl013
crossref_primary_10_1016_j_jpedsurg_2024_08_016
crossref_primary_10_1080_10618600_2025_2461222
crossref_primary_10_5172_ijtr_2012_10_3_219
crossref_primary_10_1016_j_envres_2014_10_031
crossref_primary_10_1097_MAT_0000000000000629
crossref_primary_10_1111_ajps_12154
crossref_primary_10_1002_sim_8764
crossref_primary_10_2139_ssrn_2857703
crossref_primary_10_2139_ssrn_5095080
crossref_primary_10_1177_1532673X09333960
crossref_primary_10_1002_sim_8084
crossref_primary_10_1002_bimj_202100292
crossref_primary_10_1016_j_inteco_2022_08_005
crossref_primary_10_1177_2332858417743754
crossref_primary_10_1016_j_jtct_2024_05_016
crossref_primary_10_3390_ijerph17197228
crossref_primary_10_1002_pst_2336
crossref_primary_10_1080_19466315_2019_1647873
crossref_primary_10_1080_00273171_2011_568786
crossref_primary_10_1093_aje_kwn184
crossref_primary_10_1007_s40264_016_0412_2
crossref_primary_10_1007_s40264_022_01171_6
crossref_primary_10_1080_10618600_2019_1593179
crossref_primary_10_1002_sim_6593
crossref_primary_10_1002_sim_4057
crossref_primary_10_1016_j_brat_2017_01_005
crossref_primary_10_1093_bioinformatics_btn650
crossref_primary_10_1016_j_ejso_2020_09_038
crossref_primary_10_1111_ssqu_12040
crossref_primary_10_1177_26320843241310182
crossref_primary_10_1016_j_sciaf_2020_e00683
crossref_primary_10_1080_02671522_2014_919523
crossref_primary_10_3389_fpsyg_2021_770425
crossref_primary_10_3390_cancers14215307
crossref_primary_10_1056_NEJMsa1414953
crossref_primary_10_1080_07350015_2024_2403381
crossref_primary_10_1080_02699052_2020_1802663
crossref_primary_10_1007_s11162_024_09795_6
crossref_primary_10_1007_s00482_014_1476_5
crossref_primary_10_1007_s10742_019_00197_1
crossref_primary_10_47040_sd_sdpsych_v9i2_79
crossref_primary_10_1016_j_worlddev_2009_05_002
crossref_primary_10_1016_j_clcc_2018_04_001
crossref_primary_10_1093_epirev_mxab003
crossref_primary_10_1080_0376835X_2021_1984874
crossref_primary_10_1080_02664763_2016_1266468
crossref_primary_10_1097_JOM_0000000000003117
crossref_primary_10_1016_j_jsp_2019_07_015
crossref_primary_10_1177_0962280215584401
crossref_primary_10_1136_tsaco_2024_001439
crossref_primary_10_2139_ssrn_3691925
crossref_primary_10_1016_S2666_5247_23_00103_9
crossref_primary_10_1080_07350015_2019_1609974
crossref_primary_10_1371_journal_pdig_0000421
crossref_primary_10_3389_fgene_2020_585804
crossref_primary_10_1080_00031305_2021_1972835
crossref_primary_10_1016_j_cedpsych_2016_06_001
crossref_primary_10_1177_09622802221133556
crossref_primary_10_1080_01621459_2020_1720693
crossref_primary_10_1097_JOM_0000000000002703
crossref_primary_10_1111_1475_6773_12156
crossref_primary_10_1080_03054985_2023_2187364
crossref_primary_10_1542_peds_2016_1692
crossref_primary_10_1080_00220973_2017_1409179
crossref_primary_10_1080_19466315_2021_1883474
crossref_primary_10_1515_jci_2022_0016
crossref_primary_10_1002_sim_3669
crossref_primary_10_1016_j_jamda_2011_03_004
crossref_primary_10_1007_s11233_018_09015_8
crossref_primary_10_1093_jrsssb_qkae033
crossref_primary_10_1177_0886260513505219
crossref_primary_10_2139_ssrn_3096855
crossref_primary_10_3102_0013189X19848724
crossref_primary_10_1007_s40264_018_0682_y
