High mitochondrial respiration and glycolytic capacity represent a metabolic phenotype of human tolerogenic dendritic cells
Human dendritic cells (DCs) regulate the balance between immunity and tolerance through selective activation by environmental and pathogen-derived triggers. To characterize the rapid changes that occur during this process, we analyzed the underlying metabolic activity across a spectrum of functional...
Saved in:
Published in | The Journal of immunology (1950) Vol. 194; no. 11; pp. 5174 - 5186 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
01.06.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Human dendritic cells (DCs) regulate the balance between immunity and tolerance through selective activation by environmental and pathogen-derived triggers. To characterize the rapid changes that occur during this process, we analyzed the underlying metabolic activity across a spectrum of functional DC activation states, from immunogenic to tolerogenic. We found that in contrast to the pronounced proinflammatory program of mature DCs, tolerogenic DCs displayed a markedly augmented catabolic pathway, related to oxidative phosphorylation, fatty acid metabolism, and glycolysis. Functionally, tolerogenic DCs demonstrated the highest mitochondrial oxidative activity, production of reactive oxygen species, superoxide, and increased spare respiratory capacity. Furthermore, assembled, electron transport chain complexes were significantly more abundant in tolerogenic DCs. At the level of glycolysis, tolerogenic and mature DCs showed similar glycolytic rates, but glycolytic capacity and reserve were more pronounced in tolerogenic DCs. The enhanced glycolytic reserve and respiratory capacity observed in these DCs were reflected in a higher metabolic plasticity to maintain intracellular ATP content. Interestingly, tolerogenic and mature DCs manifested substantially different expression of proteins involved in the fatty acid oxidation (FAO) pathway, and FAO activity was significantly higher in tolerogenic DCs. Inhibition of FAO prevented the function of tolerogenic DCs and partially restored T cell stimulatory capacity, demonstrating their dependence on this pathway. Overall, tolerogenic DCs show metabolic signatures of increased oxidative phosphorylation programing, a shift in redox state, and high plasticity for metabolic adaptation. These observations point to a mechanism for rapid genome-wide reprograming by modulation of underlying cellular metabolism during DC differentiation. |
---|---|
AbstractList | Human dendritic cells (DCs) regulate the balance between immunity and tolerance through selective activation by environmental and pathogen-derived triggers. To characterize the rapid changes that occur during this process, we analyzed the underlying metabolic activity across a spectrum of functional DC activation states, from immunogenic to tolerogenic. We found that in contrast to the pronounced proinflammatory program of mature DCs, tolerogenic DCs displayed a markedly augmented catabolic pathway, related to oxidative phosphorylation, fatty acid metabolism, and glycolysis. Functionally, tolerogenic DCs demonstrated the highest mitochondrial oxidative activity, production of reactive oxygen species, superoxide, and increased spare respiratory capacity. Furthermore, assembled, electron transport chain complexes were significantly more abundant in tolerogenic DCs. At the level of glycolysis, tolerogenic and mature DCs showed similar glycolytic rates, but glycolytic capacity and reserve were more pronounced in tolerogenic DCs. The enhanced glycolytic reserve and respiratory capacity observed in these DCs were reflected in a higher metabolic plasticity to maintain intracellular ATP content. Interestingly, tolerogenic and mature DCs manifested substantially different expression of proteins involved in the fatty acid oxidation (FAO) pathway, and FAO activity was significantly higher in tolerogenic DCs. Inhibition of FAO prevented the function of tolerogenic DCs and partially restored T cell stimulatory capacity, demonstrating