Biological network analysis with deep learning

Abstract Recent advancements in experimental high-throughput technologies have expanded the availability and quantity of molecular data in biology. Given the importance of interactions in biological processes, such as the interactions between proteins or the bonds within a chemical compound, this da...

Full description

Saved in:
Bibliographic Details
Published inBriefings in bioinformatics Vol. 22; no. 2; pp. 1515 - 1530
Main Authors Muzio, Giulia, O’Bray, Leslie, Borgwardt, Karsten
Format Journal Article
LanguageEnglish
Published England Oxford University Press 22.03.2021
Oxford Publishing Limited (England)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Abstract Recent advancements in experimental high-throughput technologies have expanded the availability and quantity of molecular data in biology. Given the importance of interactions in biological processes, such as the interactions between proteins or the bonds within a chemical compound, this data is often represented in the form of a biological network. The rise of this data has created a need for new computational tools to analyze networks. One major trend in the field is to use deep learning for this goal and, more specifically, to use methods that work with networks, the so-called graph neural networks (GNNs). In this article, we describe biological networks and review the principles and underlying algorithms of GNNs. We then discuss domains in bioinformatics in which graph neural networks are frequently being applied at the moment, such as protein function prediction, protein–protein interaction prediction and in silico drug discovery and development. Finally, we highlight application areas such as gene regulatory networks and disease diagnosis where deep learning is emerging as a new tool to answer classic questions like gene interaction prediction and automatic disease prediction from data.
AbstractList Recent advancements in experimental high-throughput technologies have expanded the availability and quantity of molecular data in biology. Given the importance of interactions in biological processes, such as the interactions between proteins or the bonds within a chemical compound, this data is often represented in the form of a biological network. The rise of this data has created a need for new computational tools to analyze networks. One major trend in the field is to use deep learning for this goal and, more specifically, to use methods that work with networks, the so-called graph neural networks (GNNs). In this article, we describe biological networks and review the principles and underlying algorithms of GNNs. We then discuss domains in bioinformatics in which graph neural networks are frequently being applied at the moment, such as protein function prediction, protein–protein interaction prediction and in silico drug discovery and development. Finally, we highlight application areas such as gene regulatory networks and disease diagnosis where deep learning is emerging as a new tool to answer classic questions like gene interaction prediction and automatic disease prediction from data.
Recent advancements in experimental high-throughput technologies have expanded the availability and quantity of molecular data in biology. Given the importance of interactions in biological processes, such as the interactions between proteins or the bonds within a chemical compound, this data is often represented in the form of a biological network. The rise of this data has created a need for new computational tools to analyze networks. One major trend in the field is to use deep learning for this goal and, more specifically, to use methods that work with networks, the so-called graph neural networks (GNNs). In this article, we describe biological networks and review the principles and underlying algorithms of GNNs. We then discuss domains in bioinformatics in which graph neural networks are frequently being applied at the moment, such as protein function prediction, protein-protein interaction prediction and in silico drug discovery and development. Finally, we highlight application areas such as gene regulatory networks and disease diagnosis where deep learning is emerging as a new tool to answer classic questions like gene interaction prediction and automatic disease prediction from data.Recent advancements in experimental high-throughput technologies have expanded the availability and quantity of molecular data in biology. Given the importance of interactions in biological processes, such as the interactions between proteins or the bonds within a chemical compound, this data is often represented in the form of a biological network. The rise of this data has created a need for new computational tools to analyze networks. One major trend in the field is to use deep learning for this goal and, more specifically, to use methods that work with networks, the so-called graph neural networks (GNNs). In this article, we describe biological networks and review the principles and underlying algorithms of GNNs. We then discuss domains in bioinformatics in which graph neural networks are frequently being applied at the moment, such as protein function prediction, protein-protein interaction prediction and in silico drug discovery and development. Finally, we highlight application areas such as gene regulatory networks and disease diagnosis where deep learning is emerging as a new tool to answer classic questions like gene interaction prediction and automatic disease prediction from data.
Abstract Recent advancements in experimental high-throughput technologies have expanded the availability and quantity of molecular data in biology. Given the importance of interactions in biological processes, such as the interactions between proteins or the bonds within a chemical compound, this data is often represented in the form of a biological network. The rise of this data has created a need for new computational tools to analyze networks. One major trend in the field is to use deep learning for this goal and, more specifically, to use methods that work with networks, the so-called graph neural networks (GNNs). In this article, we describe biological networks and review the principles and underlying algorithms of GNNs. We then discuss domains in bioinformatics in which graph neural networks are frequently being applied at the moment, such as protein function prediction, protein–protein interaction prediction and in silico drug discovery and development. Finally, we highlight application areas such as gene regulatory networks and disease diagnosis where deep learning is emerging as a new tool to answer classic questions like gene interaction prediction and automatic disease prediction from data.
Recent advancements in experimental high-throughput technologies have expanded the availability and quantity of molecular data in biology. Given the importance of interactions in biological processes, such as the interactions between proteins or the bonds within a chemical compound, this data is often represented in the form of a biological network. The rise of this data has created a need for new computational tools to analyze networks. One major trend in the field is to use deep learning for this goal and, more specifically, to use methods that work with networks, the so-called graph neural networks (GNNs). In this article, we describe biological networks and review the principles and underlying algorithms of GNNs. We then discuss domains in bioinformatics in which graph neural networks are frequently being applied at the moment, such as protein function prediction, protein–protein interaction prediction and in silico drug discovery and development. Finally, we highlight application areas such as gene regulatory networks and disease diagnosis where deep learning is emerging as a new tool to answer classic questions like gene interaction prediction and automatic disease prediction from data.
