The role of crossover operator in evolutionary-based approach to the problem of genetic code optimization

One of theories explaining the present structure of canonical genetic code assumes that it was optimized to minimize harmful effects of amino acid replacements resulting from nucleotide substitutions and translational errors. A way to testify this concept is to find the optimal code under given crit...

Full description

Saved in:
Bibliographic Details
Published inBioSystems Vol. 150; pp. 61 - 72
Main Authors Błażej, Paweł, Wnȩtrzak, Małgorzata, Mackiewicz, Paweł
Format Journal Article
LanguageEnglish
Published Ireland Elsevier B.V 01.12.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract One of theories explaining the present structure of canonical genetic code assumes that it was optimized to minimize harmful effects of amino acid replacements resulting from nucleotide substitutions and translational errors. A way to testify this concept is to find the optimal code under given criteria and compare it with the canonical genetic code. Unfortunately, the huge number of possible alternatives makes it impossible to find the optimal code using exhaustive methods in sensible time. Therefore, heuristic methods should be applied to search the space of possible solutions. Evolutionary algorithms (EA) seem to be ones of such promising approaches. This class of methods is founded both on mutation and crossover operators, which are responsible for creating and maintaining the diversity of candidate solutions. These operators possess dissimilar characteristics and consequently play different roles in the process of finding the best solutions under given criteria. Therefore, the effective searching for the potential solutions can be improved by applying both of them, especially when these operators are devised specifically for a given problem. To study this subject, we analyze the effectiveness of algorithms for various combinations of mutation and crossover probabilities under three models of the genetic code assuming different restrictions on its structure. To achieve that, we adapt the position based crossover operator for the most restricted model and develop a new type of crossover operator for the more general models. The applied fitness function describes costs of amino acid replacement regarding their polarity. Our results indicate that the usage of crossover operators can significantly improve the quality of the solutions. Moreover, the simulations with the crossover operator optimize the fitness function in the smaller number of generations than simulations without this operator. The optimal genetic codes without restrictions on their structure minimize the costs about 2.7 times better than the canonical genetic code. Interestingly, the optimal codes are dominated by amino acids characterized by polarity close to its average value for all amino acids.
AbstractList One of theories explaining the present structure of canonical genetic code assumes that it was optimized to minimize harmful effects of amino acid replacements resulting from nucleotide substitutions and translational errors. A way to testify this concept is to find the optimal code under given criteria and compare it with the canonical genetic code. Unfortunately, the huge number of possible alternatives makes it impossible to find the optimal code using exhaustive methods in sensible time. Therefore, heuristic methods should be applied to search the space of possible solutions. Evolutionary algorithms (EA) seem to be ones of such promising approaches. This class of methods is founded both on mutation and crossover operators, which are responsible for creating and maintaining the diversity of candidate solutions. These operators possess dissimilar characteristics and consequently play different roles in the process of finding the best solutions under given criteria. Therefore, the effective searching for the potential solutions can be improved by applying both of them, especially when these operators are devised specifically for a given problem. To study this subject, we analyze the effectiveness of algorithms for various combinations of mutation and crossover probabilities under three models of the genetic code assuming different restrictions on its structure. To achieve that, we adapt the position based crossover operator for the most restricted model and develop a new type of crossover operator for the more general models. The applied fitness function describes costs of amino acid replacement regarding their polarity. Our results indicate that the usage of crossover operators can significantly improve the quality of the solutions. Moreover, the simulations with the crossover operator optimize the fitness function in the smaller number of generations than simulations without this operator. The optimal genetic codes without restrictions on their structure minimize the costs about 2.7 times better than the canonical genetic code. Interestingly, the optimal codes are dominated by amino acids characterized by polarity close to its average value for all amino acids.
