Ambient dose equivalent measurement with a CsI(Tl) based electronic personal dosimeter

In this manuscript, we present a method for the direct calculation of an ambient dose equivalent (H*(10)) for the external gamma-ray exposure with an energy range of 40 keV to 2 MeV in an electronic personal dosimeter (EPD). The designed EPD consists of a 3×3 mm2 PIN diode coupled to a 3×3×3 mm3 CsI...

Full description

Saved in:
Bibliographic Details
Published inNuclear engineering and technology Vol. 51; no. 8; pp. 1991 - 1997
Main Authors Park, Kyeongjin, Kim, Jinhwan, Lim, Kyung Taek, Kim, Junhyeok, Chang, Hojong, Kim, Hyunduk, Sharma, Manish, Cho, Gyuseong
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.12.2019
Elsevier
한국원자력학회
Subjects
Online AccessGet full text
ISSN1738-5733
2234-358X
DOI10.1016/j.net.2019.06.017

Cover

Abstract In this manuscript, we present a method for the direct calculation of an ambient dose equivalent (H*(10)) for the external gamma-ray exposure with an energy range of 40 keV to 2 MeV in an electronic personal dosimeter (EPD). The designed EPD consists of a 3×3 mm2 PIN diode coupled to a 3×3×3 mm3 CsI (Tl) scintillator block. The spectrum-to-dose conversion function (G(E)) for estimating H*(10) was calculated by applying the gradient-descent method based on the Monte-Carlo simulation. The optimal parameters for the G(E) were found and this conversion of the H*(10) from the gamma spectra was verified by using 241Am, 137Cs, 22Na, 54Mn, and 60Co radioisotopes. Furthermore, gamma spectra and H*(10) were obtained for an arbitrarily mixed multiple isotope case through Monte-Carlo simulation in order to expand the verification to more general cases. The H*(10) based on the G(E) function for the gamma spectra was then compared with H*(10) calculated by simulation. The relative difference of H*(10) from various single-source spectra was in the range of ±2.89%, and the relative difference of H*(10) for a multiple isotope case was in the range of ±5.56%.
AbstractList In this manuscript, we present a method for the direct calculation of an ambient dose equivalent (H*(10)) for the external gamma-ray exposure with an energy range of 40 keV to 2 MeV in an electronic personal dosimeter (EPD). The designed EPD consists of a 3×3 mm2 PIN diode coupled to a 3×3×3 mm3 CsI (Tl) scintillator block. The spectrum-to-dose conversion function (G(E)) for estimating H*(10) was calculated by applying the gradient-descent method based on the Monte-Carlo simulation. The optimal parameters for the G(E) were found and this conversion of the H*(10) from the gamma spectra was verified by using 241Am, 137Cs, 22Na, 54Mn, and 60Co radioisotopes. Furthermore, gamma spectra and H*(10) were obtained for an arbitrarily mixed multiple isotope case through Monte-Carlo simulation in order to expand the verification to more general cases. The H*(10) based on the G(E) function for the gamma spectra was then compared with H*(10) calculated by simulation. The relative difference of H*(10) from various single-source spectra was in the range of ±2.89%, and the relative difference of H*(10) for a multiple isotope case was in the range of ±5.56%.
In this manuscript, we present a method for the direct calculation of an ambient dose equivalent (H*(10)) for the external gamma-ray exposure with an energy range of 40 keV to 2 MeV in an electronic personal dosimeter (EPD). The designed EPD consists of a 3 3mm2 PIN diode coupled to a 3 3 3mm3 CsI (Tl) scintillator block. The spectrum-to-dose conversion function (G(E)) for estimating H*(10)was calculated by applying the gradient-descent method based on the Monte-Carlo simulation. The optimal parameters for the G(E) were found and this conversion of the H*(10) from the gamma spectra was verified by using 241Am, 137Cs, 22Na, 54Mn, and 60Co radioisotopes. Furthermore, gamma spectra and H*(10) were obtained for an arbitrarily mixed multiple isotope case through Monte-Carlo simulation in order to expand the verification to more general cases. The H*(10) based on the G(E) function for the gamma spectra was then compared with H*(10) calculated by simulation. The relative difference of H*(10) from various single-source spectra was in the range of ±2.89%, and the relative difference of H*(10) for a multiple isotope case was in the range of ±5.56%. KCI Citation Count: 0
In this manuscript, we present a method for the direct calculation of an ambient dose equivalent (H*(10)) for the external gamma-ray exposure with an energy range of 40 keV to 2 MeV in an electronic personal dosimeter (EPD). The designed EPD consists of a 3×3 mm2 PIN diode coupled to a 3×3×3 mm3 CsI (Tl) scintillator block. The spectrum-to-dose conversion function (G(E)) for estimating H*(10) was calculated by applying the gradient-descent method based on the Monte-Carlo simulation. The optimal parameters for the G(E) were found and this conversion of the H*(10) from the gamma spectra was verified by using 241Am, 137Cs, 22Na, 54Mn, and 60Co radioisotopes. Furthermore, gamma spectra and H*(10) were obtained for an arbitrarily mixed multiple isotope case through Monte-Carlo simulation in order to expand the verification to more general cases. The H*(10) based on the G(E) function for the gamma spectra was then compared with H*(10) calculated by simulation. The relative difference of H*(10) from various single-source spectra was in the range of ±2.89%, and the relative difference of H*(10) for a multiple isotope case was in the range of ±5.56%. Keywords: Electronic personal dosimeter, Ambient dose equivalent, G(E) function, PIN diode, CsI(Tl) scintillator
Author Lim, Kyung Taek
Kim, Junhyeok
Chang, Hojong
Kim, Jinhwan
Kim, Hyunduk
Park, Kyeongjin
Sharma, Manish
Cho, Gyuseong
Author_xml – sequence: 1
  givenname: Kyeongjin
  surname: Park
  fullname: Park, Kyeongjin
  organization: Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
– sequence: 2
  givenname: Jinhwan
  surname: Kim
  fullname: Kim, Jinhwan
  organization: Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
– sequence: 3
  givenname: Kyung Taek
  surname: Lim
  fullname: Lim, Kyung Taek
  organization: Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
– sequence: 4
  givenname: Junhyeok
  surname: Kim
  fullname: Kim, Junhyeok
  organization: Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
– sequence: 5
  givenname: Hojong
  surname: Chang
  fullname: Chang, Hojong
  organization: Institute for Information Technology Convergence, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
– sequence: 6
  givenname: Hyunduk
  surname: Kim
  fullname: Kim, Hyunduk
  organization: IRIS Co., Ltd., 193, Munji-ro, Yuseong-gu, Daejeon, 34051, Republic of Korea
– sequence: 7
  givenname: Manish
  surname: Sharma
  fullname: Sharma, Manish
  organization: Department of Nuclear Engineering, Khalifa University, Abu Dhabi, 127788, United Arab Emirates
– sequence: 8
  givenname: Gyuseong
  surname: Cho
  fullname: Cho, Gyuseong
  email: gscho@kaist.ac.kr, gscho1@kaist.ac.kr
  organization: Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002530190$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNp9kU1v1DAQhi1UJLaFH8AtR3pIGH8kTsRpteJjpUpIaEHcrIkzKd4mcbHdIv49zi7iwKEXj8ea57Xl55JdLH4hxl5zqDjw5u2xWihVAnhXQVMB18_YRgipSlm33y_YhmvZlrWW8gW7jPEI0CilYcO-befe0ZKKwUcq6OeDe8Rp7WfC-BBoXve_XPpRYLGL-zeH6broMdJQ0EQ2Bb84W9xTiH7BaQ1xMyUKL9nzEadIr_7WK_b1w_vD7lN58_njfre9Ka1SkMqur3mDeW1Rtthxgh40Qkt1hyPXXHV6HHousB5BKV5rUrLWuSOSqHUnr9j1OXcJo7mzznh0p3rrzV0w2y-HvWlEnmx0nt2fZwePR3Mf3Izh9wk4HfhwazAkZycyregGgXoEKUbVgEItBAfCXkrd2X69l5-zbPAxBhr_5XEwqxBzNFmIWYUYaEwWkhn9H2NdwuT8kgK66Uny3Zmk_JWPjoKJNkuzNLiQJeT3uyfoP7GbpsA
CitedBy_id crossref_primary_10_1515_kern_2021_1035
crossref_primary_10_1051_e3sconf_202343104002
crossref_primary_10_1016_j_radphyschem_2022_110444
crossref_primary_10_1038_s41598_022_06326_0
crossref_primary_10_1088_1748_0221_19_01_P01005
crossref_primary_10_1016_j_net_2024_08_042
crossref_primary_10_1088_1742_6596_1796_1_012061
crossref_primary_10_3390_s23104591
crossref_primary_10_3390_s20102884
crossref_primary_10_1016_j_radmeas_2024_107274
crossref_primary_10_1088_1748_0221_15_02_C02018
crossref_primary_10_1007_s12043_021_02249_z
crossref_primary_10_1016_j_net_2019_12_021
crossref_primary_10_1007_s40995_022_01402_6
crossref_primary_10_1016_j_apradiso_2023_110707
crossref_primary_10_1088_1748_0221_18_08_P08010
Cites_doi 10.1109/23.708319
10.1016/S0168-9002(03)00749-6
10.1016/j.nima.2005.11.117
10.1016/j.jenvrad.2018.01.020
10.1016/j.nima.2011.08.014
10.1016/j.jenvrad.2016.02.008
10.1016/j.nima.2006.02.193
10.1016/j.nima.2017.11.067
10.1007/s41365-018-0375-3
10.1016/j.apradiso.2016.09.001
10.1109/TNS.1977.4328758
10.1093/oxfordjournals.rpd.a032207
10.1016/j.jenvrad.2014.02.028
10.1097/00004032-196604000-00009
10.1093/rpd/nct342
ContentType Journal Article
Copyright 2019
Copyright_xml – notice: 2019
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
ACYCR
DOI 10.1016/j.net.2019.06.017
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ Directory of Open Access Journals
Korean Citation Index
DatabaseTitle CrossRef
DatabaseTitleList


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2234-358X
EndPage 1997
ExternalDocumentID oai_kci_go_kr_ARTI_6277967
oai_doaj_org_article_829d2a7f032f4604a72210eab3379cb9
10_1016_j_net_2019_06_017
S1738573319301342
GroupedDBID .UV
0R~
0SF
123
4.4
457
5VS
6I.
9ZL
AACTN
AAEDW
AAFTH
AALRI
AAXUO
ABMAC
ACGFS
ACYCR
ADBBV
ADEZE
AENEX
AEXQZ
AFTJW
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BCNDV
EBS
EJD
FDB
GROUPED_DOAJ
IPNFZ
JDI
KQ8
KVFHK
M41
NCXOZ
O9-
OK1
RIG
ROL
SSZ
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
CITATION
ID FETCH-LOGICAL-c440t-9b516a9b58a38a91e0b07a08e59af171497fdb12a5f044157e4357a5fee3a7793
IEDL.DBID DOA
ISSN 1738-5733
IngestDate Tue Nov 21 21:13:49 EST 2023
Mon Sep 08 19:52:58 EDT 2025
Tue Jul 01 01:28:28 EDT 2025
Thu Apr 24 23:01:54 EDT 2025
Wed May 17 00:13:14 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Electronic personal dosimeter
Ambient dose equivalent
CsI(Tl) scintillator
PIN diode
G(E) function
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c440t-9b516a9b58a38a91e0b07a08e59af171497fdb12a5f044157e4357a5fee3a7793
OpenAccessLink https://doaj.org/article/829d2a7f032f4604a72210eab3379cb9
PageCount 7
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_6277967
doaj_primary_oai_doaj_org_article_829d2a7f032f4604a72210eab3379cb9
crossref_primary_10_1016_j_net_2019_06_017
crossref_citationtrail_10_1016_j_net_2019_06_017
elsevier_sciencedirect_doi_10_1016_j_net_2019_06_017
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2019
2019-12-00
2019-12-01
2019-12
PublicationDateYYYYMMDD 2019-12-01
PublicationDate_xml – month: 12
  year: 2019
  text: December 2019
PublicationDecade 2010
PublicationTitle Nuclear engineering and technology
PublicationYear 2019
Publisher Elsevier B.V
Elsevier
한국원자력학회
Publisher_xml – name: Elsevier B.V
– name: Elsevier
– name: 한국원자력학회
References Buzhan (bib17) 2002
(bib7) 1996; vol. 74
Huang (bib10) 2018; 29
Knoll, Glenn (bib21) 2010
Moriuchi, Miyanaga (bib11) 1966; 12
Yi (bib5) 1997; 74
Buzhan (bib15) 2003; 504
Buzhan, Karakash, Yu (bib2) 2018; 912
Patt (bib19) 1998; 45
Tsuda, Saito (bib9) 2017; 166
Clément (bib20) 1998
Camp, Vargas (bib4) 2014; 160
Dolgoshein (bib16) 2006; 563
Totsuka (bib18) 2011; 659
Terada (bib12) 1977; 24
Tsutsumi, Tanimura (bib13) 2006; 557
(bib1) 1996
Kessler (bib6) 2018; 187
Tsuda (bib8) 2015; 139
Pelowitz (bib14) 2013
Casanovas, Prieto, Salvado (bib3) 2016; 118
Pelowitz (10.1016/j.net.2019.06.017_bib14) 2013
Moriuchi (10.1016/j.net.2019.06.017_bib11) 1966; 12
Terada (10.1016/j.net.2019.06.017_bib12) 1977; 24
Clément (10.1016/j.net.2019.06.017_bib20) 1998
Yi (10.1016/j.net.2019.06.017_bib5) 1997; 74
Kessler (10.1016/j.net.2019.06.017_bib6) 2018; 187
Knoll, Glenn (10.1016/j.net.2019.06.017_bib21) 2010
Tsuda (10.1016/j.net.2019.06.017_bib9) 2017; 166
Huang (10.1016/j.net.2019.06.017_bib10) 2018; 29
(10.1016/j.net.2019.06.017_bib1) 1996
Casanovas (10.1016/j.net.2019.06.017_bib3) 2016; 118
Tsuda (10.1016/j.net.2019.06.017_bib8) 2015; 139
Patt (10.1016/j.net.2019.06.017_bib19) 1998; 45
(10.1016/j.net.2019.06.017_bib7) 1996; vol. 74
Camp (10.1016/j.net.2019.06.017_bib4) 2014; 160
Buzhan (10.1016/j.net.2019.06.017_bib15) 2003; 504
Tsutsumi (10.1016/j.net.2019.06.017_bib13) 2006; 557
Dolgoshein (10.1016/j.net.2019.06.017_bib16) 2006; 563
Buzhan (10.1016/j.net.2019.06.017_bib17) 2002
Totsuka (10.1016/j.net.2019.06.017_bib18) 2011; 659
Buzhan (10.1016/j.net.2019.06.017_bib2) 2018; 912
References_xml – volume: 24
  start-page: 647
  year: 1977
  end-page: 651
  ident: bib12
  article-title: Spectrum-to-Exposure rate conversion function of a Ge(Li) in-situ environmental gamma-ray spectrometer
  publication-title: IEEE Trans. Nucl. Sci.
– volume: 563
  start-page: 368
  year: 2006
  end-page: 376
  ident: bib16
  article-title: Status report on silicon photomultiplier development and its applications
  publication-title: Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip.
– volume: vol. 74
  year: 1996
  ident: bib7
  publication-title: Conversion Coefficients for Use in Radiological Protection against External Radiation
– volume: 74
  start-page: 273
  year: 1997
  end-page: 278
  ident: bib5
  article-title: Measurement of ambient dose equivalent using a Nai(Tl) scintillation detector
  publication-title: Radiat. Protect. Dosim.
– volume: 12
  start-page: 541
  year: 1966
  end-page: 551
  ident: bib11
  article-title: A spectrometric method for measurement of low-level gamma exposure dose
  publication-title: Health Phys.
– volume: 160
  start-page: 264
  year: 2014
  end-page: 268
  ident: bib4
  article-title: Ambient dose estimation H*(10) from Labr3(Ce) spectra
  publication-title: Radiat. Protect. Dosim.
– start-page: 1448
  year: 1998
  end-page: 1452
  ident: bib20
  article-title: Development of a 3D position sensitive scintillation detector using neural networks
  publication-title: IEEE Nucl. Sci. Symp. Conf. Rec.
– volume: 166
  start-page: 419
  year: 2017
  end-page: 426
  ident: bib9
  article-title: Spectrum-dose conversion operator of Nai(Tl) and Csi(Tl) scintillation detectors for air dose rate measurement in contaminated environments
  publication-title: J. Environ. Radioact.
– volume: 45
  start-page: 2126
  year: 1998
  end-page: 2131
  ident: bib19
  article-title: High resolution CsI(Tl)/Si-PIN detector development for breast imaging
  publication-title: IEEE Trans. Nucl. Sci.
– start-page: 717
  year: 2002
  end-page: 728
  ident: bib17
  article-title: An advanced study of silicon photomultiplier
  publication-title: Proceedings of the Seventh International Conference on Advance Technology & Particle Physics
– volume: 139
  start-page: 260
  year: 2015
  end-page: 265
  ident: bib8
  article-title: Characteristics and verification of a Car-borne survey system for dose rates in air: kurama-ii
  publication-title: J. Environ. Radioact.
– volume: 504
  start-page: 48
  year: 2003
  end-page: 52
  ident: bib15
  article-title: Silicon photomultiplier and its possible applications
  publication-title: Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip.
– volume: 557
  start-page: 554
  year: 2006
  end-page: 560
  ident: bib13
  article-title: LaCl
  publication-title: Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip.
– volume: 187
  start-page: 115
  year: 2018
  end-page: 121
  ident: bib6
  article-title: Novel spectrometers for environmental dose rate monitoring
  publication-title: J. Environ. Radioact.
– year: 1996
  ident: bib1
  publication-title: International Comission on Radiation Units and Measurements, Quantities and Units in Radiaiton Protectrion Dosimetry
– volume: 118
  start-page: 154
  year: 2016
  end-page: 159
  ident: bib3
  article-title: Calculation of the ambient dose equivalent H*(10) from gamma-ray spectra obtained with scintillation detectors
  publication-title: Appl. Radiat. Isot.
– volume: 29
  start-page: 35
  year: 2018
  ident: bib10
  article-title: Measurement of air kerma rate and ambient dose equivalent rate using the G(E) function with hemispherical cdznte detector
  publication-title: Nucl. Sci. Tech.
– year: 2013
  ident: bib14
  article-title: MCNP6 User's Manual, version 1.0
– volume: 659
  start-page: 399
  year: 2011
  end-page: 402
  ident: bib18
  article-title: Performance test of Si pin photodiode line scanner for thermal neutron detection
  publication-title: Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip.
– year: 2010
  ident: bib21
  article-title: Radiation Detection and Measurement
– volume: 912
  start-page: 245
  year: 2018
  end-page: 247
  ident: bib2
  article-title: Silicon photomultiplier and Csi(Tl) scintillator in application to portable H*(10) dosimeter
  publication-title: Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip.
– volume: 45
  start-page: 2126
  year: 1998
  ident: 10.1016/j.net.2019.06.017_bib19
  article-title: High resolution CsI(Tl)/Si-PIN detector development for breast imaging
  publication-title: IEEE Trans. Nucl. Sci.
  doi: 10.1109/23.708319
– year: 1996
  ident: 10.1016/j.net.2019.06.017_bib1
– volume: 504
  start-page: 48
  issue: 1–3
  year: 2003
  ident: 10.1016/j.net.2019.06.017_bib15
  article-title: Silicon photomultiplier and its possible applications
  publication-title: Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip.
  doi: 10.1016/S0168-9002(03)00749-6
– volume: vol. 74
  year: 1996
  ident: 10.1016/j.net.2019.06.017_bib7
– start-page: 717
  year: 2002
  ident: 10.1016/j.net.2019.06.017_bib17
  article-title: An advanced study of silicon photomultiplier
– volume: 557
  start-page: 554
  issue: 2
  year: 2006
  ident: 10.1016/j.net.2019.06.017_bib13
  article-title: LaCl3(Ce) scintillation detector applications for environmental gamma-ray measurements of low to high dose rates
  publication-title: Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip.
  doi: 10.1016/j.nima.2005.11.117
– volume: 187
  start-page: 115
  year: 2018
  ident: 10.1016/j.net.2019.06.017_bib6
  article-title: Novel spectrometers for environmental dose rate monitoring
  publication-title: J. Environ. Radioact.
  doi: 10.1016/j.jenvrad.2018.01.020
– volume: 659
  start-page: 399
  issue: 1
  year: 2011
  ident: 10.1016/j.net.2019.06.017_bib18
  article-title: Performance test of Si pin photodiode line scanner for thermal neutron detection
  publication-title: Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip.
  doi: 10.1016/j.nima.2011.08.014
– volume: 166
  start-page: 419
  issue: Pt 3
  year: 2017
  ident: 10.1016/j.net.2019.06.017_bib9
  article-title: Spectrum-dose conversion operator of Nai(Tl) and Csi(Tl) scintillation detectors for air dose rate measurement in contaminated environments
  publication-title: J. Environ. Radioact.
  doi: 10.1016/j.jenvrad.2016.02.008
– volume: 563
  start-page: 368
  issue: 2
  year: 2006
  ident: 10.1016/j.net.2019.06.017_bib16
  article-title: Status report on silicon photomultiplier development and its applications
  publication-title: Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip.
  doi: 10.1016/j.nima.2006.02.193
– volume: 912
  start-page: 245
  year: 2018
  ident: 10.1016/j.net.2019.06.017_bib2
  article-title: Silicon photomultiplier and Csi(Tl) scintillator in application to portable H*(10) dosimeter
  publication-title: Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip.
  doi: 10.1016/j.nima.2017.11.067
– volume: 29
  start-page: 35
  issue: 3
  year: 2018
  ident: 10.1016/j.net.2019.06.017_bib10
  article-title: Measurement of air kerma rate and ambient dose equivalent rate using the G(E) function with hemispherical cdznte detector
  publication-title: Nucl. Sci. Tech.
  doi: 10.1007/s41365-018-0375-3
– start-page: 1448
  year: 1998
  ident: 10.1016/j.net.2019.06.017_bib20
  article-title: Development of a 3D position sensitive scintillation detector using neural networks
  publication-title: IEEE Nucl. Sci. Symp. Conf. Rec.
– volume: 118
  start-page: 154
  year: 2016
  ident: 10.1016/j.net.2019.06.017_bib3
  article-title: Calculation of the ambient dose equivalent H*(10) from gamma-ray spectra obtained with scintillation detectors
  publication-title: Appl. Radiat. Isot.
  doi: 10.1016/j.apradiso.2016.09.001
– year: 2013
  ident: 10.1016/j.net.2019.06.017_bib14
– year: 2010
  ident: 10.1016/j.net.2019.06.017_bib21
– volume: 24
  start-page: 647
  issue: 1
  year: 1977
  ident: 10.1016/j.net.2019.06.017_bib12
  article-title: Spectrum-to-Exposure rate conversion function of a Ge(Li) in-situ environmental gamma-ray spectrometer
  publication-title: IEEE Trans. Nucl. Sci.
  doi: 10.1109/TNS.1977.4328758
– volume: 74
  start-page: 273
  issue: 4
  year: 1997
  ident: 10.1016/j.net.2019.06.017_bib5
  article-title: Measurement of ambient dose equivalent using a Nai(Tl) scintillation detector
  publication-title: Radiat. Protect. Dosim.
  doi: 10.1093/oxfordjournals.rpd.a032207
– volume: 139
  start-page: 260
  year: 2015
  ident: 10.1016/j.net.2019.06.017_bib8
  article-title: Characteristics and verification of a Car-borne survey system for dose rates in air: kurama-ii
  publication-title: J. Environ. Radioact.
  doi: 10.1016/j.jenvrad.2014.02.028
– volume: 12
  start-page: 541
  year: 1966
  ident: 10.1016/j.net.2019.06.017_bib11
  article-title: A spectrometric method for measurement of low-level gamma exposure dose
  publication-title: Health Phys.
  doi: 10.1097/00004032-196604000-00009
– volume: 160
  start-page: 264
  issue: 4
  year: 2014
  ident: 10.1016/j.net.2019.06.017_bib4
  article-title: Ambient dose estimation H*(10) from Labr3(Ce) spectra
  publication-title: Radiat. Protect. Dosim.
  doi: 10.1093/rpd/nct342
SSID ssj0064470
Score 2.2354016
Snippet In this manuscript, we present a method for the direct calculation of an ambient dose equivalent (H*(10)) for the external gamma-ray exposure with an energy...
SourceID nrf
doaj
crossref
elsevier
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 1991
SubjectTerms Ambient dose equivalent
CsI(Tl) scintillator
Electronic personal dosimeter
G(E) function
PIN diode
원자력공학
Title Ambient dose equivalent measurement with a CsI(Tl) based electronic personal dosimeter
URI https://dx.doi.org/10.1016/j.net.2019.06.017
https://doaj.org/article/829d2a7f032f4604a72210eab3379cb9
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002530190
Volume 51
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Nuclear Engineering and Technology, 2019, 51(8), , pp.1991-1997
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA7akx7EJ9YXQTyosJhmH9kcVRSrKAgq3kKySaS23dY-_r8z-7D1Ui9edsmS3YTJZOebZPINISe4OyWkCAPrYhNEieaBlM7BvLJgzHyYWYML-o9Pyd1rdP8ev8-l-sKYsJIeuBTcRcql5Vp4FnIfJSzSgoOX4rQJQyEzUxzdY5LVzlT5DwYjL8qjkDCdkfGv3s8sIrvA58eYLlkQdxaZymYWqSDu_2WYlvORnzM5t-tkrcKK9LLs4wZZcvkmWZ1jENwib5d9gycaqR2MHXVf0w5oDpb7s7U_imutVNPrcfv0pXdG0XBZOst_Q4cVIMePdPoYH7NNXm9vXq7vgipVQpBFEZsE0sStRMM11WGqZcsxw4RmqYul9pjjXApvTYvr2DP0oIQDmCSg5FyoBczRHdLIB7nbJTS04GN4wH2pd1FiuTGZg9-CBceHawBjTcJqcams4hHHdBY9VQeMfSqQsEIJKwyaa4kmOf95ZViSaCyqfIVj8FMR-a-LB6AVqtIK9ZdWNElUj6CqoEQJEeBTnUVtH8Noq27WKZrF-8dAdUcKnIu2SjhIKhF7_9HBfbKC7ZaBMQekMRlN3SHAm4k5KjQZrg_P6TcFF_RK
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ambient+dose+equivalent+measurement+with+a+CsI%28Tl%29+based+electronic+personal+dosimeter&rft.jtitle=Nuclear+engineering+and+technology&rft.au=Park%2C+Kyeongjin&rft.au=Kim%2C+Jinhwan&rft.au=Lim%2C+Kyung+Taek&rft.au=Kim%2C+Junhyeok&rft.date=2019-12-01&rft.issn=1738-5733&rft.volume=51&rft.issue=8&rft.spage=1991&rft.epage=1997&rft_id=info:doi/10.1016%2Fj.net.2019.06.017&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_net_2019_06_017
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1738-5733&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1738-5733&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1738-5733&client=summon