The third ‘CHiME’ speech separation and recognition challenge: Analysis and outcomes

•The presentation of a unique multi-microphone speech recognition challenge with speech recorded in real environments.•A detailed characterisation of the challenge audio using novel analyses to estimate key properties of the speakers, environments and noisy speech signals.•An overview of 26 systems...

Full description

Saved in:
Bibliographic Details
Published inComputer speech & language Vol. 46; pp. 605 - 626
Main Authors Barker, Jon, Marxer, Ricard, Vincent, Emmanuel, Watanabe, Shinji
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.11.2017
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •The presentation of a unique multi-microphone speech recognition challenge with speech recorded in real environments.•A detailed characterisation of the challenge audio using novel analyses to estimate key properties of the speakers, environments and noisy speech signals.•An overview of 26 systems submitted to the challenge presenting a snapshot of the state-of-the-art in distant microphone ASR.•A presentation of system performance identifying which signal processing and statistical modelling techniques are the most beneficial.•A presentation of correlations between signal characteristics and system performances across utterances addressing the question, “What are the particular circumstances that lead to high word error rates?” This paper presents the design and outcomes of the CHiME-3 challenge, the first open speech recognition evaluation designed to target the increasingly relevant multichannel, mobile-device speech recognition scenario. The paper serves two purposes. First, it provides a definitive reference for the challenge, including full descriptions of the task design, data capture and baseline systems along with a description and evaluation of the 26 systems that were submitted. The best systems re-engineered every stage of the baseline resulting in reductions in word error rate from 33.4% to as low as 5.8%. By comparing across systems, techniques that are essential for strong performance are identified. Second, the paper considers the problem of drawing conclusions from evaluations that use speech directly recorded in noisy environments. The degree of challenge presented by the resulting material is hard to control and hard to fully characterise. We attempt to dissect the various ‘axes of difficulty’ by correlating various estimated signal properties with typical system performance on a per session and per utterance basis. We find strong evidence of a dependence on signal-to-noise ratio and channel quality. Systems are less sensitive to variations in the degree of speaker motion. The paper concludes by discussing the outcomes of CHiME-3 in relation to the design of future mobile speech recognition evaluations.
AbstractList •The presentation of a unique multi-microphone speech recognition challenge with speech recorded in real environments.•A detailed characterisation of the challenge audio using novel analyses to estimate key properties of the speakers, environments and noisy speech signals.•An overview of 26 systems submitted to the challenge presenting a snapshot of the state-of-the-art in distant microphone ASR.•A presentation of system performance identifying which signal processing and statistical modelling techniques are the most beneficial.•A presentation of correlations between signal characteristics and system performances across utterances addressing the question, “What are the particular circumstances that lead to high word error rates?” This paper presents the design and outcomes of the CHiME-3 challenge, the first open speech recognition evaluation designed to target the increasingly relevant multichannel, mobile-device speech recognition scenario. The paper serves two purposes. First, it provides a definitive reference for the challenge, including full descriptions of the task design, data capture and baseline systems along with a description and evaluation of the 26 systems that were submitted. The best systems re-engineered every stage of the baseline resulting in reductions in word error rate from 33.4% to as low as 5.8%. By comparing across systems, techniques that are essential for strong performance are identified. Second, the paper considers the problem of drawing conclusions from evaluations that use speech directly recorded in noisy environments. The degree of challenge presented by the resulting material is hard to control and hard to fully characterise. We attempt to dissect the various ‘axes of difficulty’ by correlating various estimated signal properties with typical system performance on a per session and per utterance basis. We find strong evidence of a dependence on signal-to-noise ratio and channel quality. Systems are less sensitive to variations in the degree of speaker motion. The paper concludes by discussing the outcomes of CHiME-3 in relation to the design of future mobile speech recognition evaluations.
This paper presents the design and outcomes of the CHiME-3 challenge, the first open speech recognition evaluation designed to target the increasingly relevant multichannel, mobile-device speech recognition scenario. The paper serves two purposes. First, it provides a definitive reference for the challenge, including full descriptions of the task design, data capture and baseline systems along with a description and evaluation of the 26 systems that were submitted. The best systems re-engineered every stage of the baseline resulting in reductions in word error rate from 33.4% to as low as 5.8%. By comparing across systems, techniques that are essential for strong performance are identified. Second, the paper considers the problem of drawing conclusions from evaluations that use speech directly recorded in noisy environments. The degree of challenge presented by the resulting material is hard to control and hard to fully characterise. We attempt to dissect the various 'axes of difficulty' by correlating various estimated signal properties with typical system performance on a per session and per utterance basis. We find strong evidence of a dependence on signal-to-noise ratio and channel quality. Systems are less sensitive to variations in the degree of speaker motion. The paper concludes by discussing the outcomes of CHiME-3 in relation to the design of future mobile speech recognition evaluations.
