E-mode All-GaN-Integrated cascode MISHEMT with GaN/InAlGaN/GaN backbarrier for high power switching performance: Simulation study

Saved in:
Bibliographic Details
Published inMicro and nanostructures (2022) Vol. 164; p. 107118
Main Authors Singh, Preeti, Kumari, Vandana, Saxena, Manoj, Gupta, Mridula
Format Journal Article
LanguageEnglish
Published 01.04.2022
Online AccessGet full text

Cover

Loading…
ArticleNumber 107118
Author Saxena, Manoj
Kumari, Vandana
Gupta, Mridula
Singh, Preeti
Author_xml – sequence: 1
  givenname: Preeti
  surname: Singh
  fullname: Singh, Preeti
– sequence: 2
  givenname: Vandana
  surname: Kumari
  fullname: Kumari, Vandana
– sequence: 3
  givenname: Manoj
  surname: Saxena
  fullname: Saxena, Manoj
– sequence: 4
  givenname: Mridula
  surname: Gupta
  fullname: Gupta, Mridula
BookMark eNp9kL1uwjAQx62KSqWUF-jkFwjYToJNN4QoRKLtAJ2ji-MQ03zJNkKMffM6pUPVocPpPv-nu989GjRtoxB6pGRCCZ1NjxPb1XrCCKO-wCkVN2jIOA8DQlk4-BXfobG1R0JIyHw2i4focxXUba7woqqCNbwGSePUwYBTOZZgZd96SXab1csen7UrsZ-ZJs2i6r03nIH8yMAYrQwuWoNLfShx1559ar1Alro54E4Z36uhkeoJ73R9qsDptsHWnfLLA7otoLJq_ONH6P15tV9ugu3bOlkutoGMIuICISL_K6OEgZhnsYiLjBTzOOdEhJTHSoYyl5HnAQI4l7mAaEY5FCLLWKxiHo6QuO6VprXWqCKV2n3f4QzoKqUk7Wmmx7SnmfY00ytNL2V_pJ3RNZjLf6IvrCB7sw
CitedBy_id crossref_primary_10_1007_s11664_024_11672_y
crossref_primary_10_1109_TED_2024_3430251
crossref_primary_10_1007_s11664_024_11100_1
crossref_primary_10_1109_ACCESS_2023_3277200
crossref_primary_10_1016_j_micrna_2024_207815
Cites_doi 10.1063/1.126940
10.1109/TPEL.2015.2398856
10.1016/j.microrel.2019.113517
10.1109/LED.2008.2000607
10.1088/0268-1242/25/7/075013
10.1016/j.spmi.2020.106497
10.1063/1.4907675
10.1109/TIA.2013.2255252
10.1109/TED.2011.2112771
10.3938/jkps.67.654
10.1002/pssa.201900115
10.1109/JEDS.2018.2807185
10.1109/TPS.2014.2312398
10.1109/TED.2018.2867874
10.1016/j.jallcom.2015.12.031
10.1109/TED.2014.2385062
10.1109/TPEL.2016.2643499
10.1109/TPEL.2013.2276127
10.1063/1.3456561
10.1016/j.sse.2019.107649
10.1109/TED.2018.2832250
10.1149/05804.0145ecst
10.1109/TPEL.2013.2267804
10.1016/j.spmi.2018.04.022
10.1149/2.0131712jss
10.1109/TIA.2015.2391439
10.1109/JEDS.2018.2859769
10.1007/s10825-020-01604-4
10.1080/02564602.2018.1450652
10.1109/TIA.2012.2200227
10.1109/TPEL.2019.2947274
10.1016/j.spmi.2018.04.041
10.1109/ACCESS.2019.2958059
10.1016/j.jcrysgro.2013.07.017
10.1109/TED.2018.2857774
10.1016/j.spmi.2018.09.005
10.1109/TED.2019.2901719
10.1109/TED.2005.862702
10.1016/j.spmi.2012.11.020
10.1142/S021797921950190X
10.1016/j.spmi.2020.106574
10.1002/pssb.201700394
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1016/j.spmi.2021.107118
DatabaseName CrossRef
DatabaseTitle CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 2773-0123
ExternalDocumentID 10_1016_j_spmi_2021_107118
GroupedDBID 0R~
AALRI
AATTM
AAXKI
