The role of crossover operator in evolutionary-based approach to the problem of genetic code optimization
One of theories explaining the present structure of canonical genetic code assumes that it was optimized to minimize harmful effects of amino acid replacements resulting from nucleotide substitutions and translational errors. A way to testify this concept is to find the optimal code under given crit...
Saved in:
Published in | BioSystems Vol. 150; pp. 61 - 72 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Ireland
Elsevier B.V
01.12.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | One of theories explaining the present structure of canonical genetic code assumes that it was optimized to minimize harmful effects of amino acid replacements resulting from nucleotide substitutions and translational errors. A way to testify this concept is to find the optimal code under given criteria and compare it with the canonical genetic code. Unfortunately, the huge number of possible alternatives makes it impossible to find the optimal code using exhaustive methods in sensible time. Therefore, heuristic methods should be applied to search the space of possible solutions. Evolutionary algorithms (EA) seem to be ones of such promising approaches. This class of methods is founded both on mutation and crossover operators, which are responsible for creating and maintaining the diversity of candidate solutions. These operators possess dissimilar characteristics and consequently play different roles in the process of finding the best solutions under given criteria. Therefore, the effective searching for the potential solutions can be improved by applying both of them, especially when these operators are devised specifically for a given problem. To study this subject, we analyze the effectiveness of algorithms for various combinations of mutation and crossover probabilities under three models of the genetic code assuming different restrictions on its structure. To achieve that, we adapt the position based crossover operator for the most restricted model and develop a new type of crossover operator for the more general models. The applied fitness function describes costs of amino acid replacement regarding their polarity. Our results indicate that the usage of crossover operators can significantly improve the quality of the solutions. Moreover, the simulations with the crossover operator optimize the fitness function in the smaller number of generations than simulations without this operator. The optimal genetic codes without restrictions on their structure minimize the costs about 2.7 times better than the canonical genetic code. Interestingly, the optimal codes are dominated by amino acids characterized by polarity close to its average value for all amino acids. |
---|---|
AbstractList | One of theories explaining the present structure of canonical genetic code assumes that it was optimized to minimize harmful effects of amino acid replacements resulting from nucleotide substitutions and translational errors. A way to testify this concept is to find the optimal code under given criteria and compare it with the canonical genetic code. Unfortunately, the huge number of possible alternatives makes it impossible to find the optimal code using exhaustive methods in sensible time. Therefore, heuristic methods should be applied to search the space of possible solutions. Evolutionary algorithms (EA) seem to be ones of such promising approaches. This class of methods is founded both on mutation and crossover operators, which are responsible for creating and maintaining the diversity of candidate solutions. These operators