Biological network analysis with deep learning
Abstract Recent advancements in experimental high-throughput technologies have expanded the availability and quantity of molecular data in biology. Given the importance of interactions in biological processes, such as the interactions between proteins or the bonds within a chemical compound, this da...
Saved in:
Published in | Briefings in bioinformatics Vol. 22; no. 2; pp. 1515 - 1530 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
22.03.2021
Oxford Publishing Limited (England) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Abstract
Recent advancements in experimental high-throughput technologies have expanded the availability and quantity of molecular data in biology. Given the importance of interactions in biological processes, such as the interactions between proteins or the bonds within a chemical compound, this data is often represented in the form of a biological network. The rise of this data has created a need for new computational tools to analyze networks. One major trend in the field is to use deep learning for this goal and, more specifically, to use methods that work with networks, the so-called graph neural networks (GNNs). In this article, we describe biological networks and review the principles and underlying algorithms of GNNs. We then discuss domains in bioinformatics in which graph neural networks are frequently being applied at the moment, such as protein function prediction, protein–protein interaction prediction and in silico drug discovery and development. Finally, we highlight application areas such as gene regulatory networks and disease diagnosis where deep learning is emerging as a new tool to answer classic questions like gene interaction prediction and automatic disease prediction from data. |
---|---|
AbstractList | Recent advancements in experimental high-throughput technologies have expanded the availability and quantity of molecular data in biology. Given the importance of interactions in biological processes, such as the interactions between proteins or the bonds within a chemical compound, this data is often represented in the form of a biological network. The rise of this data has created a need for new computational tools to analyze networks. One major trend in the field is to use deep learning for this goal and, more specifically, to use methods that work with networks, the so-called graph neural networks (GNNs). In this article, we describe biological networks and review the principles and underlying algorithms of GNNs. We then discuss domains in bioinformatics in which graph neural networks are frequently being applied at the moment, such as protein function prediction, protein–protein interaction prediction and in silico drug discovery and development. Finally, we highlight application areas such as gene regulatory networks and disease diagnosis where deep learning is emerging as a new tool to answer classic questions like gene interaction prediction and automatic disease prediction from data. Recent advancements in experimental high-throughput technologies have expanded the availability and quantity of molecular data in biology. Given the importance of interactions in biological processes, such as the interactions between proteins or the bonds within a chemical compound, this data is often represented in the form of a biological network. The rise of this data has created a need for new computational tools to analyze networks. One major trend in the field is to use deep learning for this goal and, more specifically, to use methods that work with networks, the so-called graph neural networks (GNNs). In this article, we describe biological networks and review the principles and underlying algorithms of GNNs. We then discuss domains in bioinformatics in which graph neural networks are frequently being applied at the moment, such as protein function prediction, protein-protein interaction prediction and in silico drug discovery and development. Finally, we highlight application areas such as gene regulatory networks and disease diagnosis where deep learning is emerging as a new tool to answer classic questions like gene interaction prediction and automatic disease prediction from data.Recent advancements in experimental high-throughput technologies have expanded the availability and quantity of molecular data in biology. Given the importance of interactions in biological processes, such as the interactions between proteins or the bonds within a chemical compound, this data is often represented in the form of a biological network. The rise of this data has created a need for new computational tools to analyze networks. One major trend in the field is to use deep learning for this goal and, more specifically, to use methods that work with networks, the so-called graph neural networks (GNNs). In this article, we describe biological networks and review the principles and underlying algorithms of GNNs. We then discuss domains in bioinformatics in which graph neural networks are frequently being applied at the moment, such as protein function prediction, protein-protein interaction prediction and in silico drug discovery and development. Finally, we highlight application areas such as gene regulatory networks and disease diagnosis where deep learning is emerging as a new tool to answer classic questions like gene interaction prediction and automatic disease prediction from data. Abstract Recent advancements in experimental high-throughput technologies have expanded the availability and quantity of molecular data in biology. Given the importance of interactions in biological processes, such as the interactions between proteins or the bonds within a chemical compound, this data is often represented in the form of a biological network. The rise of this data has created a need for new computational tools to analyze networks. One major trend in the field is to use deep learning for this goal and, more specifically, to use methods that work with networks, the so-called graph neural networks (GNNs). In this article, we describe biological networks and review the principles and underlying algorithms of GNNs. We then discuss domains in bioinformatics in which graph neural networks are frequently being applied at the moment, such as protein function prediction, protein–protein interaction prediction and in silico drug discovery and development. Finally, we highlight application areas such as gene regulatory networks and disease diagnosis where deep learning is emerging as a new tool to answer classic questions like gene interaction prediction and automatic disease prediction from data. Recent advancements in experimental high-throughput technologies have expanded the availability and quantity of molecular data in biology. Given the importance of interactions in biological processes, such as the interactions between proteins or the bonds within a chemical compound, this data is often represented in the form of a biological network. The rise of this data has created a need for new computational tools to analyze networks. One major trend in the field is to use deep learning for this goal and, more specifically, to use methods that work with networks, the so-called graph neural networks (GNNs). In this article, we describe biological networks and review the principles and underlying algorithms of GNNs. We then discuss domains in bioinformatics in which graph neural networks are frequently being applied at the moment, such as protein function prediction, protein–protein interaction prediction and in silico drug discovery and development. Finally, we highlight application areas such as gene regulatory networks and disease diagnosis where deep learning is emerging as a new tool to answer classic questions like gene interaction prediction and automatic disease prediction from data. |