AAXUO
AAYWO
AAYXX
ABJNI
ACRLP
AEIPS
AEZYN
AFJKZ
AFRZQ
AFXIZ
AGRNS
AIIUN
AIKHN
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
BNPGV
CITATION
EBS
FDB
FYGXN
M41
ROL
SPC
SSH
SSM
SSQ
ID FETCH-LOGICAL-c440t-8840162102a89b585fb0f95d7083175ec3cdc4101a8a77cd8a4617af8bb25e573
ISSN 2773-0123
IngestDate Thu Apr 24 23:02:48 EDT 2025
Tue Jul 01 00:38:54 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c440t-8840162102a89b585fb0f95d7083175ec3cdc4101a8a77cd8a4617af8bb25e573
ParticipantIDs crossref_citationtrail_10_1016_j_spmi_2021_107118
crossref_primary_10_1016_j_spmi_2021_107118
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-04-01
PublicationDateYYYYMMDD 2022-04-01
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-04-01
  day: 01
PublicationDecade 2020
PublicationTitle Micro and nanostructures (2022)
PublicationYear 2022
References Yu (10.1016/j.spmi.2021.107118_bib6) 1999; 17
Loher (10.1016/j.spmi.2021.107118_bib1) 2016
Zucker (10.1016/j.spmi.2021.107118_bib9) 2014; 42
Rahman (10.1016/j.spmi.2021.107118_bib36) 2017; 6
Yoon (10.1016/j.spmi.2021.107118_bib20) 2015; 67
Verma (10.1016/j.spmi.2021.107118_bib17) 2018; 119
Huang (10.1016/j.spmi.2021.107118_bib28) 2014; 29
Bharadwaj (10.1016/j.spmi.2021.107118_bib13) 2016
Swamy (10.1016/j.spmi.2021.107118_bib12) 2012; 48
Huang (10.1016/j.spmi.2021.107118_bib30) 2015
(10.1016/j.spmi.2021.107118_bib52) 2020
Henke (10.1016/j.spmi.2021.107118_bib2) 2017
Mohamad (10.1016/j.spmi.2021.107118_bib41) 2018; 255
Ketteniss (10.1016/j.spmi.2021.107118_bib42) 2010; 25
10.1016/j.spmi.2021.107118_bib46
Wu (10.1016/j.spmi.2021.107118_bib18) 2018; 6
Singh (10.1016/j.spmi.2021.107118_bib49) 2021; 20
Chakrabarty (10.1016/j.spmi.2021.107118_bib19) 2020; 141
Ibbetson (10.1016/j.spmi.2021.107118_bib7) 2000; 77
Jiang (10.1016/j.spmi.2021.107118_bib31) 2017; 32
Scott (10.1016/j.spmi.2021.107118_bib10) 2013; 49
Kabemura (10.1016/j.spmi.2021.107118_bib48) 2018; 65
Dora (10.1016/j.spmi.2021.107118_bib8) 2005; vol. 1
Huang (10.1016/j.spmi.2021.107118_bib27) 2014; 29
Huang (10.1016/j.spmi.2021.107118_bib26) 2016; 31
Godwinraj (10.1016/j.spmi.2021.107118_bib44) 2013; 54
Cui (10.1016/j.spmi.2021.107118_bib21) 2019; 7
Guo (10.1016/j.spmi.2021.107118_bib33) 2019; 36
Zhou (10.1016/j.spmi.2021.107118_bib45) 2015; 62
Oka (10.1016/j.spmi.2021.107118_bib14) 2008; 29
Zhao (10.1016/j.spmi.2021.107118_bib22) 2020; 163
Xue (10.1016/j.spmi.2021.107118_bib29) 2019; 35
Hariya (10.1016/j.spmi.2021.107118_bib11) 2015; 51
Uren (10.1016/j.spmi.2021.107118_bib32) 2006; 53
Li (10.1016/j.spmi.2021.107118_bib38) 2018; 118
He (10.1016/j.spmi.2021.107118_bib34) 2016; 662
Peng (10.1016/j.spmi.2021.107118_bib51) 2013; 383
He (10.1016/j.spmi.2021.107118_bib23) 2019; 216
Arslan (10.1016/j.spmi.2021.107118_bib43) 2019; 103
Shrestha (10.1016/j.spmi.2021.107118_bib15) 2019; 66