Author Wnȩtrzak, Małgorzata
Błażej, Paweł
Mackiewicz, Paweł
Author_xml – sequence: 1
  givenname: Paweł
  surname: Błażej
  fullname: Błażej, Paweł
– sequence: 2
  givenname: Małgorzata
  surname: Wnȩtrzak
  fullname: Wnȩtrzak, Małgorzata
– sequence: 3
  givenname: Paweł
  surname: Mackiewicz
  fullname: Mackiewicz, Paweł
  email: pamac@smorfland.uni.wroc.pl
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27555085$$D View this record in MEDLINE/PubMed
BookMark eNqNkUFP3DAQhS1EBQvlLyAfuSSMYztxLkiAoEVC6oWeLceZgFdJnNreleivr5cFIfXS-mJ59OYbz3sn5HD2MxJCGZQMWH25Ljvn42tMOMWyypUSVAmgDsiKqaYqFK_EIVkBB15UtWiOyUmMa8hHKnZEjqtGSglKroh7ekEa_IjUD9QGH6PfYqB-wWCSD9TNFLd-3CTnZxNei85E7KlZluCNfaHJ05QB-dWNOO0YzzhjcpZa32fmktzkfptd91fyZTBjxLP3-5T8vL97uv1ePP749nB7_VhYISAVyg5t1wgrJK8GYQEQW8MEH-quq2UDfJBgWs5U3ee6RNFK6C0apRplhGr5KbnYc_Onfm0wJj25aHEczYx-EzVTXHJZN4Jl6fm7dNNN2OsluCkvqT_syYKrveDNmYCDti69bZOCcaNmoHd56LX-zEPv8tCgdM4jA9RfgI8Z_9F6s2_FbNbWYdDROpwt9i6gTbr37t-QP8oIrbM
CitedBy_id crossref_primary_10_1016_j_biosystems_2022_104613
crossref_primary_10_1016_j_knosys_2024_111825
crossref_primary_10_1016_j_jtbi_2016_12_010
crossref_primary_10_1371_journal_pone_0201715
crossref_primary_10_1007_s12064_017_0258_x
crossref_primary_10_1093_genetics_iyab040
crossref_primary_10_1155_2019_6035870
crossref_primary_10_1016_j_jtbi_2018_09_021
crossref_primary_10_1186_s12859_017_1608_x
crossref_primary_10_1016_j_biosystems_2019_04_012
crossref_primary_10_1007_s11538_019_00603_2
crossref_primary_10_3390_ijms23031690
crossref_primary_10_1007_s00285_022_01778_4
crossref_primary_10_3390_ijms24021185
crossref_primary_10_1007_s10441_021_09427_x
crossref_primary_10_1016_j_biosystems_2018_03_002
crossref_primary_10_1093_molbev_msab164
crossref_primary_10_1016_j_biosystems_2021_104528
crossref_primary_10_1016_j_biosystems_2024_105217
crossref_primary_10_1016_j_csbj_2017_08_001
crossref_primary_10_1186_s12859_019_2661_4
crossref_primary_10_1098_rsos_191384
crossref_primary_10_1016_j_biosystems_2019_104026
crossref_primary_10_1016_j_jtbi_2018_12_030
crossref_primary_10_1155_2017_7436709
crossref_primary_10_1109_ACCESS_2019_2899601
crossref_primary_10_1371_journal_pcbi_1011034
crossref_primary_10_1186_s12862_018_1304_0
crossref_primary_10_1038_s41598_017_01130_7
crossref_primary_10_1016_j_biosystems_2019_04_009
crossref_primary_10_1371_journal_pone_0224552
Cites_doi 10.1016/j.jtbi.2010.02.041
10.1515/znc-1991-3-422
10.1007/BF02103132
10.1007/PL00006381
10.1007/BF00203032
10.1073/pnas.72.5.1909
10.1002/bies.20208
10.1146/annurev.biochem.74.082803.133119
10.1007/BF02103616
10.1093/oxfordjournals.molbev.a026331
10.1016/j.jtbi.2016.04.005
10.1038/209868a0
10.1186/1745-6150-2-24
10.1016/S0968-0004(99)01522-4
10.1023/A:1006529012972
10.1023/A:1025771327614
10.1007/BF00592854
10.1186/gb-2001-2-11-research0049
10.1016/0303-2647(89)90059-2
10.1186/1471-2105-12-56
10.1016/0022-2836(68)90392-6
10.1016/j.biosystems.2004.11.005
ContentType Journal Article
Copyright 2016 Elsevier Ireland Ltd
Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Copyright_xml – notice: 2016 Elsevier Ireland Ltd
– notice: Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.biosystems.2016.08.008
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1872-8324
EndPage 72
ExternalDocumentID 27555085
10_1016_j_biosystems_2016_08_008
S0303264716301848
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.GJ
.~1
0R~
1B1
1RT
1~.