Author Borgwardt, Karsten
O’Bray, Leslie
Muzio, Giulia
Author_xml – sequence: 1
  givenname: Giulia
  surname: Muzio
  fullname: Muzio, Giulia
  email: giulia.muzio@bsse.ethz.ch
– sequence: 2
  givenname: Leslie
  surname: O’Bray
  fullname: O’Bray, Leslie
  email: leslie.obray@bsse.ethz.ch
– sequence: 3
  givenname: Karsten
  surname: Borgwardt
  fullname: Borgwardt, Karsten
  email: karsten.borgwardt@bsse.ethz.ch
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33169146$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1LxDAQxYMofqyevEtBEEGqSZM2zUVQ8QsEL3oOkzZdo9lkTVoX_3uz7Coq4iHJwPzm8TJvC6067zRCuwQfEyzoiTLqRCmAouQraJMwznOGS7Y6ryuel6yiG2grxmeMC8xrso42KCWVSN1NdHxuvPVj04DNnO5nPrxk4MC-RxOzmemfslbraWY1BGfceButdWCj3lm-I_R4dflwcZPf3V_fXpzd5Q1juM9BtbUuiRAVaNpq3LG2IY0CwlQLHRRKcNUyymvgVY0TBG2tOqyYwJRQzOkInS50p4Oa6LbRrg9g5TSYCYR36cHInx1nnuTYv0ku6qqsRRI4XAoE_zro2MuJiY22Fpz2Q5QFKwUtaZXOCO3_Qp_9ENIOElUW6Q88XYna--7oy8rnKhNAFkATfIxBd7IxPfTGzw0aKwmW87hkiksu40ozR79mPmX_pg8WtB-m_4IfaXmlDw
CitedBy_id crossref_primary_10_1186_s40364_025_00758_2
crossref_primary_10_1088_1402_4896_ad3eea
crossref_primary_10_1002_bit_28309
crossref_primary_10_1371_journal_pone_0309205
crossref_primary_10_3390_su17052327
crossref_primary_10_1007_s12539_024_00633_y
crossref_primary_10_3390_jpm14090960
crossref_primary_10_1103_PhysRevA_104_032416
crossref_primary_10_21272_jes_2022_9_2__e2
crossref_primary_10_1016_j_biotechadv_2024_108400
crossref_primary_10_1016_j_bspc_2022_103856
crossref_primary_10_1093_bib_bbad029
crossref_primary_10_1093_bioinformatics_btac261
crossref_primary_10_1016_j_sbi_2024_102886
crossref_primary_10_1109_JBHI_2024_3390092
crossref_primary_10_32604_biocell_2023_029624
crossref_primary_10_3390_e24020141
crossref_primary_10_3390_e25020257
crossref_primary_10_1016_j_jare_2022_01_009
crossref_primary_10_1109_TCBB_2021_3078089
crossref_primary_10_1016_j_tibtech_2022_10_010
crossref_primary_10_1093_bib_bbae355
crossref_primary_10_14348_molcells_2023_2167
crossref_primary_10_3390_ijms25031655
crossref_primary_10_3390_sym16040462
crossref_primary_10_1093_bioinformatics_btae291
crossref_primary_10_1080_17445760_2024_2425298
crossref_primary_10_1016_j_compbiomed_2022_105892
crossref_primary_10_1038_s41592_023_01992_y
crossref_primary_10_1186_s40164_022_00347_1
crossref_primary_10_1186_s12859_022_04950_1
crossref_primary_10_1007_s10462_024_10918_9
crossref_primary_10_3390_s24113289
crossref_primary_10_3390_app14209461
crossref_primary_10_1016_j_eswa_2024_123560
crossref_primary_10_1016_j_fmre_2024_06_013
crossref_primary_10_1016_j_artmed_2024_103028
crossref_primary_10_3390_ijms232214211
crossref_primary_10_3390_biology14030223
crossref_primary_10_1140_epja_s10050_024_01385_5
crossref_primary_10_1016_j_patter_2023_100788
crossref_primary_10_12688_f1000research_134526_1
crossref_primary_10_3389_fcell_2024_1376639
crossref_primary_10_1016_j_asoc_2023_110059
crossref_primary_10_1186_s12864_024_10692_6
crossref_primary_10_1093_bioadv_vbae036
crossref_primary_10_1016_j_drudis_2025_104327
crossref_primary_10_1089_genbio_2023_0050
crossref_primary_10_1021_acs_chemrestox_2c00384
crossref_primary_10_1093_nar_gkac813
crossref_primary_10_3389_fbinf_2021_746712
crossref_primary_10_3390_bdcc6020066
crossref_primary_10_1002_ajmg_b_32997
crossref_primary_10_3389_fevo_2022_796413
crossref_primary_10_1038_s41598_024_77507_2
crossref_primary_10_1039_D4NP00003J
crossref_primary_10_1016_j_softx_2022_101140
crossref_primary_10_1016_j_aej_2024_12_105
crossref_primary_10_1093_bioinformatics_btad021
crossref_primary_10_1103_PhysRevA_107_042615
crossref_primary_10_3389_frai_2024_1424012
crossref_primary_10_1021_acscatal_3c02743
crossref_primary_10_1093_bib_bbae563
crossref_primary_10_1093_bioinformatics_btad703
crossref_primary_10_3390_metabo14020093
crossref_primary_10_1038_s41392_022_00994_0
crossref_primary_10_3390_ijms25136890
crossref_primary_10_1016_j_tej_2022_107137
crossref_primary_10_1016_j_aichem_2023_100038
crossref_primary_10_1093_braincomms_fcae265
crossref_primary_10_1186_s12859_024_05973_6
crossref_primary_10_3390_electronics14061110
crossref_primary_10_1016_j_csbj_2021_06_030
crossref_primary_10_3390_covid3090096
crossref_primary_10_1038_s41467_024_50426_6
crossref_primary_10_1177_14738716231181545
crossref_primary_10_3390_diagnostics14192174
crossref_primary_10_3390_ph17070925
crossref_primary_10_1186_s40246_022_00396_x
crossref_primary_10_1016_j_ymssp_2023_110534