their dependence on this pathway. Overall, tolerogenic DCs show metabolic signatures of increased oxidative phosphorylation programing, a shift in redox state, and high plasticity for metabolic adaptation. These observations point to a mechanism for rapid genome-wide reprograming by modulation of underlying cellular metabolism during DC differentiation. Abstract Human dendritic cells (DCs) regulate the balance between immunity and tolerance through selective activation by environmental and pathogen-derived triggers. To characterize the rapid changes that occur during this process, we analyzed the underlying metabolic activity across a spectrum of functional DC activation states, from immunogenic to tolerogenic. We found that in contrast to the pronounced proinflammatory program of mature DCs, tolerogenic DCs displayed a markedly augmented catabolic pathway, related to oxidative phosphorylation, fatty acid metabolism, and glycolysis. Functionally, tolerogenic DCs demonstrated the highest mitochondrial oxidative activity, production of reactive oxygen species, superoxide, and increased spare respiratory capacity. Furthermore, assembled, electron transport chain complexes were significantly more abundant in tolerogenic DCs. At the level of glycolysis, tolerogenic and mature DCs showed similar glycolytic rates, but glycolytic capacity and reserve were more pronounced in tolerogenic DCs. The enhanced glycolytic reserve and respiratory capacity observed in these DCs were reflected in a higher metabolic plasticity to maintain intracellular ATP content. Interestingly, tolerogenic and mature DCs manifested substantially different expression of proteins involved in the fatty acid oxidation (FAO) pathway, and FAO activity was significantly higher in tolerogenic DCs. Inhibition of FAO prevented the function of tolerogenic DCs and partially restored T cell stimulatory capacity, demonstrating their dependence on this pathway. Overall, tolerogenic DCs show metabolic signatures of increased oxidative phosphorylation programing, a shift in redox state, and high plasticity for metabolic adaptation. These observations point to a mechanism for rapid genome-wide reprograming by modulation of underlying cellular metabolism during DC differentiation. |
Author | Poidinger, Michael Malinarich, Frano Bijin, Au Connolly, John E Duan, Kaibo Lin, Wu Xue Hamid, Raudhah Abdull Fairhurst, Anna-Marie |
Author_xml | – sequence: 1 givenname: Frano surname: Malinarich fullname: Malinarich, Frano organization: Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore 138673; Singapore Immunology Network, Singapore 138648; and – sequence: 2 givenname: Kaibo surname: Duan fullname: Duan, Kaibo organization: Singapore Immunology Network, Singapore 138648; and – sequence: 3 givenname: Raudhah Abdull surname: Hamid fullname: Hamid, Raudhah Abdull organization: Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore 138673; Singapore Immunology Network, Singapore 138648; and – sequence: 4 givenname: Au surname: Bijin fullname: Bijin, Au organization: Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore 138673; Singapore Immunology Network, Singapore 138648; and – sequence: 5 givenname: Wu Xue surname: Lin fullname: Lin, Wu Xue organization: Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore 138673; Singapore Immunology Network, Singapore 138648; and – sequence: 6 givenname: Michael surname: Poidinger fullname: Poidinger, Michael organization: Singapore Immunology Network, Singapore 138648; and – sequence: 7 givenname: Anna-Marie surname: Fairhurst fullname: Fairhurst, Anna-Marie organization: Singapore Immunology Network, Singapore 138648; and – sequence: 8 givenname: John E surname: Connolly fullname: Connolly, John E email: jeconnolly@imcb.a-star.edu.sg organization: Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore 138673; Singapore Immunology Network, Singapore 138648; and Institute of Biomedical Studies, Baylor University, Waco, TX 76798 jeconnolly@imcb.a-star.edu.sg |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25917094$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkTtv3DAQhInARnx-9KkClmnkLPUgqTIw4tiAATdxLazI1R0NilREqhDy56OLz2lTbTHfzO5iLtlZiIEY-yTgtoa6_frqxnEJ0d-KCqpKyA9sJ5oGCilBnrEdQFkWQkl1wS5TegUACWX9kV2UTSsUtPWO_X5w-wMfXY7mEIOdHXo-U5rcjNnFwDFYvveriX7NznCDExqX142ZNoxC5shHythHv8nTgULM60Q8DvywjBh4jp7muKewyZaOG_7mkPfpmp0P6BPdnOYVe7n__vPuoXh6_vF49-2pMHUNudCoUFRNq3orhroFxF5Lsb2idKlbhUBoG6RNkrYCSX1f9o0ZQFTGCG1tdcW-vOVOc_y1UMrd6NLxAgwUl9QJDVq2jar1_1GpRSuE0nJD4Q01c0xppqGbZjfivHYCumM73Xs73amdzfL5lL70I9l_hvc6qj-rz5Hh |
