Effects of Schlemm’s Canal Suture Implantation Surgery and Pilocarpine Eye Drops on Trabecular Meshwork Pulsatile Motion

The trabecular meshwork is an important structure in the outflow pathway of aqueous humor, and its movement ability directly affects the resistance of aqueous humor outflow, thereby affecting the steady state of intraocular pressure (IOP). (1) Objective: The purpose of this study was to preliminaril...

Full description

Saved in:
Bibliographic Details
Published inBiomedicines Vol. 11; no. 11; p. 2932
Main Authors Sang, Qing, Du, Rong, Xin, Chen, Wang, Ningli
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.10.2023
Subjects
Online AccessGet full text
ISSN2227-9059
2227-9059
DOI10.3390/biomedicines11112932

Cover

Abstract The trabecular meshwork is an important structure in the outflow pathway of aqueous humor, and its movement ability directly affects the resistance of aqueous humor outflow, thereby affecting the steady state of intraocular pressure (IOP). (1) Objective: The purpose of this study was to preliminarily estimate the effects of pilocarpine eye drops and trabeculotomy tunneling trabeculoplasty (3T) on trabecular meshwork (TM) pulsatile motion via phase-sensitive optical coherence tomography (Phs-OCT). (2) Method: In a prospective single-arm study, we mainly recruited patients with primary open-angle glaucoma who did not have a history of glaucoma surgery, and mainly excluded angle closure glaucoma and other diseases that may cause visual field damage. The maximum velocity (MV) and cumulative displacement (CDisp) of the TM were quantified via Phs-OCT. All subjects underwent Phs-OCT examinations before and after the use of pilocarpine eye drops. Then, all subjects received 3T surgery and examinations of IOP at baseline, 1 day, 1 week, 1 month, 3 months, and 6 months post-surgery. Phaco-OCT examinations were performed at 3 and 6 months post-surgery, and the measurements were compared and analyzed. (3) Results: The MV of TM before and after the use of pilocarpine eye drops was 21.32 ± 2.63 μm/s and 17.00 ± 2.43 μm/s. The CDisp of TM before and after the use of pilocarpine eye drops was 0.204 ± 0.034 μm and 0.184 ± 0.035 μm. After the use of pilocarpine eye drops, both the MV and CDisp significantly decreased compared to those before use (p < 0.001 and 0.013, respectively). The IOP decreased from baseline at 22.16 ± 5.23 mmHg to 15.85 ± 3.71 mmHg after 3 months post-surgery and from 16.33 ± 2.51 mmHg at 6 months post-surgery, showing statistically significant differences (p < 0.001). The use of glaucoma medication decreased from baseline at 3.63 ± 0.65 to 1.17 ± 1.75 at 3 months and 1.00 ± 1.51 at 6 months post-surgery; the differences were statistically significant (p < 0.001). Additionally, there was no statistically significant difference in the MV between 3 and 6 months after surgery compared to baseline (p = 0.404 and 0.139, respectively). Further, there was no statistically significant difference in the CDisp between 3 and 6 months after surgery compared to baseline (p = 0.560 and 0.576, respectively) (4) Conclusions: After the preliminary study, we found that pilocarpine eye drops can attenuate TM pulsatile motion, and that 3T surgery may reduce IOP without affecting the pulsatile motion status of the TM.