Author Vincent, Emmanuel
Barker, Jon
Watanabe, Shinji
Marxer, Ricard
Author_xml – sequence: 1
  givenname: Jon
  surname: Barker
  fullname: Barker, Jon
  email: j.p.barker@sheffield.ac.uk
  organization: Department of Computer Science, University of Sheffield, Sheffield S1 4DP, UK
– sequence: 2
  givenname: Ricard
  orcidid: 0000-0001-5099-5059
  surname: Marxer
  fullname: Marxer, Ricard
  organization: Department of Computer Science, University of Sheffield, Sheffield S1 4DP, UK
– sequence: 3
  givenname: Emmanuel
  surname: Vincent
  fullname: Vincent, Emmanuel
  organization: Inria, Villers-lès-Nancy 54600, France
– sequence: 4
  givenname: Shinji
  surname: Watanabe
  fullname: Watanabe, Shinji
  organization: Mitsubishi Electric Research Laboratories, Cambridge, MA 02139-1955, USA
BackLink https://inria.hal.science/hal-01382108$$DView record in HAL
BookMark eNp9kL9OwzAQhy1UJNrCA7BlZUg5x_kLU1UVilTEUiQ2y3EujavUqexQqVsfA16vT4LTwsLQyb7T7_P5vgHp6UYjIbcURhRofL8aSVuPAnd19QgguiB9ClnkpyxmPdKHNI38gEF6RQbWrgAgjsKkTz4WFXptpUzhHfZfk5l6nR72357dIMrKs7gRRrSq0Z7QhWdQNkutjrWsRF2jXuKDN9ai3lllj5nms5XNGu01uSxFbfHm9xyS96fpYjLz52_PL5Px3JdhCK0vIhZksmBxnLECIIG4YDIuA5YnCEkh8iTMQpHHWRaWElmaR5Fw2SQpszwrU2BDcnd61_2Hb4xaC7PjjVB8Np7zrgeUpQGFdEtdNjllpWmsNVhyqdrjeq0RquYUeCeTr7iTyTuZXcvJdCT9R_6NOsc8nhh0628VGm6lQi2xUE5ky4tGnaF_AG-3j_s
CitedBy_id crossref_primary_10_1109_TASLP_2024_3426924
crossref_primary_10_1121_10_0025272
crossref_primary_10_1016_j_eswa_2024_126349
crossref_primary_10_1002_tee_22868
crossref_primary_10_1109_TASLP_2021_3083405
crossref_primary_10_1109_TASLP_2020_3019181
crossref_primary_10_1007_s00530_023_01155_1
crossref_primary_10_1109_TASLP_2022_3224288
crossref_primary_10_1250_ast_e24_124
crossref_primary_10_1109_TASLP_2021_3092567
crossref_primary_10_1016_j_specom_2018_11_005
crossref_primary_10_1109_LSP_2021_3099715
crossref_primary_10_1109_TASLP_2019_2944348
crossref_primary_10_1007_s10772_021_09847_7
crossref_primary_10_1109_LSP_2018_2880285
crossref_primary_10_1109_TETCI_2022_3228537
crossref_primary_10_1016_j_specom_2023_04_001
crossref_primary_10_1021_acsami_8b22613
crossref_primary_10_1109_JSTSP_2017_2764276
crossref_primary_10_1109_TASLP_2021_3067154
crossref_primary_10_1186_s13636_024_00387_x
crossref_primary_10_1109_TASLP_2021_3082702
crossref_primary_10_1109_LSP_2024_3449218
crossref_primary_10_1016_j_csl_2022_101409
crossref_primary_10_1016_j_dsp_2019_102632
crossref_primary_10_1109_TASLP_2022_3196168
crossref_primary_10_1109_ACCESS_2021_3139508
crossref_primary_10_5802_roia_51
crossref_primary_10_1109_JPROC_2020_3018668
crossref_primary_10_1109_LSP_2021_3056279
crossref_primary_10_1016_j_specom_2018_05_004
crossref_primary_10_1109_ACCESS_2023_3243690
crossref_primary_10_1109_TASLP_2024_3374065
crossref_primary_10_1109_LSP_2018_2791534
crossref_primary_10_1016_j_csl_2025_101780
Cites_doi 10.1109/TASL.2011.2114881
10.1109/89.326616
10.1109/TASL.2013.2281574
10.1016/j.csl.2012.10.004
10.1016/j.csl.2016.11.005
10.1109/TASL.2007.902460
10.1007/s10579-007-9054-4
10.1080/00031305.1989.10475612
10.1121/1.1915637
ContentType Journal Article
Copyright 2016 Elsevier Ltd
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2016 Elsevier Ltd
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
1XC
VOOES
DOI 10.1016/j.csl.2016.10.005
DatabaseName CrossRef
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1095-8363
EndPage 626
ExternalDocumentID oai_HAL_hal_01382108v1
10_1016_j_csl_2016_10_005
S088523081630122X
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
9JN
9JO
AACTN
AADFP
AAEDT
AAEDW
AAFJI
AAGJA
AAGUQ
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABMMH
ABOYX
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACXNI
ACZNC
ADBBV
ADEZE
ADFGL
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFYLN
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKYCK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOMHK
AOUOD
ASPBG
AVARZ
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CAG
COF
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HLZ
HMW
HMY
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG5
LX9
M3U
M3X
M41
MO0
MVM
N9A
O-L
O9-
OAUVE
OKEIE
OZT
P-8
P-9
P2P
PC.
PRBVW
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SPS
SSB
SSO
SSS
SST
SSV
SSY
SSZ
T5K
TN5
UHS
WUQ
XFK
XPP
YK3
ZMT
ZY4
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADMHG
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
1XC
VOOES
ID FETCH-LOGICAL-c440t-a5329cd36693d00706d3c6f23b7e07dab7494ab6994fce38b55a66977f9b9f803
IEDL.DBID .~1
ISSN 0885-2308
IngestDate Fri May 09 12:17:13 EDT 2025
Tue Jul 01 00:18:33 EDT 2025
Thu Apr 24 23:08:24 EDT 2025
Fri Feb 23 02:29:30 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords ‘CHiME’ challenge
Microphone array
Noise-robust ASR
'CHiME' challenge
microphone array
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c440t-a5329cd36693d00706d3c6f23b7e07dab7494ab6994fce38b55a66977f9b9f803
ORCID 0000-0001-5099-5059
0000-0002-0183-7289
OpenAccessLink https://inria.hal.science/hal-01382108
PageCount 22
ParticipantIDs hal_primary_oai_HAL_hal_01382108v1
crossref_citationtrail_10_1016_j_csl_2016_10_005
crossref_primary_10_1016_j_csl_2016_10_005
elsevier_sciencedirect_doi_10_1016_j_csl_2016_10_005
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-11-01
PublicationDateYYYYMMDD 2017-11-01
PublicationDate_xml – month: 11
  year: 2017
  text: 2017-11-01
  day: 01
PublicationDecade 2010
PublicationTitle Computer speech & language
PublicationYear 2017
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Lin, M., Q., C., Yan, S., 2014. Network in network. ArXiv
Anguera, Wooters, Hernando (bib0001) 2007; 15
El-Desoky Mousa, A., Marchi, E., Schuller, B., 2015. The ICSTM+TUM+UP approach to the 3rd CHiME challenge: single-channel LSTM speech enhancement with multi-channel correlation shaping dereverberation and LSTM language models. ArXiv
Veselý, Ghoshal, Burget, Povey (bib0042) 2013
Hermansky, Morgan (bib0016) 1994; 2
Sivasankaran, Nugraha, Vincent, Morales-Cordovilla, Dalmia, Illina (bib0037) December 13–17, 2015
Frigge, Hoaglin, Iglewicz (bib0012) 1989; 43
Loesch, Yang (bib0023) 2010
Ma, Marxer, Barker, Brown (bib0024) December 13–17, 2015
Bagchi, Mandel, Wang, He, Plummer, Fosler-Lussier (bib0003) December 13–17, 2015
Moritz, Gerlach, Adiloglu, Anemüller, Kollmeier, Goetze (bib0028) December 13–17, 2015
Barker, Marxer, Vincent, Watanabe (bib0005) December 13–17, 2015
Misbullah, A., Chien, J.-T., 2016. Deep feedforward and recurrent neural networks for speech recognition. Technical Report. Submitted for publication.