Author | Borgwardt, Karsten O’Bray, Leslie Muzio, Giulia |
Author_xml | – sequence: 1 givenname: Giulia surname: Muzio fullname: Muzio, Giulia email: giulia.muzio@bsse.ethz.ch – sequence: 2 givenname: Leslie surname: O’Bray fullname: O’Bray, Leslie email: leslie.obray@bsse.ethz.ch – sequence: 3 givenname: Karsten surname: Borgwardt fullname: Borgwardt, Karsten email: karsten.borgwardt@bsse.ethz.ch |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33169146$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc1LxDAQxYMofqyevEtBEEGqSZM2zUVQ8QsEL3oOkzZdo9lkTVoX_3uz7Coq4iHJwPzm8TJvC6067zRCuwQfEyzoiTLqRCmAouQraJMwznOGS7Y6ryuel6yiG2grxmeMC8xrso42KCWVSN1NdHxuvPVj04DNnO5nPrxk4MC-RxOzmemfslbraWY1BGfceButdWCj3lm-I_R4dflwcZPf3V_fXpzd5Q1juM9BtbUuiRAVaNpq3LG2IY0CwlQLHRRKcNUyymvgVY0TBG2tOqyYwJRQzOkInS50p4Oa6LbRrg9g5TSYCYR36cHInx1nnuTYv0ku6qqsRRI4XAoE_zro2MuJiY22Fpz2Q5QFKwUtaZXOCO3_Qp_9ENIOElUW6Q88XYna--7oy8rnKhNAFkATfIxBd7IxPfTGzw0aKwmW87hkiksu40ozR79mPmX_pg8WtB-m_4IfaXmlDw |
CitedBy_id | crossref_primary_10_1186_s40364_025_00758_2 crossref_primary_10_1088_1402_4896_ad3eea crossref_primary_10_1002_bit_28309 crossref_primary_10_1371_journal_pone_0309205 crossref_primary_10_3390_su17052327 crossref_primary_10_1007_s12539_024_00633_y crossref_primary_10_3390_jpm14090960 crossref_primary_10_1103_PhysRevA_104_032416 crossref_primary_10_21272_jes_2022_9_2__e2 crossref_primary_10_1016_j_biotechadv_2024_108400 crossref_primary_10_1016_j_bspc_2022_103856 crossref_primary_10_1093_bib_bbad029 crossref_primary_10_1093_bioinformatics_btac261 crossref_primary_10_1016_j_sbi_2024_102886 crossref_primary_10_1109_JBHI_2024_3390092 crossref_primary_10_32604_biocell_2023_029624 crossref_primary_10_3390_e24020141 crossref_primary_10_3390_e25020257 crossref_primary_10_1016_j_jare_2022_01_009 crossref_primary_10_1109_TCBB_2021_3078089 crossref_primary_10_1016_j_tibtech_2022_10_010 crossref_primary_10_1093_bib_bbae355 crossref_primary_10_14348_molcells_2023_2167 crossref_primary_10_3390_ijms25031655 crossref_primary_10_3390_sym16040462 crossref_primary_10_1093_bioinformatics_btae291 crossref_primary_10_1080_17445760_2024_2425298 crossref_primary_10_1016_j_compbiomed_2022_105892 crossref_primary_10_1038_s41592_023_01992_y crossref_primary_10_1186_s40164_022_00347_1 crossref_primary_10_1186_s12859_022_04950_1 crossref_primary_10_1007_s10462_024_10918_9 crossref_primary_10_3390_s24113289 crossref_primary_10_3390_app14209461 crossref_primary_10_1016_j_eswa_2024_123560 crossref_primary_10_1016_j_fmre_2024_06_013 crossref_primary_10_1016_j_artmed_2024_103028 crossref_primary_10_3390_ijms232214211 crossref_primary_10_3390_biology14030223 crossref_primary_10_1140_epja_s10050_024_01385_5 crossref_primary_10_1016_j_patter_2023_100788 crossref_primary_10_12688_f1000research_134526_1 crossref_primary_10_3389_fcell_2024_1376639 crossref_primary_10_1016_j_asoc_2023_110059 crossref_primary_10_1186_s12864_024_10692_6 crossref_primary_10_1093_bioadv_vbae036 crossref_primary_10_1016_j_drudis_2025_104327 crossref_primary_10_1089_genbio_2023_0050 crossref_primary_10_1021_acs_chemrestox_2c00384 crossref_primary_10_1093_nar_gkac813 crossref_primary_10_3389_fbinf_2021_746712 crossref_primary_10_3390_bdcc6020066 crossref_primary_10_1002_ajmg_b_32997 crossref_primary_10_3389_fevo_2022_796413 crossref_primary_10_1038_s41598_024_77507_2 crossref_primary_10_1039_D4NP00003J crossref_primary_10_1016_j_softx_2022_101140 crossref_primary_10_1016_j_aej_2024_12_105 crossref_primary_10_1093_bioinformatics_btad021 crossref_primary_10_1103_PhysRevA_107_042615 crossref_primary_10_3389_frai_2024_1424012 crossref_primary_10_1021_acscatal_3c02743 crossref_primary_10_1093_bib_bbae563 crossref_primary_10_1093_bioinformatics_btad703 crossref_primary_10_3390_metabo14020093 crossref_primary_10_1038_s41392_022_00994_0 crossref_primary_10_3390_ijms25136890 crossref_primary_10_1016_j_tej_2022_107137 crossref_primary_10_1016_j_aichem_2023_100038 crossref_primary_10_1093_braincomms_fcae265 crossref_primary_10_1186_s12859_024_05973_6 crossref_primary_10_3390_electronics14061110 crossref_primary_10_1016_j_csbj_2021_06_030 crossref_primary_10_3390_covid3090096 crossref_primary_10_1038_s41467_024_50426_6 crossref_primary_10_1177_14738716231181545 crossref_primary_10_3390_diagnostics14192174 crossref_primary_10_3390_ph17070925 crossref_primary_10_1186_s40246_022_00396_x crossref_primary_10_1016_j_ymssp_2023_110534 crossref_primary_10_3233_IDT_240022 crossref_primary_10_1038_s41598_024_71864_8 crossref_primary_10_1038_s41598_024_72748_7 crossref_primary_10_1016_j_knosys_2024_111561 crossref_primary_10_1016_j_prmedi_2024_100014 crossref_primary_10_1002_adbi_202100535 crossref_primary_10_3389_fddsv_2022_1019706 crossref_primary_10_1371_journal_pone_0289971 crossref_primary_10_1016_j_csbj_2021_10_009 crossref_primary_10_1038_s41551_022_00942_x crossref_primary_10_1038_s41598_022_21491_y crossref_primary_10_1093_bib_bbab355 crossref_primary_10_1007_s12038_022_00278_3 crossref_primary_10_1515_sagmb_2021_0087 crossref_primary_10_1016_j_asoc_2024_112242 crossref_primary_10_1038_s41598_022_19999_4 crossref_primary_10_1016_j_heliyon_2024_e29225 crossref_primary_10_3390_pr11020307 crossref_primary_10_1111_febs_16555 crossref_primary_10_3390_e24010017 crossref_primary_10_1016_j_csbj_2022_11_008 crossref_primary_10_1016_j_pan_2024_09_009 crossref_primary_10_1261_rna_079365_122 crossref_primary_10_3389_fmolb_2021_768106 crossref_primary_10_1038_s41598_023_35866_2 crossref_primary_10_1038_s41598_024_77172_5 crossref_primary_10_1038_s41592_021_01283_4 crossref_primary_10_1093_bib_bbae450 crossref_primary_10_1515_tsd_2024_2580 crossref_primary_10_1146_annurev_anchem_061522_041154 crossref_primary_10_26599_BDMA_2024_9020043 crossref_primary_10_1080_07391102_2021_2010601 crossref_primary_10_1007_s13167_024_00374_4 crossref_primary_10_1093_bioinformatics_btac088 crossref_primary_10_1109_TKDE_2024_3466990 crossref_primary_10_1093_bib_bbab340 crossref_primary_10_1016_j_compbiomed_2023_106988 crossref_primary_10_1007_s13042_023_01779_9 crossref_primary_10_1016_j_coisb_2021_05_008 crossref_primary_10_1145_3641284 crossref_primary_10_1007_s44258_024_00019_1 crossref_primary_10_1080_07391102_2025_2477777 |
