Frictional performance and near-surface evolution of nanocrystalline Ni–Fe as governed by contact stress and sliding velocity

While early reports on the wear performance of nanocrystalline alloys have suggested enhanced behavior consistent with their higher hardness compared to conventional microcrystalline alloys, there is still limited understanding of the mechanisms and limits of this enhanced behavior. In the present s...

Full description

Saved in:
Bibliographic Details
Published inWear Vol. 297; no. 1-2; pp. 860 - 871
Main Authors Padilla, Henry A., Boyce, Brad L., Battaile, Corbett C., Prasad, Somuri V.
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 15.01.2013
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract While early reports on the wear performance of nanocrystalline alloys have suggested enhanced behavior consistent with their higher hardness compared to conventional microcrystalline alloys, there is still limited understanding of the mechanisms and limits of this enhanced behavior. In the present study, we examine the frictional response of a nanocrystalline Ni–20Fe alloy with 34-nm average grain size compared to the same film annealed to an average grain size of 500-nm. We examine the sliding friction performance of these films in contact with a 3.125mm diameter Si3N4 spherical counterface under a range of normal forces (0.1–1.0N) and sliding speeds (0.25–3.75mm/s) in a non-oxidizing dry nitrogen environment. Under all conditions, the initial break-in coefficient of friction (COF) starts high, μ≈0.5–0.8, typical of uncoated metallic friction. However, there is an evolution in the COF which depends on normal force and sliding speed. At low sliding speeds (or normal forces), the steady-state COF decreases to μ≈0.2 whereas at higher sliding speeds and normal forces, the steady-state COF remains high at μ≈0.8. Focused ion beam cross-sectioning and TEM imaging reveal that in all cases, a multilayer substructure is formed in the deforming film: a refined ultrananocrystalline layer at the top surface, over a region of coarsened grains, atop the parent nanocrystalline alloy. The key distinction between the high-friction and low-friction conditions appears to lie in the triggering of a delamination process: high-friction conditions are associated with a thickening of the UNC layer through repeated delamination, whereas low-friction conditions are associated with a thin UNC layer that does not delaminate. Finite element analysis is used to aid in the understanding of how the magnitude and location of stresses drive these two distinct regimes. ► Nanocrystalline Ni–Fe can exhibit high or low friction coefficient (0.2 or 0.8) depending on normal force and sliding velocity. ► The low friction coefficient is associated with the formation of an ultra-nanocrystalline surface tribolayer. ► The high friction coeffiecient is associated with the cyclic delamination and reformation of the ultra-nanocrystalline tribolayer. ► These two regimes of behavior can be rationalized on the basis of stress fields determined by finite element analysis of sliding contact.
AbstractList While early reports on the wear performance of nanocrystalline alloys have suggested enhanced behavior consistent with their higher hardness compared to conventional microcrystalline alloys, there is still limited understanding of the mechanisms and limits of this enhanced behavior. In the present study, we examine the frictional response of a nanocrystalline Ni-20Fe alloy with 34-nm average grain size compared to the same film annealed to an average grain size of 500-nm. We examine the sliding friction performance of these films in contact with a 3.125 mm diameter Si3N4 spherical counterface under a range of normal forces (0.1-1.0 N) and sliding speeds (0.25-3.75 mm/s) in a non-oxidizing dry nitrogen environment. Under all conditions, the initial break-in coefficient of friction (COF) starts high, mu -0.5-0.8, typical of uncoated metallic friction. However, there is an evolution in the COF which depends on normal force and sliding speed. At low sliding speeds (or normal forces), the steady-state COF decreases to mu -0.2 whereas at higher sliding speeds and normal forces, the steady-state COF remains high at mu -0.8. Focused ion beam cross-sectioning and TEM imaging reveal that in all cases, a multilayer substructure is formed in the deforming film: a refined ultrananocrystalline layer at the top surface, over a region of coarsened grains, atop the parent nanocrystalline alloy. The key distinction between the high-friction and low-friction conditions appears to lie in the triggering of a delamination process: high-friction conditions are associated with a thickening of the UNC layer through repeated delamination, whereas low-friction conditions are associated with a thin UNC layer that does not delaminate. Finite element analysis is used to aid in the understanding of how the magnitude and location of stresses drive these two distinct regimes.
While early reports on the wear performance of nanocrystalline alloys have suggested enhanced behavior consistent with their higher hardness compared to conventional microcrystalline alloys, there is still limited understanding of the mechanisms and limits of this enhanced behavior. In the present study, we examine the frictional response of a nanocrystalline Ni-20Fe alloy with 34-nm average grain size compared to the same film annealed to an average grain size of 500-nm. We examine the sliding friction performance of these films in contact with a 3.125 mm diameter Si sub(3)N sub(4) spherical counterface under a range of normal forces (0.1-1.0 N) and sliding speeds (0.25-3.75 mm/s) in a non-oxidizing dry nitrogen environment. Under all conditions, the initial break-in coefficient of friction (COF) starts high, mu approximately 0.5-0.8, typical of uncoated metallic friction. However, there is an evolution in the COF which depends on normal force and sliding speed. At low sliding speeds (or normal forces), the steady-state COF decreases to mu approximately 0.2 whereas at higher sliding speeds and normal forces, the steady-state COF remains high at mu approximately 0.8. Focused ion beam cross-sectioning and TEM imaging reveal that in all cases, a multilayer substructure is formed in the deforming film: a refined ultrananocrystalline layer at the top surface, over a region of coarsened grains, atop the parent nanocrystalline alloy. The key distinction between the high-friction and low-friction conditions appears to lie in the triggering of a delamination process: high-friction conditions are associated with a thickening of the UNC layer through repeated delamination, whereas low-friction conditions are associated with a thin UNC layer that does not delaminate. Finite element analysis is used to aid in the understanding of how the magnitude and location of stresses drive these two distinct regimes.
While early reports on the wear performance of nanocrystalline alloys have suggested enhanced behavior consistent with their higher hardness compared to conventional microcrystalline alloys, there is still limited understanding of the mechanisms and limits of this enhanced behavior. In the present study, we examine the frictional response of a nanocrystalline Ni–20Fe alloy with 34-nm average grain size compared to the same film annealed to an average grain size of 500-nm. We examine the sliding friction performance of these films in contact with a 3.125mm diameter Si3N4 spherical counterface under a range of normal forces (0.1–1.0N) and sliding speeds (0.25–3.75mm/s) in a non-oxidizing dry nitrogen environment. Under all conditions, the initial break-in coefficient of friction (COF) starts high, μ≈0.5–0.8, typical of uncoated metallic friction. However, there is an evolution in the COF which depends on normal force and sliding speed. At low sliding speeds (or normal forces), the steady-state COF decreases to μ≈0.2 whereas at higher sliding speeds and normal forces, the steady-state COF remains high at μ≈0.8. Focused ion beam cross-sectioning and TEM imaging reveal that in all cases, a multilayer substructure is formed in the deforming film: a refined ultrananocrystalline layer at the top surface, over a region of coarsened grains, atop the parent nanocrystalline alloy. The key distinction between the high-friction and low-friction conditions appears to lie in the triggering of a delamination process: high-friction conditions are associated with a thickening of the UNC layer through repeated delamination, whereas low-friction conditions are associated with a thin UNC layer that does not delaminate. Finite element analysis is used to aid in the understanding of how the magnitude and location of stresses drive these two distinct regimes. ► Nanocrystalline Ni–Fe can exhibit high or low friction coefficient (0.2 or 0.8) depending on normal force and sliding velocity. ► The low friction coefficient is associated with the formation of an ultra-nanocrystalline surface tribolayer. ► The high friction coeffiecient is associated with the cyclic delamination and reformation of the ultra-nanocrystalline tribolayer. ► These two regimes of behavior can be rationalized on the basis of stress fields determined by finite element analysis of sliding contact.
Author Battaile, Corbett C.
Boyce, Brad L.
Padilla, Henry A.
Prasad, Somuri V.
Author_xml – sequence: 1
  givenname: Henry A.
  surname: Padilla
  fullname: Padilla, Henry A.
– sequence: 2
  givenname: Brad L.
  surname: Boyce
  fullname: Boyce, Brad L.
  email: blboyce@sandia.gov
– sequence: 3
  givenname: Corbett C.
  surname: Battaile
  fullname: Battaile, Corbett C.
– sequence: 4
  givenname: Somuri V.
  surname: Prasad
  fullname: Prasad, Somuri V.