possess dissimilar characteristics and consequently play different roles in the process of finding the best solutions under given criteria. Therefore, the effective searching for the potential solutions can be improved by applying both of them, especially when these operators are devised specifically for a given problem. To study this subject, we analyze the effectiveness of algorithms for various combinations of mutation and crossover probabilities under three models of the genetic code assuming different restrictions on its structure. To achieve that, we adapt the position based crossover operator for the most restricted model and develop a new type of crossover operator for the more general models. The applied fitness function describes costs of amino acid replacement regarding their polarity. Our results indicate that the usage of crossover operators can significantly improve the quality of the solutions. Moreover, the simulations with the crossover operator optimize the fitness function in the smaller number of generations than simulations without this operator. The optimal genetic codes without restrictions on their structure minimize the costs about 2.7 times better than the canonical genetic code. Interestingly, the optimal codes are dominated by amino acids characterized by polarity close to its average value for all amino acids. |
Author | Wnȩtrzak, Małgorzata Błażej, Paweł Mackiewicz, Paweł |
Author_xml | – sequence: 1 givenname: Paweł surname: Błażej fullname: Błażej, Paweł – sequence: 2 givenname: Małgorzata surname: Wnȩtrzak fullname: Wnȩtrzak, Małgorzata – sequence: 3 givenname: Paweł surname: Mackiewicz fullname: Mackiewicz, Paweł email: pamac@smorfland.uni.wroc.pl |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27555085$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkUFP3DAQhS1EBQvlLyAfuSSMYztxLkiAoEVC6oWeLceZgFdJnNreleivr5cFIfXS-mJ59OYbz3sn5HD2MxJCGZQMWH25Ljvn42tMOMWyypUSVAmgDsiKqaYqFK_EIVkBB15UtWiOyUmMa8hHKnZEjqtGSglKroh7ekEa_IjUD9QGH6PfYqB-wWCSD9TNFLd-3CTnZxNei85E7KlZluCNfaHJ05QB-dWNOO0YzzhjcpZa32fmktzkfptd91fyZTBjxLP3-5T8vL97uv1ePP749nB7_VhYISAVyg5t1wgrJK8GYQEQW8MEH-quq2UDfJBgWs5U3ee6RNFK6C0apRplhGr5KbnYc_Onfm0wJj25aHEczYx-EzVTXHJZN4Jl6fm7dNNN2OsluCkvqT_syYKrveDNmYCDti69bZOCcaNmoHd56LX-zEPv8tCgdM4jA9RfgI8Z_9F6s2_FbNbWYdDROpwt9i6gTbr37t-QP8oIrbM |
CitedBy_id | crossref_primary_10_1016_j_biosystems_2022_104613 crossref_primary_10_1016_j_knosys_2024_111825 crossref_primary_10_1016_j_jtbi_2016_12_010 crossref_primary_10_1371_journal_pone_0201715 crossref_primary_10_1007_s12064_017_0258_x crossref_primary_10_1093_genetics_iyab040 crossref_primary_10_1155_2019_6035870 crossref_primary_10_1016_j_jtbi_2018_09_021 crossref_primary_10_1186_s12859_017_1608_x crossref_primary_10_1016_j_biosystems_2019_04_012 crossref_primary_10_1007_s11538_019_00603_2 crossref_primary_10_3390_ijms23031690 crossref_primary_10_1007_s00285_022_01778_4 crossref_primary_10_3390_ijms24021185 crossref_primary_10_1007_s10441_021_09427_x crossref_primary_10_1016_j_biosystems_2018_03_002 crossref_primary_10_1093_molbev_msab164 crossref_primary_10_1016_j_biosystems_2021_104528 crossref_primary_10_1016_j_biosystems_2024_105217 crossref_primary_10_1016_j_csbj_2017_08_001 crossref_primary_10_1186_s12859_019_2661_4 crossref_primary_10_1098_rsos_191384 crossref_primary_10_1016_j_biosystems_2019_104026 crossref_primary_10_1016_j_jtbi_2018_12_030 crossref_primary_10_1155_2017_7436709 crossref_primary_10_1109_ACCESS_2019_2899601 crossref_primary_10_1371_journal_pcbi_1011034 crossref_primary_10_1186_s12862_018_1304_0 crossref_primary_10_1038_s41598_017_01130_7 crossref_primary_10_1016_j_biosystems_2019_04_009 crossref_primary_10_1371_journal_pone_0224552 |