crossref_primary_10_1177_23328584211033878
crossref_primary_10_1214_18_AOAS1153
crossref_primary_10_1080_00031305_2024_2303419
crossref_primary_10_1177_2380084419830655
crossref_primary_10_1080_19466315_2023_2182356
crossref_primary_10_1002_sim_6252
crossref_primary_10_1187_cbe_24_02_0047
crossref_primary_10_1093_aje_kwq224
crossref_primary_10_2139_ssrn_3942738
crossref_primary_10_3102_1076998620914003
crossref_primary_10_1177_0962280215601134
crossref_primary_10_1016_j_csda_2018_05_003
crossref_primary_10_1038_s41467_025_56287_x
crossref_primary_10_1080_0164212X_2015_1104274
crossref_primary_10_1002_cjs_11783
crossref_primary_10_1214_24_AOAS1949
crossref_primary_10_1016_j_ssmph_2024_101629
crossref_primary_10_1002_rev3_3442
crossref_primary_10_1002_sim_7919
crossref_primary_10_1080_00273171_2011_540475
crossref_primary_10_2139_ssrn_4480617
crossref_primary_10_1016_j_seps_2023_101798
crossref_primary_10_1017_psrm_2015_74
crossref_primary_10_3389_fphar_2019_00973
crossref_primary_10_1007_s11199_013_0261_8
crossref_primary_10_1080_14999013_2018_1451415
crossref_primary_10_1214_22_AOAS1635
crossref_primary_10_1213_ANE_0000000000006038
crossref_primary_10_1016_j_ijedudev_2016_01_008
crossref_primary_10_1007_s00432_023_04654_w
crossref_primary_10_1214_19_AOS1929
crossref_primary_10_1007_s12564_023_09906_5
crossref_primary_10_1016_j_jpubeco_2024_105121
crossref_primary_10_1198_tast_2011_08294
crossref_primary_10_2139_ssrn_3499808
crossref_primary_10_1097_QMH_0000000000000203
crossref_primary_10_1007_s41237_018_0058_8
crossref_primary_10_1371_journal_pone_0223360
crossref_primary_10_2139_ssrn_3057388
crossref_primary_10_1177_09622802241262527
crossref_primary_10_1016_j_jaccpubpol_2023_107080
crossref_primary_10_1002_sim_7808
crossref_primary_10_1002_sim_3207
crossref_primary_10_1177_0049124106289164
crossref_primary_10_1016_j_jbi_2021_103940
crossref_primary_10_1080_19345747_2014_911396
crossref_primary_10_1111_all_13156
crossref_primary_10_1146_annurev_statistics_031219_041058
crossref_primary_10_1080_00031305_2020_1867638
crossref_primary_10_1080_15512169_2014_985105
crossref_primary_10_1186_s40100_023_00292_5
crossref_primary_10_1007_s11109_013_9254_0
crossref_primary_10_1111_soc4_12344
crossref_primary_10_1002_sim_6276
crossref_primary_10_1080_07418825_2015_1016089
crossref_primary_10_1002_sim_5984
crossref_primary_10_3102_0013189X231179111
crossref_primary_10_1080_19345747_2020_1823538
crossref_primary_10_1002_sim_6030
crossref_primary_10_1007_s40264_015_0292_x
crossref_primary_10_1080_00036846_2021_2002803
crossref_primary_10_1080_01621459_2012_703874
crossref_primary_10_1002_sim_10186
crossref_primary_10_1111_bcp_15144
crossref_primary_10_1007_s12630_023_02514_2
crossref_primary_10_21032_jhis_2022_47_S1_9
crossref_primary_10_1007_s12561_011_9036_3
crossref_primary_10_1002_sim_6602
crossref_primary_10_3390_cancers13071613
crossref_primary_10_1038_s41559_024_02458_w
crossref_primary_10_1016_j_ssresearch_2015_01_007
crossref_primary_10_1007_s10742_006_0016_x
crossref_primary_10_1080_01621459_2016_1138865
crossref_primary_10_1002_sim_9437
crossref_primary_10_3390_ijerph18136694
crossref_primary_10_1088_1748_9326_aafa8f