CitedBy_id | crossref_primary_10_1093_intimm_dxaa036 crossref_primary_10_1016_j_cell_2019_03_018 crossref_primary_10_1038_s41467_022_32849_1 crossref_primary_10_1126_sciimmunol_abb5439 crossref_primary_10_3389_fimmu_2017_00609 crossref_primary_10_1084_jem_20151570 crossref_primary_10_3389_fimmu_2019_00079 crossref_primary_10_1158_2326_6066_CIR_21_0240 crossref_primary_10_3389_fimmu_2018_00495 crossref_primary_10_1186_s12935_021_02057_w crossref_primary_10_3389_fimmu_2022_831636 crossref_primary_10_3389_fimmu_2023_1161148 crossref_primary_10_3390_cells11101663 crossref_primary_10_1016_j_xpro_2021_100401 crossref_primary_10_4049_jimmunol_2200158 crossref_primary_10_1093_jleuko_qiad062 crossref_primary_10_1016_j_intimp_2018_07_031 crossref_primary_10_1038_s41467_023_42570_2 crossref_primary_10_1016_j_mam_2021_100992 crossref_primary_10_3390_cells8101291 crossref_primary_10_3390_cimb46050249 crossref_primary_10_1189_jlb_1VMR1216_535R crossref_primary_10_1016_j_joca_2019_10_010 crossref_primary_10_1007_s00018_020_03672_y crossref_primary_10_3389_fimmu_2017_01429 crossref_primary_10_3390_biom14040469 crossref_primary_10_1172_JCI146136 crossref_primary_10_1155_2017_5134760 crossref_primary_10_1158_0008_5472_CAN_21_3054 crossref_primary_10_3389_fimmu_2019_00345 crossref_primary_10_1038_s41368_022_00203_2 crossref_primary_10_3390_ijms23094885 crossref_primary_10_4049_jimmunol_1501557 crossref_primary_10_3389_fimmu_2020_612269 crossref_primary_10_1093_immadv_ltab012 crossref_primary_10_3389_fimmu_2018_03070 crossref_primary_10_1016_j_it_2019_06_004 crossref_primary_10_3390_ijms21249660 crossref_primary_10_18632_oncotarget_5865 crossref_primary_10_3389_fimmu_2023_1125874 crossref_primary_10_1002_jcp_30123 crossref_primary_10_3389_fimmu_2020_00869 crossref_primary_10_3389_fimmu_2023_1140749 crossref_primary_10_3390_cancers12040852 crossref_primary_10_5500_wjt_v9_i2_0000 crossref_primary_10_2174_1871530322666220104103905 crossref_primary_10_3389_fimmu_2019_00775 crossref_primary_10_1152_ajpendo_00441_2019 crossref_primary_10_3389_fcell_2020_600350 crossref_primary_10_3389_fimmu_2017_01350 crossref_primary_10_3389_fimmu_2018_03145 crossref_primary_10_1016_j_heliyon_2024_e30746 crossref_primary_10_1126_sciimmunol_abi8472 crossref_primary_10_1016_j_molimm_2018_07_007 crossref_primary_10_1016_j_redox_2019_101255 crossref_primary_10_1038_s41467_023_42096_7 crossref_primary_10_1161_ATVBAHA_120_314037 crossref_primary_10_1016_j_ajpath_2017_06_003 crossref_primary_10_1002_eji_202048944 crossref_primary_10_3389_fimmu_2021_658432 crossref_primary_10_1155_2016_2636701 crossref_primary_10_3390_nu15020411 crossref_primary_10_5500_wjt_v9_i2_27 crossref_primary_10_1016_j_jaci_2021_06_012 crossref_primary_10_3389_fimmu_2020_591185 crossref_primary_10_1002_JLB_1A0920_561RR crossref_primary_10_1111_all_14036 crossref_primary_10_3389_fimmu_2021_733231 crossref_primary_10_1016_j_celrep_2020_108278 crossref_primary_10_1007_s00281_016_0609_6 crossref_primary_10_1038_nmicrobiol_2016_106 crossref_primary_10_3390_cells11193174 crossref_primary_10_1096_fj_202000767R crossref_primary_10_3389_fimmu_2023_1227648 crossref_primary_10_1016_j_canlet_2017_10_032 crossref_primary_10_3389_fimmu_2021_657293 crossref_primary_10_3389_fonc_2021_751086 crossref_primary_10_1002_wsbm_1486 crossref_primary_10_1038_s41422_019_0161_8 crossref_primary_10_1016_j_redox_2022_102575 crossref_primary_10_1002_JLB_MR0318_104R crossref_primary_10_1016_j_biomaterials_2017_08_040 crossref_primary_10_3389_fimmu_2022_920029 crossref_primary_10_1016_j_jsbmb_2021_105891 crossref_primary_10_3389_fendo_2020_00555 