Mikolov, Karafiát, Burget, Cernockỳ, Khudanpur (bib0026) 2010; 2
Hori, Chen, Erdogan, Hershey, Le Roux, Mitra, Watanabe (bib0019) December 13–17, 2015
Pfeifenberger, Schrank, Zöhrer, Hagmüller, Pernkopf (bib0032) December 13–17, 2015
Vincent, E., Watanabe, S., Nugraha, A., Barker, J., Marxer, R., 2016. An analysis of environment, microphone and data simulation mismatches in robust speech recognition. Comput. Speech Lang.. Submitted for publication.
Zhao, Xiao, Zhang, Nguyen, Zhong, Ren, Wang, Jones, Chng, Li (bib0049) December 13–17, 2015
Jalalvand, Falavigna, Matassoni, Svaizer, Omologo (bib0020) December 13–17, 2015
Renals, Hain, Bourlard (bib0035) 2008
Mestre, Lagunas (bib0025) 2003
Povey, Ghoshal, Boulianne, Burget, Glembek, Goel, Hannemann, Motlicek, Qian, Schwarz, Silovsky, Stemmer, Vesely (bib0033) 2011
Vincent, Barker, Watanabe, Le Roux, Nesta, Matassoni (bib0044) 2013
Yoshioka, Ito, Delcroix, Ogawa, Kinoshita, Fujimoto, Yu, Fabian, Espi, Higuchi, Araki, Nakatani (bib0048) December 13–17, 2015
.
Mostefa, Moreau, Choukri, Potamianos, Chu, Tyagi, Casas, Turmo, Cristoforetti, Tobia, Pnevmatikakis, Mylonakis, Talantzis, Burger, Stiefelhagen, Bernardin, Rochet (bib0029) 2007; 41
Barfuss, H., Huemmer, C., Schwarz, A., Kellermann, W., 2015. Robust coherence-based spectral enhancement for distant speech recognition. ArXiv
Fletcher, Manson (bib0011) 1933; 82
Barker, Vincent, Ma, Christensen, Green (bib0006) 2013; 27
Vincent, Barker, Watanabe, Le Roux, Nesta, Matassoni (bib0043) 2013
Taal, Hendriks, Heusdens, Jensen (bib0038) 2011; 19
DiBiase, Silverman, Brandstein (bib0008) 2001
Du, Wang, Tu, Bao, Dai, Lee (bib0009) December 13–17, 2015
Wang, X., Wu, C., Zhang, P., Wang, Z., Liu, Y., Li, X., Fu, Q., Yan, Y., 2015. Noise robust IOA/CAS speech separation and recognition system for the third ‘CHIME’ challenge. ArXiv
Vu, Bigot, Chng (bib0046) December 13–17, 2015
"><http://www.isle.illinois.edu/sst/data/g2ps>(accessed 04.16.).
Prudnikov, Korenevsky, Aleinik (bib0034) December 13–17, 2015
Parihar, Picone, Pearce, Hirsch (bib0031) 2004
Taghia, Martin (bib0040) 2014; 22
Tran, H. D., Dennis, J., Yiren, L., 2016. A comparative study of multi-channel processing methods for noisy automatic speech recognition on the third CHiME challenge. Submitted for publication.
Hasegawa-Johnson, M., Fleck, M., 2007. The internatoinal speech LEXicon.
Garofalo, Graff, Paul, Pallett (bib0014) 2007
Heymann, Drude, Chinaev, Haeb-Umbach (bib0017) December 13–17, 2015
Castro Martinez, Meyer (bib0007) 2015
Baby, Virtanen, Van Hamme (bib0002) 2015
Kim, Stern (bib0021) 2012
Fujita, Takashima, Homma, Ikeshita, Kawaguchi, Sumiyoshi, Endo, Togami (bib0013) December 13–17, 2015
RWCP, 2001. RWCP Meeting Speech Corpus (RWCP-SP01).
