An analytical and experimental investigation of high-pressure catalytic steam reforming of ethanol in a hydrogen selective membrane reactor
The objective of this work was to explore the benefits of high-pressure steam reforming of ethanol for the production of hydrogen needed to refuel the high-pressure tanks of fuel cell (polymer electrolyte) vehicles. This paper reports on the potential efficiency benefits and challenges of pressurize...
Saved in:
Published in | International journal of hydrogen energy Vol. 35; no. 5; pp. 2004 - 2017 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Kidlington
Elsevier Ltd
01.03.2010
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The objective of this work was to explore the benefits of high-pressure steam reforming of ethanol for the production of hydrogen needed to refuel the high-pressure tanks of fuel cell (polymer electrolyte) vehicles. This paper reports on the potential efficiency benefits and challenges of pressurized reforming and options for dealing with the challenges; it reports the results from experiments in a micro-reactor, followed by a modeling study of the reactor to project the dependence of the hydrogen yields on process parameters. The experiments were conducted in the range of approximately 7–70
atm, 600–750
°C, steam-to-carbon molar ratios of 3–12, and gas hourly space velocities of 8500–83,000 per hour. By placing a hydrogen-transporting palladium-alloy membrane within the catalyst zone, this study quantified the beneficial effect of hydrogen extraction from the reforming zone. The model was used to explore the parameter space to define the reactor and conditions that would be needed to approach the efficiency targets for distributed hydrogen production plants. The results indicate that the tested catalyst was sufficiently active, and the hydrogen yield achieved with the experimental membrane reactor was limited by the low hydrogen flux of the tested membrane. The reactor model predicts that a membrane with at least 20 times higher flux than currently evaluated would be sufficient to generate hydrogen yields to match efficiency targets of 72%. |
---|---|
AbstractList | The objective of this work was to explore the benefits of high-pressure steam reforming of ethanol for the production of hydrogen needed to refuel the high-pressure tanks of fuel cell (polymer electrolyte) vehicles. This paper reports on the potential efficiency benefits and challenges of pressurized reforming and options for dealing with the challenges; it reports the results from experiments in a micro-reactor, followed by a modeling study of the reactor to project the dependence of the hydrogen yields on process parameters. The experiments were conducted in the range of approximately 7-70 atm, 600-750 degree C, steam-to-carbon molar ratios of 3-12, and gas hourly space velocities of 8500-83,000 per hour. By placing a hydrogen-transporting palladium-alloy membrane within the catalyst zone, this study quantified the beneficial effect of hydrogen extraction from the reforming zone. The model was used to explore the parameter space to define the reactor and conditions that would be needed to approach the efficiency targets for distributed hydrogen production plants. The results indicate that the tested catalyst was sufficiently active, and the hydrogen yield achieved with the experimental membrane reactor was limited by the low hydrogen flux of the tested membrane. The reactor model predicts that a membrane with at least 20 times higher flux than currently evaluated would be sufficient to generate hydrogen