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26924383$$DView record in Pascal Francis
BookMark eNqFkcFqVDEUhoNUcFr7Aq6yEdzc6UnundxccCPF0ULRTbsOaXJSMmSSMcmMzErfwTf0SZrrFJe6Cvx8_x843zk5iykiIW8YLBkwcbVZfkedlxwYb8ESmHxBFkyOfcdX43hGFgBD3zExyFfkvJQNALBpJRbkxzp7U32KOtAdZpfyVkeDVEdLY5vsyj473QI8pLCfQZocjTomk4-l6hB8RPrF__75a91ahT6mA-aIlj4cqUmxalNpqRlL-bNZgrc-PtIDhmR8Pb4mL50OBS-f3wtyv_54d_25u_366eb6w21nhgFq9wBW835cWSkmtNyJicE4WNYygUwwBCGMFmCnYYRRIzqw0nDUg5QgHe8vyLvT7i6nb3ssVW19MRiCjpj2RTHJBHABjP0f7cWKNR6gofyEmpxKyejULvutzkfFQM1i1EbNYtQsZs6amFZ6-7yvi9HB5XZwX_42uZj40Mu-ce9PHLa7HDxmVYzHJsf6jKYqm_y_vnkCKpqoEQ
CODEN WEARAH
CitedBy_id crossref_primary_10_1007_s40544_020_0440_x
crossref_primary_10_1002_adma_202200354
crossref_primary_10_1016_j_matdes_2020_108764
crossref_primary_10_1016_j_apsusc_2021_151533
crossref_primary_10_1016_j_wear_2020_203320
crossref_primary_10_1007_s10853_016_0569_1
crossref_primary_10_1016_j_wear_2013_05_001
crossref_primary_10_1016_j_actamat_2022_118545
crossref_primary_10_1038_s41598_019_45734_7
crossref_primary_10_1016_j_colsurfa_2022_130507
crossref_primary_10_1016_j_wear_2019_04_004
crossref_primary_10_1016_j_cossms_2016_05_005
crossref_primary_10_1080_21663831_2024_2356282
crossref_primary_10_1016_j_wear_2023_205189
crossref_primary_10_1016_j_matdes_2024_112786
crossref_primary_10_1088_2053_1591_ab032a
crossref_primary_10_1016_j_jmst_2022_05_041
crossref_primary_10_1016_j_wear_2023_205022
crossref_primary_10_1016_j_wear_2023_204690
crossref_primary_10_1016_j_scriptamat_2015_05_022
crossref_primary_10_1021_acsnano_1c01555
crossref_primary_10_1016_j_scriptamat_2016_05_009
crossref_primary_10_1016_j_triboint_2024_109464
crossref_primary_10_1016_j_scriptamat_2017_09_006
crossref_primary_10_1007_s10856_018_6043_7
crossref_primary_10_1016_j_matchar_2020_110231
crossref_primary_10_1016_j_actamat_2021_116679
crossref_primary_10_1149_1945_7111_ac8646
crossref_primary_10_1016_j_jnoncrysol_2023_122485
crossref_primary_10_1007_s10853_016_0437_z
crossref_primary_10_1016_j_actamat_2018_12_049
crossref_primary_10_1016_j_msea_2021_142105
crossref_primary_10_1007_s11665_023_07835_3
crossref_primary_10_1016_j_wear_2018_01_013
crossref_primary_10_1088_2053_1591_ab5884
crossref_primary_10_1016_j_ceramint_2021_01_265
crossref_primary_10_1016_j_scriptamat_2022_114895
crossref_primary_10_1016_j_triboint_2024_109575
crossref_primary_10_1016_j_triboint_2021_107232
crossref_primary_10_1021_acsami_0c15044
crossref_primary_10_1021_acsami_8b01205
crossref_primary_10_1007_s11249_021_01442_w
crossref_primary_10_1007_s10853_015_9226_3
crossref_primary_10_1016_j_engfailanal_2020_104472
crossref_primary_10_1016_j_jeurceramsoc_2021_10_047
crossref_primary_10_1088_1361_651X_aaf75d
crossref_primary_10_1126_sciadv_1601942
crossref_primary_10_1007_s11665_016_1881_2
crossref_primary_10_1016_j_actamat_2018_09_016
crossref_primary_10_1007_s11249_019_1195_2
crossref_primary_10_1016_j_ijmecsci_2021_106458
crossref_primary_10_1016_j_wear_2018_02_010
crossref_primary_10_1039_C6RA10879B
crossref_primary_10_1002_adem_201900333
crossref_primary_10_1016_j_apsusc_2021_149202
crossref_primary_10_4313_JKEM_2014_27_8_505
crossref_primary_10_1002_adma_201802026
crossref_primary_10_1103_PhysRevMaterials_1_043602
crossref_primary_10_1146_annurev_matsci_070813_113533
crossref_primary_10_1016_j_mtla_2018_09_010
crossref_primary_10_1007_s40544_021_0777_z
crossref_primary_10_1016_j_ijfatigue_2020_105472
crossref_primary_10_1016_j_cossms_2018_05_001
crossref_primary_10_1016_j_actamat_2020_02_039
crossref_primary_10_1038_s41467_021_25778_y
crossref_primary_10_1016_j_triboint_2023_108893
crossref_primary_10_1016_j_wear_2017_03_013
crossref_primary_10_1007_s11249_021_01477_z
crossref_primary_10_1007_s12613_017_1380_y
crossref_primary_10_1016_j_scriptamat_2018_05_023
crossref_primary_10_1016_j_jmrt_2023_04_034
crossref_primary_10_1016_j_jmrt_2023_09_175
crossref_primary_10_1016_j_mtla_2020_100618
crossref_primary_10_1007_s40544_024_0884_5
crossref_primary_10_1016_j_ijplas_2023_103515
crossref_primary_10_1016_j_matchar_2024_113644
crossref_primary_10_1103_PhysRevMaterials_4_103605
Cites_doi 10.1016/0025-5416(77)90166-5
10.1016/0043-1648(80)90247-1
10.1016/j.scriptamat.2010.12.027
10.1016/0025-5416(86)90258-2
10.1016/j.actamat.2008.03.032
10.1016/S1359-6462(02)00062-3
10.1016/0921-5093(95)10016-4
10.1007/s100190050046
10.1016/0043-1648(77)90082-5
10.1016/S0043-1648(96)07391-7
10.1016/j.wear.2007.11.022
10.1016/j.wear.2007.01.095
10.1016/j.msea.2006.05.149
10.1016/j.surfcoat.2006.08.103
10.1063/1.2008377
10.1016/j.actamat.2007.07.020
10.1016/S1526-6125(04)70064-X
10.1016/j.msea.2006.10.204
10.1016/j.actamat.2010.04.005
10.1016/j.msea.2004.03.064
10.1016/0921-5093(92)90002-I
10.1002/pssa.200566157
10.1016/0043-1648(77)90083-7
10.1016/j.wear.2008.08.004
10.1016/j.ijfatigue.2005.06.036
10.1016/j.actamat.2011.11.059
10.1016/S0043-1648(01)00783-9
10.1016/S0043-1648(99)00329-4
10.1016/0043-1648(77)90081-3
10.1016/S1359-6462(01)00766-7
10.1016/j.actamat.2006.06.016
10.1109/JMEMS.2009.2016284
10.1126/science.1098741
10.1016/j.scriptamat.2008.11.049
10.1016/j.actamat.2007.01.038
10.1016/0043-1648(94)90281-X
10.1016/S0043-1648(00)00460-9
10.1016/0043-1648(94)90169-4
10.1016/0257-8972(95)02623-1
10.1016/j.wear.2005.06.010
10.1243/PIME_PROC_1983_197_076_02
10.1007/s11340-008-9212-7
10.1016/j.msea.2003.09.107
10.1007/s11661-011-0708-x
10.1016/0956-716X(95)00441-W
10.1016/S0043-1648(97)80002-6
10.1016/0965-9773(95)00264-F
10.1063/1.3065025
10.1016/j.jallcom.2006.08.174
10.2172/138710
10.1016/0043-1648(73)90125-7
10.1016/j.ijplas.2004.07.008
10.1063/1.1828213
10.1016/j.actamat.2006.01.023
10.1002/adem.200500034
10.1166/jnn.2009.M37
10.1016/j.scriptamat.2006.03.053
10.2172/145293
10.1016/S1359-6454(02)00421-4
10.1016/j.actamat.2004.08.045
10.1016/j.pmatsci.2005.08.003
10.1126/science.1086636
10.1016/j.actamat.2006.08.004
10.1016/0043-1648(91)90386-9
10.1126/science.1178226
10.1016/j.actamat.2003.08.032
10.1007/s11661-007-9157-y
10.1016/S0921-5093(02)00870-5
10.1016/j.actamat.2007.12.048
10.1016/S1359-6462(00)00625-4
ContentType Journal Article
Copyright 2012 Elsevier B.V.
2014 INIST-CNRS
Copyright_xml – notice: 2012 Elsevier B.V.
– notice: 2014 INIST-CNRS
DBID 6I.
AAFTH
IQODW
AAYXX
CITATION
7SR
7TB
7U5
8BQ
8FD
FR3
JG9
L7M
DOI 10.1016/j.wear.2012.10.018
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
Pascal-Francis
CrossRef
Engineered Materials Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Engineering Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList Materials Research Database
Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1873-2577
EndPage 871
ExternalDocumentID 10_1016_j_wear_2012_10_018
26924383
S0043164812003353
GroupedDBID --K
--M
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
5VS
6I.
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABMAC
ABNUV
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HZ~
IHE
J1W
JJJVA
KOM
LY7
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SCU
SDF
SDG
SDP
SES
SMS
SPC
SPCBC
SSG
SSM
SST
SSZ
T5K
ZMT
~02
~G-
29R
AALMO
AAPBV
ABFLS
ABPIF
ABPTK
ACNNM
ADALY
ASPBG
AVWKF
AZFZN
FEDTE
FGOYB
G-2
HVGLF
H~9
IPNFZ
IQODW
R2-
SET
SEW
WUQ
AAXKI
AAYXX
AFJKZ
AKRWK
CITATION
7SR
7TB
7U5
8BQ
8FD
FR3
JG9
L7M
ID FETCH-LOGICAL-c440t-b0da2375d869ed2f691074d12376e161e066ca60d94707aeef0d8c2ea48808f23
IEDL.DBID .~1
ISSN 0043-1648
IngestDate Sat Oct 26 01:16:21 EDT 2024
Fri Oct 25 22:56:01 EDT 2024
Thu Sep 26 19:57:00 EDT 2024
Fri Nov 25 01:04:03 EST 2022
Fri Feb 23 02:31:46 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1-2
Keywords Nickel
Tribolayer
Nanocrystalline metal
Sliding friction
Grain size
Nickel base alloys
Annealing
Sliding wear
Iron alloys
Hardness
Dry friction
Finite element method
Multilayers
Elastoplasticity
Wear rate
Delamination
Nanocrystal
Language English
License http://creativecommons.org/licenses/by-nc-nd/3.0
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c440t-b0da2375d869ed2f691074d12376e161e066ca60d94707aeef0d8c2ea48808f23
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0043164812003353
PQID 1365118100
PQPubID 23500
PageCount 12
ParticipantIDs proquest_miscellaneous_1816026011
proquest_miscellaneous_1365118100
crossref_primary_10_1016_j_wear_2012_10_018
pascalfrancis_primary_26924383
elsevier_sciencedirect_doi_10_1016_j_wear_2012_10_018
PublicationCentury 2000
PublicationDate 2013-01-15
PublicationDateYYYYMMDD 2013-01-15
PublicationDate_xml – month: 01
  year: 2013
  text: 2013-01-15
  day: 15
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Wear
PublicationYear 2013
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Jonnalagadda (bib66) 2010; 50
Rigney (bib5) 1998; 1
Hansen, Kuhlmann-Wilsdorf (bib2) 1986; 81
Rainforth, Stevens, Nutting (bib12) 1992; 66
Karimpoor, Erb (bib43) 2006; 203
Witney (bib34) 1995; 33
Qi, Jiang, Meletis (bib36) 2009; 9
Biffle, J.H. and M.L. Blanford, JAC2D—A Two-Dimensional Finite Element Computer Program for the Nonlinear Quasi-Static Response of Solids with the Conjugate Gradient Method. Sandia Report, May 1994. SAND93-1891.