AbstractList The trabecular meshwork is an important structure in the outflow pathway of aqueous humor, and its movement ability directly affects the resistance of aqueous humor outflow, thereby affecting the steady state of intraocular pressure (IOP). (1) Objective: The purpose of this study was to preliminarily estimate the effects of pilocarpine eye drops and trabeculotomy tunneling trabeculoplasty (3T) on trabecular meshwork (TM) pulsatile motion via phase-sensitive optical coherence tomography (Phs-OCT). (2) Method: In a prospective single-arm study, we mainly recruited patients with primary open-angle glaucoma who did not have a history of glaucoma surgery, and mainly excluded angle closure glaucoma and other diseases that may cause visual field damage. The maximum velocity (MV) and cumulative displacement (CDisp) of the TM were quantified via Phs-OCT. All subjects underwent Phs-OCT examinations before and after the use of pilocarpine eye drops. Then, all subjects received 3T surgery and examinations of IOP at baseline, 1 day, 1 week, 1 month, 3 months, and 6 months post-surgery. Phaco-OCT examinations were performed at 3 and 6 months post-surgery, and the measurements were compared and analyzed. (3) Results: The MV of TM before and after the use of pilocarpine eye drops was 21.32 ± 2.63 μm/s and 17.00 ± 2.43 μm/s. The CDisp of TM before and after the use of pilocarpine eye drops was 0.204 ± 0.034 μm and 0.184 ± 0.035 μm. After the use of pilocarpine eye drops, both the MV and CDisp significantly decreased compared to those before use (p < 0.001 and 0.013, respectively). The IOP decreased from baseline at 22.16 ± 5.23 mmHg to 15.85 ± 3.71 mmHg after 3 months post-surgery and from 16.33 ± 2.51 mmHg at 6 months post-surgery, showing statistically significant differences (p < 0.001). The use of glaucoma medication decreased from baseline at 3.63 ± 0.65 to 1.17 ± 1.75 at 3 months and 1.00 ± 1.51 at 6 months post-surgery; the differences were statistically significant (p < 0.001). Additionally, there was no statistically significant difference in the MV between 3 and 6 months after surgery compared to baseline (p = 0.404 and 0.139, respectively). Further, there was no statistically significant difference in the CDisp between 3 and 6 months after surgery compared to baseline (p = 0.560 and 0.576, respectively) (4) Conclusions: After the preliminary study, we found that pilocarpine eye drops can attenuate TM pulsatile motion, and that 3T surgery may reduce IOP without affecting the pulsatile motion status of the TM.
The trabecular meshwork is an important structure in the outflow pathway of aqueous humor, and its movement ability directly affects the resistance of aqueous humor outflow, thereby affecting the steady state of intraocular pressure (IOP). (1) Objective: The purpose of this study was to preliminarily estimate the effects of pilocarpine eye drops and trabeculotomy tunneling trabeculoplasty (3T) on trabecular meshwork (TM) pulsatile motion via phase-sensitive optical coherence tomography (Phs-OCT). (2) Method: In a prospective single-arm study, we mainly recruited patients with primary open-angle glaucoma who did not have a history of glaucoma surgery, and mainly excluded angle closure glaucoma and other diseases that may cause visual field damage. The maximum velocity (MV) and cumulative displacement (CDisp) of the TM were quantified via Phs-OCT. All subjects underwent Phs-OCT examinations before and after the use of pilocarpine eye drops. Then, all subjects received 3T surgery and examinations of IOP at baseline, 1 day, 1 week, 1 month, 3 months, and 6 months post-surgery. Phaco-OCT examinations were performed at 3 and 6 months post-surgery, and the measurements were compared and analyzed. (3) Results: The MV of TM before and after the use of pilocarpine eye drops was 21.32 ± 2.63 μm/s and 17.00 ± 2.43 μm/s. The CDisp of TM before and after the use of pilocarpine eye drops was 0.204 ± 0.034 μm and 0.184 ± 0.035 μm. After the use of pilocarpine eye drops, both the MV and CDisp significantly decreased compared to those before use (p < 0.001 and 0.013, respectively). The IOP decreased from baseline at 22.16 ± 5.23 mmHg to 15.85 ± 3.71 mmHg after 3 months post-surgery and from 16.33 ± 2.51 mmHg at 6 months post-surgery, showing statistically significant differences (p < 0.001). The use of glaucoma medication decreased from baseline at 3.63 ± 0.65 to 1.17 ± 1.75 at 3 months and 1.00 ± 1.51 at 6 months post-surgery; the differences were statistically significant (p < 0.001). Additionally, there was no statistically significant difference in the MV between 3 and 6 months after surgery compared to baseline (p = 0.404 and 0.139, respectively). Further, there was no statistically significant difference in the CDisp between 3 and 6 months after surgery compared to baseline (p = 0.560 and 0.576, respectively) (4) Conclusions: After the preliminary study, we found that pilocarpine eye drops can attenuate TM pulsatile motion, and that 3T surgery may reduce IOP without affecting the pulsatile motion status of the TM.The trabecular meshwork is an important structure in the outflow pathway of aqueous humor, and its movement ability directly affects the resistance of aqueous humor outflow, thereby affecting the steady state of intraocular pressure (IOP). (1) Objective: The purpose of this study was to preliminarily estimate the effects of pilocarpine eye drops and trabeculotomy tunneling trabeculoplasty (3T) on trabecular meshwork (TM) pulsatile motion via phase-sensitive optical coherence tomography (Phs-OCT). (2) Method: In a prospective single-arm study, we mainly recruited patients with primary open-angle glaucoma who did not have a history of glaucoma surgery, and mainly excluded angle closure glaucoma and other diseases that may cause visual field damage. The maximum velocity (MV) and cumulative displacement (CDisp) of the TM were quantified via Phs-OCT. All subjects underwent Phs-OCT examinations before and after the use of pilocarpine eye drops. Then, all subjects received 3T surgery and examinations of IOP at baseline, 1 day, 1 week, 1 month, 3 months, and 6 months post-surgery. Phaco-OCT examinations were performed at 3 and 6 months post-surgery, and the measurements were compared and analyzed. (3) Results: The MV of TM before and after the use of pilocarpine eye drops was 21.32 ± 2.63 μm/s and 17.00 ± 2.43 μm/s. The CDisp of TM before and after the use of pilocarpine eye drops was 0.204 ± 0.034 μm and 0.184 ± 0.035 μm. After the use of pilocarpine eye drops, both the MV and CDisp significantly decreased compared to those before use (p < 0.001 and 0.013, respectively). The IOP decreased from baseline at 22.16 ± 5.23 mmHg to 15.85 ± 3.71 mmHg after 3 months post-surgery and from 16.33 ± 2.51 mmHg at 6 months post-surgery, showing statistically significant differences (p < 0.001). The use of glaucoma medication decreased from baseline at 3.63 ± 0.65 to 1.17 ± 1.75 at 3 months and 1.00 ± 1.51 at 6 months post-surgery; the differences were statistically significant (p < 0.001). Additionally, there was no statistically significant difference in the MV between 3 and 6 months after surgery compared to baseline (p = 0.404 and 0.139, respectively). Further, there was no statistically significant difference in the CDisp between 3 and 6 months after surgery compared to baseline (p = 0.560 and 0.576, respectively) (4) Conclusions: After the preliminary study, we found that pilocarpine eye drops can attenuate TM pulsatile motion, and that 3T surgery may reduce IOP without affecting the pulsatile motion status of the TM.
Audience Academic
Author Xin, Chen
Sang, Qing
Du, Rong
Wang, Ningli
Author_xml – sequence: 1
  givenname: Qing
  surname: Sang
  fullname: Sang, Qing
– sequence: 2
  givenname: Rong
  surname: Du
  fullname: Du, Rong
– sequence: 3
  givenname: Chen
  orcidid: 0000-0001-8305-6592
  surname: Xin
  fullname: Xin, Chen
– sequence: 4
  givenname: Ningli
  orcidid: 0000-0002-8933-4482
  surname: Wang
  fullname: Wang, Ningli
BookMark eNptks1uEzEQx1eoSJTSN-BgiQuXFH_Fuz5WIdBIrajUcrbG3nHqsLsO9q6qcOI1-no8CU6D-FLHB1uj__z-ntG8rI6GOGBVvWb0TAhN39kQe2yDCwNmVoJrwZ9Vx5zzeqbpXB_99X5Rnea8oSU0Ew2Tx9W3pffoxkyiJzfursO-__H9IZMFDNCRm2mcEpJVv-1gGGEMcSi5tMa0IzC05Dp00UHaFm-y3CF5n-K2oAZym8CimzpI5Arz3X1MX8j11OWC6JBcxT3pVfXcQ5fx9Nd9Un3-sLxdXMwuP31cLc4vZ05KOs6Ai4YzW4Nz4ISuqbJU0Uag5E3DEFqvnLVasKY0zufOMidFO7fzWmGpasRJtTpw2wgbs02hh7QzEYJ5TMS0NpDG4Do0ogUuW-21QiaF4mB9q4G7QrZKNLSw3h5Y2xS_TphH04fssCvjwThlw8snGikV1UX65j_pJk6pTPVRxbViVKk_qjUU_zD4OCZwe6g5r2spWF3zve3ZE6pyWuyDK_vgy1j_LZCHApdizgn9774ZNfu1MU-tjfgJnau6Wg
Cites_doi 10.1097/MD.0000000000026603
10.1167/iovs.17-23579
10.1167/iovs.15-16739
10.1016/j.cmpb.2022.106921
10.1167/iovs.10-6342
10.1016/j.ophtha.2019.04.034
10.1016/j.survophthal.2019.08.002