Cites_doi | 10.1016/j.physa.2010.11.027 10.1021/acs.jcim.9b00237 10.1093/bioinformatics/btg130 10.1038/35036627 10.1109/TKDE.2018.2807452 10.3390/ijms20143389 10.1098/rsif.2017.0387 10.1093/bib/bbx044 10.1007/978-1-4419-8462-3_5 10.1515/9780804799102-003 10.3390/metabo8010004 10.1007/978-3-540-75140-3_14 10.1145/2623330.2623732 10.1109/BIBM47256.2019.8983330 10.1109/ACCESS.2014.2325029 10.1371/journal.pone.0013397 10.1093/nar/gkj067 10.1016/j.molcel.2015.05.004 10.1162/neco.1989.1.4.541 10.1093/bioinformatics/bty294 10.1609/aaai.v33i01.33011126 10.1002/9780470253489 10.1016/j.csbj.2020.02.006 10.1186/s13321-020-0413-0 10.1109/BIBM47256.2019.8983018 10.1093/nar/28.1.27 10.1007/978-3-540-45167-9_11 10.1093/nar/28.1.289 10.1038/sdata.2014.22 10.1093/nar/28.1.235 10.1109/TNN.2008.2005605 10.1038/323533a0 10.1016/j.compbiolchem.2016.08.002 10.1093/nar/gkr967 10.1007/s11831-020-09405-5 10.1038/nature14539 10.1007/s10822-016-9938-8 10.1093/nar/gkx1037 10.1093/nar/gkq1126 10.1093/nar/gkm1001 10.1371/journal.pcbi.1007084 10.1109/MSP.2012.2205597 10.1007/978-1-4419-6045-0_11 10.1111/j.1476-5381.2010.01127.x 10.1038/nrd1609 10.1021/acscentsci.8b00507 10.1021/acs.jcim.9b00628 10.1021/acs.jcim.7b00028 10.1093/bioinformatics/btx252 10.1109/TKDE.2018.2849727 10.1109/ICDM.2006.39 10.1371/journal.pcbi.1005324 10.1371/journal.pcbi.1000807 10.1093/nar/gku1003 10.1145/3357384.3357965 10.1038/nm.4306 10.1208/s12248-009-9106-3 10.1016/j.str.2010.08.007 10.1145/3292500.3330912 10.3389/fnins.2019.00594 10.1093/bioinformatics/btx602 10.1109/BIBM47256.2019.8983191 10.1109/ICDM.2005.132 10.1609/aaai.v30i1.10179 10.1093/nar/gkn892 10.1016/j.cell.2020.01.021 10.1161/CIRCGENETICS.113.000123 10.1145/2939672.2939754 10.1186/s12859-019-3076-y 10.1021/acs.jcim.8b00672 10.1186/1752-0509-6-92 10.1093/bioinformatics/btz718 10.1371/journal.pone.0009803 10.1093/bioinformatics/bti1007 10.1186/s12859-019-3084-y 10.1038/s41586-019-1923-7 10.1016/S0022-2836(03)00628-4 10.1007/978-1-4419-9863-7_364 10.1111/j.1365-2710.2009.01103.x 10.1016/j.ymeth.2019.04.008 10.1186/1759-4499-2-2 10.1126/scitranslmed.3003377 10.1109/BIBE.2018.00036 10.1093/bioinformatics/bty440 10.1039/C9SC04336E 10.1093/nar/gkj092 10.1145/2736277.2741093 10.1002/pds.1351 10.1093/bioinformatics/btz954 10.1016/j.compmedimag.2016.07.004 10.1093/bioinformatics/bty341 10.1136/amiajnl-2012-001509 10.1002/pro.2963 10.1093/nar/gkr1132 10.1101/gr.1680803 10.1093/nar/gkr930 10.1016/j.neucom.2017.01.026 |
ContentType | Journal Article |
Copyright | The Author(s) 2020. Published by Oxford University Press. 2020 The Author(s) 2020. Published by Oxford University Press. |
Copyright_xml | – notice: The Author(s) 2020. Published by Oxford University Press. 2020 – notice: The Author(s) 2020. Published by Oxford University Press. |
DBID | TOX AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7SC 8FD FR3 JQ2 K9. L7M L~C L~D P64 RC3 7X8 5PM |
DOI | 10.1093/bib/bbaa257 |
DatabaseName | Oxford Journals Open Access Collection CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Computer and Information Systems Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Biotechnology Research Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Engineering Research Database Advanced Technologies Database with Aerospace Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitleList | Genetics Abstracts MEDLINE - Academic MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: TOX name: Oxford Journals Open Access Collection url: https://academic.oup.com/journals/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1477-4054 |
EndPage | 1530 |
ExternalDocumentID | PMC7986589 33169146 10_1093_bib_bbaa257 10.1093/bib/bbaa257 |
Genre | Research Support, Non-U.S. Gov't Journal Article Review |
GrantInformation_xml | – fundername: ; – fundername: ; grantid: 813533 |
GroupedDBID | --- -E4 .2P .I3 0R~ 1TH 23N 2WC 36B 4.4 48X 53G 5GY 5VS 6J9 70D 8VB AAHBH AAIJN AAIMJ AAJKP AAJQQ AAMDB AAMVS AAOGV AAPQZ AAPXW AARHZ AASNB AAUQX AAVAP AAVLN ABDBF ABEUO ABIXL ABJNI ABNKS ABPTD ABQLI ABQTQ ABWST ABXVV ABZBJ ACGFO ACGFS ACGOD ACIWK ACPRK ACUFI ACYTK ADBBV ADEYI ADFTL ADGKP ADGZP ADHKW ADHZD ADOCK ADPDF ADQBN ADRDM ADRIX ADRTK ADVEK ADYVW ADZTZ ADZXQ AECKG AEGPL AEGXH AEJOX AEKKA AEKSI AELWJ AEMDU AEMOZ AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFGWE AFIYH AFOFC AFRAH AFXEN AGINJ AGKEF AGQXC AGSYK AHMBA AHXPO AIAGR AIJHB AJEEA AJEUX AKHUL AKVCP AKWXX ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC APIBT APWMN ARIXL AXUDD AYOIW AZVOD BAWUL BAYMD BCRHZ BEYMZ BHONS BQDIO BQUQU BSWAC BTQHN C1A C45 CAG CDBKE COF CS3 CZ4 DAKXR DIK DILTD DU5 D~K E3Z EAD EAP EAS EBA EBC EBD EBR EBS EBU EE~ EJD EMB EMK EMOBN EST ESX F5P F9B FHSFR FLIZI FLUFQ FOEOM FQBLK GAUVT GJXCC GX1 H13 H5~ HAR HW0 HZ~ IOX J21 K1G KBUDW KOP KSI KSN M-Z M49 MK~ ML0 N9A NGC NLBLG NMDNZ NOMLY NU- O0~ O9- OAWHX ODMLO OJQWA OK1 OVD OVEED P2P PAFKI PEELM PQQKQ Q1. Q5Y QWB RD5 ROX RPM RUSNO RW1 RXO SV3 TEORI TH9 TJP TLC TOX TR2 TUS W8F WOQ X7H YAYTL YKOAZ YXANX ZKX ZL0 ~91 AAYXX ABEJV ABGNP ABPQP ABXZS ACUHS ACUXJ AHGBF AHQJS ALXQX AMNDL ANAKG CITATION JXSIZ CGR CUY CVF ECM EIF NPM 7QO 7SC 8FD FR3 JQ2 K9. L7M L~C L~D P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c440t-abd8e51996ae3de0f4dc1cba14bdafa2b97bd4378a76806aead8bf0b490313073 |
IEDL.DBID | TOX |
ISSN | 1467-5463 1477-4054 |
IngestDate | Thu Aug 21 18:33:57 EDT 2025 Fri Jul 11 03:06:59 EDT 2025 Mon Jun 30 09:10:16 EDT 2025 Mon Jul 21 06:01:46 EDT 2025 Thu Apr 24 22:51:17 EDT 2025 Tue Jul 01 03:39:31 EDT 2025 Wed Aug 28 03:20:37 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | drug development deep learning drug-target prediction protein function prediction protein interaction prediction biological networks |
Language | English |
License | This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. http://creativecommons.org/licenses/by/4.0 The Author(s) 2020. Published by Oxford University Press. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c440t-abd8e51996ae3de0f4dc1cba14bdafa2b97bd4378a76806aead8bf0b490313073 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 Giulia Muzio and Leslie O’Bray have contributed equally to this work. |
OpenAccessLink | https://dx.doi.org/10.1093/bib/bbaa257 |
PMID | 33169146 |
PQID | 2529967299 |
PQPubID | 26846 |
PageCount | 16 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7986589 proquest_miscellaneous_2459353635 proquest_journals_2529967299 pubmed_primary_33169146 crossref_citationtrail_10_1093_bib_bbaa257 crossref_primary_10_1093_bib_bbaa257 oup_primary_10_1093_bib_bbaa257 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-03-22 |
PublicationDateYYYYMMDD | 2021-03-22 |
PublicationDate_xml | – month: 03 year: 2021 text: 2021-03-22 day: 22 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Oxford |
PublicationTitle | Briefings in bioinformatics |
PublicationTitleAlternate | Brief Bioinform |
PublicationYear | 2021 |
Publisher | Oxford University Press Oxford Publishing Limited (England) |
Publisher_xml | – name: Oxford University Press – name: Oxford Publishing Limited (England) |