Suh (bib7) 1973; 25
Shafiei, Alpas (bib46) 2007; 38
Ebrahimi, Li (bib54) 2006; 55
Battaile (bib40) 2012; 60
Shute (bib33) 2009; 60
Hanlon, Rainforth, Sellars (bib15) 1997
Buchheit (bib52) 2006; 432
Meyers, Mishra, Benson (bib24) 2006; 51
Shafiei, Alpas (bib72) 2008; 265
Khan (bib44) 2006; 22
Schiotz, Jacobsen (bib19) 2003; 301
Johnson (bib70) 1985
Zhang, Weertman, Eastman (bib28) 2004; 85
Fleming, Suh (bib8) 1977; 44
Emge (bib11) 2007
Biffle, J.H., JAC3D: A Three-Dimensional Finite Element Computer Program for the Nonlinear Quasi-Static Response of Solids with the Conjugate Gradient Method. Sandia Report, February 1993. SAND87-1305.
Prasad, McDevitt, Zabinski (bib77) 2000; 237
Cheung (bib53) 1995; 5
Boyce, Padilla (bib32) 2011; 42A
Liu, Erdemir, Meletis (bib75) 1996; 82
Shan, Mao (bib22) 2005; 7
Kuhlmann-Wilsdorf (bib3) 1996; 200
Fan (bib55) 2007
Wang (bib57) 2009; 94
Shan (bib21) 2004; 305
Farhat (bib47) 1996; 206
Prasad, Battaile, Kotula (bib51) 2011; 64
Jungk, Michael, Prasad (bib73) 2008; 56
Hamilton (bib68) 1983; 197
Takagi (bib45) 2001; 44
Prasad (bib59) 2009; 18
Sun, Shi, Zhang (bib39) 2009; 266
Legros, Gianola, Hemker (bib30) 2008; 56
Jeong (bib48) 2001; 44
Rupert (bib29) 2009; 326
Kumar (bib18) 2003; 51
Harlin (bib78) 2006; 201
Schuh, Nieh, Yamasaki (bib23) 2002; 46
Prasad (bib58) 2004; 6
Anis, Rainforth, Davies (bib13) 1994; 172
Trelewicz, Schuh (bib25) 2007; 55
Kumar, Van Swygenhoven, Suresh (bib17) 2003; 51
Dao (bib67) 2007; 55
Stone (bib69) 1997
Jahanmir, Suh (bib9) 1977; 44
Wolf (bib16) 2005; 53
Klement, U., M. da Silva, and W. Skrotzki. On the orientations of abnormally grown grains in nanocrystalline Ni and Ni–Fe, in 14th Conference and Workshop on Electron Backscatter Diffraction. 2007. New Lanark, SCOTLAND.
Biffle (bib37) 1993
Zhang (bib61) 2006; 260
Salesky (bib6) 1983
Zhang, Weertman, Eastman (bib26) 2005; 87
Wang (bib14) 2001
Rigney (bib42) 1994; 175
Suh (bib10) 1977; 44
Kuhlmann-Wilsdorf, Laird (bib4) 1977; 27
Wei (bib71) 2004; 381
Bay, Hansen, Kuhlmann-Wilsdorf (bib1) 1992; 158
Rupert, Schuh (bib50) 2010; 58
Blanford, M.L. and J.H. Biffle, JAC Codes: Finite Element Computer Programs for the Non-Linear Quasistatic Response of Solids with the Conjugate Gradient Method. Sandia Report, February 1994. SAND93-2880.
Cahn, Mishin, Suzuki (bib38) 2006; 54
Wang (bib49) 2003; 352
Gianola (bib27) 2006; 54
Mishra, Basu, Balasubramaniam (bib60) 2004; 373
MATLAB, 2011, The Mathworks.
Hsu, Ahn, Rigney (bib41) 1980; 60
Hanlon (bib35) 2005; 27
Singer, Fayeulle, Ehni (bib76) 1991; 149
Van Swygenhoven (bib20) 2008
Rigney (bib74) 2000; 245
Fan (bib31) 2006; 54
Wang (10.1016/j.wear.2012.10.018_bib49) 2003; 352
Hsu (10.1016/j.wear.2012.10.018_bib41) 1980; 60
Battaile (10.1016/j.wear.2012.10.018_bib40) 2012; 60
Rigney (10.1016/j.wear.2012.10.018_bib42) 1994; 175
10.1016/j.wear.2012.10.018_bib56
Prasad (10.1016/j.wear.2012.10.018_bib77) 2000; 237
Kuhlmann-Wilsdorf (10.1016/j.wear.2012.10.018_bib4) 1977; 27
Wang (10.1016/j.wear.2012.10.018_bib57) 2009; 94
Jungk (10.1016/j.wear.2012.10.018_bib73) 2008; 56
Buchheit (10.1016/j.wear.2012.10.018_bib52) 2006; 432
Shafiei (10.1016/j.wear.2012.10.018_bib72) 2008; 265
Salesky (10.1016/j.wear.2012.10.018_bib6) 1983
Wang (10.1016/j.wear.2012.10.018_bib14) 2001
Suh (10.1016/j.wear.2012.10.018_bib10) 1977; 44
Harlin (10.1016/j.wear.2012.10.018_bib78) 2006; 201
Jeong (10.1016/j.wear.2012.10.018_bib48) 2001; 44
Emge (10.1016/j.wear.2012.10.018_bib11) 2007
Schiotz (10.1016/j.wear.2012.10.018_bib19) 2003; 301
Qi (10.1016/j.wear.2012.10.018_bib36) 2009; 9
Takagi (10.1016/j.wear.2012.10.018_bib45) 2001; 44
Dao (10.1016/j.wear.2012.10.018_bib67) 2007; 55
Suh (10.1016/j.wear.2012.10.018_bib7) 1973; 25
Zhang (10.1016/j.wear.2012.10.018_bib26) 2005; 87
Fan (10.1016/j.wear.2012.10.018_bib55) 2007
Wolf (10.1016/j.wear.2012.10.018_bib16) 2005; 53
Schuh (10.1016/j.wear.2012.10.018_bib23) 2002; 46
Liu (10.1016/j.wear.2012.10.018_bib75) 1996; 82
Rigney (10.1016/j.wear.2012.10.018_bib74) 2000; 245
Cahn (10.1016/j.wear.2012.10.018_bib38) 2006; 54
Witney (10.1016/j.wear.2012.10.018_bib34) 1995; 33
Shute (10.1016/j.wear.2012.10.018_bib33) 2009; 60
10.1016/j.wear.2012.10.018_bib63
10.1016/j.wear.2012.10.018_bib62
10.1016/j.wear.2012.10.018_bib65
10.1016/j.wear.2012.10.018_bib64
Khan (10.1016/j.wear.2012.10.018_bib44) 2006; 22
Rupert (10.1016/j.wear.2012.10.018_bib50) 2010; 58
Shan (10.1016/j.wear.2012.10.018_bib22) 2005; 7
Van Swygenhoven (10.1016/j.wear.2012.10.018_bib20) 2008
Kumar (10.1016/j.wear.2012.10.018_bib17) 2003; 51
Hansen (10.1016/j.wear.2012.10.018_bib2) 1986; 81
Shan (10.1016/j.wear.2012.10.018_bib21) 2004; 305
Hanlon (10.1016/j.wear.2012.10.018_bib15) 1997
Shafiei (10.1016/j.wear.2012.10.018_bib46) 2007; 38
Singer (10.1016/j.wear.2012.10.018_bib76) 1991; 149
Boyce (10.1016/j.wear.2012.10.018_bib32) 2011; 42A
Hanlon (10.1016/j.wear.2012.10.018_bib35) 2005; 27
Hamilton (10.1016/j.wear.2012.10.018_bib68) 1983; 197
Prasad (10.1016/j.wear.2012.10.018_bib58) 2004; 6
Anis (10.1016/j.wear.2012.10.018_bib13) 1994; 172
Wei (10.1016/j.wear.2012.10.018_bib71) 2004; 381
Bay (10.1016/j.wear.2012.10.018_bib1) 1992; 158
Sun (10.1016/j.wear.2012.10.018_bib39) 2009; 266
Mishra (10.1016/j.wear.2012.10.018_bib60) 2004; 373
Farhat (10.1016/j.wear.2012.10.018_bib47) 1996; 206
Jonnalagadda (10.1016/j.wear.2012.10.018_bib66) 2010; 50
Legros (10.1016/j.wear.2012.10.018_bib30) 2008; 56
Johnson (10.1016/j.wear.2012.10.018_bib70) 1985
Prasad (10.1016/j.wear.2012.10.018_bib51) 2011; 64
Prasad (10.1016/j.wear.2012.10.018_bib59) 2009; 18
Fleming (10.1016/j.wear.2012.10.018_bib8) 1977; 44
Kuhlmann-Wilsdorf (10.1016/j.wear.2012.10.018_bib3) 1996; 200
Zhang (10.1016/j.wear.2012.10.018_bib28) 2004; 85
Biffle (10.1016/j.wear.2012.10.018_bib37) 1993
Cheung (10.1016/j.wear.2012.10.018_bib53) 1995; 5
Rupert (10.1016/j.wear.2012.10.018_bib29) 2009; 326
Gianola (10.1016/j.wear.2012.10.018_bib27) 2006; 54
Zhang (10.1016/j.wear.2012.10.018_bib61) 2006; 260
Karimpoor (10.1016/j.wear.2012.10.018_bib43) 2006; 203
Stone (10.1016/j.wear.2012.10.018_bib69) 1997
Kumar (10.1016/j.wear.2012.10.018_bib18) 2003; 51
Jahanmir (10.1016/j.wear.2012.10.018_bib9) 1977; 44
Meyers (10.1016/j.wear.2012.10.018_bib24) 2006; 51
Fan (10.1016/j.wear.2012.10.018_bib31) 2006; 54
Rigney (10.1016/j.wear.2012.10.018_bib5) 1998; 1
Rainforth (10.1016/j.wear.2012.10.018_bib12) 1992; 66
Trelewicz (10.1016/j.wear.2012.10.018_bib25) 2007; 55
Ebrahimi (10.1016/j.wear.2012.10.018_bib54) 2006; 55
References_xml – volume: 87
  start-page: 061921
  year: 2005
  ident: bib26
  article-title: Rapid stress-driven grain coarsening in nanocrystalline Cu at ambient and cryogenic temperatures
  publication-title: Applied Physics Letters
  contributor:
    fullname: Eastman
– volume: 9
  start-page: 4227
  year: 2009
  end-page: 4232
  ident: bib36
  article-title: Wear mechanism of nanocrystalline metals
  publication-title: Journal of Nanoscience and Nanotechnology
  contributor:
    fullname: Meletis
– volume: 175
  start-page: 63
  year: 1994
  end-page: 69
  ident: bib42
  article-title: The roles of hardness in the sliding behavior of materials
  publication-title: Wear
  contributor:
    fullname: Rigney
– volume: 301
  start-page: 1357
  year: 2003
  end-page: 1359
  ident: bib19
  article-title: A maximum in the strength of nanocrystalline copper
  publication-title: Science
  contributor:
    fullname: Jacobsen
– volume: 55
  start-page: 4041
  year: 2007
  end-page: 4065
  ident: bib67
  article-title: Toward a quantitative understanding of mechanical behavior of nanocrystalline metals
  publication-title: Acta Materialia