crossref_primary_10_3233_IDT_240022
crossref_primary_10_1038_s41598_024_71864_8
crossref_primary_10_1038_s41598_024_72748_7
crossref_primary_10_1016_j_knosys_2024_111561
crossref_primary_10_1016_j_prmedi_2024_100014
crossref_primary_10_1002_adbi_202100535
crossref_primary_10_3389_fddsv_2022_1019706
crossref_primary_10_1371_journal_pone_0289971
crossref_primary_10_1016_j_csbj_2021_10_009
crossref_primary_10_1038_s41551_022_00942_x
crossref_primary_10_1038_s41598_022_21491_y
crossref_primary_10_1093_bib_bbab355
crossref_primary_10_1007_s12038_022_00278_3
crossref_primary_10_1515_sagmb_2021_0087
crossref_primary_10_1016_j_asoc_2024_112242
crossref_primary_10_1038_s41598_022_19999_4
crossref_primary_10_1016_j_heliyon_2024_e29225
crossref_primary_10_3390_pr11020307
crossref_primary_10_1111_febs_16555
crossref_primary_10_3390_e24010017
crossref_primary_10_1016_j_csbj_2022_11_008
crossref_primary_10_1016_j_pan_2024_09_009
crossref_primary_10_1261_rna_079365_122
crossref_primary_10_3389_fmolb_2021_768106
crossref_primary_10_1038_s41598_023_35866_2
crossref_primary_10_1038_s41598_024_77172_5
crossref_primary_10_1038_s41592_021_01283_4
crossref_primary_10_1093_bib_bbae450
crossref_primary_10_1515_tsd_2024_2580
crossref_primary_10_1146_annurev_anchem_061522_041154
crossref_primary_10_26599_BDMA_2024_9020043
crossref_primary_10_1080_07391102_2021_2010601
crossref_primary_10_1007_s13167_024_00374_4
crossref_primary_10_1093_bioinformatics_btac088
crossref_primary_10_1109_TKDE_2024_3466990
crossref_primary_10_1093_bib_bbab340
crossref_primary_10_1016_j_compbiomed_2023_106988
crossref_primary_10_1007_s13042_023_01779_9
crossref_primary_10_1016_j_coisb_2021_05_008
crossref_primary_10_1145_3641284
crossref_primary_10_1007_s44258_024_00019_1
crossref_primary_10_1080_07391102_2025_2477777
Cites_doi 10.1016/j.physa.2010.11.027
10.1021/acs.jcim.9b00237
10.1093/bioinformatics/btg130
10.1038/35036627
10.1109/TKDE.2018.2807452
10.3390/ijms20143389
10.1098/rsif.2017.0387
10.1093/bib/bbx044
10.1007/978-1-4419-8462-3_5
10.1515/9780804799102-003
10.3390/metabo8010004
10.1007/978-3-540-75140-3_14
10.1145/2623330.2623732
10.1109/BIBM47256.2019.8983330
10.1109/ACCESS.2014.2325029
10.1371/journal.pone.0013397
10.1093/nar/gkj067
10.1016/j.molcel.2015.05.004
10.1162/neco.1989.1.4.541
10.1093/bioinformatics/bty294
10.1609/aaai.v33i01.33011126
10.1002/9780470253489
10.1016/j.csbj.2020.02.006
10.1186/s13321-020-0413-0
10.1109/BIBM47256.2019.8983018
10.1093/nar/28.1.27
10.1007/978-3-540-45167-9_11
10.1093/nar/28.1.289
10.1038/sdata.2014.22
10.1093/nar/28.1.235
10.1109/TNN.2008.2005605
10.1038/323533a0
10.1016/j.compbiolchem.2016.08.002
10.1093/nar/gkr967
10.1007/s11831-020-09405-5
10.1038/nature14539
10.1007/s10822-016-9938-8
10.1093/nar/gkx1037
10.1093/nar/gkq1126
10.1093/nar/gkm1001
10.1371/journal.pcbi.1007084
10.1109/MSP.2012.2205597
10.1007/978-1-4419-6045-0_11
10.1111/j.1476-5381.2010.01127.x
10.1038/nrd1609
10.1021/acscentsci.8b00507
10.1021/acs.jcim.9b00628
10.1021/acs.jcim.7b00028
10.1093/bioinformatics/btx252
10.1109/TKDE.2018.2849727
10.1109/ICDM.2006.39
10.1371/journal.pcbi.1005324
10.1371/journal.pcbi.1000807
10.1093/nar/gku1003
10.1145/3357384.3357965
10.1038/nm.4306
10.1208/s12248-009-9106-3
10.1016/j.str.2010.08.007
10.1145/3292500.3330912
10.3389/fnins.2019.00594
10.1093/bioinformatics/btx602
10.1109/BIBM47256.2019.8983191
10.1109/ICDM.2005.132
10.1609/aaai.v30i1.10179
10.1093/nar/gkn892
10.1016/j.cell.2020.01.021
10.1161/CIRCGENETICS.113.000123
10.1145/2939672.2939754
10.1186/s12859-019-3076-y
10.1021/acs.jcim.8b00672
10.1186/1752-0509-6-92
10.1093/bioinformatics/btz718
10.1371/journal.pone.0009803
10.1093/bioinformatics/bti1007
10.1186/s12859-019-3084-y
10.1038/s41586-019-1923-7
10.1016/S0022-2836(03)00628-4
10.1007/978-1-4419-9863-7_364
10.1111/j.1365-2710.2009.01103.x
10.1016/j.ymeth.2019.04.008
10.1186/1759-4499-2-2
10.1126/scitranslmed.3003377
10.1109/BIBE.2018.00036
10.1093/bioinformatics/bty440
10.1039/C9SC04336E
10.1093/nar/gkj092
10.1145/2736277.2741093
10.1002/pds.1351
10.1093/bioinformatics/btz954
10.1016/j.compmedimag.2016.07.004
10.1093/bioinformatics/bty341
10.1136/amiajnl-2012-001509
10.1002/pro.2963
10.1093/nar/gkr1132
10.1101/gr.1680803
10.1093/nar/gkr930
10.1016/j.neucom.2017.01.026
ContentType Journal Article
Copyright The Author(s) 2020. Published by Oxford University Press. 2020
The Author(s) 2020. Published by Oxford University Press.