10.1016/j.preteyeres.2020.100917
10.1016/j.exer.2020.107928
10.1364/BOE.3.001865
10.18632/oncotarget.3798
10.1155/2016/7080475
10.1016/j.ejphar.2023.175882
10.2147/OPTH.S293702
10.3389/fcell.2022.874828
10.3390/biom11091258
10.1073/pnas.1911837116
10.1016/j.survophthal.2009.05.001
10.1016/j.exer.2020.108105
10.1117/1.JBO.19.1.016013
10.1016/j.ophtha.2017.01.030
10.1016/j.ophtha.2018.03.052
10.3390/jcm11102696
10.1167/iovs.17-22175
10.1167/iovs.09-5101
10.1364/OE.18.014183
10.1038/s41433-020-01320-0
10.1063/1.4949469
10.1167/iovs.61.14.21
10.1016/j.ogla.2020.08.014
10.1016/j.cmpb.2023.107485
10.1016/j.exer.2016.07.011
10.1016/j.exer.2020.108373
10.1364/BOE.381332
10.4103/0974-9233.148347
10.1016/j.ajo.2018.01.013
10.1016/j.exer.2016.06.007
10.1016/j.exer.2016.07.007
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
8FE
8FH
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
DOA
DOI 10.3390/biomedicines11112932
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Collection (ProQuest)
Biological Sciences
Biological Science Database
Proquest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Biological Science Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
Publicly Available Content Database
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2227-9059
ExternalDocumentID oai_doaj_org_article_3da24d9f96e14362abfd9a2c932b6380
A774317720
10_3390_biomedicines11112932
GeographicLocations China
Beijing China
United States--US
GeographicLocations_xml – name: China
– name: Beijing China
– name: United States--US
GroupedDBID 53G
5VS
8FE
8FH
AADQD
AAFWJ
AAYXX
ACPRK
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BBNVY
BCNDV
BENPR
BHPHI
CCPQU
CITATION
EMOBN
GROUPED_DOAJ
GX1
HCIFZ
HYE
IAO
IHR
INH
ITC
KQ8
LK8
M7P
MODMG
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PROAC
RPM
PMFND
ABUWG
AZQEC
DWQXO
GNUQQ
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
PUEGO
ID FETCH-LOGICAL-c440t-a23821b7accac39706b06083e42881eadf6cbb931893225cb1c43d5b576eb7a83
IEDL.DBID DOA
ISSN 2227-9059
IngestDate Wed Aug 27 01:24:21 EDT 2025
Thu Sep 04 17:55:46 EDT 2025
Fri Jul 25 11:59:12 EDT 2025
Tue Jun 17 22:19:05 EDT 2025
Tue Jun 10 21:20:08 EDT 2025
Tue Jul 01 01:44:05 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c440t-a23821b7accac39706b06083e42881eadf6cbb931893225cb1c43d5b576eb7a83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8933-4482
0000-0001-8305-6592
OpenAccessLink https://doaj.org/article/3da24d9f96e14362abfd9a2c932b6380
PQID 2892961066
PQPubID 2032426
ParticipantIDs doaj_primary_oai_doaj_org_article_3da24d9f96e14362abfd9a2c932b6380
proquest_miscellaneous_2893844609
proquest_journals_2892961066
gale_infotracmisc_A774317720
gale_infotracacademiconefile_A774317720
crossref_primary_10_3390_biomedicines11112932
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20231001
PublicationDateYYYYMMDD 2023-10-01
PublicationDate_xml – month: 10
  year: 2023
  text: 20231001
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Biomedicines
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Xin (ref_6) 2017; 158
Wang (ref_13) 2017; 158
Xin (ref_16) 2018; 59
Shin (ref_25) 2018; 125
Salimi (ref_20) 2021; 4
Ahmed (ref_22) 2020; 127
Wang (ref_21) 2021; 35
ref_11
Vahabikashi (ref_12) 2019; 116
ref_10
Qin (ref_7) 2023; 954
Liang (ref_24) 2010; 18
Gao (ref_34) 2020; 61
Tanabe (ref_5) 2021; 100
Ethier (ref_1) 2020; 191
Lewczuk (ref_2) 2021; 15
Johnstone (ref_19) 2020; 83
Kaufman (ref_30) 1979; 18
Croft (ref_32) 2017; 158
Wang (ref_18) 2017; 58
Tang (ref_33) 2020; 11
Andrew (ref_4) 2020; 65
Morgan (ref_14) 2015; 6
Sultan (ref_36) 2009; 54
Cagini (ref_39) 2016; 2016
Huang (ref_37) 2017; 124
Mansouri (ref_38) 2015; 22
Last (ref_9) 2011; 52
Raghunathan (ref_15) 2015; 56
ref_3
ref_28
ref_26
Rashidi (ref_29) 2021; 202
ref_8
Jiang (ref_35) 2018; 188
Song (ref_27) 2016; 108
Kennedy (ref_17) 2012; 3
Kaufman (ref_23) 2020; 197
Tektas (ref_31) 2010; 51
References_xml – volume: 100
  start-page: e26603
  year: 2021
  ident: ref_5
  article-title: Heart rhythm-synchronized fibrin flap in a glaucoma tube shunt: The heartbeat acts as a drainage pump for the aqueous humor: A case report
  publication-title: Medicine
  doi: 10.1097/MD.0000000000026603
– volume: 59
  start-page: 3675
  year: 2018
  ident: ref_16
  article-title: Quantification of Pulse-Dependent Trabecular Meshwork Motion in Normal Humans Using Phase-Sensitive OCT
  publication-title: Investig. Ophthalmol. Vis. Sci.