  contributor:
    fullname: Dao
– start-page: 614
  year: 2007
  end-page: 618
  ident: bib11
  article-title: The effect of sliding velocity on the tribological behavior of copper
  publication-title: Wear
  contributor:
    fullname: Emge
– volume: 5
  start-page: 513
  year: 1995
  end-page: 523
  ident: bib53
  article-title: Electrodeposition of nanocrystalline Ni–Fe alloys
  publication-title: Nanostructured materials
  contributor:
    fullname: Cheung
– volume: 44
  start-page: 17
  year: 1977
  end-page: 38
  ident: bib9
  article-title: Mechanics of subsurface void nucleation in delamination wear
  publication-title: Wear
  contributor:
    fullname: Suh
– volume: 200
  start-page: 8
  year: 1996
  end-page: 29
  ident: bib3
  article-title: What role for contact spots and dislocations in friction and wear?
  publication-title: Wear
  contributor:
    fullname: Kuhlmann-Wilsdorf
– volume: 55
  start-page: 263
  year: 2006
  end-page: 266
  ident: bib54
  article-title: Grain growth in electrodeposited nanocrystalline fcc Ni–Fe alloys
  publication-title: Scripta Materialia
  contributor:
    fullname: Li
– year: 1997
  ident: bib69
  article-title: SANTOS—A Two-Dimensional Finite Element Program for the Quasistatic, Large Deformation, Inelastic Response of Solids
  contributor:
    fullname: Stone
– volume: 203
  start-page: 1265
  year: 2006
  end-page: 1270
  ident: bib43
  article-title: Mechanical properties of nanocrystalline cobalt
  publication-title: Physica Status Solidi A
  contributor:
    fullname: Erb
– year: 1985
  ident: bib70
  article-title: Contact Mechanics
  contributor:
    fullname: Johnson
– volume: 60
  start-page: 13
  year: 1980
  end-page: 37
  ident: bib41
  article-title: Friction, wear and microstructure of unlubricated austenitic stainless-steels
  publication-title: Wear
  contributor:
    fullname: Rigney
– volume: 64
  start-page: 729
  year: 2011
  end-page: 732
  ident: bib51
  article-title: Friction transitions in nanocrystalline nickel
  publication-title: Scripta Materialia
  contributor:
    fullname: Kotula
– volume: 149
  start-page: 375
  year: 1991
  end-page: 394
  ident: bib76
  article-title: Friction and wear behavior of TiN in air: the chemistry of transfer films and debris formation
  publication-title: Wear
  contributor:
    fullname: Ehni
– volume: 158
  start-page: 139
  year: 1992
  end-page: 146
  ident: bib1
  article-title: Microstructural evolution in rolled aluminum
  publication-title: Materials Science and Engineering A—Structural Materials Properties Microstructure and Processing
  contributor:
    fullname: Kuhlmann-Wilsdorf
– volume: 265
  start-page: 429
  year: 2008
  end-page: 438
  ident: bib72
  article-title: Effect of sliding speed on friction and wear behaviour of nanocrystalline nickel tested in an argon atmosphere
  publication-title: Wear
  contributor:
    fullname: Alpas
– year: 1983
  ident: bib6
  article-title: Nature and Origin of Sliding-Wear Debris from Steels
  contributor:
    fullname: Salesky
– volume: 55
  start-page: 5948
  year: 2007
  end-page: 5958
  ident: bib25
  article-title: The Hall–Petch breakdown in nanocrystalline metals: a crossover to glass-like deformation
  publication-title: Acta Materialia
  contributor:
    fullname: Schuh
– volume: 33
  start-page: 2025
  year: 1995
  end-page: 2030
  ident: bib34
  article-title: Fatigue of nanocrystalline copper
  publication-title: Scripta Metallurgica Et Materialia
  contributor:
    fullname: Witney
– volume: 266
  start-page: 666
  year: 2009
  end-page: 670
  ident: bib39
  article-title: Sliding wear-induced microstructure evolution of nanocrystalline and coarse-grained AZ91D Mg alloy
  publication-title: Wear
  contributor:
    fullname: Zhang
– volume: 27
  start-page: 137
  year: 1977
  end-page: 156
  ident: bib4
  article-title: Dislocation behavior in fatigue
  publication-title: Materials Science and Engineering
  contributor:
    fullname: Laird
– volume: 44
  start-page: 2145
  year: 2001
  end-page: 2148
  ident: bib45
  article-title: Wear properties of nanocrystalline aluminum alloys and their composites
  publication-title: Scripta Materialia
  contributor:
    fullname: Takagi
– volume: 18
  start-page: 695
  year: 2009
  end-page: 704
  ident: bib59
  article-title: Application of diamond-like nanocomposite tribological coatings on LIGA microsystem parts
  publication-title: Journal of Microelectromechanical Systems
  contributor:
    fullname: Prasad
– volume: 54
  start-page: 4953
  year: 2006
  end-page: 4975
  ident: bib38
  article-title: Coupling grain boundary motion to shear deformation
  publication-title: Acta Materialia
  contributor:
    fullname: Suzuki
– volume: 50
  start-page: 25
  year: 2010
  end-page: 35
  ident: bib66
  article-title: Experimental investigation of strain rate dependence of nanocrystalline Pt films
  publication-title: Experimental Mechanics
  contributor:
    fullname: Jonnalagadda
– volume: 432
  start-page: 149
  year: 2006
  end-page: 157
  ident: bib52
  article-title: Electrodeposited 80Ni–20Fe (Permalloy) as a structural material for high aspect ratio microfabrication
  publication-title: Materials Science and Engineering: A
  contributor:
    fullname: Buchheit
– volume: 46
  start-page: 735
  year: 2002
  end-page: 740
  ident: bib23
  article-title: Hall–Petch breakdown manifested in abrasive wear resistance of nanocrystalline nickel
  publication-title: Scripta Materialia
  contributor:
    fullname: Yamasaki
– volume: 206
  start-page: 302
  year: 1996
  end-page: 313
  ident: bib47
  article-title: Effect of grain size on friction and wear of nanocrystalline aluminum
  publication-title: Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing
  contributor:
    fullname: Farhat
– volume: 197
  start-page: 53
  year: 1983
  end-page: 59
  ident: bib68
  article-title: Explicity equations for the stresses beneath a sliding spherical contact
  publication-title: Proceedings of the Institution of Mechanical Engineers Part C-Journal of Mechanical Engineering Science
  contributor:
    fullname: Hamilton
– volume: 25
  start-page: 111
  year: 1973
  end-page: 124
  ident: bib7
  article-title: Delamination theory of wear
  publication-title: Wear
  contributor:
    fullname: Suh
– volume: 60
  start-page: 1712
  year: 2012
  end-page: 1720
  ident: bib40
  article-title: The hardness and strength of metal tribofilms: an apparent contradiction between nanoindentation and pillar compression
  publication-title: Acta Materialia
  contributor:
    fullname: Battaile
– volume: 58
  start-page: 4137
  year: 2010
  end-page: 4148
  ident: bib50
  article-title: Sliding wear of nanocrystalline Ni-W: structural evolution and the apparent breakdown of Archard scaling
  publication-title: Acta Materialia
  contributor:
    fullname: Schuh
– volume: 373
  start-page: 370
  year: 2004
  end-page: 373
  ident: bib60
  article-title: Effect of grain size on the tribological behavior of nanocrystalline nickel
  publication-title: Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing
  contributor:
    fullname: Balasubramaniam
– start-page: 298
  year: 2007
  end-page: 300
  ident: bib55
  article-title: Mechanical behavior of a bulk nanocrystalline Ni–Fe alloy
  publication-title: Journal of Alloys and Compounds
  contributor:
    fullname: Fan
– volume: 54
  start-page: 2253
  year: 2006
  end-page: 2263
  ident: bib27
  article-title: Stress-assisted discontinuous grain growth and its effect on the deformation behavior of nanocrystalline aluminum thin films