Hirsch, Pearce (bib0018) 2000; 4
Zhuang, You, Tan, Bi, Bu, Deng, Qian, Yin, Yu (bib0050) 2015
Pang, Z., Zhu, F., 2015. Noise-robust ASR for the third ‘CHiME’ challenge exploiting time-frequency masking based multi-channel speech enhancement and recurrent neural network. arXiv
Tachioka, Kanagawa, Ishii (bib0039) 2015
Vu (10.1016/j.csl.2016.10.005_bib0046) 2015
Bagchi (10.1016/j.csl.2016.10.005_bib0003) 2015
Heymann (10.1016/j.csl.2016.10.005_bib0017) 2015
DiBiase (10.1016/j.csl.2016.10.005_bib0008) 2001
Tachioka (10.1016/j.csl.2016.10.005_bib0039) 2015
Jalalvand (10.1016/j.csl.2016.10.005_bib0020) 2015
Yoshioka (10.1016/j.csl.2016.10.005_bib0048) 2015
10.1016/j.csl.2016.10.005_bib0027
Loesch (10.1016/j.csl.2016.10.005_bib0023) 2010
Garofalo (10.1016/j.csl.2016.10.005_bib0014) 2007
Vincent (10.1016/j.csl.2016.10.005_bib0043) 2013
10.1016/j.csl.2016.10.005_bib0036
Mostefa (10.1016/j.csl.2016.10.005_bib0029) 2007; 41
10.1016/j.csl.2016.10.005_bib0030
Zhao (10.1016/j.csl.2016.10.005_bib0049) 2015
Barker (10.1016/j.csl.2016.10.005_bib0005) 2015
Mestre (10.1016/j.csl.2016.10.005_bib0025) 2003
Veselý (10.1016/j.csl.2016.10.005_bib0042) 2013
Fletcher (10.1016/j.csl.2016.10.005_bib0011) 1933; 82
Prudnikov (10.1016/j.csl.2016.10.005_bib0034) 2015
Mikolov (10.1016/j.csl.2016.10.005_bib0026) 2010; 2
Taghia (10.1016/j.csl.2016.10.005_bib0040) 2014; 22
Du (10.1016/j.csl.2016.10.005_bib0009) 2015
Hori (10.1016/j.csl.2016.10.005_bib0019) 2015
Hermansky (10.1016/j.csl.2016.10.005_bib0016) 1994; 2
Taal (10.1016/j.csl.2016.10.005_bib0038) 2011; 19
Frigge (10.1016/j.csl.2016.10.005_bib0012) 1989; 43
10.1016/j.csl.2016.10.005_bib0045
10.1016/j.csl.2016.10.005_bib0004
10.1016/j.csl.2016.10.005_bib0047
10.1016/j.csl.2016.10.005_bib0041
Kim (10.1016/j.csl.2016.10.005_bib0021) 2012
Parihar (10.1016/j.csl.2016.10.005_bib0031) 2004
Hirsch (10.1016/j.csl.2016.10.005_bib0018) 2000; 4
Pfeifenberger (10.1016/j.csl.2016.10.005_bib0032) 2015
Castro Martinez (10.1016/j.csl.2016.10.005_sbref0006) 2015
Anguera (10.1016/j.csl.2016.10.005_bib0001) 2007; 15
Baby (10.1016/j.csl.2016.10.005_bib0002) 2015
Sivasankaran (10.1016/j.csl.2016.10.005_bib0037) 2015
Zhuang (10.1016/j.csl.2016.10.005_sbref0040) 2015
Barker (10.1016/j.csl.2016.10.005_bib0006) 2013; 27
Ma (10.1016/j.csl.2016.10.005_bib0024) 2015
10.1016/j.csl.2016.10.005_bib0015
10.1016/j.csl.2016.10.005_bib0010
Povey (10.1016/j.csl.2016.10.005_sbref0027) 2011
Renals (10.1016/j.csl.2016.10.005_bib0035) 2008
Moritz (10.1016/j.csl.2016.10.005_bib0028) 2015
10.1016/j.csl.2016.10.005_bib0022
Vincent (10.1016/j.csl.2016.10.005_bib0044) 2013
Fujita (10.1016/j.csl.2016.10.005_bib0013) 2015
References_xml – volume: 41
  start-page: 389
  year: 2007
  end-page: 407
  ident: bib0029
  article-title: The CHIL audiovisual corpus for lecture and meeting analysis inside smart rooms
  publication-title: Lang. Resour. Eval.
– start-page: 452
  year: December 13–17, 2015
  end-page: 459
  ident: bib0032
  article-title: Multi-channel speech processing architectures for noise robust speech recognition: 3rd CHiME challenge results
  publication-title: Proceedings of the 2015 IEEE Workshop on Automatic Speech Recognition and Understanding (ASRU)
– year: 2011
  ident: bib0033
  article-title: The Kaldi speech recognition toolkit
  publication-title: Proceedings of the 2011 IEEE Workshop on Automatic Speech Recognition and Understanding
– reference: >"><http://www.isle.illinois.edu/sst/data/g2ps>(accessed 04.16.).
– volume: 2
  start-page: 578
  year: 1994
  end-page: 589
  ident: bib0016
  article-title: RASTA processing of speech
  publication-title: IEEE Trans. Speech Audio Process.