crossref_primary_10_5582_irdr_2016_01008 crossref_primary_10_1089_ars_2019_7999 crossref_primary_10_1038_srep42412 crossref_primary_10_1186_s12964_024_01655_1 crossref_primary_10_1172_JCI133008 crossref_primary_10_1371_journal_pone_0152016 crossref_primary_10_3390_ijms242317078 crossref_primary_10_1126_sciimmunol_abh2383 crossref_primary_10_1016_j_phrs_2019_104269 crossref_primary_10_3389_fcimb_2023_1113744 crossref_primary_10_1038_s41385_021_00455_x crossref_primary_10_1038_s41467_023_42881_4 crossref_primary_10_1016_j_immuni_2015_09_001 crossref_primary_10_3389_fimmu_2021_661241 crossref_primary_10_1007_s00018_020_03569_w crossref_primary_10_1111_jth_14274 crossref_primary_10_3389_fimmu_2021_806110 crossref_primary_10_1016_j_immuni_2017_12_004 crossref_primary_10_1016_j_devcel_2021_04_013 crossref_primary_10_1172_JCI123839 crossref_primary_10_3389_fimmu_2018_02062 crossref_primary_10_3389_fimmu_2021_692004 crossref_primary_10_3389_fimmu_2020_00305 crossref_primary_10_1016_j_celrep_2022_111032 crossref_primary_10_3389_fimmu_2017_01714 crossref_primary_10_1016_j_coi_2019_02_003 crossref_primary_10_1016_j_intimp_2023_109739 crossref_primary_10_1055_a_1308_0589 crossref_primary_10_1016_j_cmet_2019_11_011 crossref_primary_10_1016_j_jaut_2023_103048 crossref_primary_10_1128_IAI_00738_19 crossref_primary_10_1016_j_heliyon_2024_e24454 crossref_primary_10_4049_jimmunol_1701522 crossref_primary_10_1039_D2BM01881K crossref_primary_10_3390_ijms20030742 crossref_primary_10_1016_j_jri_2023_104128 crossref_primary_10_4103_tme_tme_2_20 crossref_primary_10_1016_j_pnpbp_2020_109976 crossref_primary_10_3390_cells9030562 crossref_primary_10_1186_s12944_022_01705_y crossref_primary_10_3389_fimmu_2015_00528 crossref_primary_10_3389_fonc_2023_1251355 crossref_primary_10_1016_j_mce_2017_04_018 crossref_primary_10_1111_imr_13215 crossref_primary_10_1038_s41577_019_0140_9 crossref_primary_10_3390_cells8030275 crossref_primary_10_1016_j_jacbts_2022_12_010 crossref_primary_10_1016_j_jsbmb_2018_11_011 crossref_primary_10_1038_s41598_022_20215_6 crossref_primary_10_3390_molecules26123494 crossref_primary_10_1002_iub_2592 crossref_primary_10_3390_immuno1010001 crossref_primary_10_1002_pmic_201800118 crossref_primary_10_3389_fimmu_2022_916491 crossref_primary_10_1016_j_jaut_2018_07_005 crossref_primary_10_1155_2021_7483865 crossref_primary_10_3389_fimmu_2015_00535 crossref_primary_10_3389_fimmu_2019_01251 crossref_primary_10_4049_jimmunol_1701752 crossref_primary_10_3390_ijms21176176 crossref_primary_10_1093_oxfimm_iqad005 crossref_primary_10_1016_j_jare_2024_04_023 crossref_primary_10_3389_fimmu_2017_00071 crossref_primary_10_1038_s42003_020_1027_9 |
Cites_doi | 10.4049/jimmunol.180.7.4697 10.1016/j.cell.2010.01.022 10.1038/ni.2833 10.1182/blood-2012-03-419747 10.1016/j.immuni.2013.04.005 10.2202/1544-6115.1027 10.1182/blood-2009-10-249540 10.1111/cei.12038 10.1079/BJN2003980 10.1186/1479-5876-8-4 10.1038/nri3254 10.1016/B978-0-12-380995-7.00004-5 10.1038/nri2132 10.1146/annurev.immunol.21.120601.141040 10.1111/j.1600-065X.2012.01150.x 10.1016/j.mito.2009.03.003 10.1172/JCI69589 10.1016/S0021-9258(18)66592-5 10.1016/S0022-2275(20)33865-7 10.4049/jimmunol.168.5.2255 10.1371/journal.pone.0106028 10.1016/j.bbabio.2010.10.022 10.1021/pr200724e 10.1084/jem.20112583 10.1074/jbc.M110.139493 10.1016/j.jsbmb.2010.11.010 10.1038/nrc1478 10.1161/ATVBAHA.110.207449 10.4049/jimmunol.180.8.5727 10.1073/pnas.91.5.1672 10.3109/08830181003602515 10.1038/nri1268 10.1073/pnas.121172198 10.1186/1475-2867-13-89 |
ContentType | Journal Article |
Copyright | Copyright © 2015 by The American Association of Immunologists, Inc. |
Copyright_xml | – notice: Copyright © 2015 by The American Association of Immunologists, Inc. |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 7T5 7U7 C1K H94 |
DOI | 10.4049/jimmunol.1303316 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef MEDLINE - Academic Immunology Abstracts Toxicology Abstracts Environmental Sciences and Pollution Management AIDS and Cancer Research Abstracts |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef MEDLINE - Academic AIDS and Cancer Research Abstracts Immunology Abstracts Toxicology Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | MEDLINE - Academic AIDS and Cancer Research Abstracts CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Biology |