crossref_primary_10_1177_0962280215570722
crossref_primary_10_21032_jhis_2022_47_S1_S9
crossref_primary_10_1080_0960085X_2020_1850185
crossref_primary_10_1177_13691481221124850
crossref_primary_10_1093_aje_kwad196
crossref_primary_10_2196_38680
crossref_primary_10_1016_j_csda_2021_107364
crossref_primary_10_1111_1468_0009_12355
crossref_primary_10_1186_s12889_019_6945_4
crossref_primary_10_1515_jci_2022_0055
crossref_primary_10_1007_s42001_024_00316_0
crossref_primary_10_1177_1866802X1801000202
crossref_primary_10_1093_aje_kwv280
crossref_primary_10_1002_sim_6735
crossref_primary_10_1016_j_cstp_2024_101203
crossref_primary_10_1111_cobi_14393
crossref_primary_10_3102_1076998620946272
crossref_primary_10_1111_j_1540_6288_2007_00177_x
crossref_primary_10_1080_01621459_2020_1737078
crossref_primary_10_1214_08_AOAS233
crossref_primary_10_3389_fpsyg_2016_01096
crossref_primary_10_1080_10618600_2020_1753532
crossref_primary_10_1002_ueg2_12735
crossref_primary_10_1287_mnsc_2019_3430
crossref_primary_10_1080_10543406_2021_1918140
crossref_primary_10_1111_ajps_12685
crossref_primary_10_1186_s12889_021_11705_9
crossref_primary_10_1080_10543406_2016_1226328
crossref_primary_10_1111_rssb_12424
crossref_primary_10_1007_s40865_023_00233_2
crossref_primary_10_1186_s12874_021_01454_z
crossref_primary_10_1001_jamanetworkopen_2024_57300
crossref_primary_10_1093_biomet_asae036
crossref_primary_10_1509_jm_09_0081
crossref_primary_10_2139_ssrn_2032645
crossref_primary_10_1007_s11162_013_9325_4
crossref_primary_10_1007_s11336_012_9262_8
crossref_primary_10_1198_106186006X137047
crossref_primary_10_1111_j_1467_9531_2008_00204_x
crossref_primary_10_1016_j_cedpsych_2018_09_004
crossref_primary_10_1007_s10742_023_00304_3
crossref_primary_10_1016_j_ecresq_2014_06_005
crossref_primary_10_1080_01402382_2024_2421661
crossref_primary_10_1016_j_ecolecon_2024_108178
crossref_primary_10_1002_sim_9698
crossref_primary_10_1007_s11292_022_09532_y
crossref_primary_10_1016_j_jeconom_2012_11_006
crossref_primary_10_1016_j_jpeds_2016_11_039
crossref_primary_10_1177_1178221819874351
crossref_primary_10_1002_cncr_30448
crossref_primary_10_1002_sim_8489
crossref_primary_10_1214_15_AOAS894
crossref_primary_10_1093_aje_kwz093
crossref_primary_10_1111_j_1467_985X_2010_00673_x
crossref_primary_10_1111_j_1541_0420_2009_01364_x
crossref_primary_10_5351_KJAS_2024_37_5_675
crossref_primary_10_1017_S0007123421000028
crossref_primary_10_4137_CIN_S16352
crossref_primary_10_1146_annurev_polisci_11_060606_135444
crossref_primary_10_1177_1091142113482570
crossref_primary_10_3389_fpsyg_2023_1212556
crossref_primary_10_1161_CIRCINTERVENTIONS_114_001880
crossref_primary_10_1186_s40536_016_0022_6
crossref_primary_10_1111_ans_18848
crossref_primary_10_1080_01621459_2015_1112802
crossref_primary_10_1136_jim_2016_000218
crossref_primary_10_1017_pan_2020_32
crossref_primary_10_1080_00031305_2022_2051605
crossref_primary_10_1111_biom_12077
crossref_primary_10_1177_1708538116684942
crossref_primary_10_1002_sce_21926
crossref_primary_10_1080_10509674_2013_801385
crossref_primary_10_1002_hec_4149
crossref_primary_10_1016_j_bas_2023_102702
crossref_primary_10_1177_0013164414565006
crossref_primary_10_1007_s12564_024_09957_2