Hilt (10.1016/j.spmi.2021.107118_bib4) 2013; 58
Lim (10.1016/j.spmi.2021.107118_bib40) 2010; 96
Singh (10.1016/j.spmi.2021.107118_bib24) 2018
Puzyrev (10.1016/j.spmi.2021.107118_bib47) 2015; 106
Esposto (10.1016/j.spmi.2021.107118_bib5) 2011; 58
Khandelwal (10.1016/j.spmi.2021.107118_bib53) 2018; 66
Herwig (10.1016/j.spmi.2021.107118_bib37) 2012; 27
Wang (10.1016/j.spmi.2021.107118_bib50) 2019; 33
Alshahed (10.1016/j.spmi.2021.107118_bib3) 2018; 65
Singh (10.1016/j.spmi.2021.107118_bib25) 2020; 144
Wang (10.1016/j.spmi.2021.107118_bib39) 2018; 6
Bai (10.1016/j.spmi.2021.107118_bib16) 2018; 123
Ketteniss (10.1016/j.spmi.2021.107118_bib35) 2010; 25
References_xml – volume: 17
  start-page: 1742
  year: 1999
  ident: 10.1016/j.spmi.2021.107118_bib6
  article-title: Spontaneous and piezoelectric polarization effects in III–V nitride heterostructures
  publication-title: J. Vac. Sci. Technol., B: Microelect. and Nano. Struct. Processing, Meas. and Phenom.
– start-page: 1
  year: 2016
  ident: 10.1016/j.spmi.2021.107118_bib13
  article-title: Design and fabrication of switching characterization set-up for GaN FETs
– year: 2020
  ident: 10.1016/j.spmi.2021.107118_bib52
– volume: 77
  start-page: 250
  year: 2000
  ident: 10.1016/j.spmi.2021.107118_bib7
  article-title: Polarization effects, surface states, and the source of electrons in AlGaN/GaN heterostructure field effect transistors
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.126940
– volume: 31
  start-page: 593
  year: 2016
  ident: 10.1016/j.spmi.2021.107118_bib26
  article-title: Avoiding Si MOSFET avalanche and achieving zero-voltage switching for cascode GaN devices
  publication-title: IEEE Trans. Power Electron.
  doi: 10.1109/TPEL.2015.2398856
– volume: 103
  start-page: 113517
  year: 2019
  ident: 10.1016/j.spmi.2021.107118_bib43
  article-title: Determination of current transport and trap states density in AlInGaN/GaN heterostructures
  publication-title: Microelectron. Reliab.
  doi: 10.1016/j.microrel.2019.113517
– volume: 29
  start-page: 668
  year: 2008
  ident: 10.1016/j.spmi.2021.107118_bib14
  article-title: AlGaN/GaN recessed MIS-gate HFET with high-threshold-voltage normally-off operation for power electronics applications
  publication-title: IEEE Electron. Device Lett.
  doi: 10.1109/LED.2008.2000607
– volume: 25
  year: 2010
  ident: 10.1016/j.spmi.2021.107118_bib35
  article-title: Study on quaternary AlInGaN/GaN HFETs grown on sapphire substrates
  publication-title: Semicond. Sci. Technol.
  doi: 10.1088/0268-1242/25/7/075013
– volume: 141
  start-page: 106497
  year: 2020
  ident: 10.1016/j.spmi.2021.107118_bib19
  article-title: Modelling of fin width dependent threshold voltage in fin shaped nano channel AlGaN/GaN HEMT
  publication-title: Superlattice. Microst.