Cites_doi | 10.1016/j.jtbi.2010.02.041 10.1515/znc-1991-3-422 10.1007/BF02103132 10.1007/PL00006381 10.1007/BF00203032 10.1073/pnas.72.5.1909 10.1002/bies.20208 10.1146/annurev.biochem.74.082803.133119 10.1007/BF02103616 10.1093/oxfordjournals.molbev.a026331 10.1016/j.jtbi.2016.04.005 10.1038/209868a0 10.1186/1745-6150-2-24 10.1016/S0968-0004(99)01522-4 10.1023/A:1006529012972 10.1023/A:1025771327614 10.1007/BF00592854 10.1186/gb-2001-2-11-research0049 10.1016/0303-2647(89)90059-2 10.1186/1471-2105-12-56 10.1016/0022-2836(68)90392-6 10.1016/j.biosystems.2004.11.005 |
ContentType | Journal Article |
Copyright | 2016 Elsevier Ireland Ltd Copyright © 2016 Elsevier Ireland Ltd. All rights reserved. |
Copyright_xml | – notice: 2016 Elsevier Ireland Ltd – notice: Copyright © 2016 Elsevier Ireland Ltd. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1016/j.biosystems.2016.08.008 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1872-8324 |
EndPage | 72 |
ExternalDocumentID | 27555085 10_1016_j_biosystems_2016_08_008 S0303264716301848 |
Genre | Journal Article |
GroupedDBID | --- --K --M -~X .GJ .~1 0R~ 1B1 1RT 1~. 1~5 23N 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AATCM AATLK AAXUO ABAOU ABFNM ABGRD ABGSF ABJNI ABMAC ABUDA ABXDB ABYKQ ABZDS ACAZW ACDAQ ACGFS ACIUM ACNCT ACRLP ADBBV ADEZE ADGUI ADQTV ADUVX AEBSH AEHWI AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHHHB AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALCLG ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CBWCG CS3 DOVZS DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HVGLF HZ~ H~9 IHE J1W KOM LW9 M41 MHUIS MO0 MVM N9A O-L O9- OAUVE OGGZJ OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAB SDF SDG SDP SES SEW SPC SPCBC SSA SSP SSU SSW SSZ T5K WH7 WUQ XPP ZGI ZMT ZXP ~02 ~G- AATTM AAXKI AAYWO AAYXX ACVFH ADCNI AEIPS AEUPX AFJKZ AFPUW AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c440t-8cf9b74c4532f4c00ee9a143f6bb65703f50a93186d9a15e4950dcea8878a4893 |
IEDL.DBID | .~1 |
ISSN | 0303-2647 |
IngestDate | Thu Jul 10 22:01:22 EDT 2025 Thu Apr 03 06:56:37 EDT 2025 Thu Apr 24 23:05:45 EDT 2025 Tue Jul 01 03:08:56 EDT 2025 Fri Feb 23 02:33:08 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Genetic code Polarity Amino acid Evolutionary algorithms Mutation Crossover |
Language | English |
License | Copyright © 2016 Elsevier Ireland Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c440t-8cf9b74c4532f4c00ee9a143f6bb65703f50a93186d9a15e4950dcea8878a4893 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 27555085 |
PQID | 1835356741 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_1835356741 pubmed_primary_27555085 crossref_citationtrail_10_1016_j_biosystems_2016_08_008 crossref_primary_10_1016_j_biosystems_2016_08_008 elsevier_sciencedirect_doi_10_1016_j_biosystems_2016_08_008 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2016 2016-12-00 2016-Dec 20161201 |
PublicationDateYYYYMMDD | 2016-12-01 |
PublicationDate_xml | – month: 12 year: 2016 text: December 2016 |
PublicationDecade | 2010 |
PublicationPlace | Ireland |
PublicationPlace_xml | – name: Ireland |
PublicationTitle | BioSystems |
PublicationTitleAlternate | Biosystems |