crossref_primary_10_1038_mp_2010_42
crossref_primary_10_1080_00031305_2020_1737229
crossref_primary_10_1162_REST_a_00318
crossref_primary_10_1002_sim_8147
crossref_primary_10_1002_pst_1580
crossref_primary_10_1080_01621459_2012_682537
crossref_primary_10_1214_24_STS945
crossref_primary_10_1111_rssc_12443
crossref_primary_10_1002_sim_5795
crossref_primary_10_1016_j_pmip_2017_07_003
crossref_primary_10_2139_ssrn_3256746
crossref_primary_10_1007_s11162_008_9103_x
crossref_primary_10_2139_ssrn_3037012
crossref_primary_10_1093_pan_mps025
crossref_primary_10_1093_biomet_asaa024
crossref_primary_10_1080_15427609_2017_1370967
crossref_primary_10_1111_spsr_12120
crossref_primary_10_1177_0010414013512601
crossref_primary_10_1080_01621459_2019_1609973
crossref_primary_10_1097_EDE_0000000000001517
crossref_primary_10_1016_j_gloenvcha_2024_102838
crossref_primary_10_1111_peps_12020
crossref_primary_10_1016_j_vaccine_2019_09_024
crossref_primary_10_1093_jnci_djae188
crossref_primary_10_1162_rest_89_4_761
crossref_primary_10_1007_s11127_010_9690_x
crossref_primary_10_1136_bmjgh_2023_013787
crossref_primary_10_3390_math11214506
crossref_primary_10_1214_16_AOAS962
crossref_primary_10_3150_22_BEJ1533
crossref_primary_10_1177_1476718X13507445
crossref_primary_10_1002_sim_6532
crossref_primary_10_1198_106186008X385806
crossref_primary_10_1093_biomet_asz050
crossref_primary_10_1007_s10995_012_1088_6
crossref_primary_10_1017_bca_2018_17
crossref_primary_10_1016_j_rcot_2024_03_012
crossref_primary_10_2139_ssrn_2385856
crossref_primary_10_1177_0733464819901094
crossref_primary_10_1177_0962280218799540
crossref_primary_10_1111_j_1540_5907_2011_00544_x
crossref_primary_10_1038_s41893_019_0277_3
crossref_primary_10_1002_gepi_21611
crossref_primary_10_1177_0002716217734810
crossref_primary_10_1002_gepi_20403
crossref_primary_10_1007_s12103_010_9088_9
crossref_primary_10_1177_0193841X09334028
crossref_primary_10_1002_sim_5339
crossref_primary_10_1007_s00180_012_0306_4
crossref_primary_10_1111_tri_13416
crossref_primary_10_1186_s12872_020_01506_0
crossref_primary_10_1024_1010_0652_a000001
crossref_primary_10_1145_3648356
crossref_primary_10_1016_j_breast_2019_10_003
crossref_primary_10_1016_j_jcrimjus_2014_05_004
crossref_primary_10_1080_00461520_2016_1207177
crossref_primary_10_1111_j_1465_7287_2011_00258_x
crossref_primary_10_1371_journal_pone_0169756
crossref_primary_10_1214_09_STS313
crossref_primary_10_1007_s00270_017_1736_8
crossref_primary_10_1186_1471_2431_14_104
crossref_primary_10_3102_0013189X07303396
crossref_primary_10_3389_fpubh_2024_1412670
crossref_primary_10_1080_01621459_2015_1120675
crossref_primary_10_1002_nav_21897
crossref_primary_10_1002_sim_9010
Cites_doi 10.1080/09332480.2001.10542245
ContentType Journal Article
Copyright American Statistical Association 2004
Copyright 2004 American Statistical Association
2004 INIST-CNRS
Copyright American Statistical Association Sep 2004
Copyright_xml – notice: American Statistical Association 2004
– notice: Copyright 2004 American Statistical Association
– notice: 2004 INIST-CNRS
– notice: Copyright American Statistical Association Sep 2004
DBID AAYXX
CITATION
IQODW
3V.