  doi: 10.1167/iovs.17-23579
– volume: 56
  start-page: 4447
  year: 2015
  ident: ref_15
  article-title: Dexamethasone Stiffens Trabecular Meshwork, Trabecular Meshwork Cells, and Matrix
  publication-title: Investig. Ophthalmol. Vis. Sci.
  doi: 10.1167/iovs.15-16739
– ident: ref_8
  doi: 10.1016/j.cmpb.2022.106921
– volume: 52
  start-page: 2147
  year: 2011
  ident: ref_9
  article-title: Elastic modulus determination of normal and glaucomatous human trabecular meshwork
  publication-title: Investig. Ophthalmol. Vis. Sci.
  doi: 10.1167/iovs.10-6342
– volume: 127
  start-page: 52
  year: 2020
  ident: ref_22
  article-title: A Prospective Randomized Trial Comparing Hydrus and iStent Microinvasive Glaucoma Surgery Implants for Standalone Treatment of Open-Angle Glaucoma: The COMPARE Study
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2019.04.034
– volume: 65
  start-page: 18
  year: 2020
  ident: ref_4
  article-title: A review of aqueous outflow resistance and its relevance to microinvasive glaucoma surgery
  publication-title: Surv. Ophthalmol.
  doi: 10.1016/j.survophthal.2019.08.002
– volume: 83
  start-page: 100917
  year: 2020
  ident: ref_19
  article-title: Aqueous outflow regulation—21st century concepts
  publication-title: Prog. Retin. Eye Res.
  doi: 10.1016/j.preteyeres.2020.100917
– volume: 191
  start-page: 107928
  year: 2020
  ident: ref_1
  article-title: The effects of negative periocular pressure on intraocular pressure
  publication-title: Exp. Eye Res.
  doi: 10.1016/j.exer.2020.107928
– volume: 3
  start-page: 1865
  year: 2012
  ident: ref_17
  article-title: Strain estimation in phase-sensitive optical coherence elastography
  publication-title: Biomed. Opt. Express.
  doi: 10.1364/BOE.3.001865
– volume: 6
  start-page: 15362
  year: 2015
  ident: ref_14
  article-title: The intrinsic stiffness of human trabecular meshwork cells increases with senescence
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.3798
– volume: 2016
  start-page: 7080475
  year: 2016
  ident: ref_39
  article-title: Canaloplasty: Current Value in the Management of Glaucoma
  publication-title: J. Ophthalmol.
  doi: 10.1155/2016/7080475
– volume: 954
  start-page: 175882
  year: 2023
  ident: ref_7
  article-title: Glaucoma: Novel antifibrotic therapeutics for the trabecular meshwork
  publication-title: Eur. J. Pharmacol.
  doi: 10.1016/j.ejphar.2023.175882
– volume: 15
  start-page: 1109
  year: 2021
  ident: ref_2
  article-title: Microinvasive Glaucoma Surgery: A Review of Schlemm’s Canal-Based Procedures
  publication-title: Clin. Ophthalmol.
  doi: 10.2147/OPTH.S293702
– ident: ref_3
  doi: 10.3389/fcell.2022.874828
– ident: ref_10
  doi: 10.3390/biom11091258
– volume: 116
  start-page: 26555
  year: 2019
  ident: ref_12
  article-title: Increased stiffness and flow resistance of the inner wall of Schlemm’s canal in glaucomatous human eyes
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1911837116
– volume: 54
  start-page: 643
  year: 2009
  ident: ref_36
  article-title: Understanding the importance of IOP variables in glaucoma: A systematic review
  publication-title: Surv. Ophthalmol.
  doi: 10.1016/j.survophthal.2009.05.001
– volume: 197
  start-page: 108105
  year: 2020
  ident: ref_23
  article-title: Deconstructing aqueous humor outflow—The last 50 years
  publication-title: Exp. Eye Res.