  publication-title: Acta Materialia
  contributor:
    fullname: Gianola
– volume: 27
  start-page: 1159
  year: 2005
  end-page: 1163
  ident: bib35
  article-title: Effects of grain refinement and strength on friction and damage evolution under repeated sliding contact in nanostructured metals
  publication-title: International Journal of Fatigue
  contributor:
    fullname: Hanlon
– volume: 44
  start-page: 493
  year: 2001
  end-page: 499
  ident: bib48
  article-title: The effect of grain size on the wear properties of electrodeposited nanocrystalline nickel coatings
  publication-title: Scripta Materialia
  contributor:
    fullname: Jeong
– volume: 82
  start-page: 48
  year: 1996
  end-page: 56
  ident: bib75
  article-title: A study of the wear mechanism of diamond-like carbon films
  publication-title: Surface and Coatings Technology
  contributor:
    fullname: Meletis
– volume: 352
  start-page: 144
  year: 2003
  end-page: 149
  ident: bib49
  article-title: Effect of surface nanocrystallization on friction and wear properties in low carbon steel
  publication-title: Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing
  contributor:
    fullname: Wang
– volume: 54
  start-page: 4781
  year: 2006
  end-page: 4792
  ident: bib31
  article-title: Uniaxial tensile plastic deformation and grain growth of bulk nanocrystalline alloys
  publication-title: Acta Materialia
  contributor:
    fullname: Fan
– start-page: 33
  year: 2008
  end-page: 39
  ident: bib20
  article-title: Footprints of plastic deformation in nanocrystalline metals
  publication-title: Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing
  contributor:
    fullname: Van Swygenhoven
– volume: 326
  start-page: 1686
  year: 2009
  end-page: 1690
  ident: bib29
  article-title: Experimental observations of stress-driven grain boundary migration
  publication-title: Science
  contributor:
    fullname: Rupert
– volume: 94
  start-page: 1
  year: 2009
  ident: bib57
  article-title: Mechanism of grain growth during severe plastic deformation of a nanocrystalline Ni–Fe alloy
  publication-title: Applied Physics Letters
  contributor:
    fullname: Wang
– volume: 237
  start-page: 186
  year: 2000
  end-page: 196
  ident: bib77
  article-title: Tribology of tungsten disulfide-nanocrystalline zinc oxide adaptive lubricant films from ambient to 500
  publication-title: Wear
  contributor:
    fullname: Zabinski
– start-page: 220
  year: 1997
  end-page: 229
  ident: bib15
  article-title: The effect of processing route, composition and hardness on the wear response of chromium bearing steels in a rolling-sliding configuration
  publication-title: Wear
  contributor:
    fullname: Sellars
– volume: 42A
  start-page: 1793
  year: 2011
  end-page: 1804
  ident: bib32
  article-title: Anomalous fatigue behavior and fatigue-induced grain growth in nanocrystalline nickel alloys
  publication-title: Metallurgical and Materials Transactions A-Physical Metallurgy and Materials Science
  contributor:
    fullname: Padilla
– start-page: 1421
  year: 2001
  end-page: 1432
  ident: bib14
  article-title: Dry wear behaviour and its relation to microstructure of novel 6092 aluminium alloy-Ni
  publication-title: Wear
  contributor:
    fullname: Wang
– volume: 66
  start-page: 621
  year: 1992
  end-page: 641
  ident: bib12
  article-title: Deformation structures induced by sliding contact
  publication-title: Philosophical Magazine a-Physics of Condensed Matter Structure Defects and Mechanical Properties
  contributor:
    fullname: Nutting
– volume: 6
  start-page: 107
  year: 2004
  end-page: 116
  ident: bib58
  article-title: LIGA microsystems: surface interactions, tribology and coatings
  publication-title: Journal of Manufacturing Processes
  contributor:
    fullname: Prasad
– volume: 44
  start-page: 39
  year: 1977
  end-page: 56
  ident: bib8
  article-title: Mechanics of crack-propagation in delamination wear
  publication-title: Wear
  contributor:
    fullname: Suh
– volume: 51
  start-page: 387
  year: 2003
  end-page: 405
  ident: bib18
  article-title: Deformation of electrodeposited nanocrystalline nickel
  publication-title: Acta Materialia
  contributor:
    fullname: Kumar
– volume: 60
  start-page: 1073
  year: 2009
  end-page: 1077
  ident: bib33
  article-title: Microstructural stability during cyclic loading of multilayer copper/copper samples with nanoscale twinning
  publication-title: Scripta Materialia
  contributor:
    fullname: Shute
– volume: 56
  start-page: 1956
  year: 2008
  end-page: 1966
  ident: bib73
  article-title: The role of substrate plasticity on the tribological behavior of diamond-like nanocomposite coatings
  publication-title: Acta Materialia
  contributor:
    fullname: Prasad
– year: 1993
  ident: bib37
  article-title: JAC3D—A Three-Dimensional Finite Element Computer Program for the Nonlinear Quasistatic Response of Solids with the Conjugate Gradient Method
  contributor:
    fullname: Biffle
– volume: 172
  start-page: 135
  year: 1994
  end-page: 145
  ident: bib13
  article-title: Wear behavior of rapidly solidified Fe
  publication-title: Wear
  contributor:
    fullname: Davies
– volume: 305
  start-page: 654
  year: 2004
  end-page: 657
  ident: bib21
  article-title: Grain boundary-mediated plasticity in nanocrystalline nickel
  publication-title: Science
  contributor:
    fullname: Shan
– volume: 260
  start-page: 942
  year: 2006
  end-page: 948
  ident: bib61
  article-title: Friction and wear behaviors of nanocrystalline surface layer of pure copper
  publication-title: Wear
  contributor:
    fullname: Zhang
– volume: 44
  start-page: 1
  year: 1977
  end-page: 16
  ident: bib10
  article-title: Overview of delamination theory of wear
  publication-title: Wear
  contributor:
    fullname: Suh
– volume: 201
  start-page: 4253
  year: 2006
  end-page: 4259
  ident: bib78
  article-title: Influence of surface roughness of PVD coatings on tribological performance in sliding contacts
  publication-title: Surface and Coatings Technology
  contributor:
    fullname: Harlin
– volume: 1
  start-page: 231
  year: 1998
  end-page: 234
  ident: bib5
  article-title: Large strains associated with sliding contact of metals
  publication-title: Materials Research Innovations
  contributor:
    fullname: Rigney
– volume: 56
  start-page: 3380
  year: 2008
  end-page: 3393
  ident: bib30
  article-title: In situ TEM observations of fast grain-boundary motion in stressed nanocrystalline aluminum films
  publication-title: Acta Materialia
  contributor:
    fullname: Hemker
– volume: 245
  start-page: 1
  year: 2000
  end-page: 9
  ident: bib74
  article-title: Transfer, mixing and associated chemical and mechanical processes during the sliding of ductile materials
  publication-title: Wear
  contributor:
    fullname: Rigney
– volume: 81
  start-page: 141
  year: 1986
  end-page: 161
  ident: bib2
  article-title: Low-energy dislocation-structures due to unidirectional deformation at low-temperatures
  publication-title: Materials Science and Engineering
  contributor:
    fullname: Kuhlmann-Wilsdorf
– volume: 51
  start-page: 427
  year: 2006
  end-page: 556
  ident: bib24
  article-title: Mechanical properties of nanocrystalline materials
  publication-title: Progress in Materials Science
  contributor:
    fullname: Benson
– volume: 53
  start-page: 1
  year: 2005
  end-page: 40
  ident: bib16
  article-title: Deformation of nanocrystalline materials by molecular-dynamics simulation: relationship to experiments?