EISSN | 1550-6606 |
EndPage | 5186 |
ExternalDocumentID | 10_4049_jimmunol_1303316 25917094 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -~X .55 18M 2WC 34G 39C 53G 5GY 5RE 5VS 79B 85S AARDX ABCQX ABJNI ABOCM ABPPZ ACGFO ACGFS ACIWK ACNCT ACPRK ADBBV ADNWM AENEX AFHIN AFOSN AFRAH AHWXS AIZAD ALMA_UNASSIGNED_HOLDINGS BAWUL BTFSW CGR CUY CVF D0L DIK DU5 E3Z EBS ECM EIF EJD F5P FRP GX1 IH2 K-O KQ8 L7B NPM OK1 P0W P2P PQQKQ R.V RHF RHI RZQ SJN TR2 TWZ W8F WH7 WOQ X7M XJT XSW XTH YHG AAYXX CITATION 7X8 7T5 7U7 C1K H94 |
ID | FETCH-LOGICAL-c440t-8a7a13597bd1f490aab861060782897a0ead5aef496d306ebb2b5cf013cc18dd3 |
ISSN | 0022-1767 |
IngestDate | Fri Oct 25 07:40:44 EDT 2024 Fri Oct 25 07:58:04 EDT 2024 Thu Sep 26 16:08:29 EDT 2024 Sat Sep 28 08:09:34 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
License | Copyright © 2015 by The American Association of Immunologists, Inc. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c440t-8a7a13597bd1f490aab861060782897a0ead5aef496d306ebb2b5cf013cc18dd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.jimmunol.org/content/jimmunol/194/11/5174.full.pdf |
PMID | 25917094 |
PQID | 1681911786 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_1808695748 proquest_miscellaneous_1681911786 crossref_primary_10_4049_jimmunol_1303316 pubmed_primary_25917094 |
PublicationCentury | 2000 |
PublicationDate | 2015-Jun-01 2015-06-01 20150601 |
PublicationDateYYYYMMDD | 2015-06-01 |
PublicationDate_xml | – month: 06 year: 2015 text: 2015-Jun-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | The Journal of immunology (1950) |
PublicationTitleAlternate | J Immunol |
PublicationYear | 2015 |
References | Jin (2023010207085197500_r12) 2010; 8 Griffin (2023010207085197500_r22) 2001; 98 Everts (2023010207085197500_r30) 2014; 15 Gatenby (2023010207085197500_r20) 2004; 4 Somjen (2023010207085197500_r32) 2011; 123 Chu (2023010207085197500_r17) 2012; 209 Pike (2023010207085197500_r33) 2011; 1807 van der Windt (2023010207085197500_r8) 2012; 249 Wang (2023010207085197500_r18) 2010; 285 Valera (2023010207085197500_r26) 2008; 180 Dumas (2023010207085197500_r31) 2003; 90 Pearce (2023010207085197500_r6) 2013; 38 Harizi (2023010207085197500_r25) 2002; 168 Tisch (2023010207085197500_r2) 2010; 29 Joffre (2023010207085197500_r3) 2012; 12 Krawczyk (2023010207085197500_r11) 2010; 115 Hilkens (2023010207085197500_r24) 2013; 172 de Moura (2023010207085197500_r34) 2014; 9 Takeuchi (2023010207085197500_r4) 2010; 140 Morelli (2023010207085197500_r13) 2007; 7 Ricciotti (2023010207085197500_r28) 2011; 31 Grynberg (2023010207085197500_r19) 1996; 28 Sukumar (2023010207085197500_r7) 2013; 123 Jantsch (2023010207085197500_r10) 2008; 180 Smyth (2023010207085197500_r16) 2004; 3 Kato (2023010207085197500_r21) 2013; 13 Everts (2023010207085197500_r9) 2012; 120 Williard (2023010207085197500_r29) 1998; 39 Maldonado (2023010207085197500_r23) 2010; 108 Vicente-Manzanares (2023010207085197500_r5) 2004; 4 Guo (2023010207085197500_r15) 2009; 9 Hiltunen (2023010207085197500_r27) 1986; 261 Schenk (2023010207085197500_r35) 1994; 91 Steinman (2023010207085197500_r1) 2003; 21 Ferreira (2023010207085197500_r14) 2012; 11 |
References_xml | – volume: 180 start-page: 4697 year: 2008 ident: 2023010207085197500_r10 article-title: Hypoxia and hypoxia-inducible factor-1α modulate lipopolysaccharide-induced dendritic cell activation and function. publication-title: J. Immunol. doi: 10.4049/jimmunol.180.7.4697 contributor: fullname: Jantsch – volume: 140 start-page: 805 year: 2010 ident: 2023010207085197500_r4 article-title: Pattern recognition receptors and inflammation. publication-title: Cell doi: 10.1016/j.cell.2010.01.022 contributor: fullname: Takeuchi – volume: 15 start-page: 323 year: 2014 ident: 2023010207085197500_r30 article-title: TLR-driven early glycolytic reprogramming via the