References | Hughes (2021032314263185500_ref105) 2011; 162 Torng (2021032314263185500_ref26) 2019; 59 Parker (2021032314263185500_ref4) 1985 Duvenaud (2021032314263185500_ref95) 2015 Werbos (2021032314263185500_ref3) 1974 Wang (2021032314263185500_ref17) LeCun (2021032314263185500_ref5) 1985 Wang (2021032314263185500_ref32) 2012; 40 Han (2021032314263185500_ref115) 2019 Meng (2021032314263185500_ref16) 2013 Scarselli (2021032314263185500_ref85) 2009; 20 Wishart (2021032314263185500_ref24) 2006; 34 Kurzbach (2021032314263185500_ref15) 2016; 25 Fensel (2021032314263185500_ref88) 2020 Weisfeiler (2021032314263185500_ref99) 1968 Wu (2021032314263185500_ref83) 2020 Yue (2021032314263185500_ref41) 2019; 36 Xenarios (2021032314263185500_ref58) 2000; 28 Fout (2021032314263185500_ref75) 2017 Li (2021032314263185500_ref128) 2019; 166 Dobson (2021032314263185500_ref73) 2003; 330 Mikolov (2021032314263185500_ref91) 2013 Cao (2021032314263185500_ref101) 2016 Rumelhart (2021032314263185500_ref6) 1986; 323 Ma (2021032314263185500_ref43) 2018 Wishart (2021032314263185500_ref39) 2018; 46 Gligorijević (2021032314263185500_ref71) 2018; 34 Berg (2021032314263185500_ref18) 2002 Hamilton (2021032314263185500_ref64) 2017 Tatonetti (2021032314263185500_ref42) 2012; 4 Liu (2021032314263185500_ref60) 2019 Manoochehri (2021032314263185500_ref40) 2019 Raza (2021032314263185500_ref122) 2016; 64 Dean (2021032314263185500_ref125) 2012 De Las Rivas (2021032314263185500_ref11) 2010; 6 Yang (2021032314263185500_ref109) 2019; 59 Keith (2021032314263185500_ref106) 2005; 4 Tang (2021032314263185500_ref90) 2015 Jeong (2021032314263185500_ref19) 2000; 407 Marzullo (2021032314263185500_ref117) 2019; 13 Tsuda (2021032314263185500_ref79) 2010 Matsubara (2021032314263185500_ref62) 2018 Senior (2021032314263185500_ref76) 2020; 577 LeCun (2021032314263185500_ref126) 2015; 521 Das (2021032314263185500_ref61) 2012; 6 Min (2021032314263185500_ref132) 2016; 18 Madar (2021032314263185500_ref48) 2010; 5 Perozzi (2021032314263185500_ref89) 2014 Bhagat (2021032314263185500_ref77) 2011 Playe (2021032314263185500_ref133) 2020; 12 Zeng (2021032314263185500_ref56) 2019; 20 Zampieri (2021032314263185500_ref130) 2019; 15 Chen (2021032314263185500_ref123) 2014; 2 Toivonen (2021032314263185500_ref34) 2003; 19 Peri (2021032314263185500_ref66) 2003; 13 Schaefer (2021032314263185500_ref63) 2012; 7 Liu (2021032314263185500_ref111) 2019; 20 LeCun (2021032314263185500_ref92) 1989; 1 Malin (2021032314263185500_ref131) 2013; 20 Sugiyama (2021032314263185500_ref136) 2017; 34 Goodfellow (2021032314263185500_ref2) 2016 Lü (2021032314263185500_ref78) 2011; 390 Stokes (2021032314263185500_ref23) 2020; 180 Kipf (2021032314263185500_ref96) 2017 Mayr (2021032314263185500_ref37) 2015; 3 Corsello (2021032314263185500_ref22) 2017; 23 Li (2021032314263185500_ref87) 2018 Du (2021032314263185500_ref59) 2017; 57 Ramakrishnan (2021032314263185500_ref35) 2014; 1 Cui (2021032314263185500_ref81) 2019; 31 Becker (2021032314263185500_ref107) 2007; 16 Krizhevsky (2021032314263185500_ref7) 2012 Le Novere (2021032314263185500_ref50) 2006; 34 Wang (2021032314263185500_ref45) 2019 Kanehisa (2021032314263185500_ref53) 2000; 28 Zhang (2021032314263185500_ref114) 2019 Rhee (2021032314263185500_ref72) 2018; IJCAI-18 Shervashidze (2021032314263185500_ref97) 2009 Shervashidze (2021032314263185500_ref98) 2011; 12 Miotto (2021032314263185500_ref129) 2018; 19 Zitnik (2021032314263185500_ref46) 2018; 34 Reuter (2021032314263185500_ref1) 2015; 58 Zeng (2021032314263185500_ref28) 2020; 11 Landrum (2021032314263185500_ref110) Zhang (2021032314263185500_ref10) 2014; 7 Maetschke (2021032314263185500_ref121) 2013; 15 Shang (2021032314263185500_ref44) 2019; AAAI-19 Cowley (2021032314263185500_ref69) 2012; 40 Vaida (2021032314263185500_ref27) 2019 Zitnik (2021032314263185500_ref65) 2017; 33 Baranwal (2021032314263185500_ref52) 2019; 36 Cuperlovic-Culf (2021032314263185500_ref119) 2018; 8 Li (2021032314263185500_ref84) 2016 Zhang (2021032314263185500_ref116) 2018 Zhou (2021032314263185500_ref124) 2017; 237 Licata (2021032314263185500_ref68) 2012; 40 Grover (2021032314263185500_ref54) 2016 Ching (2021032314263185500_ref127) 2018; 15 Perkins (2021032314263185500_ref14) 2010; 18 Gilbert (2021032314263185500_ref120) 2007 Hu (2021032314263185500_ref20) 2011; 36 Kearnes (2021032314263185500_ref33) 2016; 30 Debnath (2021032314263185500_ref29) 1991; 34 Jiang (2021032314263185500_ref55) 2020; 18 Sun (2021032314263185500_ref118) 2017; 57 Zhang (2021032314263185500_ref100) 2019; 20 Jain (2021032314263185500_ref86) 2016 Junker (2021032314263185500_ref13) 2008 Knox (2021032314263185500_ref38) 2011; 39 Defferrard (2021032314263185500_ref94) 2016 Gilmer (2021032314263185500_ref36) 2017; 70 Hamilton (2021032314263185500_ref80) 2017 Feinberg (2021032314263185500_ref108) 2018; 4 Gärtner (2021032314263185500_ref134) 2003 Berman (2021032314263185500_ref74) 2000; 28 Borgwardt (2021032314263185500_ref135) 2005 Niepert (2021032314263185500_ref30) 2016 Bruna (2021032314263185500_ref93) 2014 Greenfield (2021032314263185500_ref47) 2010; 5 Borgwardt (2021032314263185500_ref102) 2005; 21 Keshava Prasad (2021032314263185500_ref67) 2009; 37 Breitkreutz (2021032314263185500_ref57) 2007; 36 Wang (2021032314263185500_ref103) 2017; 13 Li (2021032314263185500_ref112) 2019; 59 Jones (2021032314263185500_ref104) 2018; 34 Zeng (2021032314263185500_ref113) 2014 Wale (2021032314263185500_ref31) 2006 Asada (2021032314263185500_ref25) 2018 Turki (2021032314263185500_ref49) 2016 Raman (2021032314263185500_ref12) 2010; 2 Zhang (2021032314263185500_ref21) 2009; 11 Szklarczyk (2021032314263185500_ref70) 2015; 43 Bove (2021032314263185500_ref51) 2020 Hinton (2021032314263185500_ref8) 2012; 29 Peng (2021032314263185500_ref9) 2020 Cai (2021032314263185500_ref82) 2018; 30 |
References_xml | – volume: 390 start-page: 1150 issue: 6 year: 2011 ident: 2021032314263185500_ref78 article-title: Link prediction in complex networks: A survey publication-title: Physica A: Statistical Mechanics and its Applications doi: 10.1016/j.physa.2010.11.027 – volume: 59 start-page: 3370 year: 2019 ident: 2021032314263185500_ref109 article-title: Analyzing learned molecular representations for property prediction publication-title: J Chem Inform Model doi: 10.1021/acs.jcim.9b00237 – volume: 19 start-page: 1183 issue: 10 year: 2003 ident: 2021032314263185500_ref34 article-title: Statistical evaluation of the predictive toxicology challenge 2000–2001 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btg130 – volume-title: Beyond regression: new tools for prediction and analysis in the behavioral sciences year: 1974 ident: 2021032314263185500_ref3 – volume: 407 start-page: 651 year: 2000 ident: 2021032314263185500_ref19 article-title: The large-scale organization of metabolic networks publication-title: Nature doi: 10.1038/35036627 – start-page: 680 volume-title: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics year: 2018 ident: 2021032314263185500_ref25 article-title: Enhancing drug–drug interaction extraction from texts by molecular structure information – volume: 30 start-page: 1616 issue: 9 year: 2018 ident: 2021032314263185500_ref82 article-title: A comprehensive survey of graph embedding: Problems, techniques, and applications publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2018.2807452 – volume-title: Proceedings from the 2nd International Conference on Learning Representations (ICLR) year: 2014 ident: 2021032314263185500_ref93 article-title: Spectral networks and deep locally connected networks on graphs – volume: 20 start-page: 3389 year: 2019 ident: 2021032314263185500_ref111 article-title: Chemi-Net: a molecular graph convolutional network for accurate drug property prediction publication-title: Int J Mol Sci doi: 10.3390/ijms20143389 – volume: 15 start-page: 20170387 year: 2018 ident: 2021032314263185500_ref127 article-title: Opportunities and obstacles for deep learning in biology and medicine publication-title: J R Soc Interface doi: 10.1098/rsif.2017.0387 – volume: 19 start-page: 1236 issue: 6 year: 2018 ident: 2021032314263185500_ref129 article-title: Deep learning for healthcare: review, opportunities and challenges publication-title: Brief Bioinform doi: 10.1093/bib/bbx044 – volume-title: Proceedings from the 4th International Conference on Learning Representations (ICLR) year: 2016 ident: 2021032314263185500_ref84 article-title: Gated graph sequence neural networks – volume-title: RDKit: open-source cheminformatics ident: 2021032314263185500_ref110 – volume-title: Proceedings from the 6th International Conference on Learning Representations (ICLR) year: 2018 ident: 2021032314263185500_ref87 article-title: Diffusion convolutional recurrent neural network: Data-driven traffic forecasting – start-page: 115 volume-title: Social Network Data Analytics year: 2011 ident: 2021032314263185500_ref77 article-title: Node classification in social networks doi: 10.1007/978-1-4419-8462-3_5 – volume-title: Introduction: What Is a Knowledge Graph? year: 2020 ident: 2021032314263185500_ref88 doi: 10.1515/9780804799102-003 – volume: 8 start-page: 4 year: 2018 ident: 2021032314263185500_ref119 article-title: Machine learning methods for analysis of metabolic data and metabolic pathway modeling publication-title: Metabolites doi: 10.3390/metabo8010004 – volume-title: Computational Methods in Systems Biology year: 2007 ident: 2021032314263185500_ref120 article-title: A unifying framework for modelling and analysing biochemical pathways using petri nets doi: 10.1007/978-3-540-75140-3_14 – start-page: 701 volume-title: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining year: 2014 ident: 2021032314263185500_ref89 article-title: Deepwalk: online learning of social representations doi: 10.1145/2623330.2623732 – start-page: 1762 volume-title: Proceedings of the 2019 IEEE International Conference on Bioinformatics and Biomedicine (BIBM) year: 2019 ident: 2021032314263185500_ref60 article-title: Integrating sequence and network information to enhance protein-protein interaction prediction using graph convolutional networks doi: 10.1109/BIBM47256.2019.8983330 – volume: 2 start-page: 514 year: 2014 ident: 2021032314263185500_ref123 article-title: Big data deep learning: Challenges and perspectives publication-title: IEEE Access doi: 10.1109/ACCESS.2014.2325029 – volume: IJCAI-18 start-page: 3527 year: 2018 ident: 2021032314263185500_ref72 article-title: Hybrid approach of relation network and localized graph convolutional filtering for breast cancer subtype classification publication-title: Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence – volume-title: Center of Computational Research in Economics and Management Science year: 1985 ident: 2021032314263185500_ref4 article-title: Learning logic technical report tr-47 – volume: 5 year: 2010 ident: 2021032314263185500_ref47 article-title: DREAM4: combining genetic and dynamic information to identify biological networks and dynamical models publication-title: PLoS One doi: 10.1371/journal.pone.0013397 – volume: 34 start-page: D668 year: 2006 ident: 2021032314263185500_ref24 article-title: DrugBank: a comprehensive resource for in silico drug discovery and exploration publication-title: Nucleic Acids Res doi: 10.1093/nar/gkj067 – start-page: 1 year: 2020 ident: 2021032314263185500_ref83 article-title: A comprehensive survey on graph neural networks publication-title: IEEE Trans Neural Netw Lear Syst – volume: 58 start-page: 586 issue: 4 year: 2015 ident: 2021032314263185500_ref1 article-title: High-throughput sequencing technologies publication-title: Mol Cell doi: 10.1016/j.molcel.2015.05.004 – volume: 1 start-page: 541 issue: 4 year: 1989 ident: 2021032314263185500_ref92 article-title: Backpropagation applied to handwritten zip code recognition publication-title: Neural Comput doi: 10.1162/neco.1989.1.4.541 – volume: 12 start-page: 2539 year: 2011 ident: 2021032314263185500_ref98 article-title: Weisfeiler-Lehman graph kernels publication-title: J Mach Learn Res – year: 1968 ident: 2021032314263185500_ref99 article-title: Reduction of a graph to a canonical form and an algebra arising during this reduction publication-title: Nauchno-Technicheskaya Informatsia – volume-title: Proceedings of the 33rd International Conference on Machine Learning year: 2016 ident: 2021032314263185500_ref30 article-title: Learning convolutional neural networks for graphs – volume: 34 start-page: i457 issue: 13 year: 2018 ident: 2021032314263185500_ref46 article-title: Modeling polypharmacy side effects with graph convolutional networks publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty294 – start-page: 3111 volume-title: Proceedings of the 26th International Conference on Neural Information Processing Systems, Volume 2 year: 2013 ident: 2021032314263185500_ref91 article-title: Distributed representations of words and phrases and their compositionality – volume: AAAI-19 start-page: 1126 year: 2019 ident: 2021032314263185500_ref44 article-title: GAMENet: graph augmented memory networks for recommending medication combination publication-title: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence doi: 10.1609/aaai.v33i01.33011126 – volume-title: Analysis of Biological Networks year: 2008 ident: 2021032314263185500_ref13 doi: 10.1002/9780470253489 – volume: 18 start-page: 427 year: 2020 ident: 2021032314263185500_ref55 article-title: Deep graph embedding for prioritizing synergistic anticancer drug combinations publication-title: Comput Struct Biotechnol J doi: 10.1016/j.csbj.2020.02.006 – volume: 12 year: 2020 ident: 2021032314263185500_ref133 article-title: Evaluation of deep and shallow learning methods in chemogenomics for the prediction of drugs specificity publication-title: J Cheminform doi: 10.1186/s13321-020-0413-0 – volume: 34 start-page: 786 issue: 2 year: 1991 ident: 2021032314263185500_ref29 article-title: Structure-activity relationship of mutagenic aromatic and heteroaromatic nitro compounds publication-title: Correlation with molecular orbital energies and hydrophobicity. Journal of Medicinal Chemistry – start-page: 1223 volume-title: Proceedings of the 2019 IEEE International Conference on Bioinformatics and Biomedicine (BIBM) year: 2019 ident: 2021032314263185500_ref40 article-title: Graph convolutional networks for predicting drug-protein interactions doi: 10.1109/BIBM47256.2019.8983018 – volume: 28 start-page: 27 issue: 1 year: 2000 ident: 2021032314263185500_ref53 article-title: KEGG: Kyoto encyclopedia of genes and genomes publication-title: Nucleic Acids Res doi: 10.1093/nar/28.1.27 – start-page: 32 volume-title: Proceedings of the 11th International Conference on Bioinformatics Models, Methods and Algorithms year: 2020 ident: 2021032314263185500_ref51 article-title: Prediction of dynamical properties of biochemical pathways with graph neural networks – start-page: 129 volume-title: Learning theory and kernel machines year: 2003 ident: 2021032314263185500_ref134 article-title: On graph kernels: Hardness results and efficient alternatives doi: 10.1007/978-3-540-45167-9_11 – volume: 28 start-page: 289 issue: 1 year: 2000 ident: 2021032314263185500_ref58 article-title: DIP: the database of interacting proteins publication-title: Nucleic Acids Res doi: 10.1093/nar/28.1.289 – volume: 1 year: 2014 ident: 2021032314263185500_ref35 article-title: Quantum chemistry structures and properties of 134 kilo molecules publication-title: Sci Data doi: 10.1038/sdata.2014.22 – volume: 28 start-page: 235 issue: 1 year: 2000 ident: 2021032314263185500_ref74 article-title: The protein data bank publication-title: Nucleic Acids Res doi: 10.1093/nar/28.1.235 – volume: 20 start-page: 61 issue: 1 year: 2009 ident: 2021032314263185500_ref85 article-title: The graph neural network model publication-title: IEEE Trans Neural Netw doi: 10.1109/TNN.2008.2005605 – start-page: 2335 volume-title: Proceedings of COLING 2014, the 25th International Conference on Computational Linguistics: Technical Papers year: 2014 ident: 2021032314263185500_ref113 article-title: Relation classification via convolutional deep neural network – volume: 323 start-page: 533 year: 1986 ident: 2021032314263185500_ref6 article-title: Learning representations by back-propagating errors publication-title: Nature doi: 10.1038/323533a0 – volume: 64 start-page: 322 year: 2016 ident: 2021032314263185500_ref122 article-title: Recurrent neural network based hybrid model for reconstructing gene regulatory network publication-title: Comput Biol Chem doi: 10.1016/j.compbiolchem.2016.08.002 – volume: 40 start-page: D862 year: 2012 ident: 2021032314263185500_ref69 article-title: PINA v2.0: mining interactome modules publication-title: Nucleic Acids Res doi: 10.1093/nar/gkr967 – volume-title: Proceedings from the 5th International Conference on Learning Representations (ICLR) year: 2017 ident: 2021032314263185500_ref96 article-title: Semi-supervised classification with graph convolutional networks – year: 2020 ident: 2021032314263185500_ref9 article-title: Multiscale modeling meets machine learning: What can we learn? publication-title: Arch Comput Methods Eng doi: 10.1007/s11831-020-09405-5 – volume: 521 start-page: 436 issue: 7553 year: 2015 ident: 2021032314263185500_ref126 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 30 start-page: 595 issue: 8 year: 2016 ident: 2021032314263185500_ref33 article-title: Molecular graph convolutions: moving beyond fingerprints publication-title: J Comput Aided Mol Des doi: 10.1007/s10822-016-9938-8 – volume: 46 start-page: D1074 year: 2018 ident: 2021032314263185500_ref39 article-title: DrugBank 5.0: a major update to the DrugBank database for 2018 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkx1037 – volume: 39 start-page: D1035 year: 2011 ident: 2021032314263185500_ref38 article-title: Drugbank 3.0: a comprehensive resource for ’omics’ research on drugs publication-title: Nucleic Acids Res doi: 10.1093/nar/gkq1126 – volume: 36 start-page: D637 year: 2007 ident: 2021032314263185500_ref57 article-title: The BioGRID interaction database: 2008 update publication-title: Nucleic Acids Res doi: 10.1093/nar/gkm1001 – volume: 15 year: 2019 ident: 2021032314263185500_ref130 article-title: Machine and deep learning meet genome-scale metabolic modeling publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1007084 – volume: 29 start-page: 82 issue: 6 year: 2012 ident: 2021032314263185500_ref8 article-title: Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups publication-title: IEEE Signal Process Mag doi: 10.1109/MSP.2012.2205597 – start-page: 1097 volume-title: Proceedings of the 26th International Conference on Neural Information Processing Systems year: 2012 ident: 2021032314263185500_ref7 article-title: Imagenet classification with deep convolutional neural networks – start-page: 337 volume-title: Managing and Mining Graph Data year: 2010 ident: 2021032314263185500_ref79 article-title: Graph classification. doi: 10.1007/978-1-4419-6045-0_11 – volume: 162 start-page: 1239 issue: 6 year: 2011 ident: 2021032314263185500_ref105 article-title: Principles of early drug discovery publication-title: Br J Pharmacol doi: 10.1111/j.1476-5381.2010.01127.x – volume: 4 start-page: 71 year: 2005 ident: 2021032314263185500_ref106 article-title: Multicomponent therapeutics for networked systems publication-title: Nat Rev Drug Discov doi: 10.1038/nrd1609 – volume: 4 start-page: 1520 issue: 11 year: 2018 ident: 2021032314263185500_ref108 article-title: PotentialNet for molecular property prediction publication-title: ACS Central Sci doi: 10.1021/acscentsci.8b00507 – volume: 59 start-page: 4131 issue: 10 year: 2019 ident: 2021032314263185500_ref26 article-title: Graph convolutional neural networks for predicting drug-target interactions publication-title: J Chem Inform Model doi: 10.1021/acs.jcim.9b00628 – start-page: 2224 volume-title: Proceedings of the 28th International Conference on Neural Information Processing Systems, Volume 2 year: 2015 ident: 2021032314263185500_ref95 article-title: Convolutional networks on graphs for learning molecular fingerprints – volume: 57 start-page: 1499 issue: 6 year: 2017 ident: 2021032314263185500_ref59 article-title: DeepPPI: Boosting prediction of protein—protein interactions with deep neural networks publication-title: J Chem Inform Model doi: 10.1021/acs.jcim.7b00028 – volume: 33 start-page: 190 issue: 14 year: 2017 ident: 2021032314263185500_ref65 article-title: Predicting multicellular function through multi-layer tissue networks publication-title: Bioinformatics doi: 10.1093/bioinformatics/btx252 – volume: 31 start-page: 833 year: 2019 ident: 2021032314263185500_ref81 article-title: A survey on network embedding publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2018.2849727 – start-page: 678 volume-title: Proceedings of the International Conference on Data Mining (ICDM) year: 2006 ident: 2021032314263185500_ref31 article-title: Comparison of descriptor spaces for chemical compound retrieval and classification doi: 10.1109/ICDM.2006.39 – volume: 13 issue: 1 year: 2017 ident: 2021032314263185500_ref103 article-title: Accurate de novo prediction of protein contact map by ultra-deep learning model publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1005324 – volume: 6 year: 2010 ident: 2021032314263185500_ref11 article-title: Protein—protein interactions essentials: key concepts to building and analyzing interactome networks publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1000807 – volume: 43 start-page: D447 year: 2015 ident: 2021032314263185500_ref70 article-title: String v10: protein-protein interaction networks, integrated over the tree of life publication-title: Nucleic Acids Res doi: 10.1093/nar/gku1003 – start-page: 1623 volume-title: Proceedings of the 28th ACM International Conference on Information and Knowledge Management year: 2019 ident: 2021032314263185500_ref45 article-title: Order-free medicine combination prediction with graph convolutional reinforcement learning doi: 10.1145/3357384.3357965 – volume-title: Biochemistry year: 2002 ident: 2021032314263185500_ref18 – start-page: 3844 volume-title: Proceedings of the 29th International Conference on Neural Information Processing Systems year: 2016 ident: 2021032314263185500_ref94 article-title: Convolutional neural networks on graphs with fast localized spectral filtering – start-page: 1024 volume-title: Proceedings of the 30th International Conference on Neural Information Processing Systems year: 2017 ident: 2021032314263185500_ref64 article-title: Inductive representation learning on large graphs – volume: 23 start-page: 405 issue: 4 year: 2017 ident: 2021032314263185500_ref22 article-title: The drug repurposing hub: a next-generation drug library and information resource publication-title: Nat Med doi: 10.1038/nm.4306 – volume: 11 start-page: 300 issue: 2 year: 2009 ident: 2021032314263185500_ref21 article-title: Predicting drug–drug interactions: an FDA perspective publication-title: AAPS J doi: 10.1208/s12248-009-9106-3 – volume: 18 start-page: 1233 year: 2010 ident: 2021032314263185500_ref14 article-title: Transient protein-protein interactions: structural, functional, and network properties publication-title: Structure doi: 