1~5
23N
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AATCM
AATLK
AAXUO
ABAOU
ABFNM
ABGRD
ABGSF
ABJNI
ABMAC
ABUDA
ABXDB
ABYKQ
ABZDS
ACAZW
ACDAQ
ACGFS
ACIUM
ACNCT
ACRLP
ADBBV
ADEZE
ADGUI
ADQTV
ADUVX
AEBSH
AEHWI
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALCLG
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CBWCG
CS3
DOVZS
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HVGLF
HZ~
H~9
IHE
J1W
KOM
LW9
M41
MHUIS
MO0
MVM
N9A
O-L
O9-
OAUVE
OGGZJ
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSA
SSP
SSU
SSW
SSZ
T5K
WH7
WUQ
XPP
ZGI
ZMT
ZXP
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ACVFH
ADCNI
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c440t-8cf9b74c4532f4c00ee9a143f6bb65703f50a93186d9a15e4950dcea8878a4893
IEDL.DBID .~1
ISSN 0303-2647
IngestDate Thu Jul 10 22:01:22 EDT 2025
Thu Apr 03 06:56:37 EDT 2025
Thu Apr 24 23:05:45 EDT 2025
Tue Jul 01 03:08:56 EDT 2025
Fri Feb 23 02:33:08 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Genetic code
Polarity
Amino acid
Evolutionary algorithms
Mutation
Crossover
Language English
License Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c440t-8cf9b74c4532f4c00ee9a143f6bb65703f50a93186d9a15e4950dcea8878a4893
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 27555085
PQID 1835356741
PQPubID 23479
PageCount 12
ParticipantIDs proquest_miscellaneous_1835356741
pubmed_primary_27555085
crossref_citationtrail_10_1016_j_biosystems_2016_08_008
crossref_primary_10_1016_j_biosystems_2016_08_008
elsevier_sciencedirect_doi_10_1016_j_biosystems_2016_08_008
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2016
2016-12-00
2016-Dec
20161201
PublicationDateYYYYMMDD 2016-12-01
PublicationDate_xml – month: 12
  year: 2016
  text: December 2016
PublicationDecade 2010
PublicationPlace Ireland
PublicationPlace_xml – name: Ireland
PublicationTitle BioSystems
PublicationTitleAlternate Biosystems
PublicationYear 2016
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Dunnill (bib0035) 1966; 210
Freeland, Hurst (bib0045) 1998; 47
Kokosiński (bib0070) 2005
Larrañaga, Kuijpers, Murga, Inza, Dizdarevic (bib0075) 1999; 13
StatSoft (bib0125) 2014
Santos, Monteagudo (bib0105) 2010; 264
Woese (bib0140) 1973; 60
Di Giulio (bib0020) Feb 2000; 25
Yarus, Caporaso, Knight (bib0160) 2005; 74
Santos, Monteagudo (bib0110) 2011; 12
Park, Carter (bib0090) 1995
Freeland, Wu, Keulmann (bib0055) 2003; 33
Novozhilov, Wolf, Koonin (bib0085) 2007; 2
Haig, Hurst (bib0065) 1991; 33
R Core Team (bib0100) 2015
Crick (bib0005) 1968; 38
Freeland, Knight, Landweber, Hurst (bib0050) Apr 2000; 17
Wong (bib0145) 1975; 72
Gilis, Massar, Cerf, Rooman (bib0060) 2001; 2
Di Giulio (bib0010) 1989; 29
Wood (bib0155) 2006
Mackiewicz, Biecek, Mackiewicz, Kiraga, Baczkowski, Sobczynski, Cebrat (bib0080) 2008
Taylor, Coates (bib0135) 1989; 22
Di Giulio (bib0015) 1991; 46
Syswerda (bib0130) 1991
Wong (bib0150) 2005; 27
Pelc, Welton (bib0095) 1966; 209
Di Giulio (bib0030) 2005; 80
Spears (bib0120) 1994
Fogel, Atmar (bib0040) 1990; 63
Di Giulio (bib0025) Jun 2016; 399
Spears (bib0115) 1992
Wong (10.1016/j.biosystems.2016.08.008_bib0145) 1975; 72
Wood (10.1016/j.biosystems.2016.08.008_bib0155) 2006
Crick (10.1016/j.biosystems.2016.08.008_bib0005) 1968; 38
StatSoft (10.1016/j.biosystems.2016.08.008_bib0125) 2014