kinases TBK1-IKKɛ supports the anabolic demands of dendritic cell activation. publication-title: Nat. Immunol. doi: 10.1038/ni.2833 contributor: fullname: Everts – volume: 120 start-page: 1422 year: 2012 ident: 2023010207085197500_r9 article-title: Commitment to glycolysis sustains survival of NO-producing inflammatory dendritic cells. publication-title: Blood doi: 10.1182/blood-2012-03-419747 contributor: fullname: Everts – volume: 38 start-page: 633 year: 2013 ident: 2023010207085197500_r6 article-title: Metabolic pathways in immune cell activation and quiescence. publication-title: Immunity doi: 10.1016/j.immuni.2013.04.005 contributor: fullname: Pearce – volume: 3 start-page: Article3 year: 2004 ident: 2023010207085197500_r16 article-title: Linear models and empirical bayes methods for assessing differential expression in microarray experiments. publication-title: Stat. Appl. Genet. Mol. Biol. doi: 10.2202/1544-6115.1027 contributor: fullname: Smyth – volume: 115 start-page: 4742 year: 2010 ident: 2023010207085197500_r11 article-title: Toll-like receptor-induced changes in glycolytic metabolism regulate dendritic cell activation. publication-title: Blood doi: 10.1182/blood-2009-10-249540 contributor: fullname: Krawczyk – volume: 172 start-page: 148 year: 2013 ident: 2023010207085197500_r24 article-title: Tolerogenic dendritic cell therapy for rheumatoid arthritis: where are we now? publication-title: Clin. Exp. Immunol. doi: 10.1111/cei.12038 contributor: fullname: Hilkens – volume: 90 start-page: 969 year: 2003 ident: 2023010207085197500_r31 article-title: Mitochondrial energy metabolism in a model of undernutrition induced by dexamethasone. publication-title: Br. J. Nutr. doi: 10.1079/BJN2003980 contributor: fullname: Dumas – volume: 8 start-page: 4 year: 2010 ident: 2023010207085197500_r12 article-title: Molecular signatures of maturing dendritic cells: implications for testing the quality of dendritic cell therapies. publication-title: J. Transl. Med. doi: 10.1186/1479-5876-8-4 contributor: fullname: Jin – volume: 12 start-page: 557 year: 2012 ident: 2023010207085197500_r3 article-title: Cross-presentation by dendritic cells. publication-title: Nat. Rev. Immunol. doi: 10.1038/nri3254 contributor: fullname: Joffre – volume: 108 start-page: 111 year: 2010 ident: 2023010207085197500_r23 article-title: How tolerogenic dendritic cells induce regulatory T cells. publication-title: Adv. Immunol. doi: 10.1016/B978-0-12-380995-7.00004-5 contributor: fullname: Maldonado – volume: 7 start-page: 610 year: 2007 ident: 2023010207085197500_r13 article-title: Tolerogenic dendritic cells and the quest for transplant tolerance. publication-title: Nat. Rev. Immunol. doi: 10.1038/nri2132 contributor: fullname: Morelli – volume: 21 start-page: 685 year: 2003 ident: 2023010207085197500_r1 article-title: Tolerogenic dendritic cells. publication-title: Annu. Rev. Immunol. doi: 10.1146/annurev.immunol.21.120601.141040 contributor: fullname: Steinman – volume: 249 start-page: 27 year: 2012 ident: 2023010207085197500_r8 article-title: Metabolic switching and fuel choice during T-cell differentiation and memory development. publication-title: Immunol. Rev. doi: 10.1111/j.1600-065X.2012.01150.x contributor: fullname: van der Windt – volume: 9 start-page: 261 year: 2009 ident: 2023010207085197500_r15 article-title: DNA extraction procedures meaningfully influence qPCR-based mtDNA copy number determination. publication-title: Mitochondrion doi: 10.1016/j.mito.2009.03.003 contributor: fullname: Guo – volume: 123 start-page: 4479 year: 2013 ident: 2023010207085197500_r7 article-title: Inhibiting glycolytic metabolism enhances CD8+ T cell memory and antitumor function. publication-title: J. Clin. Invest. doi: 10.1172/JCI69589 contributor: fullname: Sukumar – volume: 261 start-page: 16484 year: 1986 ident: 2023010207085197500_r27 article-title: Beta-oxidation of polyunsaturated fatty acids by rat liver peroxisomes. A role for 2,4-dienoyl-coenzyme A reductase in peroxisomal beta-oxidation. publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)66592-5 