  doi: 10.1016/j.exer.2020.108105
– ident: ref_26
  doi: 10.1117/1.JBO.19.1.016013
– volume: 124
  start-page: 793
  year: 2017
  ident: ref_37
  article-title: Aqueous Angiography in Living Nonhuman Primates Shows Segmental, Pulsatile, and Dynamic Angiographic Aqueous Humor Outflow
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2017.01.030
– volume: 125
  start-page: 1515
  year: 2018
  ident: ref_25
  article-title: Patterns of Progressive Ganglion Cell-Inner Plexiform Layer Thinning in Glaucoma Detected by OCT
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2018.03.052
– ident: ref_28
  doi: 10.3390/jcm11102696
– volume: 58
  start-page: 4809
  year: 2017
  ident: ref_18
  article-title: Estimating Human Trabecular Meshwork Stiffness by Numerical Modeling and Advanced OCT Imaging
  publication-title: Investig. Ophthalmol. Vis. Sci.
  doi: 10.1167/iovs.17-22175
– volume: 51
  start-page: 5083
  year: 2010
  ident: ref_31
  article-title: Qualitative and quantitative morphologic changes in the vasculature and extracellular matrix of the prelaminar optic nerve head in eyes with POAG
  publication-title: Investig. Ophthalmol. Vis. Sci.
  doi: 10.1167/iovs.09-5101
– volume: 18
  start-page: 14183
  year: 2010
  ident: ref_24
  article-title: Dynamic spectral-domain optical coherence elastography for tissue characterization
  publication-title: Opt. Express
  doi: 10.1364/OE.18.014183
– volume: 35
  start-page: 2848
  year: 2021
  ident: ref_21
  article-title: Outcomes of gonioscopy-assisted transluminal trabeculotomy in juvenile-onset primary open-angle glaucoma
  publication-title: Eye
  doi: 10.1038/s41433-020-01320-0
– volume: 108
  start-page: 191104
  year: 2016
  ident: ref_27
  article-title: Strategies to improve phase-stability of ultrafast swept source optical coherence tomography for single shot imaging of transient mechanical waves at 16 kHz frame rate
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4949469
– volume: 61
  start-page: 21
  year: 2020
  ident: ref_34
  article-title: Reduced Pulsatile Trabecular Meshwork Motion in Eyes With Primary Open Angle Glaucoma Using Phase-Sensitive Optical Coherence Tomography
  publication-title: Investig. Ophthalmol. Vis. Sci.
  doi: 10.1167/iovs.61.14.21
– volume: 4
  start-page: 162
  year: 2021
  ident: ref_20
  article-title: Gonioscopy-Assisted Transluminal Trabeculotomy in Younger to Middle-Aged Adults: One-Year Outcomes
  publication-title: Ophthalmol. Glaucoma.
  doi: 10.1016/j.ogla.2020.08.014
– ident: ref_11
  doi: 10.1016/j.cmpb.2023.107485
– volume: 158
  start-page: 3
  year: 2017
  ident: ref_13
  article-title: Trabecular meshwork stiffness in glaucoma
  publication-title: Exp. Eye Res.
  doi: 10.1016/j.exer.2016.07.011
– volume: 202
  start-page: 108373
  year: 2021
  ident: ref_29
  article-title: Iris stromal cell nuclei deform to more elongated shapes during pharmacologically-induced miosis and mydriasis
  publication-title: Exp. Eye Res.
  doi: 10.1016/j.exer.2020.108373
– volume: 11
  start-page: 699
  year: 2020
  ident: ref_33
  article-title: Measurement and visualization of stimulus-evoked tissue dynamics in mouse barrel cortex using phase-sensitive optical coherence tomography
  publication-title: Biomed. Opt. Express.
  doi: 10.1364/BOE.381332
– volume: 22
  start-page: 38
  year: 2015
  ident: ref_38
  article-title: Update on Schlemm’s canal based procedures
  publication-title: Middle East. Afr. J. Ophthalmol.
  doi: 10.4103/0974-9233.148347
– volume: 188
  start-page: 51
  year: 2018
  ident: ref_35
  article-title: Variation in IOP and the Risk of Developing Open-Angle Glaucoma: The Los Angeles Latino Eye Study
  publication-title: Am. J. Ophthalmol.
  doi: 10.1016/j.ajo.2018.01.013
– volume: 158
  start-page: 171
  year: 2017
  ident: ref_6
  article-title: Aqueous outflow regulation: Optical coherence tomography implicates pressure-dependent tissue motion
  publication-title: Exp. Eye Res.
  doi: 10.1016/j.exer.2016.06.007
– volume: 18
  start-page: 870
  year: 1979
  ident: ref_30
  article-title: Aqueous humor dynamics following total iridectomy in the cynomolgus monkey
  publication-title: Investig. Ophthalmol. Vis. Sci.