Copyright_xml – notice: The Author(s) 2020. Published by Oxford University Press. 2020
– notice: The Author(s) 2020. Published by Oxford University Press.
DBID TOX
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SC
8FD
FR3
JQ2
K9.
L7M
L~C
L~D
P64
RC3
7X8
5PM
DOI 10.1093/bib/bbaa257
DatabaseName Oxford Journals Open Access Collection
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Advanced Technologies Database with Aerospace
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList Genetics Abstracts
MEDLINE - Academic
MEDLINE


CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: TOX
  name: Oxford Journals Open Access Collection
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1477-4054
EndPage 1530
ExternalDocumentID PMC7986589
33169146
10_1093_bib_bbaa257
10.1093/bib/bbaa257
Genre Research Support, Non-U.S. Gov't
Journal Article
Review
GrantInformation_xml – fundername: ;
– fundername: ;
  grantid: 813533
GroupedDBID ---
-E4
.2P
.I3
0R~
1TH
23N
2WC
36B
4.4
48X
53G
5GY
5VS
6J9
70D
8VB
AAHBH
AAIJN
AAIMJ
AAJKP
AAJQQ
AAMDB
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AASNB
AAUQX
AAVAP
AAVLN
ABDBF
ABEUO
ABIXL
ABJNI
ABNKS
ABPTD
ABQLI
ABQTQ
ABWST
ABXVV
ABZBJ
ACGFO
ACGFS
ACGOD
ACIWK
ACPRK
ACUFI
ACYTK
ADBBV
ADEYI
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADOCK
ADPDF
ADQBN
ADRDM
ADRIX
ADRTK
ADVEK
ADYVW
ADZTZ
ADZXQ
AECKG
AEGPL
AEGXH
AEJOX
AEKKA
AEKSI
AELWJ
AEMDU
AEMOZ
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AFXEN
AGINJ
AGKEF
AGQXC
AGSYK
AHMBA
AHXPO
AIAGR
AIJHB
AJEEA
AJEUX
AKHUL
AKVCP
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
APIBT
APWMN
ARIXL
AXUDD
AYOIW
AZVOD
BAWUL
BAYMD
BCRHZ
BEYMZ
BHONS
BQDIO
BQUQU
BSWAC
BTQHN
C1A
C45
CAG
CDBKE
COF
CS3
CZ4
DAKXR
DIK
DILTD
DU5
D~K
E3Z
EAD
EAP
EAS
EBA
EBC
EBD
EBR
EBS
EBU
EE~
EJD
EMB
EMK
EMOBN
EST
ESX
F5P
F9B
FHSFR
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GX1
H13
H5~
HAR
HW0
HZ~
IOX
J21
K1G
KBUDW
KOP
KSI
KSN
M-Z
M49
MK~
ML0
N9A
NGC
NLBLG
NMDNZ
NOMLY
NU-
O0~
O9-
OAWHX
ODMLO
OJQWA
OK1
OVD
OVEED
P2P
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
QWB
RD5
ROX
RPM
RUSNO
RW1
RXO
SV3
TEORI
TH9
TJP
TLC
TOX
TR2
TUS
W8F
WOQ
X7H
YAYTL
YKOAZ
YXANX
ZKX
ZL0
~91
AAYXX
ABEJV
ABGNP
ABPQP
ABXZS
ACUHS
ACUXJ
AHGBF
AHQJS
ALXQX
AMNDL
ANAKG
CITATION
JXSIZ
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SC
8FD
FR3
JQ2
K9.
L7M
L~C
L~D
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c440t-abd8e51996ae3de0f4dc1cba14bdafa2b97bd4378a76806aead8bf0b490313073
IEDL.DBID TOX
ISSN 1467-5463
1477-4054
IngestDate Thu Aug 21 18:33:57 EDT 2025
Fri Jul 11 03:06:59 EDT 2025
Mon Jun 30 09:10:16 EDT 2025
Mon Jul 21 06:01:46 EDT 2025
Thu Apr 24 22:51:17 EDT 2025
Tue Jul 01 03:39:31 EDT 2025
Wed Aug 28 03:20:37 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords drug development
deep learning
drug-target prediction
protein function prediction
protein interaction prediction
biological networks
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
http://creativecommons.org/licenses/by/4.0
The Author(s) 2020. Published by Oxford University Press.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c440t-abd8e51996ae3de0f4dc1cba14bdafa2b97bd4378a76806aead8bf0b490313073
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
Giulia Muzio and Leslie O’Bray have contributed equally to this work.