contributor: fullname: Hiltunen – volume: 39 start-page: 978 year: 1998 ident: 2023010207085197500_r29 article-title: Conversion of eicosapentaenoic acid to chain-shortened omega-3 fatty acid metabolites by peroxisomal oxidation. publication-title: J. Lipid Res. doi: 10.1016/S0022-2275(20)33865-7 contributor: fullname: Williard – volume: 168 start-page: 2255 year: 2002 ident: 2023010207085197500_r25 article-title: Cyclooxygenase-2-issued prostaglandin E2 enhances the production of endogenous IL-10, which down-regulates dendritic cell functions. publication-title: J. Immunol. doi: 10.4049/jimmunol.168.5.2255 contributor: fullname: Harizi – volume: 9 start-page: e106028 year: 2014 ident: 2023010207085197500_r34 article-title: Overexpression of mitochondrial sirtuins alters glycolysis and mitochondrial function in HEK293 cells. publication-title: PLoS ONE doi: 10.1371/journal.pone.0106028 contributor: fullname: de Moura – volume: 1807 start-page: 726 year: 2011 ident: 2023010207085197500_r33 article-title: Inhibition of fatty acid oxidation by etomoxir impairs NADPH production and increases reactive oxygen species resulting in ATP depletion and cell death in human glioblastoma cells. publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbabio.2010.10.022 contributor: fullname: Pike – volume: 11 start-page: 941 year: 2012 ident: 2023010207085197500_r14 article-title: Differential protein pathways in 1,25-dihydroxyvitamin D3 and dexamethasone modulated tolerogenic human dendritic cells. publication-title: J. Proteome Res. doi: 10.1021/pr200724e contributor: fullname: Ferreira – volume: 209 start-page: 935 year: 2012 ident: 2023010207085197500_r17 article-title: Resident CD141 (BDCA3)+ dendritic cells in human skin produce IL-10 and induce regulatory T cells that suppress skin inflammation. publication-title: J. Exp. Med. doi: 10.1084/jem.20112583 contributor: fullname: Chu – volume: 285 start-page: 29834 year: 2010 ident: 2023010207085197500_r18 article-title: Evidence for physical association of mitochondrial fatty acid oxidation and oxidative phosphorylation complexes. publication-title: J. Biol. Chem. doi: 10.1074/jbc.M110.139493 contributor: fullname: Wang – volume: 123 start-page: 85 year: 2011 ident: 2023010207085197500_r32 article-title: Vitamin D metabolites and analogs induce lipoxygenase mRNA expression and activity as well as reactive oxygen species (ROS) production in human bone cell line. publication-title: J. Steroid Biochem. Mol. Biol. doi: 10.1016/j.jsbmb.2010.11.010 contributor: fullname: Somjen – volume: 4 start-page: 891 year: 2004 ident: 2023010207085197500_r20 article-title: Why do cancers have high aerobic glycolysis? publication-title: Nat. Rev. Cancer doi: 10.1038/nrc1478 contributor: fullname: Gatenby – volume: 28 start-page: S11 year: 1996 ident: 2023010207085197500_r19 article-title: Fatty acid oxidation in the heart. publication-title: J. Cardiovasc. Pharmacol. contributor: fullname: Grynberg – volume: 31 start-page: 986 year: 2011 ident: 2023010207085197500_r28 article-title: Prostaglandins and inflammation. publication-title: Arterioscler. Thromb. Vasc. Biol. doi: 10.1161/ATVBAHA.110.207449 contributor: fullname: Ricciotti – volume: 180 start-page: 5727 year: 2008 ident: 2023010207085197500_r26 article-title: Costimulation of dectin-1 and DC-SIGN triggers the arachidonic acid cascade in human monocyte-derived dendritic cells. publication-title: J. Immunol. doi: 10.4049/jimmunol.180.8.5727 contributor: fullname: Valera – volume: 91 start-page: 1672 year: 1994 ident: 2023010207085197500_r35 article-title: Distinct effects of thioredoxin and antioxidants on the activation of transcription factors NF-κB and AP-1. publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.91.5.1672 contributor: fullname: Schenk – volume: 29 start-page: 111 year: 2010 ident: 2023010207085197500_r2 article-title: Immunogenic versus tolerogenic dendritic cells: a matter of maturation. publication-title: Int. Rev. Immunol. doi: 10.3109/08830181003602515 contributor: fullname: Tisch – volume: 4 start-page: 110 year: 2004 ident: 