  publication-title: Acta Materialia
  contributor:
    fullname: Wolf
– volume: 51
  start-page: 5743
  year: 2003
  end-page: 5774
  ident: bib17
  article-title: Mechanical behavior of nanocrystalline metals and alloys
  publication-title: Acta Materialia
  contributor:
    fullname: Suresh
– volume: 85
  start-page: 5197
  year: 2004
  end-page: 5199
  ident: bib28
  article-title: The influence of time, temperature, and grain size on indentation creep in high-purity nanocrystalline and ultrafine grain copper
  publication-title: Applied Physics Letters
  contributor:
    fullname: Eastman
– volume: 7
  start-page: 603
  year: 2005
  end-page: 606
  ident: bib22
  article-title: Direct evidence of a deformation mechanism crossover in nanocrystalline nickel
  publication-title: Advanced Engineering Materials
  contributor:
    fullname: Mao
– volume: 38
  start-page: 1621
  year: 2007
  end-page: 1631
  ident: bib46
  article-title: Friction and wear mechanisms of nanocrystalline nickel in ambient and inert atmospheres
  publication-title: Metallurgical and Materials Transactions A
  contributor:
    fullname: Alpas
– volume: 381
  start-page: 71
  year: 2004
  end-page: 79
  ident: bib71
  article-title: Effect of nanocrystalline and ultrafine grain sizes on the strain rate sensitivity and activation volume: fcc versus bcc metals
  publication-title: Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing
  contributor:
    fullname: Wei
– volume: 22
  start-page: 195
  year: 2006
  end-page: 209
  ident: bib44
  article-title: Nanocrystalline aluminum and iron: mechanical behavior at quasi-static and high strain rates, and constitutive modeling
  publication-title: International Journal of Plasticity
  contributor:
    fullname: Khan
– year: 1983
  ident: 10.1016/j.wear.2012.10.018_bib6
  contributor:
    fullname: Salesky
– volume: 27
  start-page: 137
  issue: 2
  year: 1977
  ident: 10.1016/j.wear.2012.10.018_bib4
  article-title: Dislocation behavior in fatigue
  publication-title: Materials Science and Engineering
  doi: 10.1016/0025-5416(77)90166-5
  contributor:
    fullname: Kuhlmann-Wilsdorf
– volume: 60
  start-page: 13
  issue: 1
  year: 1980
  ident: 10.1016/j.wear.2012.10.018_bib41
  article-title: Friction, wear and microstructure of unlubricated austenitic stainless-steels
  publication-title: Wear
  doi: 10.1016/0043-1648(80)90247-1
  contributor:
    fullname: Hsu
– volume: 64
  start-page: 729
  issue: 8
  year: 2011
  ident: 10.1016/j.wear.2012.10.018_bib51
  article-title: Friction transitions in nanocrystalline nickel
  publication-title: Scripta Materialia
  doi: 10.1016/j.scriptamat.2010.12.027
  contributor:
    fullname: Prasad
– volume: 81
  start-page: 141
  issue: 1-2
  year: 1986
  ident: 10.1016/j.wear.2012.10.018_bib2
  article-title: Low-energy dislocation-structures due to unidirectional deformation at low-temperatures
  publication-title: Materials Science and Engineering
  doi: 10.1016/0025-5416(86)90258-2
  contributor:
    fullname: Hansen
– volume: 56
  start-page: 3380
  issue: 14
  year: 2008
  ident: 10.1016/j.wear.2012.10.018_bib30
  article-title: In situ TEM observations of fast grain-boundary motion in stressed nanocrystalline aluminum films
  publication-title: Acta Materialia
  doi: 10.1016/j.actamat.2008.03.032
  contributor:
    fullname: Legros
– volume: 46
  start-page: 735
  issue: 10
  year: 2002
  ident: 10.1016/j.wear.2012.10.018_bib23
  article-title: Hall–Petch breakdown manifested in abrasive wear resistance of nanocrystalline nickel
  publication-title: Scripta Materialia
  doi: 10.1016/S1359-6462(02)00062-3
  contributor:
    fullname: Schuh
– volume: 206
  start-page: 302
  issue: 2
  year: 1996
  ident: 10.1016/j.wear.2012.10.018_bib47
  article-title: Effect of grain size on friction and wear of nanocrystalline aluminum
  publication-title: Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing
  doi: 10.1016/0921-5093(95)10016-4
  contributor:
    fullname: Farhat
– volume: 1
  start-page: 231
  issue: 4
  year: 1998
  ident: 10.1016/j.wear.2012.10.018_bib5
  article-title: Large strains associated with sliding contact of metals
  publication-title: Materials Research Innovations
  doi: 10.1007/s100190050046
  contributor:
    fullname: Rigney
– volume: 44
  start-page: 17
  issue: 1
  year: 1977
  ident: 10.1016/j.wear.2012.10.018_bib9
  article-title: Mechanics of subsurface void nucleation in delamination wear
  publication-title: Wear
  doi: 10.1016/0043-1648(77)90082-5
  contributor:
    fullname: Jahanmir
– start-page: 220
  issue: 203
  year: 1997
  ident: 10.1016/j.wear.2012.10.018_bib15
  article-title: The effect of processing route, composition and hardness on the wear response of chromium bearing steels in a rolling-sliding configuration
  publication-title: Wear
  doi: 10.1016/S0043-1648(96)07391-7
  contributor:
    fullname: Hanlon
– volume: 265
  start-page: 429
  issue: 3-4
  year: 2008
  ident: 10.1016/j.wear.2012.10.018_bib72
  article-title: Effect of sliding speed on friction and wear behaviour of nanocrystalline nickel tested in an argon atmosphere
  publication-title: Wear
  doi: 10.1016/j.wear.2007.11.022
  contributor:
    fullname: Shafiei
– start-page: 614
  issue: 263
  year: 2007
  ident: 10.1016/j.wear.2012.10.018_bib11
  article-title: The effect of sliding velocity on the tribological behavior of copper
  publication-title: Wear
  doi: 10.1016/j.wear.2007.01.095
  contributor:
    fullname: Emge
– volume: 432
  start-page: 149
  issue: 1-2
  year: 2006
  ident: 10.1016/j.wear.2012.10.018_bib52
  article-title: Electrodeposited 80Ni–20Fe (Permalloy) as a structural material for high aspect ratio microfabrication
  publication-title: Materials Science and Engineering: A
  doi: 10.1016/j.msea.2006.05.149
  contributor:
    fullname: Buchheit
– volume: 201
  start-page: 4253
  issue: 7
  year: 2006
  ident: 10.1016/j.wear.2012.10.018_bib78
  article-title: Influence of surface roughness of PVD coatings on tribological performance in sliding contacts
  publication-title: Surface and Coatings Technology
  doi: 10.1016/j.surfcoat.2006.08.103
  contributor:
    fullname: Harlin
– volume: 87
  start-page: 061921
  issue: 6
  year: 2005
  ident: 10.1016/j.wear.2012.10.018_bib26
  article-title: Rapid stress-driven grain coarsening in nanocrystalline Cu at ambient and cryogenic temperatures
  publication-title: Applied Physics Letters
  doi: 10.1063/1.2008377
  contributor:
    fullname: Zhang
– volume: 55
  start-page: 5948
  issue: 17
  year: 2007
  ident: 10.1016/j.wear.2012.10.018_bib25
  article-title: The Hall–Petch breakdown in nanocrystalline metals: a crossover to glass-like deformation
  publication-title: Acta Materialia
  doi: 10.1016/j.actamat.2007.07.020
  contributor:
    fullname: Trelewicz
– volume: 6
  start-page: 107
  issue: 1
  year: 2004
  ident: 10.1016/j.wear.2012.10.018_bib58
  article-title: LIGA microsystems: surface interactions, tribology and coatings
  publication-title: Journal of Manufacturing Processes
  doi: 10.1016/S1526-6125(04)70064-X
  contributor:
    fullname: Prasad
– volume: 66
  start-page: 621
  issue: 4
  year: 1992
  ident: 10.1016/j.wear.2012.10.018_bib12
  article-title: Deformation structures induced by sliding contact
  publication-title: Philosophical Magazine a-Physics of Condensed Matter Structure Defects and Mechanical Properties
  contributor:
    fullname: Rainforth
– year: 1993
  ident: 10.1016/j.wear.2012.10.018_bib37
  contributor:
    fullname: Biffle
– start-page: 33
  issue: 483
  year: 2008
  ident: 10.1016/j.wear.2012.10.018_bib20
  article-title: Footprints of plastic deformation in nanocrystalline metals
  publication-title: Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing
  doi: 10.1016/j.msea.2006.10.204
  contributor:
    fullname: Van Swygenhoven
– volume: 58
  start-page: 4137
  issue: 12
  year: 2010
  ident: 10.1016/j.wear.2012.10.018_bib50
  article-title: Sliding wear of nanocrystalline Ni-W: structural evolution and the apparent breakdown of Archard scaling
  publication-title: Acta Materialia
  doi: 10.1016/j.actamat.2010.04.005
  contributor:
    fullname: Rupert
– volume: 381
  start-page: 71
  issue: 1-2
  year: 2004
  ident: 10.1016/j.wear.2012.10.018_bib71
  article-title: Effect of nanocrystalline and ultrafine grain sizes on the strain rate sensitivity and activation volume: fcc versus bcc metals
  publication-title: Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing
  doi: 10.1016/j.msea.2004.03.064
  contributor:
    fullname: Wei
– volume: 158
  start-page: 139
  issue: 2
  year: 1992
  ident: 10.1016/j.wear.2012.10.018_bib1
  article-title: Microstructural evolution in rolled aluminum
  publication-title: Materials Science and Engineering A—Structural Materials Properties Microstructure and Processing
  doi: 10.1016/0921-5093(92)90002-I
  contributor:
    fullname: Bay
– volume: 203
  start-page: 1265
  issue: 6
  year: 2006
  ident: 10.1016/j.wear.2012.10.018_bib43
  article-title: Mechanical properties of nanocrystalline cobalt
  publication-title: Physica Status Solidi A
  doi: 10.1002/pssa.200566157
  contributor:
    fullname: Karimpoor
– volume: 44
  start-page: 39
  issue: 1
  year: 1977
  ident: 10.1016/j.wear.2012.10.018_bib8
  article-title: Mechanics of crack-propagation in delamination wear
  publication-title: Wear
  doi: 10.1016/0043-1648(77)90083-7
  contributor:
    fullname: Fleming
– volume: 266
  start-page: 666
  issue: 7-8
  year: 2009
  ident: 10.1016/j.wear.2012.10.018_bib39
  article-title: Sliding wear-induced microstructure evolution of nanocrystalline and coarse-grained AZ91D Mg alloy
  publication-title: Wear
  doi: 10.1016/j.wear.2008.08.004
  contributor:
    fullname: Sun
– volume: 27
  start-page: 1159
  issue: 10-12
  year: 2005
  ident: 10.1016/j.wear.2012.10.018_bib35
  article-title: Effects of grain refinement and strength on friction and damage evolution under repeated sliding contact in nanostructured metals
  publication-title: International Journal of Fatigue
  doi: 10.1016/j.ijfatigue.2005.06.036
  contributor:
    fullname: Hanlon
– volume: 60
  start-page: 1712
  issue: 4
  year: 2012
  ident: 10.1016/j.wear.2012.10.018_bib40