PublicationYear | 2016 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Dunnill (bib0035) 1966; 210 Freeland, Hurst (bib0045) 1998; 47 Kokosiński (bib0070) 2005 Larrañaga, Kuijpers, Murga, Inza, Dizdarevic (bib0075) 1999; 13 StatSoft (bib0125) 2014 Santos, Monteagudo (bib0105) 2010; 264 Woese (bib0140) 1973; 60 Di Giulio (bib0020) Feb 2000; 25 Yarus, Caporaso, Knight (bib0160) 2005; 74 Santos, Monteagudo (bib0110) 2011; 12 Park, Carter (bib0090) 1995 Freeland, Wu, Keulmann (bib0055) 2003; 33 Novozhilov, Wolf, Koonin (bib0085) 2007; 2 Haig, Hurst (bib0065) 1991; 33 R Core Team (bib0100) 2015 Crick (bib0005) 1968; 38 Freeland, Knight, Landweber, Hurst (bib0050) Apr 2000; 17 Wong (bib0145) 1975; 72 Gilis, Massar, Cerf, Rooman (bib0060) 2001; 2 Di Giulio (bib0010) 1989; 29 Wood (bib0155) 2006 Mackiewicz, Biecek, Mackiewicz, Kiraga, Baczkowski, Sobczynski, Cebrat (bib0080) 2008 Taylor, Coates (bib0135) 1989; 22 Di Giulio (bib0015) 1991; 46 Syswerda (bib0130) 1991 Wong (bib0150) 2005; 27 Pelc, Welton (bib0095) 1966; 209 Di Giulio (bib0030) 2005; 80 Spears (bib0120) 1994 Fogel, Atmar (bib0040) 1990; 63 Di Giulio (bib0025) Jun 2016; 399 Spears (bib0115) 1992 Wong (10.1016/j.biosystems.2016.08.008_bib0145) 1975; 72 Wood (10.1016/j.biosystems.2016.08.008_bib0155) 2006 Crick (10.1016/j.biosystems.2016.08.008_bib0005) 1968; 38 StatSoft (10.1016/j.biosystems.2016.08.008_bib0125) 2014 Di Giulio (10.1016/j.biosystems.2016.08.008_bib0030) 2005; 80 Freeland (10.1016/j.biosystems.2016.08.008_bib0045) 1998; 47 R Core Team (10.1016/j.biosystems.2016.08.008_bib0100) 2015 Novozhilov (10.1016/j.biosystems.2016.08.008_bib0085) 2007; 2 Taylor (10.1016/j.biosystems.2016.08.008_bib0135) 1989; 22 Wong (10.1016/j.biosystems.2016.08.008_bib0150) 2005; 27 Spears (10.1016/j.biosystems.2016.08.008_bib0115) 1992 Spears (10.1016/j.biosystems.2016.08.008_bib0120) 1994 Larrañaga (10.1016/j.biosystems.2016.08.008_bib0075) 1999; 13 Di Giulio (10.1016/j.biosystems.2016.08.008_bib0020) 2000; 25 Park (10.1016/j.biosystems.2016.08.008_bib0090) 1995 Di Giulio (10.1016/j.biosystems.2016.08.008_bib0010) 1989; 29 Syswerda (10.1016/j.biosystems.2016.08.008_bib0130) 1991 Kokosiński (10.1016/j.biosystems.2016.08.008_bib0070) 2005 Freeland (10.1016/j.biosystems.2016.08.008_bib0055) 2003; 33 Santos (10.1016/j.biosystems.2016.08.008_bib0105) 2010; 264 Mackiewicz (10.1016/j.biosystems.2016.08.008_bib0080) 2008 Pelc (10.1016/j.biosystems.2016.08.008_bib0095) 1966; 209 Fogel (10.1016/j.biosystems.2016.08.008_bib0040) 1990; 63 Gilis (10.1016/j.biosystems.2016.08.008_bib0060) 2001; 2 Di Giulio (10.1016/j.biosystems.2016.08.008_bib0015) 1991; 46 Dunnill (10.1016/j.biosystems.2016.08.008_bib0035) 1966; 210 Di Giulio (10.1016/j.biosystems.2016.08.008_bib0025) 2016; 399 Haig (10.1016/j.biosystems.2016.08.008_bib0065) 1991; 33 Yarus (10.1016/j.biosystems.2016.08.008_bib0160) 2005; 74 Santos (10.1016/j.biosystems.2016.08.008_bib0110) 2011; 12 Freeland (10.1016/j.biosystems.2016.08.008_bib0050) 2000; 17 Woese (10.1016/j.biosystems.2016.08.008_bib0140) 1973; 60 |
References_xml | – volume: 63 start-page: 111 year: 1990 end-page: 114 ident: bib0040 article-title: Comparing genetic operators with Gaussian mutations in simulation evolutionary processes using linear systems publication-title: Biol. Cybern. – volume: 22 start-page: 177 year: 1989 end-page: 187 ident: bib0135 article-title: The code within the codons publication-title: Biosystems – year: 2006 ident: bib0155 article-title: General Additive Models: An Introduction With R – volume: 25 start-page: 44 year: Feb 2000 ident: bib0020 article-title: The origin of the genetic code publication-title: Trends Biochem. Sci. – start-page: 296 year: 1994 end-page: 317 ident: bib0120 article-title: Simple population schemes publication-title: Proceedings of the 1994 Evolutionary Programming Conference – year: 2015 ident: bib0100 article-title: R: A Language and Environment for Statistical Computing – volume: 17 start-page: 511 year: Apr 2000 end-page: 518 ident: bib0050 article-title: Early fixation of an optimal genetic code publication-title: Mol. Biol. Evol. – year: 