– start-page: 430
  year: December 13–17, 2015
  end-page: 435
  ident: bib0009
  article-title: An information fusion approach to recognizing microphone array speech in the CHiME-3 challenge based on a deep learning framework
  publication-title: Proceedings of the 2015 IEEE Workshop on Automatic Speech Recognition and Understanding (ASRU)
– start-page: 41
  year: 2010
  end-page: 48
  ident: bib0023
  article-title: Adaptive segmentation and separation of determined convolutive mixtures under dynamic conditions
  publication-title: Proceedings of the Ninth International Conference on Latent Variable Analysis and Signal Separation (LVA/ICA)
– start-page: 468
  year: December 13–17, 2015
  end-page: 474
  ident: bib0028
  article-title: A CHiME-3 challenge system: Long-term acoustic features for noise robust automatic speech recognition
  publication-title: Proceedings of the 2015 IEEE Workshop on Automatic Speech Recognition and Understanding (ASRU)
– reference: El-Desoky Mousa, A., Marchi, E., Schuller, B., 2015. The ICSTM+TUM+UP approach to the 3rd CHiME challenge: single-channel LSTM speech enhancement with multi-channel correlation shaping dereverberation and LSTM language models. ArXiv:
– volume: 2
  start-page: 3
  year: 2010
  ident: bib0026
  article-title: Recurrent neural network based language model
  publication-title: Proceedings of the 2010 International Speech Communication Association (INTERSPEECH)
– volume: 4
  start-page: 29
  year: 2000
  end-page: 32
  ident: bib0018
  article-title: The Aurora experimental framework for the performance evaluation of speech recognition systems under noisy conditions
  publication-title: Proceedings of the Sixth International Conference on Spoken Language Processing (ICSLP)
– start-page: 490
  year: December 13–17, 2015
  end-page: 495
  ident: bib0024
  article-title: Exploiting synchrony spectra and deep neural networks for noise-robust automatic speech recognition
  publication-title: Proceedings of the 2015 IEEE Workshop on Automatic Speech Recognition and Understanding (ASRU)
– start-page: 475
  year: December 13–17, 2015
  end-page: 481
  ident: bib0019
  article-title: The MERL/SRI system for the 3rd CHiME challenge using beamforming, robust feature extraction, and advanced speech recognition
  publication-title: Proceedings of the 2015 IEEE Workshop on Automatic Speech Recognition and Understanding (ASRU)
– start-page: 157
  year: 2001
  end-page: 180
  ident: bib0008
  article-title: Robust localization in reverberent rooms.
  publication-title: Microphone Arrays: Techniques and Applications
– start-page: 416
  year: December 13–17, 2015
  end-page: 422
  ident: bib0013
  article-title: Unified ASR system using LGM-based source separation, noise-robust feature extraction, and word hypothesis selection
  publication-title: Proceedings of the 2015 IEEE Workshop on Automatic Speech Recognition and Understanding (ASRU)
– reference: Pang, Z., Zhu, F., 2015. Noise-robust ASR for the third ‘CHiME’ challenge exploiting time-frequency masking based multi-channel speech enhancement and recurrent neural network. arXiv:
– volume: 22
  start-page: 6
  year: 2014
  end-page: 16
  ident: bib0040
  article-title: Objective intelligibility measures based on mutual information for speech subjected to speech enhancement processing
  publication-title: IEEE/ACM Trans. Audio Speech Lang. Process.
– reference: Wang, X., Wu, C., Zhang, P., Wang, Z., Liu, Y., Li, X., Fu, Q., Yan, Y., 2015. Noise robust IOA/CAS speech separation and recognition system for the third ‘CHIME’ challenge. ArXiv:
– start-page: 4101
  year: 2012
  end-page: 4104
  ident: bib0021
  article-title: Power-normalized cepstral coefficients (PNCC) for robust speech recognition
  publication-title: Proceedings of the 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
– start-page: 459
  year: 2003
  end-page: 462
  ident: bib0025
  article-title: On diagonal loading for minimum variance beamformers
  publication-title: Proceedings of the Third IEEE International Symposium on Signal Processing and Information Technology (ISSPIT)
– start-page: 496
  year: December 13–17, 2015
  end-page: 503
  ident: bib0003
  article-title: Combining spectral feature mapping and multi-channel model-based source separation for noise-robust automatic speech recognition
  publication-title: Proceedings of the 2015 IEEE Workshop on Automatic Speech Recognition and Understanding (ASRU)
– start-page: 444
  year: December 13–17, 2015
  end-page: 451
  ident: bib0017
  article-title: BLSTM supported GEV beamformer front-end for the 3rd CHiME challenge
  publication-title: Proceedings of the 2015 IEEE Workshop on Automatic Speech Recognition and Understanding (ASRU)
– volume: 43
  start-page: 50
  year: 1989
  end-page: 54
  ident: bib0012
  article-title: Some implementations of the boxplot
  publication-title: Am. Stat.
– start-page: 482
  year: December 13–17, 2015
  end-page: 489
  ident: bib0037
  article-title: Robust ASR using neural network based speech enhancement and feature simulation
  publication-title: Proceedings of the 2015 IEEE Workshop on Automatic Speech Recognition and Understanding (ASRU)
– start-page: 436
  year: December 13–17, 2015
  end-page: 443
  ident: bib0048
  article-title: The NTT CHiME-3 system: advances in speech enhancement and recognition for mobile multi-microphone devices
  publication-title: Proceedings of the 2015 IEEE Workshop on Automatic Speech Recognition and Understanding (ASRU)
– volume: 19
  start-page: 2125
  year: 2011
  end-page: 2136
  ident: bib0038
  article-title: An algorithm for intelligibility prediction of time–frequency weighted noisy speech
  publication-title: IEEE Trans. Audio Speech Lang. Process.
– start-page: 126
  year: 2013
  end-page: 130
  ident: bib0044
  article-title: The second CHiME speech separation and recognition challenge: datasets, tasks and baselines
  publication-title: Proceedings of the 2013 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
– volume: 27
  start-page: 621
  year: 2013
  end-page: 633
  ident: bib0006
  article-title: The PASCAL CHiME speech separation and recognition challenge
  publication-title: Comput. Speech Lang.
– start-page: 162
  year: 2013
  end-page: 167
  ident: bib0043
  article-title: The second ‘CHiME’ speech separation and recognition challenge: an overview of challenge systems and outcomes
  publication-title: Proceedings of the 2013 IEEE Workshop on Automatic Speech Recognition and Understanding (ASRU)
– volume: 15
  start-page: 2011
  year: 2007
  end-page: 2022
  ident: bib0001
  article-title: Acoustic beamforming for speaker diarization of meetings
  publication-title: IEEE Trans. Audio Speech Lang. Process.
– start-page: 115
  year: 2008
  end-page: 118
  ident: bib0035
  article-title: Interpretation of multiparty meetings: The AMI and AMIDA projects
  publication-title: Proceedings of the Second Joint Workshop on Hands-free Speech Communication and Microphone Arrays (HSCMA)
– volume: 82
  start-page: 82
  year: 1933
  end-page: 108
  ident: bib0011
  article-title: Loudness, its definition, measurement and calculation
  publication-title: J. Acoust. Soc. Am.