Di Giulio (10.1016/j.biosystems.2016.08.008_bib0030) 2005; 80
Freeland (10.1016/j.biosystems.2016.08.008_bib0045) 1998; 47
R Core Team (10.1016/j.biosystems.2016.08.008_bib0100) 2015
Novozhilov (10.1016/j.biosystems.2016.08.008_bib0085) 2007; 2
Taylor (10.1016/j.biosystems.2016.08.008_bib0135) 1989; 22
Wong (10.1016/j.biosystems.2016.08.008_bib0150) 2005; 27
Spears (10.1016/j.biosystems.2016.08.008_bib0115) 1992
Spears (10.1016/j.biosystems.2016.08.008_bib0120) 1994
Larrañaga (10.1016/j.biosystems.2016.08.008_bib0075) 1999; 13
Di Giulio (10.1016/j.biosystems.2016.08.008_bib0020) 2000; 25
Park (10.1016/j.biosystems.2016.08.008_bib0090) 1995
Di Giulio (10.1016/j.biosystems.2016.08.008_bib0010) 1989; 29
Syswerda (10.1016/j.biosystems.2016.08.008_bib0130) 1991
Kokosiński (10.1016/j.biosystems.2016.08.008_bib0070) 2005
Freeland (10.1016/j.biosystems.2016.08.008_bib0055) 2003; 33
Santos (10.1016/j.biosystems.2016.08.008_bib0105) 2010; 264
Mackiewicz (10.1016/j.biosystems.2016.08.008_bib0080) 2008
Pelc (10.1016/j.biosystems.2016.08.008_bib0095) 1966; 209
Fogel (10.1016/j.biosystems.2016.08.008_bib0040) 1990; 63
Gilis (10.1016/j.biosystems.2016.08.008_bib0060) 2001; 2
Di Giulio (10.1016/j.biosystems.2016.08.008_bib0015) 1991; 46
Dunnill (10.1016/j.biosystems.2016.08.008_bib0035) 1966; 210
Di Giulio (10.1016/j.biosystems.2016.08.008_bib0025) 2016; 399
Haig (10.1016/j.biosystems.2016.08.008_bib0065) 1991; 33
Yarus (10.1016/j.biosystems.2016.08.008_bib0160) 2005; 74
Santos (10.1016/j.biosystems.2016.08.008_bib0110) 2011; 12
Freeland (10.1016/j.biosystems.2016.08.008_bib0050) 2000; 17
Woese (10.1016/j.biosystems.2016.08.008_bib0140) 1973; 60
References_xml – volume: 63
  start-page: 111
  year: 1990
  end-page: 114
  ident: bib0040
  article-title: Comparing genetic operators with Gaussian mutations in simulation evolutionary processes using linear systems
  publication-title: Biol. Cybern.
– volume: 22
  start-page: 177
  year: 1989
  end-page: 187
  ident: bib0135
  article-title: The code within the codons
  publication-title: Biosystems
– year: 2006
  ident: bib0155
  article-title: General Additive Models: An Introduction With R
– volume: 25
  start-page: 44
  year: Feb 2000
  ident: bib0020
  article-title: The origin of the genetic code
  publication-title: Trends Biochem. Sci.
– start-page: 296
  year: 1994
  end-page: 317
  ident: bib0120
  article-title: Simple population schemes
  publication-title: Proceedings of the 1994 Evolutionary Programming Conference
– year: 2015
  ident: bib0100
  article-title: R: A Language and Environment for Statistical Computing
– volume: 17
  start-page: 511
  year: Apr 2000
  end-page: 518
  ident: bib0050
  article-title: Early fixation of an optimal genetic code
  publication-title: Mol. Biol. Evol.
– year: 2014
  ident: bib0125
  article-title: STATISTICA (Data Analysis Software System), Version 12
– volume: 47
  start-page: 238
  year: 1998
  end-page: 248
  ident: bib0045
  article-title: The genetic code is one in a million
  publication-title: J. Mol. Evol.
– volume: 13
  start-page: 129
  year: 1999
  end-page: 170
  ident: bib0075
  article-title: Genetic algorithms for the travelling salesman problem: a review of representations and operators
  publication-title: Artif. Intell. Rev.