OpenAccessLink https://dx.doi.org/10.1093/bib/bbaa257
PMID 33169146
PQID 2529967299
PQPubID 26846
PageCount 16
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7986589
proquest_miscellaneous_2459353635
proquest_journals_2529967299
pubmed_primary_33169146
crossref_citationtrail_10_1093_bib_bbaa257
crossref_primary_10_1093_bib_bbaa257
oup_primary_10_1093_bib_bbaa257
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-03-22
PublicationDateYYYYMMDD 2021-03-22
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-22
  day: 22
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle Briefings in bioinformatics
PublicationTitleAlternate Brief Bioinform
PublicationYear 2021
Publisher Oxford University Press
Oxford Publishing Limited (England)
Publisher_xml – name: Oxford University Press
– name: Oxford Publishing Limited (England)
References Hughes (2021032314263185500_ref105) 2011; 162
Torng (2021032314263185500_ref26) 2019; 59
Parker (2021032314263185500_ref4) 1985
Duvenaud (2021032314263185500_ref95) 2015
Werbos (2021032314263185500_ref3) 1974
Wang (2021032314263185500_ref17)
LeCun (2021032314263185500_ref5) 1985
Wang (2021032314263185500_ref32) 2012; 40
Han (2021032314263185500_ref115) 2019
Meng (2021032314263185500_ref16) 2013
Scarselli (2021032314263185500_ref85) 2009; 20
Wishart (2021032314263185500_ref24) 2006; 34
Kurzbach (2021032314263185500_ref15) 2016; 25
Fensel (2021032314263185500_ref88) 2020
Weisfeiler (2021032314263185500_ref99) 1968
Wu (2021032314263185500_ref83) 2020
Yue (2021032314263185500_ref41) 2019; 36
Xenarios (2021032314263185500_ref58) 2000; 28
Fout (2021032314263185500_ref75) 2017
Li (2021032314263185500_ref128) 2019; 166
Dobson (2021032314263185500_ref73) 2003; 330
Mikolov (2021032314263185500_ref91) 2013
Cao (2021032314263185500_ref101) 2016
Rumelhart (2021032314263185500_ref6) 1986; 323
Ma (2021032314263185500_ref43) 2018
Wishart (2021032314263185500_ref39) 2018; 46
Gligorijević (2021032314263185500_ref71) 2018; 34
Berg (2021032314263185500_ref18) 2002
Hamilton (2021032314263185500_ref64) 2017
Tatonetti (2021032314263185500_ref42) 2012; 4
Liu (2021032314263185500_ref60) 2019
Manoochehri (2021032314263185500_ref40) 2019
Raza (2021032314263185500_ref122) 2016; 64
Dean (2021032314263185500_ref125) 2012
De Las Rivas (2021032314263185500_ref11) 2010; 6
Yang (2021032314263185500_ref109) 2019; 59
Keith (2021032314263185500_ref106) 2005; 4
Tang (2021032314263185500_ref90) 2015
Jeong (2021032314263185500_ref19) 2000; 407
Marzullo (2021032314263185500_ref117) 2019; 13
Tsuda (2021032314263185500_ref79) 2010
Matsubara (2021032314263185500_ref62) 2018
Senior (2021032314263185500_ref76) 2020; 577
LeCun (2021032314263185500_ref126) 2015; 521
Das (2021032314263185500_ref61) 2012; 6
Min (2021032314263185500_ref132) 2016; 18
Madar (2021032314263185500_ref48) 2010; 5
Perozzi (2021032314263185500_ref89) 2014
Bhagat (2021032314263185500_ref77) 2011
Playe (2021032314263185500_ref133) 2020; 12
Zeng (2021032314263185500_ref56) 2019; 20
Zampieri (2021032314263185500_ref130) 2019; 15
Chen (2021032314263185500_ref123) 2014; 2
Toivonen (2021032314263185500_ref34) 2003; 19
Peri (2021032314263185500_ref66) 2003; 13
Schaefer (2021032314263185500_ref63) 2012; 7
Liu (2021032314263185500_ref111) 2019; 20
LeCun (2021032314263185500_ref92) 1989; 1
Malin (2021032314263185500_ref131) 2013; 20
Sugiyama (2021032314263185500_ref136) 2017; 34
Goodfellow (2021032314263185500_ref2) 2016
Lü (2021032314263185500_ref78) 2011; 390
Stokes (2021032314263185500_ref23) 2020; 180
Kipf (2021032314263185500_ref96) 2017
Mayr (2021032314263185500_ref37) 2015; 3
Corsello (2021032314263185500_ref22) 2017; 23
Li (2021032314263185500_ref87) 2018
Du (2021032314263185500_ref59) 2017; 57
Ramakrishnan (2021032314263185500_ref35) 2014; 1
Cui (2021032314263185500_ref81) 2019; 31
Becker (2021032314263185500_ref107) 2007; 16
Krizhevsky (2021032314263185500_ref7) 2012
Le Novere (2021032314263185500_ref50) 2006; 34
Wang (2021032314263185500_ref45) 2019
Kanehisa (2021032314263185500_ref53) 2000; 28
Zhang (2021032314263185500_ref114) 2019
Rhee (2021032314263185500_ref72) 2018; IJCAI-18
Shervashidze (2021032314263185500_ref97) 2009
Shervashidze (2021032314263185500_ref98) 2011; 12
Miotto (2021032314263185500_ref129) 2018; 19
Zitnik (2021032314263185500_ref46) 2018; 34
Reuter (2021032314263185500_ref1) 2015; 58
Zeng (2021032314263185500_ref28) 2020; 11
Landrum (2021032314263185500_ref110)
Zhang (2021032314263185500_ref10) 2014; 7
Maetschke (2021032314263185500_ref121) 2013; 15
Shang (2021032314263185500_ref44) 2019; AAAI-19
Cowley (2021032314263185500_ref69) 2012; 40
Vaida (2021032314263185500_ref27) 2019
Zitnik (2021032314263185500_ref65) 2017; 33
Baranwal (2021032314263185500_ref52) 2019; 36
Cuperlovic-Culf (2021032314263185500_ref119) 2018; 8
Li (2021032314263185500_ref84) 2016
Zhang (2021032314263185500_ref116) 2018
Zhou (2021032314263185500_ref124) 2017; 237
Licata (2021032314263185500_ref68) 2012; 40
Grover (2021032314263185500_ref54) 2016
Ching (2021032314263185500_ref127) 2018; 15
Perkins (2021032314263185500_ref14) 2010; 18
Gilbert (2021032314263185500_ref120) 2007
Hu (2021032314263185500_ref20) 2011; 36
Kearnes (2021032314263185500_ref33) 2016; 30
Debnath (2021032314263185500_ref29) 1991; 34
Jiang (2021032314263185500_ref55) 2020; 18
Sun (2021032314263185500_ref118) 2017; 57
Zhang (2021032314263185500_ref100) 2019; 20
Jain (2021032314263185500_ref86) 2016
Junker (2021032314263185500_ref13) 2008
Knox (2021032314263185500_ref38) 2011; 39
Defferrard (2021032314263185500_ref94) 2016
Gilmer (2021032314263185500_ref36) 2017; 70
Hamilton (2021032314263185500_ref80) 2017
Feinberg (2021032314263185500_ref108) 2018; 4
Gärtner (2021032314263185500_ref134) 2003
Berman (2021032314263185500_ref74) 2000; 28
Borgwardt (2021032314263185500_ref135) 2005
Niepert (2021032314263185500_ref30) 2016
Bruna (2021032314263185500_ref93) 2014
Greenfield (2021032314263185500_ref47) 2010; 5
Borgwardt (2021032314263185500_ref102) 2005; 21
Keshava Prasad (2021032314263185500_ref67) 2009; 37
Breitkreutz (2021032314263185500_ref57) 2007; 36
Wang (2021032314263185500_ref103) 2017; 13
Li (2021032314263185500_ref112) 2019; 59
Jones (2021032314263185500_ref104) 2018; 34
Zeng (2021032314263185500_ref113) 2014
Wale (2021032314263185500_ref31) 2006
Asada (2021032314263185500_ref25) 2018
Turki (2021032314263185500_ref49) 2016
Raman (2021032314263185500_ref12) 2010; 2
Zhang (2021032314263185500_ref21) 2009; 11
Szklarczyk (2021032314263185500_ref70) 2015; 43
Bove (2021032314263185500_ref51) 2020
Hinton (2021032314263185500_ref8) 2012; 29
Peng (2021032314263185500_ref9) 2020
Cai (2021032314263185500_ref82) 2018; 30
References_xml – volume: 390
  start-page: 1150
  issue: 6
  year: 2011
  ident: 2021032314263185500_ref78
  article-title: Link prediction in complex networks: A survey
  publication-title: Physica A: Statistical Mechanics and its Applications
  doi: 10.1016/j.physa.2010.11.027
– volume: 59
  start-page: 3370
  year: 2019
  ident: 2021032314263185500_ref109
  article-title: Analyzing learned molecular representations for property prediction
  publication-title: J Chem Inform Model
  doi: 10.1021/acs.jcim.9b00237
– volume: 19
  start-page: 1183
  issue: 10
  year: 2003
  ident: 2021032314263185500_ref34
  article-title: Statistical evaluation of the predictive toxicology challenge 2000–2001
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btg130
– volume-title: Beyond regression: new tools for prediction and analysis in the behavioral sciences
  year: 1974
  ident: 2021032314263185500_ref3
– volume: 407
  start-page: 651
  year: 2000
  ident: 2021032314263185500_ref19
  article-title: The large-scale organization of metabolic networks
  publication-title: Nature
  doi: 10.1038/35036627
– start-page: 680
  volume-title: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics
  year: 2018
  ident: 2021032314263185500_ref25
  article-title: Enhancing drug–drug interaction extraction from texts by molecular structure information
– volume: 30
  start-page: 1616
  issue: 9
  year: 2018
  ident: 2021032314263185500_ref82
  article-title: A comprehensive survey of graph embedding: Problems, techniques, and applications
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2018.2807452
– volume-title: Proceedings from the 2nd International Conference on Learning Representations (ICLR)
  year: 2014
  ident: 2021032314263185500_ref93
  article-title: Spectral networks and deep locally connected networks on graphs
– volume: 20
  start-page: 3389
  year: 2019
  ident: 2021032314263185500_ref111
  article-title: Chemi-Net: a molecular graph convolutional network for accurate drug property prediction
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms20143389
– volume: 15
  start-page: 20170387
  year: 2018
  ident: 2021032314263185500_ref127
  article-title: Opportunities and obstacles for deep learning in biology and medicine
  publication-title: J R Soc Interface
  doi: 10.1098/rsif.2017.0387
– volume: 19
  start-page: 1236
  issue: 6
  year: 2018
  ident: 2021032314263185500_ref129
  article-title: Deep learning for healthcare: review, opportunities and challenges
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbx044
– volume-title: Proceedings from the 4th International Conference on Learning Representations (ICLR)
  year: 2016
  ident: 2021032314263185500_ref84
  article-title: Gated graph sequence neural networks
– volume-title: RDKit: open-source cheminformatics
  ident: 2021032314263185500_ref110
– volume-title: Proceedings from the 6th International Conference on Learning Representations (ICLR)
  year: 2018
  ident: 2021032314263185500_ref87
  article-title: Diffusion convolutional recurrent neural network: Data-driven traffic forecasting
– start-page: 115
  volume-title: Social Network Data Analytics
  year: 2011
  ident: 2021032314263185500_ref77
  article-title: Node classification in social networks
  doi: 10.1007/978-1-4419-8462-3_5
– volume-title: Introduction: What Is a Knowledge Graph?