– start-page: 504
  year: December 13–17, 2015
  end-page: 511
  ident: bib0005
  article-title: The third ‘CHiME’ speech separation and recognition challenge: dataset, task and baselines
  publication-title: Proceedings of the 2015 IEEE Workshop on Automatic Speech Recognition and Understanding (ASRU)
– reference: RWCP, 2001. RWCP Meeting Speech Corpus (RWCP-SP01).
– reference: Vincent, E., Watanabe, S., Nugraha, A., Barker, J., Marxer, R., 2016. An analysis of environment, microphone and data simulation mismatches in robust speech recognition. Comput. Speech Lang.. Submitted for publication.
– start-page: 460
  year: December 13–17, 2015
  end-page: 467
  ident: bib0049
  article-title: Robust speech recognition using beamforming with adaptive microphone gains and multichannel noise reduction
  publication-title: Proceedings of the 2015 IEEE Workshop on Automatic Speech Recognition and Understanding (ASRU)
– year: 2015
  ident: bib0050
  article-title: System Combination for Multi-Channel Noise Robust ASR
  publication-title: Technical Report
– reference: Tran, H. D., Dennis, J., Yiren, L., 2016. A comparative study of multi-channel processing methods for noisy automatic speech recognition on the third CHiME challenge. Submitted for publication.
– year: 2015
  ident: bib0039
  article-title: The Overview of the MELCO ASR System for the Third CHiME Challenge
  publication-title: Technical Report SVAN154551
– start-page: 553—556
  year: 2004
  ident: bib0031
  article-title: Performance analysis of the Aurora large vocabulary baseline system
  publication-title: Proceedings of the 2004 European Signal Processing Conference (EUSIPCO)
– reference: Hasegawa-Johnson, M., Fleck, M., 2007. The internatoinal speech LEXicon.
– year: 2015
  ident: bib0007
  article-title: Mutual Benefits of Auditory Spectro-temporal Gabor Features and Deep Learning for the 3rd CHiME Challenge
  publication-title: Technical Report
– start-page: 409
  year: December 13–17, 2015
  end-page: 415
  ident: bib0020
  article-title: Boosted acoustic model learning and hypotheses rescoring on the CHiME3 task
  publication-title: Proceedings of the 2015 IEEE Workshop on Automatic Speech Recognition and Understanding, (ASRU)
– start-page: 401
  year: December 13–17, 2015
  end-page: 408
  ident: bib0034
  article-title: Adaptive beamforming and adaptive training of DNN acoustic models for enhanced multichannel noisy speech recognition
  publication-title: Proceedings of the 2015 IEEE Workshop on Automatic Speech Recognition and Understanding (ASRU)
– year: 2007
  ident: bib0014
  publication-title: CSR-I (WSJ0) Complete
– year: 2015
  ident: bib0002
  article-title: Coupled Dictionary-based Speech Enhancement for CHiME-3 Challenge
  publication-title: Technical Report KUL/ESAT/PSI/1503
– reference: Lin, M., Q., C., Yan, S., 2014. Network in network. ArXiv:
– reference: Barfuss, H., Huemmer, C., Schwarz, A., Kellermann, W., 2015. Robust coherence-based spectral enhancement for distant speech recognition. ArXiv:
– reference: Misbullah, A., Chien, J.-T., 2016. Deep feedforward and recurrent neural networks for speech recognition. Technical Report. Submitted for publication.
– start-page: 2345
  year: 2013
  end-page: 2349
  ident: bib0042
  article-title: Sequence-discriminative training of deep neural networks
  publication-title: Proceedings of the Fourteenth Annual Conference of the International Speech Communication Association (INTERSPEECH 2013)
– reference: .
– start-page: 423
  year: December 13–17, 2015
  end-page: 429
  ident: bib0046
  article-title: Speech enhancement using beamforming and non negative matrix factorization for robust speech recognition in the CHiME-3 challenge
  publication-title: Proceedings of the 2015 IEEE Workshop on Automatic Speech Recognition and Understanding (ASRU)
– start-page: 430
  year: 2015
  ident: 10.1016/j.csl.2016.10.005_bib0009
  article-title: An information fusion approach to recognizing microphone array speech in the CHiME-3 challenge based on a deep learning framework
– volume: 19
  start-page: 2125
  issue: 7
  year: 2011
  ident: 10.1016/j.csl.2016.10.005_bib0038
  article-title: An algorithm for intelligibility prediction of time–frequency weighted noisy speech
  publication-title: IEEE Trans. Audio Speech Lang. Process.
  doi: 10.1109/TASL.2011.2114881
– start-page: 482
  year: 2015
  ident: 10.1016/j.csl.2016.10.005_bib0037
  article-title: Robust ASR using neural network based speech enhancement and feature simulation
– ident: 10.1016/j.csl.2016.10.005_bib0022
– start-page: 444
  year: 2015
  ident: 10.1016/j.csl.2016.10.005_bib0017
  article-title: BLSTM supported GEV beamformer front-end for the 3rd CHiME challenge
– ident: 10.1016/j.csl.2016.10.005_bib0041
– start-page: 41
  year: 2010
  ident: 10.1016/j.csl.2016.10.005_bib0023
  article-title: Adaptive segmentation and separation of determined convolutive mixtures under dynamic conditions
– start-page: 423
  year: 2015
  ident: 10.1016/j.csl.2016.10.005_bib0046
  article-title: Speech enhancement using beamforming and non negative matrix factorization for robust speech recognition in the CHiME-3 challenge
– start-page: 2345
  year: 2013
  ident: 10.1016/j.csl.2016.10.005_bib0042
  article-title: Sequence-discriminative training of deep neural networks
– volume: 2
  start-page: 578
  issue: 4
  year: 1994
  ident: 10.1016/j.csl.2016.10.005_bib0016
  article-title: RASTA processing of speech
  publication-title: IEEE Trans. Speech Audio Process.