– start-page: 221
  year: 1992
  end-page: 237
  ident: bib0115
  article-title: Crossover or mutation?
  publication-title: Proceedings of the 2nd Foundations of Genetic Algorithms Workshop
– volume: 80
  start-page: 175
  year: 2005
  end-page: 184
  ident: bib0030
  article-title: The origin of the genetic code: theories and their relationship, a review
  publication-title: Biosystems
– volume: 27
  start-page: 416
  year: 2005
  end-page: 425
  ident: bib0150
  article-title: Coevolution theory of the genetic code at age thirty
  publication-title: Bioessays
– volume: 46
  start-page: 305
  year: 1991
  end-page: 312
  ident: bib0015
  article-title: On the relationships between the genetic code coevolution hypothesis and the physicochemical hypothesis
  publication-title: Z. Naturforsch. C
– volume: 33
  start-page: 457
  year: 2003
  end-page: 477
  ident: bib0055
  article-title: The case for an error minimizing standard genetic code
  publication-title: Orig. Life Evol. Biosph.
– volume: 12
  start-page: 56
  year: 2011
  ident: bib0110
  article-title: Simulated evolution applied to study the genetic code optimality using a model of codon reassignments
  publication-title: BMC Bioinformatics
– volume: 399
  start-page: 134
  year: Jun 2016
  end-page: 140
  ident: bib0025
  article-title: The lack of foundation in the mechanism on which are based the physico-chemical theories for the origin of the genetic code is counterposed to the credible and natural mechanism suggested by the coevolution theory
  publication-title: J. Theor. Biol.
– start-page: 100
  year: 2008
  end-page: 109
  ident: bib0080
  article-title: Optimisation of asymmetric mutational pressure and selection pressure around the universal genetic code
  publication-title: Computational Science – ICCS 2008, PT 3. Vol. 5103 of Lecture Notes in Computer Science
– volume: 209
  start-page: 868
  year: 1966
  end-page: 870
  ident: bib0095
  article-title: Stereochemical relationship between coding triplets and amino-acids
  publication-title: Nature
– start-page: 299
  year: 2005
  end-page: 308
  ident: bib0070
  article-title: Effects of versatile crossover and mutation operators on evolutionary search in partition and permutation problems
  publication-title: Intelligent Information Processing and Web Mining. Volume 31 of the series Advances in Soft Computing
– volume: 2
  start-page: 24
  year: 2007
  ident: bib0085
  article-title: Evolution of the genetic code: partial optimization of a random code for robustness to translation error in a rugged fitness landscape
  publication-title: Biol. Direct
– volume: 29
  start-page: 288
  year: 1989
  end-page: 293
  ident: bib0010
  article-title: The extension reached by the minimization of the polarity distances during the evolution of the genetic code
  publication-title: J. Mol. Evol.
– volume: 33
  start-page: 412
  year: 1991
  end-page: 417
  ident: bib0065
  article-title: A quantitative measure of error minimization in the genetic code
  publication-title: J. Mol. Evol.
– start-page: 332
  year: 1991
  end-page: 349
  ident: bib0130
  article-title: Schedule optimization using genetic algorithms
  publication-title: Handbook of Genetic Algorithms
– volume: 74
  start-page: 179
  year: 2005
  end-page: 198
  ident: bib0160
  article-title: Origins of the genetic code: the escaped triplet theory
  publication-title: Annu. Rev. Biochem.
– volume: 2
  year: 2001
  ident: bib0060
  article-title: Optimality of the genetic code with respect to protein stability and amino-acid frequencies
  publication-title: Genome Biol.
– volume: 60
  start-page: 447
  year: 1973
  end-page: 459
  ident: bib0140
  article-title: Evolution of the genetic code
  publication-title: Naturwissenschaften
– volume: 72
  start-page: 1909
  year: 1975
  end-page: 1912
  ident: bib0145
  article-title: A co-evolution theory of the genetic code
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– start-page: 329
  year: 1995
  end-page: 336
  ident: bib0090
  article-title: On the effectiveness of genetic search in combinatorial optimization
  publication-title: SAC
– volume: 264
  start-page: 854
  year: 2010
  end-page: 865
  ident: bib0105
  article-title: Study of the genetic code adaptability by means of a genetic algorithm
  publication-title: J. Theor. Biol.