  year: 2020
  ident: 2021032314263185500_ref88
  doi: 10.1515/9780804799102-003
– volume: 8
  start-page: 4
  year: 2018
  ident: 2021032314263185500_ref119
  article-title: Machine learning methods for analysis of metabolic data and metabolic pathway modeling
  publication-title: Metabolites
  doi: 10.3390/metabo8010004
– volume-title: Computational Methods in Systems Biology
  year: 2007
  ident: 2021032314263185500_ref120
  article-title: A unifying framework for modelling and analysing biochemical pathways using petri nets
  doi: 10.1007/978-3-540-75140-3_14
– start-page: 701
  volume-title: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
  year: 2014
  ident: 2021032314263185500_ref89
  article-title: Deepwalk: online learning of social representations
  doi: 10.1145/2623330.2623732
– start-page: 1762
  volume-title: Proceedings of the 2019 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)
  year: 2019
  ident: 2021032314263185500_ref60
  article-title: Integrating sequence and network information to enhance protein-protein interaction prediction using graph convolutional networks
  doi: 10.1109/BIBM47256.2019.8983330
– volume: 2
  start-page: 514
  year: 2014
  ident: 2021032314263185500_ref123
  article-title: Big data deep learning: Challenges and perspectives
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2014.2325029
– volume: IJCAI-18
  start-page: 3527
  year: 2018
  ident: 2021032314263185500_ref72
  article-title: Hybrid approach of relation network and localized graph convolutional filtering for breast cancer subtype classification
  publication-title: Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence
– volume-title: Center of Computational Research in Economics and Management Science
  year: 1985
  ident: 2021032314263185500_ref4
  article-title: Learning logic technical report tr-47
– volume: 5
  year: 2010
  ident: 2021032314263185500_ref47
  article-title: DREAM4: combining genetic and dynamic information to identify biological networks and dynamical models
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0013397
– volume: 34
  start-page: D668
  year: 2006
  ident: 2021032314263185500_ref24
  article-title: DrugBank: a comprehensive resource for in silico drug discovery and exploration
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkj067
– start-page: 1
  year: 2020
  ident: 2021032314263185500_ref83
  article-title: A comprehensive survey on graph neural networks
  publication-title: IEEE Trans Neural Netw Lear Syst
– volume: 58
  start-page: 586
  issue: 4
  year: 2015
  ident: 2021032314263185500_ref1
  article-title: High-throughput sequencing technologies
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2015.05.004
– volume: 1
  start-page: 541
  issue: 4
  year: 1989
  ident: 2021032314263185500_ref92
  article-title: Backpropagation applied to handwritten zip code recognition
  publication-title: Neural Comput
  doi: 10.1162/neco.1989.1.4.541
– volume: 12
  start-page: 2539
  year: 2011
  ident: 2021032314263185500_ref98
  article-title: Weisfeiler-Lehman graph kernels
  publication-title: J Mach Learn Res
– year: 1968
  ident: 2021032314263185500_ref99
  article-title: Reduction of a graph to a canonical form and an algebra arising during this reduction
  publication-title: Nauchno-Technicheskaya Informatsia
– volume-title: Proceedings of the 33rd International Conference on Machine Learning
  year: 2016
  ident: 2021032314263185500_ref30
  article-title: Learning convolutional neural networks for graphs
– volume: 34
  start-page: i457
  issue: 13
  year: 2018
  ident: 2021032314263185500_ref46
  article-title: Modeling polypharmacy side effects with graph convolutional networks
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty294
– start-page: 3111
  volume-title: Proceedings of the 26th International Conference on Neural Information Processing Systems, Volume 2
  year: 2013
  ident: 2021032314263185500_ref91
  article-title: Distributed representations of words and phrases and their compositionality
– volume: AAAI-19
  start-page: 1126
  year: 2019
  ident: 2021032314263185500_ref44
  article-title: GAMENet: graph augmented memory networks for recommending medication combination
  publication-title: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence
  doi: 10.1609/aaai.v33i01.33011126
– volume-title: Analysis of Biological Networks
  year: 2008
  ident: 2021032314263185500_ref13
  doi: 10.1002/9780470253489
– volume: 18
  start-page: 427
  year: 2020
  ident: 2021032314263185500_ref55
  article-title: Deep graph embedding for prioritizing synergistic anticancer drug combinations
  publication-title: Comput Struct Biotechnol J
  doi: 10.1016/j.csbj.2020.02.006
– volume: 12
  year: 2020
  ident: 2021032314263185500_ref133
  article-title: Evaluation of deep and shallow learning methods in chemogenomics for the prediction of drugs specificity
  publication-title: J Cheminform
  doi: 10.1186/s13321-020-0413-0
– volume: 34
  start-page: 786
  issue: 2
  year: 1991
  ident: 2021032314263185500_ref29
  article-title: Structure-activity relationship of mutagenic aromatic and heteroaromatic nitro compounds
  publication-title: Correlation with molecular orbital energies and hydrophobicity. Journal of Medicinal Chemistry
– start-page: 1223
  volume-title: Proceedings of the 2019 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)
  year: 2019
  ident: 2021032314263185500_ref40
  article-title: Graph convolutional networks for predicting drug-protein interactions
  doi: 10.1109/BIBM47256.2019.8983018
– volume: 28
  start-page: 27
  issue: 1
  year: 2000
  ident: 2021032314263185500_ref53
  article-title: KEGG: Kyoto encyclopedia of genes and genomes
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/28.1.27
– start-page: 32
  volume-title: Proceedings of the 11th International Conference on Bioinformatics Models, Methods and Algorithms
  year: 2020
  ident: 2021032314263185500_ref51
  article-title: Prediction of dynamical properties of biochemical pathways with graph neural networks
– start-page: 129
  volume-title: Learning theory and kernel machines
  year: 2003
  ident: 2021032314263185500_ref134
  article-title: On graph kernels: Hardness results and efficient alternatives
  doi: 10.1007/978-3-540-45167-9_11
– volume: 28
  start-page: 289
  issue: 1
  year: 2000
  ident: 2021032314263185500_ref58
  article-title: DIP: the database of interacting proteins
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/28.1.289
– volume: 1
  year: 2014
  ident: 2021032314263185500_ref35
  article-title: Quantum chemistry structures and properties of 134 kilo molecules
  publication-title: Sci Data
  doi: 10.1038/sdata.2014.22
– volume: 28
  start-page: 235
  issue: 1
  year: 2000
  ident: 2021032314263185500_ref74
  article-title: The protein data bank
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/28.1.235
– volume: 20
  start-page: 61
  issue: 1
  year: 2009
  ident: 2021032314263185500_ref85
  article-title: The graph neural network model
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2008.2005605
– start-page: 2335
  volume-title: Proceedings of COLING 2014, the 25th International Conference on Computational Linguistics: Technical Papers
  year: 2014
  ident: 2021032314263185500_ref113
  article-title: Relation classification via convolutional deep neural network
– volume: 323
  start-page: 533
  year: 1986
  ident: 2021032314263185500_ref6
  article-title: Learning representations by back-propagating errors
  publication-title: Nature
  doi: 10.1038/323533a0
– volume: 64
  start-page: 322
  year: 2016
  ident: 2021032314263185500_ref122
  article-title: Recurrent neural network based hybrid model for reconstructing gene regulatory network
  publication-title: Comput Biol Chem
  doi: 10.1016/j.compbiolchem.2016.08.002
– volume: 40
  start-page: D862
  year: 2012
  ident: 2021032314263185500_ref69
  article-title: PINA v2.0: mining interactome modules
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkr967
– volume-title: Proceedings from the 5th International Conference on Learning Representations (ICLR)
  year: 2017
  ident: 2021032314263185500_ref96
  article-title: Semi-supervised classification with graph convolutional networks
– year: 2020
  ident: 2021032314263185500_ref9
  article-title: Multiscale modeling meets machine learning: What can we learn?