7WY
7WZ
7X7
7XB
87Z
88E
88I
8AF
8BJ
8C1
8FE
8FG
8FI
8FJ
8FK
8FL
8G5
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FQK
FRNLG
FYUFA
F~G
GHDGH
GNUQQ
GUQSH
HCIFZ
JBE
K60
K6~
K9-
K9.
L.-
L6V
M0C
M0R
M0S
M0T
M1P
M2O
M2P
M7S
MBDVC
PADUT
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYYUZ
Q9U
S0X
DOI 10.1198/016214504000000647
DatabaseName CrossRef
Pascal-Francis
ProQuest Central (Corporate)
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Global (Alumni)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
STEM Database
International Bibliography of the Social Sciences (IBSS)
Public Health Database
ProQuest SciTech Collection
ProQuest Technology Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Research Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One Community College
ProQuest Central
International Bibliography of the Social Sciences
Business Premium Collection (Alumni)
Health Research Premium Collection
ABI/INFORM Global (Corporate)
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
International Bibliography of the Social Sciences
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Consumer Health Database (Alumni)
ProQuest Health & Medical Complete (Alumni)
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ABI/INFORM Global
Consumer Health Database
ProQuest Health & Medical Collection
Healthcare Administration Database
Medical Database
Research Library
Science Database
Engineering Database
Research Library (Corporate)
Research Library China
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ABI/INFORM Collection China
ProQuest Central Basic
SIRS Editorial
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
Research Library Prep
ProQuest Central Student
ProQuest Central Essentials
ProQuest AP Science
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Health & Medical Research Collection
ProQuest Central (New)
Research Library China
ProQuest Medical Library (Alumni)
Engineering Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Family Health
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
ProQuest Business Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
ProQuest One Academic Middle East (New)
SIRS Editorial
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Family Health (Alumni Edition)
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Health & Medical Research Collection
ProQuest Engineering Collection
International Bibliography of the Social Sciences (IBSS)
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Research Library
ABI/INFORM Complete (Alumni Edition)
ProQuest Public Health
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Health Management
ABI/INFORM China
ProQuest SciTech Collection
ProQuest Medical Library
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList
ProQuest Business Collection (Alumni Edition)

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
EISSN 1537-274X
EndPage 618
ExternalDocumentID 699070821
16120221
10_1198_016214504000000647
27590435
10709611
Genre Article
Feature
GroupedDBID -DZ
-~X
..I
.7F
.GJ
.QJ
0BK
0R~
29L
2AX
30N
3R3
3V.
4.4
5GY
5RE
692
7WY
7X7
85S
88E
88I
8AF
8C1
8FE
8FG
8FI
8FJ
8FL
8G5
8R4
8R5
AABCJ
AAENE
AAHBH
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABBHK
ABCCY
ABEHJ
ABFAN
ABFIM
ABJCF
ABJNI
ABLIJ
ABLJU
ABPAQ
ABPEM
ABPFR
ABPPZ
ABPQH
ABTAI
ABUWG
ABXSQ
ABXUL
ABXYU
ABYAD
ABYWD
ACAGQ
ACGFO
ACGFS
ACGOD
ACIWK
ACMTB
ACNCT
ACTIO
ACTMH
ACTWD
ACUBG
ADBBV
ADCVX
ADGTB
ADLSF
ADMHG
ADODI
ADULT
AEISY
AELPN
AENEX
AEOZL
AEPSL
AEUPB
AEYOC
AFFNX
AFKRA
AFSUE
AFVYC
AFXHP
AGDLA
AGMYJ
AGROQ
AHDZW
AHMOU
AI.