  doi: 10.1016/j.spmi.2020.106497
– volume: 25
  year: 2010
  ident: 10.1016/j.spmi.2021.107118_bib42
  article-title: Study on quaternary AlInGaN/GaN HFETs grown on sapphire substrates
  publication-title: Semicond. Sci. Technol.
  doi: 10.1088/0268-1242/25/7/075013
– start-page: 380
  year: 2018
  ident: 10.1016/j.spmi.2021.107118_bib24
  article-title: Threshold voltage investigation of recessed dual-gate MISHEMT: simulation study
– volume: 106
  year: 2015
  ident: 10.1016/j.spmi.2021.107118_bib47
  article-title: Role of Fe impurity complexes in the degradation of GaN/AlGaN high-electron-mobility transistors
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4907675
– volume: 49
  start-page: 1383
  year: 2013
  ident: 10.1016/j.spmi.2021.107118_bib10
  article-title: A gallium nitride switched-capacitor circuit using synchronous rectification
  publication-title: IEEE Trans. Ind. Appl.
  doi: 10.1109/TIA.2013.2255252
– volume: 58
  start-page: 1456
  year: 2011
  ident: 10.1016/j.spmi.2021.107118_bib5
  article-title: Analytical model for power switching GaN-based HEMT design
  publication-title: IEEE Trans. Electron. Dev.
  doi: 10.1109/TED.2011.2112771
– volume: 67
  start-page: 654
  year: 2015
  ident: 10.1016/j.spmi.2021.107118_bib20
  article-title: DC and RF characteristics of AlGaN/GaN HEMTs on SiC with gate recessed by using ICP etching of BCl3/Cl2
  publication-title: J. Kor. Phys. Soc.
  doi: 10.3938/jkps.67.654
– volume: 216
  start-page: 1900115
  year: 2019
  ident: 10.1016/j.spmi.2021.107118_bib23
  article-title: Comparative study between partially and fully recessed-gate enhancement-mode AlGaN/GaN MIS HEMT on the breakdown mechanism
  publication-title: Phys. Status Solidi
  doi: 10.1002/pssa.201900115
– volume: 6
  start-page: 360
  year: 2018
  ident: 10.1016/j.spmi.2021.107118_bib39
  article-title: Improvement of power performance of GaN HEMT by using quaternary InAlGaN barrier
  publication-title: IEEE J. of the Electr. Dev. Society
  doi: 10.1109/JEDS.2018.2807185
– volume: 42
  start-page: 1295
  year: 2014
  ident: 10.1016/j.spmi.2021.107118_bib9
  article-title: GaN switches in pulsed power: a comparative study
  publication-title: IEEE Trans. Plasma Sci.
  doi: 10.1109/TPS.2014.2312398
– volume: 66
  start-page: 80
  year: 2018
  ident: 10.1016/j.spmi.2021.107118_bib53
  article-title: ASM GaN: industry standard model for GaN RF and power devices—Part 1: DC, CV, and RF model
  publication-title: IEEE Trans. Electron. Dev.
  doi: 10.1109/TED.2018.2867874
– volume: 662
  start-page: 16
  year: 2016
  ident: 10.1016/j.spmi.2021.107118_bib34
  article-title: GaN high electron mobility transistors with AlInN back barriers
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2015.12.031
– volume: 62
  start-page: 776
  year: 2015
  ident: 10.1016/j.spmi.2021.107118_bib45
  article-title: High-performance enhancement-mode Al2O3/AlGaN/GaN-on-Si MISFETs with 626 MW/cm2 figure of merit
  publication-title: IEEE Trans. Electron. Dev.
  doi: 10.1109/TED.2014.2385062
– volume: 32
  start-page: 8743
  year: 2017
  ident: 10.1016/j.spmi.2021.107118_bib31
  article-title: All-GaN-integrated cascode heterojunction field effect transistors
  publication-title: IEEE Trans. Power Electron.