  publication-title: Arch Comput Methods Eng
  doi: 10.1007/s11831-020-09405-5
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  ident: 2021032314263185500_ref126
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 30
  start-page: 595
  issue: 8
  year: 2016
  ident: 2021032314263185500_ref33
  article-title: Molecular graph convolutions: moving beyond fingerprints
  publication-title: J Comput Aided Mol Des
  doi: 10.1007/s10822-016-9938-8
– volume: 46
  start-page: D1074
  year: 2018
  ident: 2021032314263185500_ref39
  article-title: DrugBank 5.0: a major update to the DrugBank database for 2018
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkx1037
– volume: 39
  start-page: D1035
  year: 2011
  ident: 2021032314263185500_ref38
  article-title: Drugbank 3.0: a comprehensive resource for ’omics’ research on drugs
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkq1126
– volume: 36
  start-page: D637
  year: 2007
  ident: 2021032314263185500_ref57
  article-title: The BioGRID interaction database: 2008 update
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkm1001
– volume: 15
  year: 2019
  ident: 2021032314263185500_ref130
  article-title: Machine and deep learning meet genome-scale metabolic modeling
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1007084
– volume: 29
  start-page: 82
  issue: 6
  year: 2012
  ident: 2021032314263185500_ref8
  article-title: Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups
  publication-title: IEEE Signal Process Mag
  doi: 10.1109/MSP.2012.2205597
– start-page: 1097
  volume-title: Proceedings of the 26th International Conference on Neural Information Processing Systems
  year: 2012
  ident: 2021032314263185500_ref7
  article-title: Imagenet classification with deep convolutional neural networks
– start-page: 337
  volume-title: Managing and Mining Graph Data
  year: 2010
  ident: 2021032314263185500_ref79
  article-title: Graph classification.
  doi: 10.1007/978-1-4419-6045-0_11
– volume: 162
  start-page: 1239
  issue: 6
  year: 2011
  ident: 2021032314263185500_ref105
  article-title: Principles of early drug discovery
  publication-title: Br J Pharmacol
  doi: 10.1111/j.1476-5381.2010.01127.x
– volume: 4
  start-page: 71
  year: 2005
  ident: 2021032314263185500_ref106
  article-title: Multicomponent therapeutics for networked systems
  publication-title: Nat Rev Drug Discov
  doi: 10.1038/nrd1609
– volume: 4
  start-page: 1520
  issue: 11
  year: 2018
  ident: 2021032314263185500_ref108
  article-title: PotentialNet for molecular property prediction
  publication-title: ACS Central Sci
  doi: 10.1021/acscentsci.8b00507
– volume: 59
  start-page: 4131
  issue: 10
  year: 2019
  ident: 2021032314263185500_ref26
  article-title: Graph convolutional neural networks for predicting drug-target interactions
  publication-title: J Chem Inform Model
  doi: 10.1021/acs.jcim.9b00628
– start-page: 2224
  volume-title: Proceedings of the 28th International Conference on Neural Information Processing Systems, Volume 2
  year: 2015
  ident: 2021032314263185500_ref95
  article-title: Convolutional networks on graphs for learning molecular fingerprints
– volume: 57
  start-page: 1499
  issue: 6
  year: 2017
  ident: 2021032314263185500_ref59
  article-title: DeepPPI: Boosting prediction of protein—protein interactions with deep neural networks
  publication-title: J Chem Inform Model
  doi: 10.1021/acs.jcim.7b00028
– volume: 33
  start-page: 190
  issue: 14
  year: 2017
  ident: 2021032314263185500_ref65
  article-title: Predicting multicellular function through multi-layer tissue networks
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btx252
– volume: 31
  start-page: 833
  year: 2019
  ident: 2021032314263185500_ref81
  article-title: A survey on network embedding
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2018.2849727
– start-page: 678
  volume-title: Proceedings of the International Conference on Data Mining (ICDM)
  year: 2006
  ident: 2021032314263185500_ref31
  article-title: Comparison of descriptor spaces for chemical compound retrieval and classification
  doi: 10.1109/ICDM.2006.39
– volume: 13
  issue: 1
  year: 2017
  ident: 2021032314263185500_ref103
  article-title: Accurate de novo prediction of protein contact map by ultra-deep learning model
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1005324
– volume: 6
  year: 2010
  ident: 2021032314263185500_ref11
  article-title: Protein—protein interactions essentials: key concepts to building and analyzing interactome networks
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1000807
– volume: 43
  start-page: D447
  year: 2015
  ident: 2021032314263185500_ref70
  article-title: String v10: protein-protein interaction networks, integrated over the tree of life
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gku1003
– start-page: 1623
  volume-title: Proceedings of the 28th ACM International Conference on Information and Knowledge Management
  year: 2019
  ident: 2021032314263185500_ref45
  article-title: Order-free medicine combination prediction with graph convolutional reinforcement learning
  doi: 10.1145/3357384.3357965
– volume-title: Biochemistry
  year: 2002
  ident: 2021032314263185500_ref18
– start-page: 3844
  volume-title: Proceedings of the 29th International Conference on Neural Information Processing Systems
  year: 2016
  ident: 2021032314263185500_ref94
  article-title: Convolutional neural networks on graphs with fast localized spectral filtering
– start-page: 1024
  volume-title: Proceedings of the 30th International Conference on Neural Information Processing Systems
  year: 2017
  ident: 2021032314263185500_ref64
  article-title: Inductive representation learning on large graphs
– volume: 23
  start-page: 405
  issue: 4
  year: 2017
  ident: 2021032314263185500_ref22
  article-title: The drug repurposing hub: a next-generation drug library and information resource
  publication-title: Nat Med
  doi: 10.1038/nm.4306
– volume: 11
  start-page: 300
  issue: 2
  year: 2009
  ident: 2021032314263185500_ref21
  article-title: Predicting drug–drug interactions: an FDA perspective
  publication-title: AAPS J
  doi: 10.1208/s12248-009-9106-3
– volume: 18
  start-page: 1233
  year: 2010
  ident: 2021032314263185500_ref14
  article-title: Transient protein-protein interactions: structural, functional, and network properties
  publication-title: Structure
  doi: 10.1016/j.str.2010.08.007
– start-page: 705
  volume-title: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining
  year: 2019
  ident: 2021032314263185500_ref115
  article-title: GCN-MF: disease-gene association identification by graph convolutional networks and matrix factorization
  doi: 10.1145/3292500.3330912
– volume: 13
  start-page: 594
  year: 2019
  ident: 2021032314263185500_ref117
  article-title: Classification of multiple sclerosis clinical profiles via graph convolutional neural networks
  publication-title: Front Neurosci
  doi: 10.3389/fnins.2019.00594
– volume: 3
  start-page: 8
  year: 2015
  ident: 2021032314263185500_ref37
  article-title: DeepTox: toxicity prediction using deep learning
  publication-title: Frontiers in Environmental Science
– start-page: 797
  volume-title: Gene Regulation
  year: 2013
  ident: 2021032314263185500_ref16
– volume: 34
  start-page: 530
  year: 2017
  ident: 2021032314263185500_ref136
  article-title: graphkernels: R and Python packages for graph comparison
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btx602
– start-page: 177
  volume-title: Proceedings of the 2019 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)
  year: 2019
  ident: 2021032314263185500_ref114
  article-title: Predicting disease-related RNA associations based on graph convolutional attention network
  doi: 10.1109/BIBM47256.2019.8983191
– volume-title: Fifth IEEE International Conference on Data Mining (ICDM’05)
  year: 2005
  ident: 2021032314263185500_ref135
  article-title: Shortest-path kernels on graphs
  doi: 10.1109/ICDM.2005.132
– year: 2016
  ident: 2021032314263185500_ref101
  article-title: Deep neural networks for learning graph representations
  publication-title: Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence
  doi: 10.1609/aaai.v30i1.10179
– volume: 37
  start-page: D767
  year: 2009
  ident: 2021032314263185500_ref67
  article-title: Human protein reference database—2009 update
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkn892
– volume: 180
  start-page: 688
  issue: 4
  year: 2020
  ident: 2021032314263185500_ref23
  article-title: A deep learning approach to antibiotic discovery
  publication-title: Cell
  doi: 10.1016/j.cell.2020.01.021
– start-page: 140
  volume-title: Proceedings of the 15th IEEE International Conference on Machine Learning and Applications (ICMLA)
  year: 2016
  ident: 2021032314263185500_ref49
  article-title: Inferring gene regulatory networks by combining supervised and unsupervised methods
– volume: 7
  start-page: 536
  issue: 4
  year: 2014
  ident: 2021032314263185500_ref10
  article-title: Network biology in medicine and beyond
  publication-title: Circ Cardiovasc Genet
  doi: 10.1161/CIRCGENETICS.113.000123
– start-page: 855
  volume-title: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
  year: 2016
  ident: 2021032314263185500_ref54
  article-title: node2vec: scalable feature learning for networks
  doi: 10.1145/2939672.2939754
– volume: 20
  year: 2019
  ident: 2021032314263185500_ref56
  article-title: DeepEP: a deep learning framework for identifying essential proteins
  publication-title: BMC Bioinform
  doi: 10.1186/s12859-019-3076-y
– volume-title: Deep Learning
  year: 2016
  ident: 2021032314263185500_ref2
– volume: 59
  start-page: 1044
  issue: 3
  year: 2019
  ident: 2021032314263185500_ref112
  article-title: DeepChemStable: chemical stability prediction with an attention-based graph convolution network
  publication-title: J Chem Inform Model
  doi: 10.1021/acs.jcim.8b00672
– volume: 6
  start-page: 92
  year: 2012
  ident: 2021032314263185500_ref61
  article-title: HINT: high-quality protein interactomes and their applications in understanding human disease
  publication-title: BMC Syst Biol
  doi: 10.1186/1752-0509-6-92
– volume: 36
  start-page: 1241
  issue: 4
  year: 2019
  ident: 2021032314263185500_ref41
  article-title: Graph embedding on biomedical networks: methods, applications and evaluations
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz718
– volume: 5
  start-page: 1
  issue: 3
  year: 2010
  ident: 2021032314263185500_ref48
  article-title: DREAM3: network inference using dynamic context likelihood of relatedness and the inferelator
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0009803
– volume: 21
  start-page: i47
  year: 2005
  ident: 2021032314263185500_ref102
  article-title: Protein function prediction via graph kernels
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti1007
– volume: 20
  start-page: 531
  year: 2019
  ident: 2021032314263185500_ref100
  article-title: Multimodal deep representation learning for protein interaction identification and protein family classification
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-019-3084-y
– year: 2016
  ident: 2021032314263185500_ref86
– volume: 577
  start-page: 706
  issue: 7792
  year: 2020
  ident: 2021032314263185500_ref76
  article-title: Improved protein structure prediction using potentials from deep learning
  publication-title: Nature
  doi: 10.1038/s41586-019-1923-7
– volume: 70
  start-page: 1263
  year: 2017
  ident: 2021032314263185500_ref36
  article-title: Neural message passing for quantum chemistry
  publication-title: In: Proceedings of the 34th International Conference on Machine Learning
– volume: 330
  start-page: 771
  issue: 4
  year: 2003
  ident: 2021032314263185500_ref73
  article-title: Distinguishing enzyme structures from non-enzymes without alignments
  publication-title: J Mol Biol
  doi: 10.1016/S0022-2836(03)00628-4
– volume-title: Encyclopedia of Systems Biology
  ident: 2021032314263185500_ref17
  article-title: Gene regulatory networks.