  doi: 10.1109/89.326616
– volume: 22
  start-page: 6
  issue: 1
  year: 2014
  ident: 10.1016/j.csl.2016.10.005_bib0040
  article-title: Objective intelligibility measures based on mutual information for speech subjected to speech enhancement processing
  publication-title: IEEE/ACM Trans. Audio Speech Lang. Process.
  doi: 10.1109/TASL.2013.2281574
– start-page: 401
  year: 2015
  ident: 10.1016/j.csl.2016.10.005_bib0034
  article-title: Adaptive beamforming and adaptive training of DNN acoustic models for enhanced multichannel noisy speech recognition
– start-page: 409
  year: 2015
  ident: 10.1016/j.csl.2016.10.005_bib0020
  article-title: Boosted acoustic model learning and hypotheses rescoring on the CHiME3 task
– start-page: 460
  year: 2015
  ident: 10.1016/j.csl.2016.10.005_bib0049
  article-title: Robust speech recognition using beamforming with adaptive microphone gains and multichannel noise reduction
– year: 2011
  ident: 10.1016/j.csl.2016.10.005_sbref0027
  article-title: The Kaldi speech recognition toolkit
– start-page: 416
  year: 2015
  ident: 10.1016/j.csl.2016.10.005_bib0013
  article-title: Unified ASR system using LGM-based source separation, noise-robust feature extraction, and word hypothesis selection
– start-page: 4101
  year: 2012
  ident: 10.1016/j.csl.2016.10.005_bib0021
  article-title: Power-normalized cepstral coefficients (PNCC) for robust speech recognition
– start-page: 504
  year: 2015
  ident: 10.1016/j.csl.2016.10.005_bib0005
  article-title: The third ‘CHiME’ speech separation and recognition challenge: dataset, task and baselines
– start-page: 115
  year: 2008
  ident: 10.1016/j.csl.2016.10.005_bib0035
  article-title: Interpretation of multiparty meetings: The AMI and AMIDA projects
– start-page: 553—556
  year: 2004
  ident: 10.1016/j.csl.2016.10.005_bib0031
  article-title: Performance analysis of the Aurora large vocabulary baseline system
– ident: 10.1016/j.csl.2016.10.005_bib0004
– start-page: 468
  year: 2015
  ident: 10.1016/j.csl.2016.10.005_bib0028
  article-title: A CHiME-3 challenge system: Long-term acoustic features for noise robust automatic speech recognition
– ident: 10.1016/j.csl.2016.10.005_bib0036
– year: 2015
  ident: 10.1016/j.csl.2016.10.005_sbref0006
  article-title: Mutual Benefits of Auditory Spectro-temporal Gabor Features and Deep Learning for the 3rd CHiME Challenge
– start-page: 436
  year: 2015
  ident: 10.1016/j.csl.2016.10.005_bib0048
  article-title: The NTT CHiME-3 system: advances in speech enhancement and recognition for mobile multi-microphone devices
– start-page: 496
  year: 2015
  ident: 10.1016/j.csl.2016.10.005_bib0003
  article-title: Combining spectral feature mapping and multi-channel model-based source separation for noise-robust automatic speech recognition
– start-page: 162
  year: 2013
  ident: 10.1016/j.csl.2016.10.005_bib0043
  article-title: The second ‘CHiME’ speech separation and recognition challenge: an overview of challenge systems and outcomes
– ident: 10.1016/j.csl.2016.10.005_bib0015
– ident: 10.1016/j.csl.2016.10.005_bib0047
– year: 2015
  ident: 10.1016/j.csl.2016.10.005_bib0002
  article-title: Coupled Dictionary-based Speech Enhancement for CHiME-3 Challenge
– start-page: 157
  year: 2001
  ident: 10.1016/j.csl.2016.10.005_bib0008
  article-title: Robust localization in reverberent rooms.
– start-page: 126
  year: 2013
  ident: 10.1016/j.csl.2016.10.005_bib0044
  article-title: The second CHiME speech separation and recognition challenge: datasets, tasks and baselines
– volume: 27
  start-page: 621
  issue: 3
  year: 2013
  ident: 10.1016/j.csl.2016.10.005_bib0006
  article-title: The PASCAL CHiME speech separation and recognition challenge
  publication-title: Comput. Speech Lang.
  doi: 10.1016/j.csl.2012.10.004
– year: 2015
  ident: 10.1016/j.csl.2016.10.005_bib0039
  article-title: The Overview of the MELCO ASR System for the Third CHiME Challenge
– ident: 10.1016/j.csl.2016.10.005_bib0045
  doi: 10.1016/j.csl.2016.11.005
– volume: 4
  start-page: 29
  year: 2000
  ident: 10.1016/j.csl.2016.10.005_bib0018
  article-title: The Aurora experimental framework for the performance evaluation of speech recognition systems under noisy conditions
– start-page: 459
  year: 2003
  ident: 10.1016/j.csl.2016.10.005_bib0025
  article-title: On diagonal loading for minimum variance beamformers
– ident: 10.1016/j.csl.2016.10.005_bib0010
– year: 2015
  ident: 10.1016/j.csl.2016.10.005_sbref0040
  article-title: System Combination for Multi-Channel Noise Robust ASR
– volume: 15
  start-page: 2011
  issue: 7
  year: 2007
  ident: 10.1016/j.csl.2016.10.005_bib0001
  article-title: Acoustic beamforming for speaker diarization of meetings
  publication-title: IEEE Trans. Audio Speech Lang. Process.