  doi: 10.1109/TPEL.2016.2643499
– volume: 29
  start-page: 2453
  year: 2014
  ident: 10.1016/j.spmi.2021.107118_bib27
  article-title: Evaluation and application of 600 V GaN HEMT in cascode structure
  publication-title: IEEE Trans. Power Electron.
  doi: 10.1109/TPEL.2013.2276127
– volume: 96
  start-page: 252108
  year: 2010
  ident: 10.1016/j.spmi.2021.107118_bib40
  article-title: Compositional variation of nearly lattice-matched InAlGaN alloys for high electron mobility transistors
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3456561
– volume: vol. 1
  start-page: 191
  year: 2005
  ident: 10.1016/j.spmi.2021.107118_bib8
  article-title: Switching characteristics of high-breakdown voltage AlGaN/GaN HEMTs
– volume: 163
  start-page: 107649
  year: 2020
  ident: 10.1016/j.spmi.2021.107118_bib22
  article-title: Effects of recess depths on performance of AlGaN/GaN power MIS-HEMTs on the Si substrates and threshold voltage model of different recess depths for the using HfO2 gate insulator
  publication-title: Solid State Electron.
  doi: 10.1016/j.sse.2019.107649
– volume: 65
  start-page: 2939
  year: 2018
  ident: 10.1016/j.spmi.2021.107118_bib3
  article-title: Low-dispersion, high-voltage, low-leakage GaN HEMTs on native GaN substrates
  publication-title: IEEE Trans. Electron. Dev.
  doi: 10.1109/TED.2018.2832250
– volume: 58
  start-page: 145
  year: 2013
  ident: 10.1016/j.spmi.2021.107118_bib4
  article-title: Normally-off GaN transistors for power switching applications
  publication-title: ECS Trans
  doi: 10.1149/05804.0145ecst
– volume: 29
  start-page: 2208
  year: 2014
  ident: 10.1016/j.spmi.2021.107118_bib28
  article-title: Analytical loss model of high voltage GaN HEMT in cascode configuration
  publication-title: IEEE Trans. Power Electron.
  doi: 10.1109/TPEL.2013.2267804
– volume: 118
  start-page: 213
  year: 2018
  ident: 10.1016/j.spmi.2021.107118_bib38
  article-title: Growth of quaternary InAlGaN barrier with ultrathin thickness for HEMT application
  publication-title: Superlattice. Microst.
  doi: 10.1016/j.spmi.2018.04.022
– volume: 6
  start-page: P805
  year: 2017
  ident: 10.1016/j.spmi.2021.107118_bib36
  article-title: Optimization of graded AlInN/AlN/GaN HEMT device performance based on quaternary back barrier for high power application
  publication-title: ECS J. Solid State Sci. Technol.
  doi: 10.1149/2.0131712jss
– volume: 51
  start-page: 3263
  year: 2015
  ident: 10.1016/j.spmi.2021.107118_bib11
  article-title: Five-Megahertz PWM-controlled current-mode resonant dc-dc step-down converter using GaN-HEMTs
  publication-title: IEEE Trans. Ind. Appl.
  doi: 10.1109/TIA.2015.2391439
– volume: 6
  start-page: 893
  year: 2018
  ident: 10.1016/j.spmi.2021.107118_bib18
  article-title: Normally-OFF GaN MIS-HEMT with F− doped gate insulator using standard ion implantation
  publication-title: IEEE J. Electron Devices Soc.
  doi: 10.1109/JEDS.2018.2859769
– volume: 20
  start-page: 556
  year: 2021
  ident: 10.1016/j.spmi.2021.107118_bib49
  article-title: Gate stacked dual-gate MISHEMT with 39THz·V johnson’s figure of merit for V-band applications
  publication-title: J. Comput. Electron.
  doi: 10.1007/s10825-020-01604-4
– volume: 36
  start-page: 243
  year: 2019
  ident: 10.1016/j.spmi.2021.107118_bib33
  article-title: Breakdown mechanisms of power semiconductor devices
  publication-title: IETE Tech. Rev.