– volume: 210
  start-page: 1265
  year: 1966
  end-page: 1267
  ident: bib0035
  article-title: Triplet nucleotide-amino-acid pairing: a stereochemical basis for the division between protein and non-protein amino-acids
  publication-title: Nature
– volume: 38
  start-page: 367
  year: 1968
  end-page: 379
  ident: bib0005
  article-title: The origin of the genetic code
  publication-title: J. Mol. Biol.
– volume: 264
  start-page: 854
  issue: June (3)
  year: 2010
  ident: 10.1016/j.biosystems.2016.08.008_bib0105
  article-title: Study of the genetic code adaptability by means of a genetic algorithm
  publication-title: J. Theor. Biol.
  doi: 10.1016/j.jtbi.2010.02.041
– volume: 46
  start-page: 305
  issue: 3–4
  year: 1991
  ident: 10.1016/j.biosystems.2016.08.008_bib0015
  article-title: On the relationships between the genetic code coevolution hypothesis and the physicochemical hypothesis
  publication-title: Z. Naturforsch. C
  doi: 10.1515/znc-1991-3-422
– volume: 33
  start-page: 412
  year: 1991
  ident: 10.1016/j.biosystems.2016.08.008_bib0065
  article-title: A quantitative measure of error minimization in the genetic code
  publication-title: J. Mol. Evol.
  doi: 10.1007/BF02103132
– volume: 47
  start-page: 238
  issue: 3
  year: 1998
  ident: 10.1016/j.biosystems.2016.08.008_bib0045
  article-title: The genetic code is one in a million
  publication-title: J. Mol. Evol.
  doi: 10.1007/PL00006381
– volume: 63
  start-page: 111
  year: 1990
  ident: 10.1016/j.biosystems.2016.08.008_bib0040
  article-title: Comparing genetic operators with Gaussian mutations in simulation evolutionary processes using linear systems
  publication-title: Biol. Cybern.
  doi: 10.1007/BF00203032
– start-page: 299
  year: 2005
  ident: 10.1016/j.biosystems.2016.08.008_bib0070
  article-title: Effects of versatile crossover and mutation operators on evolutionary search in partition and permutation problems
– volume: 72
  start-page: 1909
  issue: May (5)
  year: 1975
  ident: 10.1016/j.biosystems.2016.08.008_bib0145
  article-title: A co-evolution theory of the genetic code
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.72.5.1909
– volume: 27
  start-page: 416
  issue: April (4)
  year: 2005
  ident: 10.1016/j.biosystems.2016.08.008_bib0150
  article-title: Coevolution theory of the genetic code at age thirty
  publication-title: Bioessays
  doi: 10.1002/bies.20208
– volume: 74
  start-page: 179
  year: 2005
  ident: 10.1016/j.biosystems.2016.08.008_bib0160
  article-title: Origins of the genetic code: the escaped triplet theory
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev.biochem.74.082803.133119
– volume: 29
  start-page: 288
  year: 1989
  ident: 10.1016/j.biosystems.2016.08.008_bib0010
  article-title: The extension reached by the minimization of the polarity distances during the evolution of the genetic code
  publication-title: J. Mol. Evol.
  doi: 10.1007/BF02103616
– volume: 17
  start-page: 511
  issue: 4
  year: 2000
  ident: 10.1016/j.biosystems.2016.08.008_bib0050
  article-title: Early fixation of an optimal genetic code
  publication-title: Mol. Biol. Evol.
  doi: 10.1093/oxfordjournals.molbev.a026331
– start-page: 332
  year: 1991
  ident: 10.1016/j.biosystems.2016.08.008_bib0130
  article-title: Schedule optimization using genetic algorithms
– volume: 399
  start-page: 134
  year: 2016
  ident: 10.1016/j.biosystems.2016.08.008_bib0025
  article-title: The lack of foundation in the mechanism on which are based the physico-chemical theories for the origin of the genetic code is counterposed to the credible and natural mechanism suggested by the coevolution theory
  publication-title: J. Theor. Biol.