AIJEM
AKBVH
AKOOK
ALCKM
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALQZU
ALRMG
AMEWO
AQRUH
AQUVI
AVBZW
AWYRJ
AZQEC
BENPR
BEZIV
BGLVJ
BKNYI
BKOMP
BLEHA
BPHCQ
BVXVI
CCCUG
CCPQU
CJ0
CRFIH
CS3
D0L
DGEBU
DKSSO
DMQIW
DQDLB
DSRWC
DU5
DWQXO
EBS
ECEWR
EJD
E~A
E~B
F5P
FEDTE
FJW
FRNLG
FVMVE
FYUFA
GNUQQ
GROUPED_ABI_INFORM_COMPLETE
GROUPED_ABI_INFORM_RESEARCH
GTTXZ
GUQSH
H13
HCIFZ
HF~
HMCUK
HQ6
HVGLF
HZ~
H~9
H~P
IAO
IEA
IGG
IOF
IPO
IPSME
J.P
JAAYA
JAS
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JSODD
JST
K60
K6~
K9-
KYCEM
L6V
LU7
M0C
M0R
M0T
M1P
M2O
M2P
M4Z
M7S
MS~
MVM
MW2
N95
NA5
NY~
O9-
OFU
OK1
P-O
P2P
PADUT
PQBIZ
PQBZA
PQQKQ
PRG
PROAC
PSQYO
PTHSS
Q2X
QCRFL
RIG
RNANH
RNS
ROSJB
RTWRZ
RWL
RXW
S-T
S0X
SA0
SJN
SNACF
TAE
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TOXWX
TTHFI
TUROJ
U5U
UKHRP
UPT
UT5
UU3
VH1
VOH
WH7
WHG
WZA
YQT
YYM
YYP
ZGOLN
~S~
AAGDL
AAHIA
AAWIL
ABAWQ
ACHJO
ADYSH
AFRVT
AGLNM
AIHAF
AIYEW
AMPGV
PHGZM
PHGZT
.-4
07G
1OL
AAAVZ
AAFWJ
AAIKQ
AAKBW
AAYXX
ABEFU
ABRLO
ACGEE
ADXHL
AEUMN
AFQQW
AGCQS
AGLEN
AMATQ
AMVHM
AMXXU
BCCOT
BPLKW
C06
CITATION
DWIFK
E.L
HGD
IPNFZ
IVXBP
KQ8
LJTGL
NHB
NUSFT
TAQ
TFMCV
UB9
UQL
YXB
ZCG
ZGI
ZUP
ZXP
IQODW
PJZUB
PPXIY
PQGLB
TASJS
7XB
8BJ
8FK
FQK
JBE
K9.
L.-
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c440t-b84e772939d5101f2a0b4476e3cac5d33fd82bc57e00a398634e05076c3a555d3
IEDL.DBID 7X7
ISSN 0162-1459
IngestDate Fri Jul 11 00:11:39 EDT 2025
Wed Aug 13 06:41:00 EDT 2025
Mon Jul 21 09:15:28 EDT 2025
Tue Jul 01 01:32:55 EDT 2025
Thu Apr 24 23:02:11 EDT 2025
Thu Jun 19 14:56:23 EDT 2025
Wed Dec 25 09:07:31 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 467
Keywords Data analysis
Prior distribution
Treatment efficiency
Bias
Regression analysis
Covariate
Variance
Statistical method
Statistical regression
Missing data
Treatment effect
Application
Biased estimation
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c440t-b84e772939d5101f2a0b4476e3cac5d33fd82bc57e00a398634e05076c3a555d3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
PQID 274821733
PQPubID 41715
PageCount 10
ParticipantIDs proquest_miscellaneous_37954142
proquest_journals_274821733
pascalfrancis_primary_16120221
crossref_citationtrail_10_1198_016214504000000647
informaworld_taylorfrancis_310_1198_016214504000000647
crossref_primary_10_1198_016214504000000647
jstor_primary_27590435
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2004-09-01
PublicationDateYYYYMMDD 2004-09-01
PublicationDate_xml – month: 09
  year: 2004
  text: 2004-09-01
  day: 01
PublicationDecade 2000
PublicationPlace Alexandria, VA