  doi: 10.1080/02564602.2018.1450652
– volume: 48
  start-page: 1418
  year: 2012
  ident: 10.1016/j.spmi.2021.107118_bib12
  article-title: An efficient resonant gate drive scheme for high-frequency applications
  publication-title: IEEE Trans. Ind. Appl.
  doi: 10.1109/TIA.2012.2200227
– volume: 35
  start-page: 6292
  year: 2019
  ident: 10.1016/j.spmi.2021.107118_bib29
  article-title: Investigation on the short-circuit oscillation of cascode GaN HEMTs
  publication-title: IEEE Trans. Power Electron.
  doi: 10.1109/TPEL.2019.2947274
– volume: 119
  start-page: 181
  year: 2018
  ident: 10.1016/j.spmi.2021.107118_bib17
  article-title: Polarization engineered enhancement mode GaN HEMT: design and investigation
  publication-title: Superlattice. Microst.
  doi: 10.1016/j.spmi.2018.04.041
– volume: 7
  start-page: 184375
  year: 2019
  ident: 10.1016/j.spmi.2021.107118_bib21
  article-title: Monolithic GaN half-bridge stages with integrated gate drivers for high temperature DC-DC buck converters
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2958059
– volume: 383
  start-page: 25
  year: 2013
  ident: 10.1016/j.spmi.2021.107118_bib51
  article-title: Growth and characterization of AlGaN/AlN/GaN/AlGaN double heterojunction structures with AlGaN as buffer layers
  publication-title: J. Cryst. Growth
  doi: 10.1016/j.jcrysgro.2013.07.017
– volume: 65
  start-page: 3848
  year: 2018
  ident: 10.1016/j.spmi.2021.107118_bib48
  article-title: Enhancement of breakdown voltage in AlGaN/GaN HEMTs: field plate plus high-k passivation layer and high acceptor density in buffer layer
  publication-title: IEEE Trans. Electron. Dev.
  doi: 10.1109/TED.2018.2857774
– volume: 123
  start-page: 257
  year: 2018
  ident: 10.1016/j.spmi.2021.107118_bib16
  article-title: Simulation design of high Baliga’s figure of merit normally-off p-GaN gate AlGaN/GaN heterostructure field effect transistors with junction field plates
  publication-title: Superlattice. Microst.
  doi: 10.1016/j.spmi.2018.09.005
– volume: 66
  start-page: 1694
  year: 2019
  ident: 10.1016/j.spmi.2021.107118_bib15
  article-title: Electrical characteristic of AlGaN/GaN high-electron-mobility transistors with recess gate structure
  publication-title: IEEE Trans. Electron. Dev.
  doi: 10.1109/TED.2019.2901719
– ident: 10.1016/j.spmi.2021.107118_bib46
– start-page: 259
  year: 2016
  ident: 10.1016/j.spmi.2021.107118_bib1
  article-title: Compact power electronic modules realized by PCB embedding technology
– start-page: 113
  year: 2015
  ident: 10.1016/j.spmi.2021.107118_bib30
  article-title: Evaluation and applications of 600V/650V enhancement-mode GaN devices
– volume: 53
  start-page: 395
  year: 2006
  ident: 10.1016/j.spmi.2021.107118_bib32
  article-title: Punch-through in short-channel AlGaN/GaN HFETs
  publication-title: IEEE Trans. Electron. Dev.
  doi: 10.1109/TED.2005.862702
– start-page: 27
  year: 2017
  ident: 10.1016/j.spmi.2021.107118_bib2
  article-title: High Power Inductive Charging System for an Electric Taxi Vehicle
– volume: 54
  start-page: 188
  year: 2013
  ident: 10.1016/j.spmi.2021.107118_bib44
  article-title: Polarization based charge density drain current and small-signal model for nano-scale AlInGaN/AlN/GaN HEMT devices
  publication-title: Superlattice. Microst.