2014 ident: bib0125 article-title: STATISTICA (Data Analysis Software System), Version 12 – volume: 47 start-page: 238 year: 1998 end-page: 248 ident: bib0045 article-title: The genetic code is one in a million publication-title: J. Mol. Evol. – volume: 13 start-page: 129 year: 1999 end-page: 170 ident: bib0075 article-title: Genetic algorithms for the travelling salesman problem: a review of representations and operators publication-title: Artif. Intell. Rev. – start-page: 221 year: 1992 end-page: 237 ident: bib0115 article-title: Crossover or mutation? publication-title: Proceedings of the 2nd Foundations of Genetic Algorithms Workshop – volume: 80 start-page: 175 year: 2005 end-page: 184 ident: bib0030 article-title: The origin of the genetic code: theories and their relationship, a review publication-title: Biosystems – volume: 27 start-page: 416 year: 2005 end-page: 425 ident: bib0150 article-title: Coevolution theory of the genetic code at age thirty publication-title: Bioessays – volume: 46 start-page: 305 year: 1991 end-page: 312 ident: bib0015 article-title: On the relationships between the genetic code coevolution hypothesis and the physicochemical hypothesis publication-title: Z. Naturforsch. C – volume: 33 start-page: 457 year: 2003 end-page: 477 ident: bib0055 article-title: The case for an error minimizing standard genetic code publication-title: Orig. Life Evol. Biosph. – volume: 12 start-page: 56 year: 2011 ident: bib0110 article-title: Simulated evolution applied to study the genetic code optimality using a model of codon reassignments publication-title: BMC Bioinformatics – volume: 399 start-page: 134 year: Jun 2016 end-page: 140 ident: bib0025 article-title: The lack of foundation in the mechanism on which are based the physico-chemical theories for the origin of the genetic code is counterposed to the credible and natural mechanism suggested by the coevolution theory publication-title: J. Theor. Biol. – start-page: 100 year: 2008 end-page: 109 ident: bib0080 article-title: Optimisation of asymmetric mutational pressure and selection pressure around the universal genetic code publication-title: Computational Science – ICCS 2008, PT 3. Vol. 5103 of Lecture Notes in Computer Science – volume: 209 start-page: 868 year: 1966 end-page: 870 ident: bib0095 article-title: Stereochemical relationship between coding triplets and amino-acids publication-title: Nature – start-page: 299 year: 2005 end-page: 308 ident: bib0070 article-title: Effects of versatile crossover and mutation operators on evolutionary search in partition and permutation problems publication-title: Intelligent Information Processing and Web Mining. Volume 31 of the series Advances in Soft Computing – volume: 2 start-page: 24 year: 2007 ident: bib0085 article-title: Evolution of the genetic code: partial optimization of a random code for robustness to translation error in a rugged fitness landscape publication-title: Biol. Direct – volume: 29 start-page: 288 year: 1989 end-page: 293 ident: bib0010 article-title: The extension reached by the minimization of the polarity distances during the evolution of the genetic code publication-title: J. Mol. Evol. – volume: 33 start-page: 412 year: 1991 end-page: 417 ident: bib0065 article-title: A quantitative measure of error minimization in the genetic code publication-title: J. Mol. Evol. – start-page: 332 year: 1991 end-page: 349 ident: bib0130 article-title: Schedule optimization using genetic algorithms publication-title: Handbook of Genetic Algorithms – volume: 74 start-page: 179 year: 2005 end-page: 198 ident: bib0160 article-title: Origins of the genetic code: the escaped