PublicationPlace_xml – name: Alexandria, VA
– name: Alexandria
PublicationTitle Journal of the American Statistical Association
PublicationYear 2004
Publisher Taylor & Francis
American Statistical Association
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: American Statistical Association
– name: Taylor & Francis Ltd
References (p_17); 58
Propensity Score Using Subclassification (p_28); 79
(p_12); 94
(p_3); 14
(p_14); 2
Journal (p_6); 128
(p_30); 39
Has Been Variable That (p_25); 147
References_xml – volume: 128
  start-page: 234
  ident: p_6
  publication-title: Royal Statistical Society
– volume: 94
  start-page: 1053
  ident: p_12
  publication-title: Statistical Association
– volume: 39
  start-page: 33
  ident: p_30
  publication-title: Statistician
– volume: 58
  start-page: 690
  ident: p_17
  publication-title: Association
– volume: 2
  start-page: 405
  ident: p_14
  publication-title: Graphical Statistics
– volume: 14
  start-page: 10
  ident: p_3
  publication-title: Chance
  doi: 10.1080/09332480.2001.10542245
– volume: 147
  start-page: 656
  ident: p_25
  publication-title: Ser. A
– volume: 79
  start-page: 516
  ident: p_28
  publication-title: American Statistical Association
SSID ssj0000788
Score 2.3551714
SecondaryResourceType review_article
Snippet Among matching techniques for observational studies, full matching is in principle the best, in the sense that its alignment of comparable treated and control...
SourceID proquest
pascalfrancis
crossref
jstor
informaworld
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 609
SubjectTerms Algorithms
Applications
Applications and Case Studies
Attitudes
Coaching
Control groups
Data analysis
Data collection
Exact sciences and technology
General topics
Graph algorithm
Intelligence
Linear inference, regression
Matching with multiple controls
Mathematics
Men
Methodology
Modeling
Multivariate analysis
Network flow
Observational studies
Optimal matching
Pretests
Probability
Probability and statistics
Propensity score
Quasiexperiment
SAT assessment
Sciences and techniques of general use
Secondary school mathematics
Socioeconomic status
Standardized tests
Statistical methods
Statistics
Title Full Matching in an Observational Study of Coaching for the SAT
URI https://www.tandfonline.com/doi/abs/10.1198/016214504000000647
https://www.jstor.org/stable/27590435
https://www.proquest.com/docview/274821733
https://www.proquest.com/docview/37954142
Volume 99