  doi: 10.1109/TASL.2007.902460
– year: 2007
  ident: 10.1016/j.csl.2016.10.005_bib0014
– start-page: 475
  year: 2015
  ident: 10.1016/j.csl.2016.10.005_bib0019
  article-title: The MERL/SRI system for the 3rd CHiME challenge using beamforming, robust feature extraction, and advanced speech recognition
– volume: 2
  start-page: 3
  year: 2010
  ident: 10.1016/j.csl.2016.10.005_bib0026
  article-title: Recurrent neural network based language model
– start-page: 452
  year: 2015
  ident: 10.1016/j.csl.2016.10.005_bib0032
  article-title: Multi-channel speech processing architectures for noise robust speech recognition: 3rd CHiME challenge results
– volume: 41
  start-page: 389
  issue: 3–4
  year: 2007
  ident: 10.1016/j.csl.2016.10.005_bib0029
  article-title: The CHIL audiovisual corpus for lecture and meeting analysis inside smart rooms
  publication-title: Lang. Resour. Eval.
  doi: 10.1007/s10579-007-9054-4
– volume: 43
  start-page: 50
  issue: 1
  year: 1989
  ident: 10.1016/j.csl.2016.10.005_bib0012
  article-title: Some implementations of the boxplot
  publication-title: Am. Stat.
  doi: 10.1080/00031305.1989.10475612
– ident: 10.1016/j.csl.2016.10.005_bib0027
– volume: 82
  start-page: 82
  issue: 5
  year: 1933
  ident: 10.1016/j.csl.2016.10.005_bib0011
  article-title: Loudness, its definition, measurement and calculation
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.1915637
– start-page: 490
  year: 2015
  ident: 10.1016/j.csl.2016.10.005_bib0024
  article-title: Exploiting synchrony spectra and deep neural networks for noise-robust automatic speech recognition
– ident: 10.1016/j.csl.2016.10.005_bib0030
SSID ssj0006547
Score 2.4717984
Snippet •The presentation of a unique multi-microphone speech recognition challenge with speech recorded in real environments.•A detailed characterisation of the...
This paper presents the design and outcomes of the CHiME-3 challenge, the first open speech recognition evaluation designed to target the increasingly relevant...
SourceID hal
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 605
SubjectTerms Computer Science
Microphone array
Noise-robust ASR
Signal and Image Processing
‘CHiME’ challenge
Title The third ‘CHiME’ speech separation and recognition challenge: Analysis and outcomes
URI https://dx.doi.org/10.1016/j.csl.2016.10.005
https://inria.hal.science/hal-01382108
Volume 46
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagLDDwRrxlISak0CR27IStqkDhuQBSt8ivqEUorWhgRPwM-Hv9JfiSuMAAA2NOZyv6bJ8vubvvEDrUvgyEIdxTsaYeJVx60oo8nkgimJEskFDgfH3D0nt60Yt6M6jramEgrbKx_bVNr6x1I2k3aLZHg0H71p4P-KUZW48C4kM9qGCnHHb58etXmgc01609ycgDbRfZrHK81BiiDwE7rhK8ot_uptm--8ta3Tpny2ixcRdxp36jFTRjilW05Fox4OZkrqKFb7yCa6hnFx-X_cGTxpO39246uD6dvH3g8cgY1cdjU_N9DwssCo2nKUT2WbnWKifYsZVUOsPn0gJkxuvo_uz0rpt6TQsFT1Hql56ISJgoTRhLiAZqH6aJYnlIJDc-10JymlAhWZLQXBkSyygSVpfzPJFJHvtkA7WKYWE2Ec6ZCCRlFnKT0zwMgarOGKKFb7gwyt9CvgMvUw2_OLS5eMxcItlDZvHOAG8QWby30NF0yKgm1_hLmboVyX7skMwa_7-GHVjoptMDm3baucpABkFa-8UbvwTb_5t7B82HcMtXpYm7qFU-PZs966OUcr_ahPtornN-md58AgeJ5oI
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwEB5BOQCHfQAr2KeF9oQUmsSOneytqkBhaXsBpN4iv6J2hdKKBs78DPh7_JL1JHG1e1gOe8zItqzP9njimfkG4LsJVSQtFYFODQsYFSpQThSITFHJreKRwgTn8YTnN-znNJluwNDnwmBYZaf7W53eaOtO0u_Q7C_n8_6VOx_4pJk6iwL9Q9NN2EJ2qqQHW4OLy3yyVshYX7c1JpMAO3jnZhPmpVfogIj4aRPjlfzretqc-YfW5uI5fwdvOouRDNpJvYcNW-3BW1-NgXSHcw92_6AW3IepW39Sz-Z3hrw8Pg3z-fjs5fGZrJbW6hlZ2Zbye1ERWRmyjiJy39pXV_lBPGFJ02ZxXzuM7OoAbs7Prod50FVRCDRjYR3IhMaZNpTzjBpk9-GGal7GVAkbCiOVYBmTimcZK7WlqUoS6doKUWYqK9OQfoBetajsIZCSy0gx7lC3JSvjGNnqrKVGhlZIq8MjCD14he4oxrHSxW3hY8l-FQ7vAvFGkcP7CE7WXZYtv8ZrjZlfkeKvTVI4_f9at2MH3Xp4JNTOB6MCZeindT-96UP08f_G_gbb-fV4VIwuJpefYCfGS7_JVPwMvfru3n5xJkutvnZb8jf1XOkz
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+third+%27CHIME%27+speech+separation+and+recognition+challenge%3A+Analysis+and+outcomes&rft.jtitle=Computer+speech+%26+language&rft.au=Barker%2C+Jon&rft.au=Marxer%2C+Ricard&rft.au=Vincent%2C+Emmanuel&rft.au=Watanabe%2C+Shinji&rft.date=2017-11-01&rft.pub=Elsevier&rft.issn=0885-2308&rft.eissn=1095-8363&rft.volume=46&rft.spage=605&rft.epage=626&rft_id=info:doi/10.1016%2Fj.csl.2016.10.005&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_01382108v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-2308&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-2308&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-2308&client=summon