  doi: 10.1016/j.jtbi.2016.04.005
– volume: 210
  start-page: 1265
  issue: June (5042)
  year: 1966
  ident: 10.1016/j.biosystems.2016.08.008_bib0035
  article-title: Triplet nucleotide-amino-acid pairing: a stereochemical basis for the division between protein and non-protein amino-acids
  publication-title: Nature
– start-page: 100
  year: 2008
  ident: 10.1016/j.biosystems.2016.08.008_bib0080
  article-title: Optimisation of asymmetric mutational pressure and selection pressure around the universal genetic code
– volume: 209
  start-page: 868
  issue: February (5026)
  year: 1966
  ident: 10.1016/j.biosystems.2016.08.008_bib0095
  article-title: Stereochemical relationship between coding triplets and amino-acids
  publication-title: Nature
  doi: 10.1038/209868a0
– volume: 2
  start-page: 24
  year: 2007
  ident: 10.1016/j.biosystems.2016.08.008_bib0085
  article-title: Evolution of the genetic code: partial optimization of a random code for robustness to translation error in a rugged fitness landscape
  publication-title: Biol. Direct
  doi: 10.1186/1745-6150-2-24
– year: 2014
  ident: 10.1016/j.biosystems.2016.08.008_bib0125
– volume: 25
  start-page: 44
  issue: 2
  year: 2000
  ident: 10.1016/j.biosystems.2016.08.008_bib0020
  article-title: The origin of the genetic code
  publication-title: Trends Biochem. Sci.
  doi: 10.1016/S0968-0004(99)01522-4
– volume: 13
  start-page: 129
  issue: April (2)
  year: 1999
  ident: 10.1016/j.biosystems.2016.08.008_bib0075
  article-title: Genetic algorithms for the travelling salesman problem: a review of representations and operators
  publication-title: Artif. Intell. Rev.
  doi: 10.1023/A:1006529012972
– volume: 33
  start-page: 457
  issue: October (4–5)
  year: 2003
  ident: 10.1016/j.biosystems.2016.08.008_bib0055
  article-title: The case for an error minimizing standard genetic code
  publication-title: Orig. Life Evol. Biosph.
  doi: 10.1023/A:1025771327614
– year: 2015
  ident: 10.1016/j.biosystems.2016.08.008_bib0100
– volume: 60
  start-page: 447
  issue: 10
  year: 1973
  ident: 10.1016/j.biosystems.2016.08.008_bib0140
  article-title: Evolution of the genetic code
  publication-title: Naturwissenschaften
  doi: 10.1007/BF00592854
– volume: 2
  issue: 11
  year: 2001
  ident: 10.1016/j.biosystems.2016.08.008_bib0060
  article-title: Optimality of the genetic code with respect to protein stability and amino-acid frequencies
  publication-title: Genome Biol.
  doi: 10.1186/gb-2001-2-11-research0049
– volume: 22
  start-page: 177
  issue: 3
  year: 1989
  ident: 10.1016/j.biosystems.2016.08.008_bib0135
  article-title: The code within the codons
  publication-title: Biosystems
  doi: 10.1016/0303-2647(89)90059-2
– year: 2006
  ident: 10.1016/j.biosystems.2016.08.008_bib0155
– start-page: 329
  year: 1995
  ident: 10.1016/j.biosystems.2016.08.008_bib0090
  article-title: On the effectiveness of genetic search in combinatorial optimization
– volume: 12
  start-page: 56
  year: 2011
  ident: 10.1016/j.biosystems.2016.08.008_bib0110
  article-title: Simulated evolution applied to study the genetic code optimality using a model of codon reassignments
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-12-56
– start-page: 296
  year: 1994
  ident: 10.1016/j.biosystems.2016.08.008_bib0120
  article-title: Simple population schemes
– start-page: 221
  year: 1992
  ident: 10.1016/j.biosystems.2016.08.008_bib0115
  article-title: Crossover or mutation?
– volume: 38
  start-page: 367
  year: 1968
  ident: 10.1016/j.biosystems.2016.08.008_bib0005
  article-title: The origin of the genetic code
  publication-title: J. Mol. Biol.