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDLZgu3BBPEV5jBy4oYo2aZv0hMbEmJA2EA9ptypNUwkJtcDGgX-P3RcgpF16SGs1shPns_vVBjjLZGQwyjAY5HAqqo3LWAc-BiupkoJbKQJNCf3pLJo8B7fzcN5wcxYNrbL1iZWjzkpDOfILjJ4UwmchLt_eXWoaRR9Xmw4a69CnymXE6JJz-eOIZdV2EkENd_0gjNt_ZmJ1QWM4RCu48tjUXeXXufSnamnLVCTapF6g5vK65cU_710dSeMt2GywJBvWxt-GNVvswAbBx7r68i5cUoTJpuhuKdHEXgqmC3aXdplYlCYi4RcrczYqa14lwzkxhIXscfi0B8_j66fRxG1aJriocW_ppiqwhJdFnNFmy7n20iCQkRVGmzATIs8UT00oredpEatIBNZDSBgZocMQH9iHXlEW9gAYz2MU1ManAjih8pSxVEs_Uibl3ObWAb9VWGKaeuLU1uI1qeKKWCX_lezAeSfzVlfTWPl09NsOybLKYTTaT8Qqwf3KYt07uAxjD4GhA4M_JvyZBAI9RDO-A0etTZNmMy-Sbuk5cNrdxV1In1Z0YctPnIyMqZ86P1wpfwQbNfGHKGrH0Ft-fNoTxDTLdFCtXLyqkU_X8c0A-lfXs_uHb4xM7j0
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT-QwDLZgOCwXxGMR5ZkDnFBFm7RNekAI8dDwGDjsIM2tm6aptNKqBWYQmh_Ff8TuCxDS3Li2cRvFjv3ZcWyA_UxGBr0Mg04Op6LaKMY68NFZSZUU3EoRaAroD-6i_kNwPQpHc_DW3oWhtMpWJ1aKOisNxciP0HtSCJ-FOHl8cqlpFB2uth00aqm4sdNX9NjGx1fnyN4Dzi8vhmd9t2kq4OKcvImbqsASohRxRuKYc-2lQSAjK4w2YSZEnimemlBaz9MiVpEIrIegKTJChyEOwO_OwwLaXY82lBzJD8UvqzaXCKK46wdh3N7RidURPcNHtGMqC0HdXD7ZwS9VUtvMSErT1GPkVF632PhmLSoTeLkMSw12Zae1sK3AnC1WYZHgal3teQ1OyKNlA1TvFNhi_wqmC3afdpFfpKbExSkrc3ZW1nmcDOfEEIayP6fD3_DwI6u5Dr2iLOwGMJ7HSKiNTwV3QuUpY6l2f6RMyrnNrQN-u2CJaeqXUxuN_0nlx8Qq-b7IDhx2NI919Y6Zo6PPfEgmVcykWf1EzCJcrzjW_YPLMPYQiDqw-4WFH5NAYInoyXdgq-Vp0iiPcdKJugN73Vvc9XSUowtbvuBkZEz92_nmTPo9-NUfDm6T26u7my1YrJOOKD1uG3qT5xe7g3hqku5WUszg709vm3cGtCZo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDCb6AIpe1m5rMa-P6LDbkNaRZEs-FUG6oGvXdMASoDdDlmVg2OAUi3PYfv1Iy06WZughZ4u2HiT9kaY_AnzIVWwxyrAY5HAi1UY1NrKHwUqmleBOCWkooX8_im8m8vYxemwSbrOmrJJi6MITRdS-moz7KS-8gSf6ElEK8WuT-tXuVqpt2I2JOZx-4QhHS0-s6r6TNL6LAkn708x_77HyYlqhLW1LFalu0sxw6wrf82LNfdfvpOEBpO1qfCnKj4t5lV3YP8-IHjdf7iG8auAq63v9eg1brnwD-4RQPcHzW7iiIJbdo0enXBb7XjJTsodskexFaapV_M2mBRtMfekmw1UzRJ7sW398BJPhp_Hgptt0ZejioYZVN9PSESQXSU72XHATZlKq2AlrbJQLUeSaZzZSLgyNSHQspAsRdcZWmCjCAcewU05L9w4YLxIUNLZHHDuRDrV1RNcfa5tx7goXQK89ktQ2lOXUOeNnWocuiU7X9yaAjwuZJ0_Y8eLo-N-TTqs6TdKcbypeEjyudWLxDK6iJETsGcD5ipIsJ4FYEgFTL4CTVmvSxl_MUFpqDA6FCKCzuIqGTl9vTOmmc5yMSqhlO3-_6ZQ7sPf1eph--Ty6O4F9X4FEtXKnsFP9mrszBFdVdl5b0F9BTxCV
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Full+Matching+in+an+Observational+Study+of+Coaching+for+the+SAT&rft.jtitle=Journal+of+the+American+Statistical+Association&rft.au=Hansen%2C+Ben+B&rft.date=2004-09-01&rft.pub=Taylor+%26+Francis&rft.issn=0162-1459&rft.eissn=1537-274X&rft.volume=99&rft.issue=467&rft.spage=609&rft.epage=618&rft_id=info:doi/10.1198%2F016214504000000647&rft.externalDocID=10709611
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-1459&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-1459&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-1459&client=summon