yields to match efficiency targets of 72%. The objective of this work was to explore the benefits of high-pressure steam reforming of ethanol for the production of hydrogen needed to refuel the high-pressure tanks of fuel cell (polymer electrolyte) vehicles. This paper reports on the potential efficiency benefits and challenges of pressurized reforming and options for dealing with the challenges; it reports the results from experiments in a micro-reactor, followed by a modeling study of the reactor to project the dependence of the hydrogen yields on process parameters. The experiments were conducted in the range of approximately 7–70 atm, 600–750 °C, steam-to-carbon molar ratios of 3–12, and gas hourly space velocities of 8500–83,000 per hour. By placing a hydrogen-transporting palladium-alloy membrane within the catalyst zone, this study quantified the beneficial effect of hydrogen extraction from the reforming zone. The model was used to explore the parameter space to define the reactor and conditions that would be needed to approach the efficiency targets for distributed hydrogen production plants. The results indicate that the tested catalyst was sufficiently active, and the hydrogen yield achieved with the experimental membrane reactor was limited by the low hydrogen flux of the tested membrane. The reactor model predicts that a membrane with at least 20 times higher flux than currently evaluated would be sufficient to generate hydrogen yields to match efficiency targets of 72%. |
Author | Papadias, Dennis D. Ferrandon, Magali Lee, Sheldon H.D. Ahmed, Shabbir |
Author_xml | – sequence: 1 givenname: Dennis D. surname: Papadias fullname: Papadias, Dennis D. email: papadias@anl.gov – sequence: 2 givenname: Sheldon H.D. surname: Lee fullname: Lee, Sheldon H.D. – sequence: 3 givenname: Magali surname: Ferrandon fullname: Ferrandon, Magali – sequence: 4 givenname: Shabbir surname: Ahmed fullname: Ahmed, Shabbir |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22602911$$DView record in Pascal Francis |
BookMark | eNqFkM-OEzEMxiO0SHQXXgHlgjjN4GT-5sZqxQLSSlzgHHkST5tqJilJWtFn4KVJ1YUrJ1vW99n-frfsxgdPjL0VUAsQ_Yd97fa7syVPtQRQtZA1tPIF24hxUFXTjsMN20DTQ9UIpV6x25T2AGKAVm3Y73vP0eNyzs7gUlrL6deBolvJ5zJw_kQpuy1mFzwPM9-57a46RErpGIkbzFcvT5lw5ZHmEFfntxcp5R36cNnBkZcPY9iS54kWMtmdiK-0ThE9FReaHOJr9nLGJdGb53rHfjx--v7wpXr69vnrw_1TZdoWcjX2QN0MOADYaWrtKGeLiC0ME0lUEhrb0IC2naWVioZunLDpu65vJgPSUnPH3l_3HmL4eSzx9OqSoWUpv4Rj0qpQ7RVAV5T9VWliSKmE04dCBuNZC9AX-Hqv_8LXF_haSF3gF-O75xOYCte5xDQu_XNL2YNUQhTdx6uOSt6To6iTceQNWRcLJW2D-9-pP5nQpBU |
CODEN | IJHEDX |
CitedBy_id | crossref_primary_10_1016_j_ijhydene_2016_07_040 crossref_primary_10_1039_C6RA06134F crossref_primary_10_1016_j_ijhydene_2014_11_009 crossref_primary_10_1016_j_cattod_2012_01_008 crossref_primary_10_1016_j_cej_2016_06_021 crossref_primary_10_1016_j_memsci_2020_118083 crossref_primary_10_1016_j_cattod_2016_01_058 crossref_primary_10_1016_j_jpowsour_2015_01_052 crossref_primary_10_1016_j_memsci_2012_01_004 crossref_primary_10_1016_j_enconman_2018_07_020 crossref_primary_10_1016_j_ijhydene_2011_12_060 crossref_primary_10_1016_j_ijhydene_2018_05_098 crossref_primary_10_1039_c0cy00012d crossref_primary_10_1007_s11356_021_14554_6 crossref_primary_10_1016_j_cattod_2012_02_004 crossref_primary_10_1016_j_fuproc_2021_106814 crossref_primary_10_1016_j_ijhydene_2015_01_106 crossref_primary_10_1016_j_cep_2020_108148 crossref_primary_10_1016_j_memsci_2010_12_029 crossref_primary_10_1016_j_ijhydene_2014_05_127 crossref_primary_10_1021_cr5003744 crossref_primary_10_1016_j_fuel_2020_117829 crossref_primary_10_1039_D2CY01169G crossref_primary_10_1016_j_ijhydene_2019_07_199 crossref_primary_10_1016_j_jiec_2021_08_029 crossref_primary_10_1016_j_renene_2017_10_050 crossref_primary_10_1016_j_jpowsour_2013_01_034 crossref_primary_10_1016_j_ijhydene_2019_11_237 crossref_primary_10_1016_j_ijhydene_2010_05_088 crossref_primary_10_1016_j_ijhydene_2014_09_016 crossref_primary_10_1016_j_ijhydene_2019_01_257 crossref_primary_10_1016_j_energy_2016_06_042 crossref_primary_10_3390_en14082136 crossref_primary_10_1016_j_cattod_2015_04_046 |