2023010207085197500_r5 article-title: Role of the cytoskeleton during leukocyte responses. publication-title: Nat. Rev. Immunol. doi: 10.1038/nri1268 contributor: fullname: Vicente-Manzanares – volume: 98 start-page: 6800 year: 2001 ident: 2023010207085197500_r22 article-title: Dendritic cell modulation by 1α,25 dihydroxyvitamin D3 and its analogs: a vitamin D receptor-dependent pathway that promotes a persistent state of immaturity in vitro and in vivo. publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.121172198 contributor: fullname: Griffin – volume: 13 start-page: 89 year: 2013 ident: 2023010207085197500_r21 article-title: Acidic extracellular microenvironment and cancer. publication-title: Cancer Cell Int. doi: 10.1186/1475-2867-13-89 contributor: fullname: Kato |
SSID | ssj0006024 |
Score | 2.5848799 |
Snippet | Human dendritic cells (DCs) regulate the balance between immunity and tolerance through selective activation by environmental and pathogen-derived triggers. To... Abstract Human dendritic cells (DCs) regulate the balance between immunity and tolerance through selective activation by environmental and pathogen-derived... |
SourceID | proquest crossref pubmed |
SourceType | Aggregation Database Index Database |
StartPage | 5174 |
SubjectTerms | 3-Hydroxyacyl CoA Dehydrogenases - antagonists & inhibitors 3-Hydroxyacyl CoA Dehydrogenases - genetics Acetyl-CoA C-Acyltransferase - antagonists & inhibitors Acetyl-CoA C-Acyltransferase - genetics Carbon-Carbon Double Bond Isomerases - antagonists & inhibitors Carbon-Carbon Double Bond Isomerases - genetics Cell Differentiation Cells, Cultured Dendritic Cells - immunology Dendritic Cells - metabolism Electron Transport Chain Complex Proteins - biosynthesis Electron Transport Chain Complex Proteins - metabolism Enoyl-CoA Hydratase - antagonists & inhibitors Enoyl-CoA Hydratase - genetics Fatty Acids - metabolism Glycolysis Humans Immune Tolerance - immunology Leukocytes, Mononuclear - immunology Mitochondria - metabolism Oxidation-Reduction Oxidative Phosphorylation Oxygen Consumption Racemases and Epimerases - antagonists & inhibitors Racemases and Epimerases - genetics Superoxides - metabolism T-Lymphocytes - immunology |
Title | High mitochondrial respiration and glycolytic capacity represent a metabolic phenotype of human tolerogenic dendritic cells |
URI | https://www.ncbi.nlm.nih.gov/pubmed/25917094 https://search.proquest.com/docview/1681911786 https://search.proquest.com/docview/1808695748 |
Volume | 194 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaWIhAXBOW1vGQkOKBVaJw4iX0spQ9BUySUlfYW2Y6jLgoJapPDwp3fzTjOq1VBhUsUJVl7N9-345nxPBB6DRaGktqnTpbngUMVEY7goMgJHjCP6zB0I5PgHJ-ER0v6cRWsZrNfk6ilppbv1I8r80r-B1W4BriaLNl_QHYYFC7AOeALR0AYjtfC2ARpLGL4T4IMK7O2_8aXbuu8jzI-LDYA9caUZd2DdVF1SrdNOlqIRaxroEHRdsHRZdV6ZAffflIV-qyC6eH2B21maMfRRXE-VWrH9DJbgcKknNjSTm_aDTR34m6IRZsBvLYdqIzaXI26tHXGfhJrWY2S8dvaxgSJJjsVp4tdmTXFEBbyfv21K4LQTP0XJBjjrCb5BCSyTTkGmWw7H_fkIxMRa0prT5brgNhS2peXAgqmj1kKut9sul77Prmi6vbJ5_RgeXycJvur5Aa66YHAMpLycDWGCoWuR_uq8-ab2u1uM8PO5fEvqjd_sFla3SW5h-522OBdy6D7aKbLbXTLtiHdbKPbcRdg8QD9NJTCFyiFJ5TCQCk8Ugr3lMIDpbDAA6XwQClc5bilFJ5QCg-Uwi2lHqLlwX6yd-R0_TkcRalbO0xEgvhgkcqM5JS7QkgG2nhotE7GI-GClAqEhlthBpapltKTgcrB6FCKsCzzH6Gtsir1E4QFc6nyskhJGFrDuIEPS49iPnO55qGao7f9a02_2zIsKZivBoK0hyDtIJijV_17T0FWmg0wUeqqOU9JaNwTJGJ_e4aBkc-DiLI5emxBG2b0Ak4il9On1_j0M3RnZPtztFWfNfoF6K-1fNmS6zfsRKCp |
link.rule.ids | 315,783,787,27936,27937 |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High+Mitochondrial+Respiration+and+Glycolytic+Capacity+Represent+a+Metabolic+Phenotype+of+Human+Tolerogenic+Dendritic+Cells&rft.jtitle=The+Journal+of+immunology+%281950%29&rft.au=Malinarich%2C+Frano&rft.au=Duan%2C+Kaibo&rft.au=Hamid%2C+Raudhah+Abdull&rft.au=Bijin%2C+Au&rft.date=2015-06-01&rft.issn=0022-1767&rft.volume=194&rft.issue=11&rft.spage=5174&rft.epage=5186&rft_id=info:doi/10.4049%2Fjimmunol.1303316&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1767&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1767&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1767&client=summon |