  article-title: The hardness and strength of metal tribofilms: an apparent contradiction between nanoindentation and pillar compression
  publication-title: Acta Materialia
  doi: 10.1016/j.actamat.2011.11.059
  contributor:
    fullname: Battaile
– start-page: 1421
  issue: 251
  year: 2001
  ident: 10.1016/j.wear.2012.10.018_bib14
  article-title: Dry wear behaviour and its relation to microstructure of novel 6092 aluminium alloy-Ni3Al powder metallurgy composite
  publication-title: Wear
  doi: 10.1016/S0043-1648(01)00783-9
  contributor:
    fullname: Wang
– volume: 237
  start-page: 186
  issue: 2
  year: 2000
  ident: 10.1016/j.wear.2012.10.018_bib77
  article-title: Tribology of tungsten disulfide-nanocrystalline zinc oxide adaptive lubricant films from ambient to 500°C
  publication-title: Wear
  doi: 10.1016/S0043-1648(99)00329-4
  contributor:
    fullname: Prasad
– volume: 44
  start-page: 1
  issue: 1
  year: 1977
  ident: 10.1016/j.wear.2012.10.018_bib10
  article-title: Overview of delamination theory of wear
  publication-title: Wear
  doi: 10.1016/0043-1648(77)90081-3
  contributor:
    fullname: Suh
– volume: 44
  start-page: 2145
  issue: 8-9
  year: 2001
  ident: 10.1016/j.wear.2012.10.018_bib45
  article-title: Wear properties of nanocrystalline aluminum alloys and their composites
  publication-title: Scripta Materialia
  doi: 10.1016/S1359-6462(01)00766-7
  contributor:
    fullname: Takagi
– volume: 54
  start-page: 4781
  issue: 18
  year: 2006
  ident: 10.1016/j.wear.2012.10.018_bib31
  article-title: Uniaxial tensile plastic deformation and grain growth of bulk nanocrystalline alloys
  publication-title: Acta Materialia
  doi: 10.1016/j.actamat.2006.06.016
  contributor:
    fullname: Fan
– volume: 18
  start-page: 695
  issue: 3
  year: 2009
  ident: 10.1016/j.wear.2012.10.018_bib59
  article-title: Application of diamond-like nanocomposite tribological coatings on LIGA microsystem parts
  publication-title: Journal of Microelectromechanical Systems
  doi: 10.1109/JMEMS.2009.2016284
  contributor:
    fullname: Prasad
– volume: 305
  start-page: 654
  issue: 5684
  year: 2004
  ident: 10.1016/j.wear.2012.10.018_bib21
  article-title: Grain boundary-mediated plasticity in nanocrystalline nickel
  publication-title: Science
  doi: 10.1126/science.1098741
  contributor:
    fullname: Shan
– year: 1985
  ident: 10.1016/j.wear.2012.10.018_bib70
  contributor:
    fullname: Johnson
– volume: 60
  start-page: 1073
  issue: 12
  year: 2009
  ident: 10.1016/j.wear.2012.10.018_bib33
  article-title: Microstructural stability during cyclic loading of multilayer copper/copper samples with nanoscale twinning
  publication-title: Scripta Materialia
  doi: 10.1016/j.scriptamat.2008.11.049
  contributor:
    fullname: Shute
– volume: 55
  start-page: 4041
  issue: 12
  year: 2007
  ident: 10.1016/j.wear.2012.10.018_bib67
  article-title: Toward a quantitative understanding of mechanical behavior of nanocrystalline metals
  publication-title: Acta Materialia
  doi: 10.1016/j.actamat.2007.01.038
  contributor:
    fullname: Dao
– volume: 172
  start-page: 135
  issue: 2
  year: 1994
  ident: 10.1016/j.wear.2012.10.018_bib13
  article-title: Wear behavior of rapidly solidified Fe68Cr18Mo2B12 alloys
  publication-title: Wear
  doi: 10.1016/0043-1648(94)90281-X
  contributor:
    fullname: Anis
– volume: 245
  start-page: 1
  issue: 1-2
  year: 2000
  ident: 10.1016/j.wear.2012.10.018_bib74
  article-title: Transfer, mixing and associated chemical and mechanical processes during the sliding of ductile materials
  publication-title: Wear
  doi: 10.1016/S0043-1648(00)00460-9
  contributor:
    fullname: Rigney
– volume: 175
  start-page: 63
  issue: 1-2
  year: 1994
  ident: 10.1016/j.wear.2012.10.018_bib42
  article-title: The roles of hardness in the sliding behavior of materials
  publication-title: Wear
  doi: 10.1016/0043-1648(94)90169-4
  contributor:
    fullname: Rigney
– volume: 82
  start-page: 48
  issue: 1–2
  year: 1996
  ident: 10.1016/j.wear.2012.10.018_bib75
  article-title: A study of the wear mechanism of diamond-like carbon films
  publication-title: Surface and Coatings Technology
  doi: 10.1016/0257-8972(95)02623-1
  contributor:
    fullname: Liu
– volume: 260
  start-page: 942
  issue: 9-10
  year: 2006
  ident: 10.1016/j.wear.2012.10.018_bib61
  article-title: Friction and wear behaviors of nanocrystalline surface layer of pure copper
  publication-title: Wear
  doi: 10.1016/j.wear.2005.06.010
  contributor:
    fullname: Zhang
– volume: 197
  start-page: 53
  year: 1983
  ident: 10.1016/j.wear.2012.10.018_bib68
  article-title: Explicity equations for the stresses beneath a sliding spherical contact
  publication-title: Proceedings of the Institution of Mechanical Engineers Part C-Journal of Mechanical Engineering Science
  doi: 10.1243/PIME_PROC_1983_197_076_02
  contributor:
    fullname: Hamilton
– volume: 50
  start-page: 25
  issue: 1
  year: 2010
  ident: 10.1016/j.wear.2012.10.018_bib66
  article-title: Experimental investigation of strain rate dependence of nanocrystalline Pt films
  publication-title: Experimental Mechanics
  doi: 10.1007/s11340-008-9212-7
  contributor:
    fullname: Jonnalagadda
– volume: 373
  start-page: 370
  issue: 1-2
  year: 2004
  ident: 10.1016/j.wear.2012.10.018_bib60
  article-title: Effect of grain size on the tribological behavior of nanocrystalline nickel
  publication-title: Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing
  doi: 10.1016/j.msea.2003.09.107
  contributor:
    fullname: Mishra
– ident: 10.1016/j.wear.2012.10.018_bib62
– volume: 42A
  start-page: 1793
  issue: 7
  year: 2011
  ident: 10.1016/j.wear.2012.10.018_bib32
  article-title: Anomalous fatigue behavior and fatigue-induced grain growth in nanocrystalline nickel alloys
  publication-title: Metallurgical and Materials Transactions A-Physical Metallurgy and Materials Science
  doi: 10.1007/s11661-011-0708-x
  contributor:
    fullname: Boyce
– volume: 33
  start-page: 2025
  issue: 12
  year: 1995
  ident: 10.1016/j.wear.2012.10.018_bib34
  article-title: Fatigue of nanocrystalline copper
  publication-title: Scripta Metallurgica Et Materialia
  doi: 10.1016/0956-716X(95)00441-W
  contributor:
    fullname: Witney
– volume: 200
  start-page: 8
  issue: 1-2
  year: 1996
  ident: 10.1016/j.wear.2012.10.018_bib3
  article-title: What role for contact spots and dislocations in friction and wear?
  publication-title: Wear
  doi: 10.1016/S0043-1648(97)80002-6
  contributor:
    fullname: Kuhlmann-Wilsdorf
– volume: 5
  start-page: 513
  issue: 5
  year: 1995
  ident: 10.1016/j.wear.2012.10.018_bib53
  article-title: Electrodeposition of nanocrystalline Ni–Fe alloys
  publication-title: Nanostructured materials
  doi: 10.1016/0965-9773(95)00264-F
  contributor:
    fullname: Cheung
– ident: 10.1016/j.wear.2012.10.018_bib56
– volume: 94
  start-page: 1
  year: 2009
  ident: 10.1016/j.wear.2012.10.018_bib57
  article-title: Mechanism of grain growth during severe plastic deformation of a nanocrystalline Ni–Fe alloy
  publication-title: Applied Physics Letters
  doi: 10.1063/1.3065025
  contributor:
    fullname: Wang
– start-page: 298
  issue: 434/435
  year: 2007
  ident: 10.1016/j.wear.2012.10.018_bib55
  article-title: Mechanical behavior of a bulk nanocrystalline Ni–Fe alloy
  publication-title: Journal of Alloys and Compounds
  doi: 10.1016/j.jallcom.2006.08.174
  contributor:
    fullname: Fan
– ident: 10.1016/j.wear.2012.10.018_bib63
  doi: 10.2172/138710
– volume: 25
  start-page: 111
  issue: 1
  year: 1973
  ident: 10.1016/j.wear.2012.10.018_bib7
  article-title: Delamination theory of wear
  publication-title: Wear
  doi: 10.1016/0043-1648(73)90125-7
  contributor:
    fullname: Suh
– volume: 22
  start-page: 195
  issue: 2
  year: 2006
  ident: 10.1016/j.wear.2012.10.018_bib44
  article-title: Nanocrystalline aluminum and iron: mechanical behavior at quasi-static and high strain rates, and constitutive modeling
  publication-title: International Journal of Plasticity
  doi: 10.1016/j.ijplas.2004.07.008
  contributor:
    fullname: Khan
– volume: 85
  start-page: 5197
  issue: 22
  year: 2004
  ident: 10.1016/j.wear.2012.10.018_bib28
  article-title: The influence of time, temperature, and grain size on indentation creep in high-purity nanocrystalline and ultrafine grain copper
  publication-title: Applied Physics Letters
  doi: 10.1063/1.1828213
  contributor:
    fullname: Zhang
– volume: 54
  start-page: 2253
  issue: 8
  year: 2006
  ident: 10.1016/j.wear.2012.10.018_bib27
  article-title: Stress-assisted discontinuous grain growth and its effect on the deformation behavior of nanocrystalline aluminum thin films
  publication-title: Acta Materialia
  doi: 10.1016/j.actamat.2006.01.023
  contributor:
    fullname: Gianola
– volume: 7
  start-page: 603
  issue: 7
  year: 2005
  ident: 10.1016/j.wear.2012.10.018_bib22
  article-title: Direct evidence of a deformation mechanism crossover in nanocrystalline nickel
  publication-title: Advanced Engineering Materials
  doi: 10.1002/adem.200500034
  contributor:
    fullname: Shan
– volume: 9
  start-page: 4227
  year: 2009
  ident: 10.1016/j.wear.2012.10.018_bib36
  article-title: Wear mechanism of nanocrystalline metals
  publication-title: Journal of Nanoscience and Nanotechnology
  doi: 10.1166/jnn.2009.M37
  contributor:
    fullname: Qi
– volume: 55
  start-page: 263
  issue: 3
  year: 2006
  ident: 10.1016/j.wear.2012.10.018_bib54
  article-title: Grain growth in electrodeposited nanocrystalline fcc Ni–Fe alloys
  publication-title: Scripta Materialia
  doi: 10.1016/j.scriptamat.2006.03.053
  contributor:
    fullname: Ebrahimi
– ident: 10.1016/j.wear.2012.10.018_bib64
  doi: 10.2172/145293
– volume: 51
  start-page: 387
  issue: 2
  year: 2003
  ident: 10.1016/j.wear.2012.10.018_bib18
  article-title: Deformation of electrodeposited nanocrystalline nickel
  publication-title: Acta Materialia
  doi: 10.1016/S1359-6454(02)00421-4
  contributor:
    fullname: Kumar
– volume: 53
  start-page: 1
  issue: 1
  year: 2005
  ident: 10.1016/j.wear.2012.10.018_bib16
  article-title: Deformation of nanocrystalline materials by molecular-dynamics simulation: relationship to experiments?