10.1016/j.str.2010.08.007 – start-page: 705 volume-title: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining year: 2019 ident: 2021032314263185500_ref115 article-title: GCN-MF: disease-gene association identification by graph convolutional networks and matrix factorization doi: 10.1145/3292500.3330912 – volume: 13 start-page: 594 year: 2019 ident: 2021032314263185500_ref117 article-title: Classification of multiple sclerosis clinical profiles via graph convolutional neural networks publication-title: Front Neurosci doi: 10.3389/fnins.2019.00594 – volume: 3 start-page: 8 year: 2015 ident: 2021032314263185500_ref37 article-title: DeepTox: toxicity prediction using deep learning publication-title: Frontiers in Environmental Science – start-page: 797 volume-title: Gene Regulation year: 2013 ident: 2021032314263185500_ref16 – volume: 34 start-page: 530 year: 2017 ident: 2021032314263185500_ref136 article-title: graphkernels: R and Python packages for graph comparison publication-title: Bioinformatics doi: 10.1093/bioinformatics/btx602 – start-page: 177 volume-title: Proceedings of the 2019 IEEE International Conference on Bioinformatics and Biomedicine (BIBM) year: 2019 ident: 2021032314263185500_ref114 article-title: Predicting disease-related RNA associations based on graph convolutional attention network doi: 10.1109/BIBM47256.2019.8983191 – volume-title: Fifth IEEE International Conference on Data Mining (ICDM’05) year: 2005 ident: 2021032314263185500_ref135 article-title: Shortest-path kernels on graphs doi: 10.1109/ICDM.2005.132 – year: 2016 ident: 2021032314263185500_ref101 article-title: Deep neural networks for learning graph representations publication-title: Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence doi: 10.1609/aaai.v30i1.10179 – volume: 37 start-page: D767 year: 2009 ident: 2021032314263185500_ref67 article-title: Human protein reference database—2009 update publication-title: Nucleic Acids Res doi: 10.1093/nar/gkn892 – volume: 180 start-page: 688 issue: 4 year: 2020 ident: 2021032314263185500_ref23 article-title: A deep learning approach to antibiotic discovery publication-title: Cell doi: 10.1016/j.cell.2020.01.021 – start-page: 140 volume-title: Proceedings of the 15th IEEE International Conference on Machine Learning and Applications (ICMLA) year: 2016 ident: 2021032314263185500_ref49 article-title: Inferring gene regulatory networks by combining supervised and unsupervised methods – volume: 7 start-page: 536 issue: 4 year: 2014 ident: 2021032314263185500_ref10 article-title: Network biology in medicine and beyond publication-title: Circ Cardiovasc Genet doi: 10.1161/CIRCGENETICS.113.000123 – start-page: 855 volume-title: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining year: 2016 ident: 2021032314263185500_ref54 article-title: node2vec: scalable feature learning for networks doi: 10.1145/2939672.2939754 – volume: 20 year: 2019 ident: 2021032314263185500_ref56 article-title: DeepEP: a deep learning framework for identifying essential proteins publication-title: BMC Bioinform doi: 10.1186/s12859-019-3076-y – volume-title: Deep Learning year: 2016 ident: 2021032314263185500_ref2 – volume: 59 start-page: 1044 issue: 3 year: 2019 ident: 2021032314263185500_ref112 article-title: DeepChemStable: chemical stability prediction with an attention-based graph convolution network publication-title: J Chem Inform Model doi: 10.1021/acs.jcim.8b00672 – volume: 6 start-page: 92 year: 2012 ident: 2021032314263185500_ref61 article-title: HINT: high-quality protein interactomes and their applications in understanding human disease publication-title: BMC Syst Biol doi: 10.1186/1752-0509-6-92 – volume: 36 start-page: 1241 issue: 4 year: 2019 ident: 2021032314263185500_ref41 article-title: Graph embedding on biomedical networks: methods, applications and evaluations publication-title: Bioinformatics doi: 10.1093/bioinformatics/btz718 – volume: 5 start-page: 1 issue: 3 year: 2010 ident: 2021032314263185500_ref48 article-title: DREAM3: network inference using dynamic context likelihood of relatedness and the inferelator publication-title: PLoS One doi: 10.1371/journal.pone.0009803 – volume: 21 start-page: i47 year: 2005 ident: 2021032314263185500_ref102 article-title: Protein function prediction via graph kernels publication-title: Bioinformatics doi: 10.1093/bioinformatics/bti1007 – volume: 20 start-page: 531 year: 2019 ident: 2021032314263185500_ref100 article-title: Multimodal deep representation learning for protein interaction identification and protein family classification publication-title: BMC Bioinformatics doi: 10.1186/s12859-019-3084-y – year: 2016 ident: 2021032314263185500_ref86 – volume: 577 start-page: 706 issue: 7792 year: 2020 ident: 2021032314263185500_ref76 article-title: Improved protein structure prediction using potentials from deep learning publication-title: Nature doi: 10.1038/s41586-019-1923-7 – volume: 70 start-page: 1263 year: 2017 ident: 2021032314263185500_ref36 article-title: Neural message passing for quantum chemistry publication-title: In: Proceedings of the 34th International Conference on Machine Learning – volume: 330 start-page: 771 issue: 4 year: 2003 ident: 2021032314263185500_ref73 article-title: Distinguishing enzyme structures from non-enzymes without alignments publication-title: J Mol Biol doi: 10.1016/S0022-2836(03)00628-4 – volume-title: Encyclopedia of Systems Biology ident: 2021032314263185500_ref17 article-title: Gene regulatory networks. doi: 10.1007/978-1-4419-9863-7_364 – volume: 36 start-page: 135 issue: 2 year: 2011 ident: 2021032314263185500_ref20 article-title: Architecture of the drug–drug interaction network publication-title: J Clin Pharm Ther doi: 10.1111/j.1365-2710.2009.01103.x – volume: 166 start-page: 4 year: 2019 ident: 2021032314263185500_ref128 article-title: Deep learning in bioinformatics: Introduction, application, and perspective in the big data era publication-title: Methods doi: 10.1016/j.ymeth.2019.04.008 – volume: 2 issue: 1 year: 2010 ident: 2021032314263185500_ref12 article-title: Construction and analysis of protein—protein interaction networks publication-title: Autom Exp doi: 10.1186/1759-4499-2-2 – volume: 4 issue: 125 year: 2012 ident: 2021032314263185500_ref42 article-title: Data-driven prediction of drug effects and interactions publication-title: Sci Transl Med doi: 10.1126/scitranslmed.3003377 – start-page: 599 volume-title: Proceedings of Cognitiva 85: A la Frontière de l’Intelligence Artificielle, des Sciences de la Connaissance et des Neurosciences [in French] year: 1985 ident: 2021032314263185500_ref5 article-title: Une procédure d’apprentissage pour réseau à seuil assymétrique – volume: 7 issue: (2) year: 2012 ident: 2021032314263185500_ref63 article-title: Hippie: integrating protein interaction networks with experiment based quality scores publication-title: PLoS One – year: 2017 ident: 2021032314263185500_ref80 article-title: Representation learning on graphs: Methods and applications – start-page: 151 volume-title: Proceedings of the 2018 IEEE 18th International Conference on Bioinformatics and Bioengineering (BIBE) year: 2018 ident: 2021032314263185500_ref62 article-title: Convolutional neural network approach to lung cancer classification integrating protein interaction network and gene expression profiles doi: 10.1109/BIBE.2018.00036 – volume: 34 start-page: 3873 year: 