  doi: 10.1016/0022-2836(68)90392-6
– volume: 80
  start-page: 175
  issue: 80
  year: 2005
  ident: 10.1016/j.biosystems.2016.08.008_bib0030
  article-title: The origin of the genetic code: theories and their relationship, a review
  publication-title: Biosystems
  doi: 10.1016/j.biosystems.2004.11.005
SSID ssj0000581
Score 2.3094478
Snippet One of theories explaining the present structure of canonical genetic code assumes that it was optimized to minimize harmful effects of amino acid replacements...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 61
SubjectTerms Amino acid
Amino Acids - genetics
Animals
Biological Evolution
Codon - genetics
Crossover
Evolution, Molecular
Evolutionary algorithms
Genetic code
Genetic Code - genetics
Humans
Models, Genetic
Mutation
Mutation - genetics
Polarity
Title The role of crossover operator in evolutionary-based approach to the problem of genetic code optimization
URI https://dx.doi.org/10.1016/j.biosystems.2016.08.008
https://www.ncbi.nlm.nih.gov/pubmed/27555085
https://www.proquest.com/docview/1835356741
Volume 150
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5KRfAivq2PsoLX2KTZzQNPpViqxR7UYm_LZrOBiCalpkIv_nZnko1FUCh4CgnZTZiZnfmS_WaGkEsEqYgVLF8lnsViyaxA-Q6sKw3RXfpMxfi_437sDSfsbsqnDdKvc2GQVml8f-XTS29trnSMNDuzNO08gnkC9gDn6oGRBgwTfhnz0cqvPlc0D5uXjUrxZmRz-YbNU3G8ojSvCiZj4W7HK4t5YqPJ30PUXxC0DEWDHbJtMCTtVa-5Sxo62yObVVfJ5T5JQfUUWYM0T2j5CKRp0nymyy11mmZUfxiLk_OlhYEspnVxcVrkFEAhNZ1mcA6wMUx1pJj-DtMU6ZtJ3jwgk8HNU39omY4KlmLMLkANSRiB_Bl3uwlTtq11KAExJV4UIQfGTbgtQ1jmXgzXuYavJztWWoInCiSWqTkkzSzP9DGhnou1vmLb5QnmysYyZE4olc91AlpxdIv4tRCFMuXGsevFq6h5ZS9iJX6B4hfYENMOWsT5HjmrSm6sMea61pP4YT4CIsMaoy9q1QpYXbhlIjOdL94FODzucg9gV4scVTr_fqeuz-HzLuAn_3r2KdnCs4ohc0aaxXyhzwHnFFG7NOQ22ejdjoZjPI4enkdf5e8Abg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60InoR39bnCl5Dk2Y3DzyVolRte7GCt2WTbCCiSalR8N87k2xaBIWC1ySbhJ3ZmS_Zb74BuCKQSljB8uPUs3iiuBXEvoPrSmN2Vz6PE_rfMRp7gyd-_yyeV6Df1MIQrdLE_jqmV9HaHOmY2exMs6zziO6J2AODq4dOGvBgFdZInUq0YK139zAYLwKyqHqV0vVE6PINoaemeUVZUWsmk3a341V6ntRr8vcs9RcKrbLR7TZsGRjJevWb7sCKzndhvW4s-bUHGVqfEXGQFSmrHkFMTVZMdbWrzrKc6U_jdGr2ZVEuS1ijL87KgiEuZKbZDN0D3YyqHRlVwONtyuzN1G_uw9PtzaQ_sExTBSvm3C7REmkYoQm4cLspj21b61AhaEq9KCIajJsKW4W40r0EjwuNH1B2EmuFwShQpFRzAK28yPURMM8lua_EdkVK5bKJCrkTqtgXOkXDOLoNfjOJMjaK49T44lU21LIXuZh-SdMvqSemHbTBmY-c1qobS4y5buwkf3iQxOSwxOjLxrQSFxjtmqhcFx_vEmOecIWHyKsNh7XN5-_U9QV-4QXi-F_PvoCNwWQ0lMO78cMJbNKZmjBzCq1y9qHPEPaU0blx62-aNwF8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+role+of+crossover+operator+in+evolutionary-based+approach+to+the+problem+of+genetic+code+optimization&rft.jtitle=BioSystems&rft.au=B%C5%82a%C5%BCej%2C+Pawe%C5%82&rft.au=Wn%C8%A9trzak%2C+Ma%C5%82gorzata&rft.au=Mackiewicz%2C+Pawe%C5%82&rft.date=2016-12-01&rft.eissn=1872-8324&rft.volume=150&rft.spage=61&rft_id=info:doi/10.1016%2Fj.biosystems.2016.08.008&rft_id=info%3Apmid%2F27555085&rft.externalDocID=27555085
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0303-2647&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0303-2647&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0303-2647&client=summon