– volume: 158
  start-page: 187
  year: 2017
  ident: ref_32
  article-title: Age-related posterior ciliary muscle restriction—A link between trabecular meshwork and optic nerve head pathophysiology
  publication-title: Exp. Eye Res.
  doi: 10.1016/j.exer.2016.07.007
SSID ssj0000913814
Score 2.2334604
Snippet The trabecular meshwork is an important structure in the outflow pathway of aqueous humor, and its movement ability directly affects the resistance of aqueous...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Index Database
StartPage 2932
SubjectTerms Cooperation
Cornea
Eye
Glaucoma
Informed consent
intraocular pressure
Medical research
Medicine, Experimental
minimally invasive glaucoma surgery
Ophthalmic drugs
Optics
phase-sensitive OCT
Physiology
Pilocarpine
Statistical analysis
Surgery
Surgical techniques
Sutures
Tomography
trabecular meshwork
Viscoelasticity
Visual field
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NTtwwELYoXNoDorRVl9LKSEg9ReRvHftUQbsIIYFWUCRulu1MCtKSLMnugZ76GrweT8KMnd12pbYXR0psK_F4_pyZbxjbFyovCqnQN8lKbCohI-uwSUACDB0UzvoA2XNxcpWfXg-v-wO3rg-rXMhEL6jLxtEZ-QE6BqlCXS_El-l9RFWj6O9qX0LjBdtAESxxn28cjc7HF8tTFkK9lEkecuYy9O8PQla7_2vdkbhAdZeu6CQP3f8vAe21zvEW2-zNRX4Y6PuarUG9zV79ASL4hv0MAMQdbyp-6W4mcHf39Oux44Q7MOGXHjOEEwiwCVlGNd7zqdDc1CUf35I2a6c4Hx89AP_WNlOcquaoxGwonMvPoLuh-C0-nk8o-GcC_MwX_3nLro5H37-eRH1FhcjleTyLDCroNLGFQbo5tERiYWOBRhigEyIT3FSVcNYq5HNFjO5s4pCGQ4tOCeAomb1j63VTw3vGbQqVKo0Dh-vrskpWhXXkn6kYr5AMWLRYUz0NwBkaHQ6igf4bDQbsiBZ-2Zdgr_2Npv2hey7SWWnSvFSVEoB2nkiNrUplUofjLQqSeMA-E9k0MeesNfiRIccAX5lgrvRh4Q2mIsWeuys9kanc6uMF4XXP1J3-vQUHbG_5mEZSoFoNzdz3ySS62LHa-f8UH9hLqlwf4gJ32fqsncNHtG9m9lO_iZ8B9Af-hA
  priority: 102
  providerName: ProQuest
Title Effects of Schlemm’s Canal Suture Implantation Surgery and Pilocarpine Eye Drops on Trabecular Meshwork Pulsatile Motion
URI https://www.proquest.com/docview/2892961066
https://www.proquest.com/docview/2893844609
https://doaj.org/article/3da24d9f96e14362abfd9a2c932b6380
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEBUlvSSH0DYt2TYNKhRyMvHXytYxaTeEQsLSJJCbkOQxKWy8y3r30J76N_r3-kv6RtqEXWjpJRcbbNnImhnNPDzzRoiPSpdVVWtgk6LBoVV14jwOGdVEQ0-VdyFB9lKd35Rfboe3a62-OCcs0gPHhTsuGpuXjW61Irh2lVvXNtrmHnGHg-4EtJ7qdA1MhT1YZ3BFZayVK4Drj2M1e_hb3fM2ATeXb_iiQNn_r405eJuzF2J3FSbKkzi9l-IZda_Ezhp54J74EYmHezlt5ZW_m9D9_e-fv3rJfAMTeRW4QiST_9pYXdThWiiBlrZr5Pgbe7H5DO-To-8kP8-nM7yqk3BeLjbMlRfU33HelhwvJ5z0MyF5EZr-vBY3Z6PrT-fJqpNC4ssyXSQWjjnPXGUhL48IJFUuVQi-COCjzqBMrfLOadi3ZgP3LvOQ3dABjBCeqos3YqubdrQvpMup1Y315LG-vmjrtnKecZlOcaZsIJKHNTWzSJhhADRYBuZvMhiIU174x7FMdx0uQAnMSgnM_5RgII5YbIaNcjG3-MhYW4ApM72VOalCoFTlGHmwMRLG5DdvPwjerIy5N8CkuUaYqdRAfHi8zU9yglpH02UYU9SA1ql--xQf9E5sc1_7mDV4ILYW8yW9R_SzcIfi-enocvz1MCj8HxjMB1U
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEB6V9AAcEL8iUGCRQJys2mvH9h4QammqlDZRRFupt8W7XlOk1A52IlROvAYvwUPxJMzs2oFIwK0XW7J3V_bM7Hwz9vwAvIhFlCSpQN8kzPFQxKmnNB4Ckxoz0CbRygbITuLRafTubHC2AT-6XBgKq-x0olXUeaXpG_k2OgZcINbH8Zv5Z4-6RtHf1a6FhhOLQ3P5BV225vXBHvL3Jef7w5O3I6_tKuDpKPIXXoYgxQOVZPjsGtHYj5UfoyFi0BBPAyRsEWulBMq6IGHXKtD4HgOFhrnBWWmI616DzYgyWnuwuTucTN-vvupQlc00iFyOXhgKf9tl0du_5A2pJ4RXvoaBtlXAvwDBotz-bbjVmqdsx8nTHdgw5V24-UfRwnvw1RU8blhVsGN9PjMXFz-_fW8Y1TmYsWNbo4RR0eHMZTWVeM2mXrOszNn0E6FnPcf12PDSsL26muNSJUPQVK5RLxub5pzixdh0OaNgo5lhY9ts6D6cXgmtH0CvrErzEJjiphB5po1G-uqwSItEafIHhY9nE_TB62gq565Qh0QHh3gg_8aDPuwS4Vdjqcy2vVDVH2W7a2WYZzzKRSFig3ZlzDNV5CLjGucrVFx-H14R2yQpg0Wd4Uu6nAZ8ZCqrJXcSa6AlHEdurY3ETazXb3eMl60SaeRvke_D89VtmkmBcaWplnZMmKJL74tH_1_iGVwfnYyP5NHB5PAx3OBoq7mYxC3oLeqleYK21UI9bQWawYer3kO_AJRtOyQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEB6VVEJwQPyKQIFFAnGyYq-dtfeAUEsStZRGEaVSb8a7XlOk1A52IlROvAavwuPwJMzs2oFIwK0XR7J3V9mZ2flm7PkBeCZkFMeJRN8kzPFSiMRTGi-BSYwZahNrZQNkp2L_JHpzOjzdgh9dLgyFVXY60SrqvNL0jnyAjgGXiPVCDIo2LGI2mrxafPaogxR9ae3aaTgROTQXX9B9a14ejJDXzzmfjN-_3vfaDgOejiJ_6WUIWDxQcYb70IjMvlC-QKPEoFGeBEjkQmilJMq9JMHXKtC4p6FCI93grCTEda_AdoyoGPVge288nb1bv-GhiptJELl8vTCU_sBl1Nsv5g2pKoRavoGHtm3Av8DBIt7kJtxoTVW262TrFmyZ8jZc_6OA4R346oofN6wq2LE-m5vz85_fvjeMah7M2bGtV8KoAHHmMpxKvGfTsFlW5mz2iZC0XuB6bHxh2KiuFrhUyRBAlWvay45Mc0axY2y2mlPg0dywI9t46C6cXAqt70GvrEpzH5jippB5po1G-uqwSIpYafINpY-_JuiD19E0XbiiHSk6O8SD9G886MMeEX49lkpu2xtV_TFtT3Aa5hmPcllIYdDGFDxTRS4zrnG-QiXm9-EFsS0lxbCsM9yky2_Av0wlttLd2BprMceROxsj8UDrzccd49NWoTTpb_Hvw9P1Y5pJQXKlqVZ2TJige-_LB_9f4glcxbOTvj2YHj6EaxzNNheeuAO9Zb0yj9DMWqrHrTwz-HDZR-gX1IA_UA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+Schlemm%27s+Canal+Suture+Implantation+Surgery+and+Pilocarpine+Eye+Drops+on+Trabecular+Meshwork+Pulsatile+Motion&rft.jtitle=Biomedicines&rft.au=Sang%2C+Qing&rft.au=Du%2C+Rong&rft.au=Xin%2C+Chen&rft.au=Wang%2C+Ningli&rft.date=2023-10-01&rft.issn=2227-9059&rft.eissn=2227-9059&rft.volume=11&rft.issue=11&rft_id=info:doi/10.3390%2Fbiomedicines11112932&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-9059&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-9059&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-9059&client=summon