  doi: 10.1007/978-1-4419-9863-7_364
– volume: 36
  start-page: 135
  issue: 2
  year: 2011
  ident: 2021032314263185500_ref20
  article-title: Architecture of the drug–drug interaction network
  publication-title: J Clin Pharm Ther
  doi: 10.1111/j.1365-2710.2009.01103.x
– volume: 166
  start-page: 4
  year: 2019
  ident: 2021032314263185500_ref128
  article-title: Deep learning in bioinformatics: Introduction, application, and perspective in the big data era
  publication-title: Methods
  doi: 10.1016/j.ymeth.2019.04.008
– volume: 2
  issue: 1
  year: 2010
  ident: 2021032314263185500_ref12
  article-title: Construction and analysis of protein—protein interaction networks
  publication-title: Autom Exp
  doi: 10.1186/1759-4499-2-2
– volume: 4
  issue: 125
  year: 2012
  ident: 2021032314263185500_ref42
  article-title: Data-driven prediction of drug effects and interactions
  publication-title: Sci Transl Med
  doi: 10.1126/scitranslmed.3003377
– start-page: 599
  volume-title: Proceedings of Cognitiva 85: A la Frontière de l’Intelligence Artificielle, des Sciences de la Connaissance et des Neurosciences [in French]
  year: 1985
  ident: 2021032314263185500_ref5
  article-title: Une procédure d’apprentissage pour réseau à seuil assymétrique
– volume: 7
  issue: (2)
  year: 2012
  ident: 2021032314263185500_ref63
  article-title: Hippie: integrating protein interaction networks with experiment based quality scores
  publication-title: PLoS One
– year: 2017
  ident: 2021032314263185500_ref80
  article-title: Representation learning on graphs: Methods and applications
– start-page: 151
  volume-title: Proceedings of the 2018 IEEE 18th International Conference on Bioinformatics and Bioengineering (BIBE)
  year: 2018
  ident: 2021032314263185500_ref62
  article-title: Convolutional neural network approach to lung cancer classification integrating protein interaction network and gene expression profiles
  doi: 10.1109/BIBE.2018.00036
– volume: 34
  start-page: 3873
  year: 2018
  ident: 2021032314263185500_ref71
  article-title: deepNF: deep network fusion for protein function prediction
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty440
– start-page: 1660
  volume-title: Proceedings of the 23rd International Conference on Neural Information Processing Systems
  year: 2009
  ident: 2021032314263185500_ref97
  article-title: Fast subtree kernels on graphs
– volume: 11
  start-page: 1775
  year: 2020
  ident: 2021032314263185500_ref28
  article-title: Target identification among known drugs by deep learning from heterogeneous networks
  publication-title: Chem Sci
  doi: 10.1039/C9SC04336E
– start-page: 1860
  volume-title: Proceedings of the 18th IEEE International Conference On Machine Learning And Applications (ICMLA)
  year: 2019
  ident: 2021032314263185500_ref27
  article-title: Hypergraph link prediction: learning drug interaction networks embeddings
– volume: 34
  start-page: D689
  year: 2006
  ident: 2021032314263185500_ref50
  article-title: Biomodels database: a free, centralized database of curated, published, quantitative kinetics models of biochemical and cellular systems
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkj092
– year: 2018
  ident: 2021032314263185500_ref116
  article-title: Multi-view graph convolutional network and its applications on neuroimage analysis for parkinson’s disease
  publication-title: AMIA Annual Symposium proceedings
– volume-title: Proceedings of the 24th International Conference on World Wide Web
  year: 2015
  ident: 2021032314263185500_ref90
  article-title: LINE: large-scale information network embedding
  doi: 10.1145/2736277.2741093
– start-page: 3477
  volume-title: Proceedings of the 27th International Joint Conference on Artificial Intelligence
  year: 2018
  ident: 2021032314263185500_ref43
  article-title: Drug similarity integration through attentive multi-view graph auto-encoders
– volume: 16
  start-page: 641
  issue: 6
  year: 2007
  ident: 2021032314263185500_ref107
  article-title: Hospitalisations and emergency department visits due to drug-drug interactions: a literature review
  publication-title: Pharmacoepidemiol Drug Safety
  doi: 10.1002/pds.1351
– start-page: 6533
  volume-title: Proceedings of the 31st International Conference on Neural Information Processing Systems
  year: 2017
  ident: 2021032314263185500_ref75
  article-title: Protein interface prediction using graph convolutional networks
– volume: 36
  start-page: 2547
  issue: 8
  year: 2019
  ident: 2021032314263185500_ref52
  article-title: A deep learning architecture for metabolic pathway prediction
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz954
– volume: 57
  start-page: 4
  year: 2017
  ident: 2021032314263185500_ref118
  article-title: Enhancing deep convolutional neural network scheme for breast cancer diagnosis with unlabeled data
  publication-title: Comput Med Imaging Graph
  doi: 10.1016/j.compmedimag.2016.07.004
– volume: 34
  start-page: 3308
  issue: 19
  year: 2018
  ident: 2021032314263185500_ref104
  article-title: High precision in protein contact prediction using fully convolutional neural networks and minimal sequence features
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty341
– volume: 20
  start-page: 2
  issue: 1
  year: 2013
  ident: 2021032314263185500_ref131
  article-title: Biomedical data privacy: problems, perspectives, and recent advances
  publication-title: J Am Med Inform Assoc
  doi: 10.1136/amiajnl-2012-001509
– volume: 25
  start-page: 1617
  issue: 9
  year: 2016
  ident: 2021032314263185500_ref15
  article-title: Network representation of protein interactions: Theory of graph description and analysis
  publication-title: Protein Sci
  doi: 10.1002/pro.2963
– volume: 40
  start-page: D400
  issue: D1
  year: 2012
  ident: 2021032314263185500_ref32
  article-title: PubChem’s BioAssay database
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkr1132
– volume: 13
  start-page: 2363
  issue: 10
  year: 2003
  ident: 2021032314263185500_ref66
  article-title: Development of human protein reference database as an initial platform for approaching systems biology in humans
  publication-title: Genome Res
  doi: 10.1101/gr.1680803
– volume: 40
  start-page: D857
  year: 2012
  ident: 2021032314263185500_ref68
  article-title: MINT, the molecular interaction database: 2012 update
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkr930
– volume: 15
  start-page: 192
  issue: 2
  year: 2013
  ident: 2021032314263185500_ref121
  article-title: Supervised, semi-supervised and unsupervised inference of gene regulatory networks
  publication-title: Bioinformatics
– volume: 237
  start-page: 350
  year: 2017
  ident: 2021032314263185500_ref124
  article-title: Machine learning on big data: Opportunities and challenges
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.01.026
– volume: 18
  start-page: 851
  issue: 5
  year: 2016
  ident: 2021032314263185500_ref132
  article-title: Deep learning in bioinformatics
  publication-title: Brief Bioinform
– year: 2012
  ident: 2021032314263185500_ref125
  article-title: Large scale distributed deep networks
  publication-title: Adv Neural Infor Process Syst
SSID ssj0020781
Score 2.61746
SecondaryResourceType review_article
Snippet Abstract Recent advancements in experimental high-throughput technologies have expanded the availability and quantity of molecular data in biology. Given the...
Recent advancements in experimental high-throughput technologies have expanded the availability and quantity of molecular data in biology. Given the importance...
SourceID pubmedcentral
proquest
pubmed
crossref
oup
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1515
SubjectTerms Algorithms
Bioinformatics
Biological activity
Chemical bonds
Chemical compounds
Computational Biology - methods
Computer applications
Deep Learning
Drug Discovery
Gene Regulatory Networks
Graph neural networks
Humans
Machine learning
Network analysis
Neural networks
Neural Networks, Computer
Predictions
Proteins
Software
Title Biological network analysis with deep learning
URI https://www.ncbi.nlm.nih.gov/pubmed/33169146
https://www.proquest.com/docview/2529967299
https://www.proquest.com/docview/2459353635
https://pubmed.ncbi.nlm.nih.gov/PMC7986589
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3fS8MwEA4yEHwRf1udWmFPQlzbJE3yKOIYgvqywd7KpUl1IN1w24P_vcmSFTeGvhXyhZa7S-7S3H2HUEcyYyoKHGtgAtMyzTHkucR260sVVFTm2tU7v7zm_SF9HrFRSJCdbbnCl6SrxqqrFIA1LrvVWvfrKPIHb6PmXOX4anwREceO3T2U4W3MXXM8a8Vsv2LKzdTIX76md4D2Q5AYP3itHqIdUx-hXd828vsY3fsnJ9649mncMQRykdj9WI21MdM4NIR4P0HD3tPgsY9D3wNcUprMMSgtDHPpwWCINklFdZmWClKqNFSQKcmVpoQLsGeFxIJAC1UlikpHxGjX7Clq1ZPanKNYV0wpZThooFSLElIhIKsIKytdZsAjdLcSSlEGUnDXm-Kz8JfTpLASLIIEI9RpwFPPhbEddmOl-zeivZJ8EZbMrMiY9Yy5jfVlhG6bYWvs7gYDajNZWAxlkjBig6QInXlFNe8hxPH-0DxCfE2FDcARaa-P1OOPJaE2l8IGYvLi3w-_RHuZy2lJCM6yNmrNvxbmygYlc3W9NMkfdebiRA
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biological+network+analysis+with+deep+learning&rft.jtitle=Briefings+in+bioinformatics&rft.au=Muzio%2C+Giulia&rft.au=Leslie+O%E2%80%99Bray&rft.au=Borgwardt%2C+Karsten&rft.date=2021-03-22&rft.pub=Oxford+Publishing+Limited+%28England%29&rft.issn=1467-5463&rft.eissn=1477-4054&rft.volume=22&rft.issue=2&rft.spage=1515&rft.epage=1530&rft_id=info:doi/10.1093%2Fbib%2Fbbaa257&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1467-5463&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1467-5463&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1467-5463&client=summon