  doi: 10.1016/j.spmi.2012.11.020
– volume: 33
  start-page: 1950190
  year: 2019
  ident: 10.1016/j.spmi.2021.107118_bib50
  article-title: The AlInGaN back barrier effect on DC characteristics of AlGaN/GaN high electron mobility transistor
  publication-title: Int. J. Mod. Phys. B
  doi: 10.1142/S021797921950190X
– volume: 144
  start-page: 106574
  year: 2020
  ident: 10.1016/j.spmi.2021.107118_bib25
  article-title: Assessment of Dual-Gate AlGaN/GaN MISHEMT for high temperature DC to DC converter
  publication-title: Superlattice. Microst.
  doi: 10.1016/j.spmi.2020.106574
– volume: 27
  year: 2012
  ident: 10.1016/j.spmi.2021.107118_bib37
  article-title: First polarization-engineered compressively strained AlInGaN barrier enhancement-mode MISHFET
  publication-title: Semicond. Sci. Technol.
– volume: 255
  start-page: 1700394
  year: 2018
  ident: 10.1016/j.spmi.2021.107118_bib41
  article-title: A Theoretical investigation of the miscibility and structural properties of InxAlyGa1− x− yN alloys
  publication-title: Phys. Status Sol (b)
  doi: 10.1002/pssb.201700394
SSID ssj0003212365
Score 2.3370106
SourceID crossref
SourceType Enrichment Source
Index Database
StartPage 107118
Title E-mode All-GaN-Integrated cascode MISHEMT with GaN/InAlGaN/GaN backbarrier for high power switching performance: Simulation study
Volume 164
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FVEhwQFBAlJf2wM1y6sc6trlFVSBBuEIkRb1Z-7KU4LhRHlLVG_-In8iM1y_agigHr6zVeLzyfN6dnZ0HIe_CzBWOdJXNPBHYTEplc8G0rYSGmcHJfKbQNJCcDidn7NN5cN7r_ex4Le13YiCvbo0r-R-pQh_IFaNk7yDZhil0wD3IF1qQMLT_JOOxjYVsrFGe2x_5qT2tUz8oS_ItBqtbyXQ2GSdzY24FGnjXtBjl5g5aS3D5XfBNWbcOPQ4xfbG1xtJp1hYeMp6W6za6AC0Is8WqKvrVyU5bV4VCB7_yRKLgxYXJTrvfGNuuByt5x_IwA9bGqIMH44v2UGnFTfj7N7RyFM26MeOX2kSwJcB62XgO7ddGA042C7XPedeOAVvg1v2lnO68METPLhN9PNC39NXz9ZB1ZlzYvrpmBr-xGBi7xBIIV4sBvNIdtMS_Z96-tiI2foq1C9wyRR4p8kgNj3vkAAbneX1yMDr5-vlLY9fzURcoK5g2g69itYxb4fXBdPShjmIzf0weVTsSOjLwekJ6ujgkDzt5Kg_J_dJPWG6fkh8GcvQm5GgFOVpBjiLkKNAcV4A7hot24EYBUhThRku40QZutAO397QFGy3B9oycfRjPTyZ2VcXDlow5OzuKYAs_RMsCj2IBu9NMOFkcqBBr3IWBlr5UksHX4REPQ6kizkCr5lkkhBfoIPSfk35xUegXhHIdcRGEcebrkGVKc4d7MYuxVAwTKhNHxK2_ZSqrFPdYaSVP_yzII2I1z6xNgpe_UL-8E_Ur8qBF-mvSh39OvwEddifeVrD5Ba0vms0
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=E-mode+All-GaN-Integrated+cascode+MISHEMT+with+GaN%2FInAlGaN%2FGaN+backbarrier+for+high+power+switching+performance%3A+Simulation+study&rft.jtitle=Micro+and+nanostructures+%282022%29&rft.au=Singh%2C+Preeti&rft.au=Kumari%2C+Vandana&rft.au=Saxena%2C+Manoj&rft.au=Gupta%2C+Mridula&rft.date=2022-04-01&rft.issn=2773-0123&rft.eissn=2773-0123&rft.volume=164&rft.spage=107118&rft_id=info:doi/10.1016%2Fj.spmi.2021.107118&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_spmi_2021_107118
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2773-0123&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2773-0123&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2773-0123&client=summon