triplet theory publication-title: Annu. Rev. Biochem. – volume: 2 year: 2001 ident: bib0060 article-title: Optimality of the genetic code with respect to protein stability and amino-acid frequencies publication-title: Genome Biol. – volume: 60 start-page: 447 year: 1973 end-page: 459 ident: bib0140 article-title: Evolution of the genetic code publication-title: Naturwissenschaften – volume: 72 start-page: 1909 year: 1975 end-page: 1912 ident: bib0145 article-title: A co-evolution theory of the genetic code publication-title: Proc. Natl. Acad. Sci. U. S. A. – start-page: 329 year: 1995 end-page: 336 ident: bib0090 article-title: On the effectiveness of genetic search in combinatorial optimization publication-title: SAC – volume: 264 start-page: 854 year: 2010 end-page: 865 ident: bib0105 article-title: Study of the genetic code adaptability by means of a genetic algorithm publication-title: J. Theor. Biol. – volume: 210 start-page: 1265 year: 1966 end-page: 1267 ident: bib0035 article-title: Triplet nucleotide-amino-acid pairing: a stereochemical basis for the division between protein and non-protein amino-acids publication-title: Nature – volume: 38 start-page: 367 year: 1968 end-page: 379 ident: bib0005 article-title: The origin of the genetic code publication-title: J. Mol. Biol. – volume: 264 start-page: 854 issue: June (3) year: 2010 ident: 10.1016/j.biosystems.2016.08.008_bib0105 article-title: Study of the genetic code adaptability by means of a genetic algorithm publication-title: J. Theor. Biol. doi: 10.1016/j.jtbi.2010.02.041 – volume: 46 start-page: 305 issue: 3–4 year: 1991 ident: 10.1016/j.biosystems.2016.08.008_bib0015 article-title: On the relationships between the genetic code coevolution hypothesis and the physicochemical hypothesis publication-title: Z. Naturforsch. C doi: 10.1515/znc-1991-3-422 – volume: 33 start-page: 412 year: 1991 ident: 10.1016/j.biosystems.2016.08.008_bib0065 article-title: A quantitative measure of error minimization in the genetic code publication-title: J. Mol. Evol. doi: 10.1007/BF02103132 – volume: 47 start-page: 238 issue: 3 year: 1998 ident: 10.1016/j.biosystems.2016.08.008_bib0045 article-title: The genetic code is one in a million publication-title: J. Mol. Evol. doi: 10.1007/PL00006381 – volume: 63 start-page: 111 year: 1990 ident: 10.1016/j.biosystems.2016.08.008_bib0040 article-title: Comparing genetic operators with Gaussian mutations in simulation evolutionary processes using linear systems publication-title: Biol. Cybern. doi: 10.1007/BF00203032 – start-page: 299 year: 2005 ident: 10.1016/j.biosystems.2016.08.008_bib0070 article-title: Effects of versatile crossover and mutation operators on evolutionary search in partition and permutation problems – volume: 72 start-page: 1909 issue: May (5) year: 1975 ident: 10.1016/j.biosystems.2016.08.008_bib0145 article-title: A co-evolution theory of the genetic code publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.72.5.1909 – volume: 27 start-page: 416 issue: April (4) year: 2005 ident: 10.1016/j.biosystems.2016.08.008_bib0150 article-title: Coevolution theory of the genetic code at age thirty publication-title: Bioessays doi: 10.1002/bies.20208 – volume: 74 start-page: 179 year: 2005 ident: 10.1016/j.biosystems.2016.08.008_bib0160 article-title: Origins of the genetic code: the escaped triplet theory publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev.biochem.74.082803.133119 – volume: 29 start-page: 288 year: 1989 ident: 10.1016/j.biosystems.2016.08.008_bib0010 article-title: The extension reached by the minimization of the polarity distances during the evolution of the genetic code publication-title: J. Mol. Evol. doi: 10.1007/BF02103616 – volume: 17 start-page: 511 issue: 4 year: 2000 ident: 10.1016/j.biosystems.2016.08.008_bib0050 article-title: Early fixation of an optimal genetic code publication-title: Mol. Biol. Evol. doi: 10.1093/oxfordjournals.molbev.a026331 – start-page: 332 year: 1991 ident: 10.1016/j.biosystems.2016.08.008_bib0130 article-title: Schedule optimization using genetic algorithms – volume: 399 start-page: 134 year: 2016 ident: 10.1016/j.biosystems.2016.08.008_bib0025 article-title: The lack of foundation in the mechanism on which are based the physico-chemical theories for the origin of the genetic code is counterposed to the credible and natural mechanism suggested by the coevolution theory publication-title: J. Theor. Biol. doi: 10.1016/j.jtbi.2016.04.005 – volume: 210 start-page: 1265 issue: June (5042) year: 1966 ident: 10.1016/j.biosystems.2016.08.008_bib0035 article-title: Triplet nucleotide-amino-acid pairing: a stereochemical basis for the division between protein and non-protein amino-acids publication-title: Nature – start-page: 100 year: 2008 ident: 10.1016/j.biosystems.2016.08.008_bib0080 article-title: Optimisation of asymmetric mutational pressure and selection pressure around the universal genetic code – volume: 209 start-page: 868 issue: February (5026) year: 1966 ident: 10.1016/j.biosystems.2016.08.008_bib0095 article-title: Stereochemical relationship between coding triplets and amino-acids publication-title: Nature doi: 10.1038/209868a0 – volume: 2 start-page: 24 year: 2007 ident: 10.1016/j.biosystems.2016.08.008_bib0085 article-title: Evolution of the genetic code: partial optimization of a random code for robustness to translation error in a rugged fitness landscape publication-title: Biol. Direct doi: 10.1186/1745-6150-2-24 – year: 2014 ident: 10.1016/j.biosystems.2016.08.008_bib0125 – volume: 25 start-page: 44 issue: 2 year: 2000 ident: 10.1016/j.biosystems.2016.08.008_bib0020 article-title: The origin of the genetic code publication-title: Trends Biochem. Sci. doi: 10.1016/S0968-0004(99)01522-4 – volume: 13 start-page: 129 issue: April (2) year: 1999 ident: 10.1016/j.biosystems.2016.08.008_bib0075 article-title: Genetic algorithms for the travelling salesman problem: a review of representations and operators publication-title: Artif. Intell. Rev. doi: 10.1023/A:1006529012972 – volume: 33 start-page: 457 issue: October (4–5) year: 2003 ident: 10.1016/j.biosystems.2016.08.008_bib0055 article-title: The case for an error minimizing standard genetic code publication-title: Orig. Life Evol. Biosph. doi: 10.1023/A:1025771327614 – year: 2015 ident: 10.1016/j.biosystems.2016.08.008_bib0100 – volume: 60 start-page: 447 issue: 10 year: 1973 ident: 10.1016/j.biosystems.2016.08.008_bib0140 article-title: Evolution of the genetic code publication-title: Naturwissenschaften doi: 10.1007/BF00592854 – volume: 2 issue: 11 year: 2001 ident: 10.1016/j.biosystems.2016.08.008_bib0060 article-title: Optimality of the genetic code with respect to protein stability and amino-acid frequencies publication-title: Genome Biol. doi: 10.1186/gb-2001-2-11-research0049 – volume: 22 start-page: 177 issue: 3 year: 1989 ident: 10.1016/j.biosystems.2016.08.008_bib0135 article-title: The code within the codons publication-title: Biosystems doi: 10.1016/0303-2647(89)90059-2 – year: 2006 ident: 10.1016/j.biosystems.2016.08.008_bib0155 – start-page: 329 year: 1995 ident: 10.1016/j.biosystems.2016.08.008_bib0090 article-title: On the effectiveness of genetic search in combinatorial optimization – volume: 12 start-page: 56 year: 2011 ident: 10.1016/j.biosystems.2016.08.008_bib0110 article-title: Simulated evolution applied to study the genetic code optimality using a model of codon reassignments publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-12-56 – start-page: 296 year: 1994 ident: 10.1016/j.biosystems.2016.08.008_bib0120 article-title: Simple population schemes – start-page: 221 year: 1992 ident: 10.1016/j.biosystems.2016.08.008_bib0115 article-title: Crossover or mutation? – volume: 38 start-page: 367 year: 1968 ident: 10.1016/j.biosystems.2016.08.008_bib0005 article-title: The origin of the genetic code publication-title: J. Mol. Biol. doi: 10.1016/0022-2836(68)90392-6 – volume: 80 start-page: 175 issue: 80 year: 2005 ident: 10.1016/j.biosystems.2016.08.008_bib0030 article-title: The origin of the genetic code: theories and their relationship, a review publication-title: Biosystems doi: 10.1016/j.biosystems.2004.11.005 |
SSID | ssj0000581 |
Score | 2.3094478 |
Snippet | One of theories explaining the present structure of canonical genetic code assumes that it was optimized to minimize harmful effects of amino acid replacements... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 61 |
SubjectTerms | Amino acid Amino Acids - genetics Animals Biological Evolution Codon - genetics Crossover Evolution, Molecular Evolutionary algorithms Genetic code Genetic Code - genetics Humans Models, Genetic Mutation Mutation - genetics Polarity |
Title | The role of crossover operator in evolutionary-based approach to the problem of genetic code optimization |
URI | https://dx.doi.org/10.1016/j.biosystems.2016.08.008 https://www.ncbi.nlm.nih.gov/pubmed/27555085 https://www.proquest.com/docview/1835356741 |
Volume | 150 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5KRfAivq2PsoLX2KTZzQNPpViqxR7UYm_LZrOBiCalpkIv_nZnko1FUCh4CgnZTZiZnfmS_WaGkEsEqYgVLF8lnsViyaxA-Q6sKw3RXfpMxfi_437sDSfsbsqnDdKvc2GQVml8f-XTS29trnSMNDuzNO08gnkC9gDn6oGRBgwTfhnz0cqvPlc0D5uXjUrxZmRz-YbNU3G8ojSvCiZj4W7HK4t5YqPJ30PUXxC0DEWDHbJtMCTtVa-5Sxo62yObVVfJ5T5JQfUUWYM0T2j5CKRp0nymyy11mmZUfxiLk_OlhYEspnVxcVrkFEAhNZ1mcA6wMUx1pJj-DtMU6ZtJ3jwgk8HNU39omY4KlmLMLkANSRiB_Bl3uwlTtq11KAExJV4UIQfGTbgtQ1jmXgzXuYavJztWWoInCiSWqTkkzSzP9DGhnou1vmLb5QnmysYyZE4olc91AlpxdIv4tRCFMuXGsevFq6h5ZS9iJX6B4hfYENMOWsT5HjmrSm6sMea61pP4YT4CIsMaoy9q1QpYXbhlIjOdL94FODzucg9gV4scVTr_fqeuz-HzLuAn_3r2KdnCs4ohc0aaxXyhzwHnFFG7NOQ22ejdjoZjPI4enkdf5e8Abg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60InoR39bnCl5Dk2Y3DzyVolRte7GCt2WTbCCiSalR8N87k2xaBIWC1ySbhJ3ZmS_Zb74BuCKQSljB8uPUs3iiuBXEvoPrSmN2Vz6PE_rfMRp7gyd-_yyeV6Df1MIQrdLE_jqmV9HaHOmY2exMs6zziO6J2AODq4dOGvBgFdZInUq0YK139zAYLwKyqHqV0vVE6PINoaemeUVZUWsmk3a341V6ntRr8vcs9RcKrbLR7TZsGRjJevWb7sCKzndhvW4s-bUHGVqfEXGQFSmrHkFMTVZMdbWrzrKc6U_jdGr2ZVEuS1ijL87KgiEuZKbZDN0D3YyqHRlVwONtyuzN1G_uw9PtzaQ_sExTBSvm3C7REmkYoQm4cLspj21b61AhaEq9KCIajJsKW4W40r0EjwuNH1B2EmuFwShQpFRzAK28yPURMM8lua_EdkVK5bKJCrkTqtgXOkXDOLoNfjOJMjaK49T44lU21LIXuZh-SdMvqSemHbTBmY-c1qobS4y5buwkf3iQxOSwxOjLxrQSFxjtmqhcFx_vEmOecIWHyKsNh7XN5-_U9QV-4QXi-F_PvoCNwWQ0lMO78cMJbNKZmjBzCq1y9qHPEPaU0blx62-aNwF8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+role+of+crossover+operator+in+evolutionary-based+approach+to+the+problem+of+genetic+code+optimization&rft.jtitle=BioSystems&rft.au=B%C5%82a%C5%BCej%2C+Pawe%C5%82&rft.au=Wn%C8%A9trzak%2C+Ma%C5%82gorzata&rft.au=Mackiewicz%2C+Pawe%C5%82&rft.date=2016-12-01&rft.eissn=1872-8324&rft.volume=150&rft.spage=61&rft_id=info:doi/10.1016%2Fj.biosystems.2016.08.008&rft_id=info%3Apmid%2F27555085&rft.externalDocID=27555085 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0303-2647&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0303-2647&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0303-2647&client=summon |