  publication-title: Acta Materialia
  doi: 10.1016/j.actamat.2004.08.045
  contributor:
    fullname: Wolf
– volume: 51
  start-page: 427
  issue: 4
  year: 2006
  ident: 10.1016/j.wear.2012.10.018_bib24
  article-title: Mechanical properties of nanocrystalline materials
  publication-title: Progress in Materials Science
  doi: 10.1016/j.pmatsci.2005.08.003
  contributor:
    fullname: Meyers
– ident: 10.1016/j.wear.2012.10.018_bib65
– volume: 301
  start-page: 1357
  issue: 5638
  year: 2003
  ident: 10.1016/j.wear.2012.10.018_bib19
  article-title: A maximum in the strength of nanocrystalline copper
  publication-title: Science
  doi: 10.1126/science.1086636
  contributor:
    fullname: Schiotz
– volume: 54
  start-page: 4953
  issue: 19
  year: 2006
  ident: 10.1016/j.wear.2012.10.018_bib38
  article-title: Coupling grain boundary motion to shear deformation
  publication-title: Acta Materialia
  doi: 10.1016/j.actamat.2006.08.004
  contributor:
    fullname: Cahn
– volume: 149
  start-page: 375
  issue: 1–2
  year: 1991
  ident: 10.1016/j.wear.2012.10.018_bib76
  article-title: Friction and wear behavior of TiN in air: the chemistry of transfer films and debris formation
  publication-title: Wear
  doi: 10.1016/0043-1648(91)90386-9
  contributor:
    fullname: Singer
– year: 1997
  ident: 10.1016/j.wear.2012.10.018_bib69
  contributor:
    fullname: Stone
– volume: 326
  start-page: 1686
  issue: 5960
  year: 2009
  ident: 10.1016/j.wear.2012.10.018_bib29
  article-title: Experimental observations of stress-driven grain boundary migration
  publication-title: Science
  doi: 10.1126/science.1178226
  contributor:
    fullname: Rupert
– volume: 51
  start-page: 5743
  issue: 19
  year: 2003
  ident: 10.1016/j.wear.2012.10.018_bib17
  article-title: Mechanical behavior of nanocrystalline metals and alloys
  publication-title: Acta Materialia
  doi: 10.1016/j.actamat.2003.08.032
  contributor:
    fullname: Kumar
– volume: 38
  start-page: 1621
  issue: 7
  year: 2007
  ident: 10.1016/j.wear.2012.10.018_bib46
  article-title: Friction and wear mechanisms of nanocrystalline nickel in ambient and inert atmospheres
  publication-title: Metallurgical and Materials Transactions A
  doi: 10.1007/s11661-007-9157-y
  contributor:
    fullname: Shafiei
– volume: 352
  start-page: 144
  issue: 1-2
  year: 2003
  ident: 10.1016/j.wear.2012.10.018_bib49
  article-title: Effect of surface nanocrystallization on friction and wear properties in low carbon steel
  publication-title: Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing
  doi: 10.1016/S0921-5093(02)00870-5
  contributor:
    fullname: Wang
– volume: 56
  start-page: 1956
  year: 2008
  ident: 10.1016/j.wear.2012.10.018_bib73
  article-title: The role of substrate plasticity on the tribological behavior of diamond-like nanocomposite coatings
  publication-title: Acta Materialia
  doi: 10.1016/j.actamat.2007.12.048
  contributor:
    fullname: Jungk
– volume: 44
  start-page: 493
  issue: 3
  year: 2001
  ident: 10.1016/j.wear.2012.10.018_bib48
  article-title: The effect of grain size on the wear properties of electrodeposited nanocrystalline nickel coatings
  publication-title: Scripta Materialia
  doi: 10.1016/S1359-6462(00)00625-4
  contributor:
    fullname: Jeong
SSID ssj0001956
Score 2.3990588
Snippet While early reports on the wear performance of nanocrystalline alloys have suggested enhanced behavior consistent with their higher hardness compared to...
SourceID proquest
crossref
pascalfrancis
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 860
SubjectTerms Alloys
Coarsening
Condensed matter: structure, mechanical and thermal properties
Delaminating
Delamination
Evolution
Exact sciences and technology
Grain size
Mechanical and acoustical properties of condensed matter
Mechanical properties of nanoscale materials
Nanocrystalline metal
Nanocrystals
Nickel
Nickel base alloys
Physics
Sliding
Sliding friction
Tribolayer
Wear
Title Frictional performance and near-surface evolution of nanocrystalline Ni–Fe as governed by contact stress and sliding velocity
URI https://dx.doi.org/10.1016/j.wear.2012.10.018
https://search.proquest.com/docview/1365118100
https://search.proquest.com/docview/1816026011
Volume 297
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEF6h9NIKIVqKCIVoK3FDm6yd9euIUKPQSjmBlJu1j9kqHJzITkC50P6H_sP-ks74UUCtOHBdre3VznjmW_v7Zhg7y6yBSI2tSLW2QhlQIgMAYYwJIEqldVATZGfx9EZ9nUfzHXbZaWGIVtnG_iam19G6HRm1uzlaLRak8SUZt8IMRQ3JIqr4ScW20KeHD480D9LDdX-ZaXYrnGk4XvfoTUTvCofE8KLGH_9PTrsrXeGW-abXxT9hu85Fk32214JIftGs8z3bgeIDe_ektOAB-zEpF7b5zsdXj-IArgvHC1yPqDal1zgAd63z8aXnhS6WttwiYqRS3cBni98_f03wqop_r5vyguNmy4nfru2aN0KT-p4IVykLcqIgWUT2H9nN5Mv15VS0zRaEVUquhZFOh-MkcmmcgQt9nBFV0wXEmgGEhYDYxOpYukwlMtEAXrrUhqApAqQ-HB-yXrEs4IjxJESckeBszP_K4InOB5n2LnUmi3xiZJ-dd7ucr5qaGnlHNrvNySY52YTG0CZ9FnWGyJ95Ro5B_8XrBs-s9vdRYYxnTjyY99nnzow5vlP0o0QXsNxUOVH_SJAr5Qtz0iCu67EFx69c4Cf2Nqx7awQiiE5Yb11u4BQRztoMahcesDcXV9-msz_0FP7O
link.rule.ids 315,783,787,4511,24130,27938,27939,45601,45695
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JbhQxEC2FyQFQhFjFkBCMxA2ZuHvsXo5RxGhCwpwSKbeWlzKaHHpGs4Bygn_gD_mSVPUSiEA5cLXsbstVXX5uv1cF8K70Do0eeVlY66V2qGWJiNI5l6AplA_YEGSn2eRcf7owF1tw1GthmFbZxf42pjfRums56FbzYDGbscaXZdyadiguSGZG92Cb0EBpBrB9eHwymd4EZJbE9RfNPKDTzrQ0r2_kUMzwSj8wyYtrf_x7f9pZ2BWtWmzLXfwVuZvtaPwYHnU4Uhy2U30CW1g_hYd_ZBd8Bt_Hy5lvf_WJxW99gLB1EDXNR642y2ipAb92_ifmUdS2nvvlFYFGztaNYjr79ePnmEatxJemLi8G4a4EU9ytX4tWa9I8kxArb4SCWUiewP1zOB9_PDuayK7egvRaq7V0Kth0lJtQZCWGNGYlszVDwsQZJGSIBE-8zVQoda5yixhVKHyKloNAEdPRCxjU8xpfgshTgho59SYIoB0d6mJS2hiK4EoTc6eG8L5f5WrRptWoer7ZZcU2qdgm3EY2GYLpDVHdco6K4v6d4_ZvWe3mVWlGx046mw_hbW_Gij4rviuxNc43q4rZf6zJVeqOPkWSNSnZklf_OcE3cH9y9vm0Oj2enuzCg7QptZHIxOzBYL3c4GsCPGu33zn0Nc1UAZw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Frictional+performance+and+near-surface+evolution+of+nanocrystalline+Ni%E2%80%93Fe+as+governed+by+contact+stress+and+sliding+velocity&rft.jtitle=Wear&rft.au=Padilla%2C+Henry+A.&rft.au=Boyce%2C+Brad+L.&rft.au=Battaile%2C+Corbett+C.&rft.au=Prasad%2C+Somuri+V.&rft.date=2013-01-15&rft.issn=0043-1648&rft.volume=297&rft.issue=1-2&rft.spage=860&rft.epage=871&rft_id=info:doi/10.1016%2Fj.wear.2012.10.018&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_wear_2012_10_018
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0043-1648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0043-1648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0043-1648&client=summon