2018 ident: 2021032314263185500_ref71 article-title: deepNF: deep network fusion for protein function prediction publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty440 – start-page: 1660 volume-title: Proceedings of the 23rd International Conference on Neural Information Processing Systems year: 2009 ident: 2021032314263185500_ref97 article-title: Fast subtree kernels on graphs – volume: 11 start-page: 1775 year: 2020 ident: 2021032314263185500_ref28 article-title: Target identification among known drugs by deep learning from heterogeneous networks publication-title: Chem Sci doi: 10.1039/C9SC04336E – start-page: 1860 volume-title: Proceedings of the 18th IEEE International Conference On Machine Learning And Applications (ICMLA) year: 2019 ident: 2021032314263185500_ref27 article-title: Hypergraph link prediction: learning drug interaction networks embeddings – volume: 34 start-page: D689 year: 2006 ident: 2021032314263185500_ref50 article-title: Biomodels database: a free, centralized database of curated, published, quantitative kinetics models of biochemical and cellular systems publication-title: Nucleic Acids Res doi: 10.1093/nar/gkj092 – year: 2018 ident: 2021032314263185500_ref116 article-title: Multi-view graph convolutional network and its applications on neuroimage analysis for parkinson’s disease publication-title: AMIA Annual Symposium proceedings – volume-title: Proceedings of the 24th International Conference on World Wide Web year: 2015 ident: 2021032314263185500_ref90 article-title: LINE: large-scale information network embedding doi: 10.1145/2736277.2741093 – start-page: 3477 volume-title: Proceedings of the 27th International Joint Conference on Artificial Intelligence year: 2018 ident: 2021032314263185500_ref43 article-title: Drug similarity integration through attentive multi-view graph auto-encoders – volume: 16 start-page: 641 issue: 6 year: 2007 ident: 2021032314263185500_ref107 article-title: Hospitalisations and emergency department visits due to drug-drug interactions: a literature review publication-title: Pharmacoepidemiol Drug Safety doi: 10.1002/pds.1351 – start-page: 6533 volume-title: Proceedings of the 31st International Conference on Neural Information Processing Systems year: 2017 ident: 2021032314263185500_ref75 article-title: Protein interface prediction using graph convolutional networks – volume: 36 start-page: 2547 issue: 8 year: 2019 ident: 2021032314263185500_ref52 article-title: A deep learning architecture for metabolic pathway prediction publication-title: Bioinformatics doi: 10.1093/bioinformatics/btz954 – volume: 57 start-page: 4 year: 2017 ident: 2021032314263185500_ref118 article-title: Enhancing deep convolutional neural network scheme for breast cancer diagnosis with unlabeled data publication-title: Comput Med Imaging Graph doi: 10.1016/j.compmedimag.2016.07.004 – volume: 34 start-page: 3308 issue: 19 year: 2018 ident: 2021032314263185500_ref104 article-title: High precision in protein contact prediction using fully convolutional neural networks and minimal sequence features publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty341 – volume: 20 start-page: 2 issue: 1 year: 2013 ident: 2021032314263185500_ref131 article-title: Biomedical data privacy: problems, perspectives, and recent advances publication-title: J Am Med Inform Assoc doi: 10.1136/amiajnl-2012-001509 – volume: 25 start-page: 1617 issue: 9 year: 2016 ident: 2021032314263185500_ref15 article-title: Network representation of protein interactions: Theory of graph description and analysis publication-title: Protein Sci doi: 10.1002/pro.2963 – volume: 40 start-page: D400 issue: D1 year: 2012 ident: 2021032314263185500_ref32 article-title: PubChem’s BioAssay database publication-title: Nucleic Acids Res doi: 10.1093/nar/gkr1132 – volume: 13 start-page: 2363 issue: 10 year: 2003 ident: 2021032314263185500_ref66 article-title: Development of human protein reference database as an initial platform for approaching systems biology in humans publication-title: Genome Res doi: 10.1101/gr.1680803 – volume: 40 start-page: D857 year: 2012 ident: 2021032314263185500_ref68 article-title: MINT, the molecular interaction database: 2012 update publication-title: Nucleic Acids Res doi: 10.1093/nar/gkr930 – volume: 15 start-page: 192 issue: 2 year: 2013 ident: 2021032314263185500_ref121 article-title: Supervised, semi-supervised and unsupervised inference of gene regulatory networks publication-title: Bioinformatics – volume: 237 start-page: 350 year: 2017 ident: 2021032314263185500_ref124 article-title: Machine learning on big data: Opportunities and challenges publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.01.026 – volume: 18 start-page: 851 issue: 5 year: 2016 ident: 2021032314263185500_ref132 article-title: Deep learning in bioinformatics publication-title: Brief Bioinform – year: 2012 ident: 2021032314263185500_ref125 article-title: Large scale distributed deep networks publication-title: Adv Neural Infor Process Syst |
SSID | ssj0020781 |
Score | 2.61746 |
SecondaryResourceType | review_article |
Snippet | Abstract
Recent advancements in experimental high-throughput technologies have expanded the availability and quantity of molecular data in biology. Given the... Recent advancements in experimental high-throughput technologies have expanded the availability and quantity of molecular data in biology. Given the importance... |
SourceID | pubmedcentral proquest pubmed crossref oup |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1515 |
SubjectTerms | Algorithms Bioinformatics Biological activity Chemical bonds Chemical compounds Computational Biology - methods Computer applications Deep Learning Drug Discovery Gene Regulatory Networks Graph neural networks Humans Machine learning Network analysis Neural networks Neural Networks, Computer Predictions Proteins Software |
Title | Biological network analysis with deep learning |
URI | https://www.ncbi.nlm.nih.gov/pubmed/33169146 https://www.proquest.com/docview/2529967299 https://www.proquest.com/docview/2459353635 https://pubmed.ncbi.nlm.nih.gov/PMC7986589 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3fS8MwEA4yEHwRf1udWmFPQlzbJE3yKOIYgvqywd7KpUl1IN1w24P_vcmSFTeGvhXyhZa7S-7S3H2HUEcyYyoKHGtgAtMyzTHkucR260sVVFTm2tU7v7zm_SF9HrFRSJCdbbnCl6SrxqqrFIA1LrvVWvfrKPIHb6PmXOX4anwREceO3T2U4W3MXXM8a8Vsv2LKzdTIX76md4D2Q5AYP3itHqIdUx-hXd828vsY3fsnJ9649mncMQRykdj9WI21MdM4NIR4P0HD3tPgsY9D3wNcUprMMSgtDHPpwWCINklFdZmWClKqNFSQKcmVpoQLsGeFxIJAC1UlikpHxGjX7Clq1ZPanKNYV0wpZThooFSLElIhIKsIKytdZsAjdLcSSlEGUnDXm-Kz8JfTpLASLIIEI9RpwFPPhbEddmOl-zeivZJ8EZbMrMiY9Yy5jfVlhG6bYWvs7gYDajNZWAxlkjBig6QInXlFNe8hxPH-0DxCfE2FDcARaa-P1OOPJaE2l8IGYvLi3w-_RHuZy2lJCM6yNmrNvxbmygYlc3W9NMkfdebiRA |
linkProvider | Oxford University Press |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biological+network+analysis+with+deep+learning&rft.jtitle=Briefings+in+bioinformatics&rft.au=Muzio%2C+Giulia&rft.au=Leslie+O%E2%80%99Bray&rft.au=Borgwardt%2C+Karsten&rft.date=2021-03-22&rft.pub=Oxford+Publishing+Limited+%28England%29&rft.issn=1467-5463&rft.eissn=1477-4054&rft.volume=22&rft.issue=2&rft.spage=1515&rft.epage=1530&rft_id=info:doi/10.1093%2Fbib%2Fbbaa257&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1467-5463&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1467-5463&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1467-5463&client=summon |