ContentType | Journal Article |
Copyright | 2009 Professor T. Nejat Veziroglu 2015 INIST-CNRS |
Copyright_xml | – notice: 2009 Professor T. Nejat Veziroglu – notice: 2015 INIST-CNRS |
DBID | IQODW AAYXX CITATION 7SP 8FD L7M |
DOI | 10.1016/j.ijhydene.2009.12.042 |
DatabaseName | Pascal-Francis CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Applied Sciences |
EISSN | 1879-3487 |
EndPage | 2017 |
ExternalDocumentID | 10_1016_j_ijhydene_2009_12_042 22602911 S0360319909019703 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AARLI AAXUO ABFNM ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADECG ADEZE ADMUD AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHIDL AIEXJ AIKHN AITUG AJBFU AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FLBIZ FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SAC SCB SCC SDF SDG SES SEW SPC SPCBC SSK SSM SSR SSZ T5K T9H TN5 WUQ XPP ZMT ~G- ABPIF ABPTK IQODW AAXKI AAYXX ACRPL ADNMO AFJKZ AKRWK CITATION 7SP 8FD L7M |
ID | FETCH-LOGICAL-c440t-860e5f0a700dbb4d82fdaaa407be2a9203d3e7ad4f2d29e758ba365563bc02de3 |
IEDL.DBID | AIKHN |
ISSN | 0360-3199 |
IngestDate | Fri Oct 25 10:23:03 EDT 2024 Fri Dec 06 03:15:19 EST 2024 Sun Oct 22 16:09:44 EDT 2023 Fri Feb 23 02:34:47 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Hydrogen from biofuels Ethanol steam reforming High-pressure reforming Hydrogen membrane reactor Polymer electrolytes Ethanol Biofuel Palladium alloy Catalytic reforming Fuel cell vehicles Experimental study Modeling High pressure Project Membrane reactor Membrane Steam reforming Catalyst Hydrogen production |
Language | English |
License | CC BY 4.0 https://www.elsevier.com/tdm/userlicense/1.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c440t-860e5f0a700dbb4d82fdaaa407be2a9203d3e7ad4f2d29e758ba365563bc02de3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PQID | 901669005 |
PQPubID | 23500 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_901669005 crossref_primary_10_1016_j_ijhydene_2009_12_042 pascalfrancis_primary_22602911 elsevier_sciencedirect_doi_10_1016_j_ijhydene_2009_12_042 |
PublicationCentury | 2000 |
PublicationDate | 2010-03-01 |
PublicationDateYYYYMMDD | 2010-03-01 |
PublicationDate_xml | – month: 03 year: 2010 text: 2010-03-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Kidlington |
PublicationPlace_xml | – name: Kidlington |
PublicationTitle | International journal of hydrogen energy |
PublicationYear | 2010 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Freni, Cavallaro, Mondello, Spadaro, Frusteri (bib30) 2003; 4 Frusteri, Freni, Chiodo, Spadaro, Di Blasi, Bonura (bib34) 2004; 270 Freni, Cavallaro, Mondello, Spadaro, Frusteri (bib29) 2002; 108 Roh, Wang, King, Platon, Chin (bib19) 2006; 108 Kugai, Subramani, Song, Engelhard, Chin (bib26) 2006; 238 bib15 Cavallaro, Chiodo, Freni, Mondello, Frusteri (bib24) 2003; 249 Erdõhelyi, Raskó, Kecskés, Tóth, Dömök, Baán (bib6) 2006; 116 Baker (bib40) 2004 Liguras, Kondarides, Verykios (bib20) 2003; 43 Sehested, Carlsson, Janssens, Hansen, Datye (bib38) 2001; 197 Basile, Gallucci, