Ambient dose equivalent measurement with a CsI(Tl) based electronic personal dosimeter
In this manuscript, we present a method for the direct calculation of an ambient dose equivalent (H*(10)) for the external gamma-ray exposure with an energy range of 40 keV to 2 MeV in an electronic personal dosimeter (EPD). The designed EPD consists of a 3×3 mm2 PIN diode coupled to a 3×3×3 mm3 CsI...
Saved in:
Published in | Nuclear engineering and technology Vol. 51; no. 8; pp. 1991 - 1997 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.12.2019
Elsevier 한국원자력학회 |
Subjects | |
Online Access | Get full text |
ISSN | 1738-5733 2234-358X |
DOI | 10.1016/j.net.2019.06.017 |
Cover
Abstract | In this manuscript, we present a method for the direct calculation of an ambient dose equivalent (H*(10)) for the external gamma-ray exposure with an energy range of 40 keV to 2 MeV in an electronic personal dosimeter (EPD). The designed EPD consists of a 3×3 mm2 PIN diode coupled to a 3×3×3 mm3 CsI (Tl) scintillator block. The spectrum-to-dose conversion function (G(E)) for estimating H*(10) was calculated by applying the gradient-descent method based on the Monte-Carlo simulation. The optimal parameters for the G(E) were found and this conversion of the H*(10) from the gamma spectra was verified by using 241Am, 137Cs, 22Na, 54Mn, and 60Co radioisotopes. Furthermore, gamma spectra and H*(10) were obtained for an arbitrarily mixed multiple isotope case through Monte-Carlo simulation in order to expand the verification to more general cases. The H*(10) based on the G(E) function for the gamma spectra was then compared with H*(10) calculated by simulation. The relative difference of H*(10) from various single-source spectra was in the range of ±2.89%, and the relative difference of H*(10) for a multiple isotope case was in the range of ±5.56%. |
---|---|
AbstractList | In this manuscript, we present a method for the direct calculation of an ambient dose equivalent (H*(10)) for the external gamma-ray exposure with an energy range of 40 keV to 2 MeV in an electronic personal dosimeter (EPD). The designed EPD consists of a 3×3 mm2 PIN diode coupled to a 3×3×3 mm3 CsI (Tl) scintillator block. The spectrum-to-dose conversion function (G(E)) for estimating H*(10) was calculated by applying the gradient-descent method based on the Monte-Carlo simulation. The optimal parameters for the G(E) were found and this conversion of the H*(10) from the gamma spectra was verified by using 241Am, 137Cs, 22Na, 54Mn, and 60Co radioisotopes. Furthermore, gamma spectra and H*(10) were obtained for an arbitrarily mixed multiple isotope case through Monte-Carlo simulation in order to expand the verification to more general cases. The H*(10) based on the G(E) function for the gamma spectra was then compared with H*(10) calculated by simulation. The relative difference of H*(10) from various single-source spectra was in the range of ±2.89%, and the relative difference of H*(10) for a multiple isotope case was in the range of ±5.56%. In this manuscript, we present a method for the direct calculation of an ambient dose equivalent (H*(10)) for the external gamma-ray exposure with an energy range of 40 keV to 2 MeV in an electronic personal dosimeter (EPD). The designed EPD consists of a 3 3mm2 PIN diode coupled to a 3 3 3mm3 CsI (Tl) scintillator block. The spectrum-to-dose conversion function (G(E)) for estimating H*(10)was calculated by applying the gradient-descent method based on the Monte-Carlo simulation. The optimal parameters for the G(E) were found and this conversion of the H*(10) from the gamma spectra was verified by using 241Am, 137Cs, 22Na, 54Mn, and 60Co radioisotopes. Furthermore, gamma spectra and H*(10) were obtained for an arbitrarily mixed multiple isotope case through Monte-Carlo simulation in order to expand the verification to more general cases. The H*(10) based on the G(E) function for the gamma spectra was then compared with H*(10) calculated by simulation. The relative difference of H*(10) from various single-source spectra was in the range of ±2.89%, and the relative difference of H*(10) for a multiple isotope case was in the range of ±5.56%. KCI Citation Count: 0 In this manuscript, we present a method for the direct calculation of an ambient dose equivalent (H*(10)) for the external gamma-ray exposure with an energy range of 40 keV to 2 MeV in an electronic personal dosimeter (EPD). The designed EPD consists of a 3×3 mm2 PIN diode coupled to a 3×3×3 mm3 CsI (Tl) scintillator block. The spectrum-to-dose conversion function (G(E)) for estimating H*(10) was calculated by applying the gradient-descent method based on the Monte-Carlo simulation. The optimal parameters for the G(E) were found and this conversion of the H*(10) from the gamma spectra was verified by using 241Am, 137Cs, 22Na, 54Mn, and 60Co radioisotopes. Furthermore, gamma spectra and H*(10) were obtained for an arbitrarily mixed multiple isotope case through Monte-Carlo simulation in order to expand the verification to more general cases. The H*(10) based on the G(E) function for the gamma spectra was then compared with H*(10) calculated by simulation. The relative difference of H*(10) from various single-source spectra was in the range of ±2.89%, and the relative difference of H*(10) for a multiple isotope case was in the range of ±5.56%. Keywords: Electronic personal dosimeter, Ambient dose equivalent, G(E) function, PIN diode, CsI(Tl) scintillator |
Author | Lim, Kyung Taek Kim, Junhyeok Chang, Hojong Kim, Jinhwan Kim, Hyunduk Park, Kyeongjin Sharma, Manish Cho, Gyuseong |
Author_xml | – sequence: 1 givenname: Kyeongjin surname: Park fullname: Park, Kyeongjin organization: Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea – sequence: 2 givenname: Jinhwan surname: Kim fullname: Kim, Jinhwan organization: Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea – sequence: 3 givenname: Kyung Taek surname: Lim fullname: Lim, Kyung Taek organization: Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea – sequence: 4 givenname: Junhyeok surname: Kim fullname: Kim, Junhyeok organization: Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea – sequence: 5 givenname: Hojong surname: Chang fullname: Chang, Hojong organization: Institute for Information Technology Convergence, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea – sequence: 6 givenname: Hyunduk surname: Kim fullname: Kim, Hyunduk organization: IRIS Co., Ltd., 193, Munji-ro, Yuseong-gu, Daejeon, 34051, Republic of Korea – sequence: 7 givenname: Manish surname: Sharma fullname: Sharma, Manish organization: Department of Nuclear Engineering, Khalifa University, Abu Dhabi, 127788, United Arab Emirates – sequence: 8 givenname: Gyuseong surname: Cho fullname: Cho, Gyuseong email: gscho@kaist.ac.kr, gscho1@kaist.ac.kr organization: Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea |
BackLink | https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002530190$$DAccess content in National Research Foundation of Korea (NRF) |
BookMark | eNp9kU1v1DAQhi1UJLaFH8AtR3pIGH8kTsRpteJjpUpIaEHcrIkzKd4mcbHdIv49zi7iwKEXj8ea57Xl55JdLH4hxl5zqDjw5u2xWihVAnhXQVMB18_YRgipSlm33y_YhmvZlrWW8gW7jPEI0CilYcO-befe0ZKKwUcq6OeDe8Rp7WfC-BBoXve_XPpRYLGL-zeH6broMdJQ0EQ2Bb84W9xTiH7BaQ1xMyUKL9nzEadIr_7WK_b1w_vD7lN58_njfre9Ka1SkMqur3mDeW1Rtthxgh40Qkt1hyPXXHV6HHousB5BKV5rUrLWuSOSqHUnr9j1OXcJo7mzznh0p3rrzV0w2y-HvWlEnmx0nt2fZwePR3Mf3Izh9wk4HfhwazAkZycyregGgXoEKUbVgEItBAfCXkrd2X69l5-zbPAxBhr_5XEwqxBzNFmIWYUYaEwWkhn9H2NdwuT8kgK66Uny3Zmk_JWPjoKJNkuzNLiQJeT3uyfoP7GbpsA |
CitedBy_id | crossref_primary_10_1515_kern_2021_1035 crossref_primary_10_1051_e3sconf_202343104002 crossref_primary_10_1016_j_radphyschem_2022_110444 crossref_primary_10_1038_s41598_022_06326_0 crossref_primary_10_1088_1748_0221_19_01_P01005 crossref_primary_10_1016_j_net_2024_08_042 crossref_primary_10_1088_1742_6596_1796_1_012061 crossref_primary_10_3390_s23104591 crossref_primary_10_3390_s20102884 crossref_primary_10_1016_j_radmeas_2024_107274 crossref_primary_10_1088_1748_0221_15_02_C02018 crossref_primary_10_1007_s12043_021_02249_z crossref_primary_10_1016_j_net_2019_12_021 crossref_primary_10_1007_s40995_022_01402_6 crossref_primary_10_1016_j_apradiso_2023_110707 crossref_primary_10_1088_1748_0221_18_08_P08010 |
Cites_doi | 10.1109/23.708319 10.1016/S0168-9002(03)00749-6 10.1016/j.nima.2005.11.117 10.1016/j.jenvrad.2018.01.020 10.1016/j.nima.2011.08.014 10.1016/j.jenvrad.2016.02.008 10.1016/j.nima.2006.02.193 10.1016/j.nima.2017.11.067 10.1007/s41365-018-0375-3 10.1016/j.apradiso.2016.09.001 10.1109/TNS.1977.4328758 10.1093/oxfordjournals.rpd.a032207 10.1016/j.jenvrad.2014.02.028 10.1097/00004032-196604000-00009 10.1093/rpd/nct342 |
ContentType | Journal Article |
Copyright | 2019 |
Copyright_xml | – notice: 2019 |
DBID | 6I. AAFTH AAYXX CITATION DOA ACYCR |
DOI | 10.1016/j.net.2019.06.017 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ Directory of Open Access Journals Korean Citation Index |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2234-358X |
EndPage | 1997 |
ExternalDocumentID | oai_kci_go_kr_ARTI_6277967 oai_doaj_org_article_829d2a7f032f4604a72210eab3379cb9 10_1016_j_net_2019_06_017 S1738573319301342 |
GroupedDBID | .UV 0R~ 0SF 123 4.4 457 5VS 6I. 9ZL AACTN AAEDW AAFTH AALRI AAXUO ABMAC ACGFS ACYCR ADBBV ADEZE AENEX AEXQZ AFTJW AGHFR AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ BCNDV EBS EJD FDB GROUPED_DOAJ IPNFZ JDI KQ8 KVFHK M41 NCXOZ O9- OK1 RIG ROL SSZ AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFPUW AIGII AKBMS AKRWK AKYEP CITATION |
ID | FETCH-LOGICAL-c440t-9b516a9b58a38a91e0b07a08e59af171497fdb12a5f044157e4357a5fee3a7793 |
IEDL.DBID | DOA |
ISSN | 1738-5733 |
IngestDate | Tue Nov 21 21:13:49 EST 2023 Mon Sep 08 19:52:58 EDT 2025 Tue Jul 01 01:28:28 EDT 2025 Thu Apr 24 23:01:54 EDT 2025 Wed May 17 00:13:14 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | Electronic personal dosimeter Ambient dose equivalent CsI(Tl) scintillator PIN diode G(E) function |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c440t-9b516a9b58a38a91e0b07a08e59af171497fdb12a5f044157e4357a5fee3a7793 |
OpenAccessLink | https://doaj.org/article/829d2a7f032f4604a72210eab3379cb9 |
PageCount | 7 |
ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_6277967 doaj_primary_oai_doaj_org_article_829d2a7f032f4604a72210eab3379cb9 crossref_primary_10_1016_j_net_2019_06_017 crossref_citationtrail_10_1016_j_net_2019_06_017 elsevier_sciencedirect_doi_10_1016_j_net_2019_06_017 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2019 2019-12-00 2019-12-01 2019-12 |
PublicationDateYYYYMMDD | 2019-12-01 |
PublicationDate_xml | – month: 12 year: 2019 text: December 2019 |
PublicationDecade | 2010 |
PublicationTitle | Nuclear engineering and technology |
PublicationYear | 2019 |
Publisher | Elsevier B.V Elsevier 한국원자력학회 |
Publisher_xml | – name: Elsevier B.V – name: Elsevier – name: 한국원자력학회 |
References | Buzhan (bib17) 2002 (bib7) 1996; vol. 74 Huang (bib10) 2018; 29 Knoll, Glenn (bib21) 2010 Moriuchi, Miyanaga (bib11) 1966; 12 Yi (bib5) 1997; 74 Buzhan (bib15) 2003; 504 Buzhan, Karakash, Yu (bib2) 2018; 912 Patt (bib19) 1998; 45 Tsuda, Saito (bib9) 2017; 166 Clément (bib20) 1998 Camp, Vargas (bib4) 2014; 160 Dolgoshein (bib16) 2006; 563 Totsuka (bib18) 2011; 659 Terada (bib12) 1977; 24 Tsutsumi, Tanimura (bib13) 2006; 557 (bib1) 1996 Kessler (bib6) 2018; 187 Tsuda (bib8) 2015; 139 Pelowitz (bib14) 2013 Casanovas, Prieto, Salvado (bib3) 2016; 118 Pelowitz (10.1016/j.net.2019.06.017_bib14) 2013 Moriuchi (10.1016/j.net.2019.06.017_bib11) 1966; 12 Terada (10.1016/j.net.2019.06.017_bib12) 1977; 24 Clément (10.1016/j.net.2019.06.017_bib20) 1998 Yi (10.1016/j.net.2019.06.017_bib5) 1997; 74 Kessler (10.1016/j.net.2019.06.017_bib6) 2018; 187 Knoll, Glenn (10.1016/j.net.2019.06.017_bib21) 2010 Tsuda (10.1016/j.net.2019.06.017_bib9) 2017; 166 Huang (10.1016/j.net.2019.06.017_bib10) 2018; 29 (10.1016/j.net.2019.06.017_bib1) 1996 Casanovas (10.1016/j.net.2019.06.017_bib3) 2016; 118 Tsuda (10.1016/j.net.2019.06.017_bib8) 2015; 139 Patt (10.1016/j.net.2019.06.017_bib19) 1998; 45 (10.1016/j.net.2019.06.017_bib7) 1996; vol. 74 Camp (10.1016/j.net.2019.06.017_bib4) 2014; 160 Buzhan (10.1016/j.net.2019.06.017_bib15) 2003; 504 Tsutsumi (10.1016/j.net.2019.06.017_bib13) 2006; 557 Dolgoshein (10.1016/j.net.2019.06.017_bib16) 2006; 563 Buzhan (10.1016/j.net.2019.06.017_bib17) 2002 Totsuka (10.1016/j.net.2019.06.017_bib18) 2011; 659 Buzhan (10.1016/j.net.2019.06.017_bib2) 2018; 912 |
References_xml | – volume: 24 start-page: 647 year: 1977 end-page: 651 ident: bib12 article-title: Spectrum-to-Exposure rate conversion function of a Ge(Li) in-situ environmental gamma-ray spectrometer publication-title: IEEE Trans. Nucl. Sci. – volume: 563 start-page: 368 year: 2006 end-page: 376 ident: bib16 article-title: Status report on silicon photomultiplier development and its applications publication-title: Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. – volume: vol. 74 year: 1996 ident: bib7 publication-title: Conversion Coefficients for Use in Radiological Protection against External Radiation – volume: 74 start-page: 273 year: 1997 end-page: 278 ident: bib5 article-title: Measurement of ambient dose equivalent using a Nai(Tl) scintillation detector publication-title: Radiat. Protect. Dosim. – volume: 12 start-page: 541 year: 1966 end-page: 551 ident: bib11 article-title: A spectrometric method for measurement of low-level gamma exposure dose publication-title: Health Phys. – volume: 160 start-page: 264 year: 2014 end-page: 268 ident: bib4 article-title: Ambient dose estimation H*(10) from Labr3(Ce) spectra publication-title: Radiat. Protect. Dosim. – start-page: 1448 year: 1998 end-page: 1452 ident: bib20 article-title: Development of a 3D position sensitive scintillation detector using neural networks publication-title: IEEE Nucl. Sci. Symp. Conf. Rec. – volume: 166 start-page: 419 year: 2017 end-page: 426 ident: bib9 article-title: Spectrum-dose conversion operator of Nai(Tl) and Csi(Tl) scintillation detectors for air dose rate measurement in contaminated environments publication-title: J. Environ. Radioact. – volume: 45 start-page: 2126 year: 1998 end-page: 2131 ident: bib19 article-title: High resolution CsI(Tl)/Si-PIN detector development for breast imaging publication-title: IEEE Trans. Nucl. Sci. – start-page: 717 year: 2002 end-page: 728 ident: bib17 article-title: An advanced study of silicon photomultiplier publication-title: Proceedings of the Seventh International Conference on Advance Technology & Particle Physics – volume: 139 start-page: 260 year: 2015 end-page: 265 ident: bib8 article-title: Characteristics and verification of a Car-borne survey system for dose rates in air: kurama-ii publication-title: J. Environ. Radioact. – volume: 504 start-page: 48 year: 2003 end-page: 52 ident: bib15 article-title: Silicon photomultiplier and its possible applications publication-title: Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. – volume: 557 start-page: 554 year: 2006 end-page: 560 ident: bib13 article-title: LaCl publication-title: Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. – volume: 187 start-page: 115 year: 2018 end-page: 121 ident: bib6 article-title: Novel spectrometers for environmental dose rate monitoring publication-title: J. Environ. Radioact. – year: 1996 ident: bib1 publication-title: International Comission on Radiation Units and Measurements, Quantities and Units in Radiaiton Protectrion Dosimetry – volume: 118 start-page: 154 year: 2016 end-page: 159 ident: bib3 article-title: Calculation of the ambient dose equivalent H*(10) from gamma-ray spectra obtained with scintillation detectors publication-title: Appl. Radiat. Isot. – volume: 29 start-page: 35 year: 2018 ident: bib10 article-title: Measurement of air kerma rate and ambient dose equivalent rate using the G(E) function with hemispherical cdznte detector publication-title: Nucl. Sci. Tech. – year: 2013 ident: bib14 article-title: MCNP6 User's Manual, version 1.0 – volume: 659 start-page: 399 year: 2011 end-page: 402 ident: bib18 article-title: Performance test of Si pin photodiode line scanner for thermal neutron detection publication-title: Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. – year: 2010 ident: bib21 article-title: Radiation Detection and Measurement – volume: 912 start-page: 245 year: 2018 end-page: 247 ident: bib2 article-title: Silicon photomultiplier and Csi(Tl) scintillator in application to portable H*(10) dosimeter publication-title: Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. – volume: 45 start-page: 2126 year: 1998 ident: 10.1016/j.net.2019.06.017_bib19 article-title: High resolution CsI(Tl)/Si-PIN detector development for breast imaging publication-title: IEEE Trans. Nucl. Sci. doi: 10.1109/23.708319 – year: 1996 ident: 10.1016/j.net.2019.06.017_bib1 – volume: 504 start-page: 48 issue: 1–3 year: 2003 ident: 10.1016/j.net.2019.06.017_bib15 article-title: Silicon photomultiplier and its possible applications publication-title: Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. doi: 10.1016/S0168-9002(03)00749-6 – volume: vol. 74 year: 1996 ident: 10.1016/j.net.2019.06.017_bib7 – start-page: 717 year: 2002 ident: 10.1016/j.net.2019.06.017_bib17 article-title: An advanced study of silicon photomultiplier – volume: 557 start-page: 554 issue: 2 year: 2006 ident: 10.1016/j.net.2019.06.017_bib13 article-title: LaCl3(Ce) scintillation detector applications for environmental gamma-ray measurements of low to high dose rates publication-title: Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. doi: 10.1016/j.nima.2005.11.117 – volume: 187 start-page: 115 year: 2018 ident: 10.1016/j.net.2019.06.017_bib6 article-title: Novel spectrometers for environmental dose rate monitoring publication-title: J. Environ. Radioact. doi: 10.1016/j.jenvrad.2018.01.020 – volume: 659 start-page: 399 issue: 1 year: 2011 ident: 10.1016/j.net.2019.06.017_bib18 article-title: Performance test of Si pin photodiode line scanner for thermal neutron detection publication-title: Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. doi: 10.1016/j.nima.2011.08.014 – volume: 166 start-page: 419 issue: Pt 3 year: 2017 ident: 10.1016/j.net.2019.06.017_bib9 article-title: Spectrum-dose conversion operator of Nai(Tl) and Csi(Tl) scintillation detectors for air dose rate measurement in contaminated environments publication-title: J. Environ. Radioact. doi: 10.1016/j.jenvrad.2016.02.008 – volume: 563 start-page: 368 issue: 2 year: 2006 ident: 10.1016/j.net.2019.06.017_bib16 article-title: Status report on silicon photomultiplier development and its applications publication-title: Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. doi: 10.1016/j.nima.2006.02.193 – volume: 912 start-page: 245 year: 2018 ident: 10.1016/j.net.2019.06.017_bib2 article-title: Silicon photomultiplier and Csi(Tl) scintillator in application to portable H*(10) dosimeter publication-title: Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. doi: 10.1016/j.nima.2017.11.067 – volume: 29 start-page: 35 issue: 3 year: 2018 ident: 10.1016/j.net.2019.06.017_bib10 article-title: Measurement of air kerma rate and ambient dose equivalent rate using the G(E) function with hemispherical cdznte detector publication-title: Nucl. Sci. Tech. doi: 10.1007/s41365-018-0375-3 – start-page: 1448 year: 1998 ident: 10.1016/j.net.2019.06.017_bib20 article-title: Development of a 3D position sensitive scintillation detector using neural networks publication-title: IEEE Nucl. Sci. Symp. Conf. Rec. – volume: 118 start-page: 154 year: 2016 ident: 10.1016/j.net.2019.06.017_bib3 article-title: Calculation of the ambient dose equivalent H*(10) from gamma-ray spectra obtained with scintillation detectors publication-title: Appl. Radiat. Isot. doi: 10.1016/j.apradiso.2016.09.001 – year: 2013 ident: 10.1016/j.net.2019.06.017_bib14 – year: 2010 ident: 10.1016/j.net.2019.06.017_bib21 – volume: 24 start-page: 647 issue: 1 year: 1977 ident: 10.1016/j.net.2019.06.017_bib12 article-title: Spectrum-to-Exposure rate conversion function of a Ge(Li) in-situ environmental gamma-ray spectrometer publication-title: IEEE Trans. Nucl. Sci. doi: 10.1109/TNS.1977.4328758 – volume: 74 start-page: 273 issue: 4 year: 1997 ident: 10.1016/j.net.2019.06.017_bib5 article-title: Measurement of ambient dose equivalent using a Nai(Tl) scintillation detector publication-title: Radiat. Protect. Dosim. doi: 10.1093/oxfordjournals.rpd.a032207 – volume: 139 start-page: 260 year: 2015 ident: 10.1016/j.net.2019.06.017_bib8 article-title: Characteristics and verification of a Car-borne survey system for dose rates in air: kurama-ii publication-title: J. Environ. Radioact. doi: 10.1016/j.jenvrad.2014.02.028 – volume: 12 start-page: 541 year: 1966 ident: 10.1016/j.net.2019.06.017_bib11 article-title: A spectrometric method for measurement of low-level gamma exposure dose publication-title: Health Phys. doi: 10.1097/00004032-196604000-00009 – volume: 160 start-page: 264 issue: 4 year: 2014 ident: 10.1016/j.net.2019.06.017_bib4 article-title: Ambient dose estimation H*(10) from Labr3(Ce) spectra publication-title: Radiat. Protect. Dosim. doi: 10.1093/rpd/nct342 |
SSID | ssj0064470 |
Score | 2.2354016 |
Snippet | In this manuscript, we present a method for the direct calculation of an ambient dose equivalent (H*(10)) for the external gamma-ray exposure with an energy... |
SourceID | nrf doaj crossref elsevier |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 1991 |
SubjectTerms | Ambient dose equivalent CsI(Tl) scintillator Electronic personal dosimeter G(E) function PIN diode 원자력공학 |
Title | Ambient dose equivalent measurement with a CsI(Tl) based electronic personal dosimeter |
URI | https://dx.doi.org/10.1016/j.net.2019.06.017 https://doaj.org/article/829d2a7f032f4604a72210eab3379cb9 https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002530190 |
Volume | 51 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Nuclear Engineering and Technology, 2019, 51(8), , pp.1991-1997 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA7akx7EJ9YXQTyosJhmH9kcVRSrKAgq3kKySaS23dY-_r8z-7D1Ui9edsmS3YTJZOebZPINISe4OyWkCAPrYhNEieaBlM7BvLJgzHyYWYML-o9Pyd1rdP8ev8-l-sKYsJIeuBTcRcql5Vp4FnIfJSzSgoOX4rQJQyEzUxzdY5LVzlT5DwYjL8qjkDCdkfGv3s8sIrvA58eYLlkQdxaZymYWqSDu_2WYlvORnzM5t-tkrcKK9LLs4wZZcvkmWZ1jENwib5d9gycaqR2MHXVf0w5oDpb7s7U_imutVNPrcfv0pXdG0XBZOst_Q4cVIMePdPoYH7NNXm9vXq7vgipVQpBFEZsE0sStRMM11WGqZcsxw4RmqYul9pjjXApvTYvr2DP0oIQDmCSg5FyoBczRHdLIB7nbJTS04GN4wH2pd1FiuTGZg9-CBceHawBjTcJqcams4hHHdBY9VQeMfSqQsEIJKwyaa4kmOf95ZViSaCyqfIVj8FMR-a-LB6AVqtIK9ZdWNElUj6CqoEQJEeBTnUVtH8Noq27WKZrF-8dAdUcKnIu2SjhIKhF7_9HBfbKC7ZaBMQekMRlN3SHAm4k5KjQZrg_P6TcFF_RK |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ambient+dose+equivalent+measurement+with+a+CsI%28Tl%29+based+electronic+personal+dosimeter&rft.jtitle=Nuclear+engineering+and+technology&rft.au=Park%2C+Kyeongjin&rft.au=Kim%2C+Jinhwan&rft.au=Lim%2C+Kyung+Taek&rft.au=Kim%2C+Junhyeok&rft.date=2019-12-01&rft.issn=1738-5733&rft.volume=51&rft.issue=8&rft.spage=1991&rft.epage=1997&rft_id=info:doi/10.1016%2Fj.net.2019.06.017&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_net_2019_06_017 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1738-5733&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1738-5733&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1738-5733&client=summon |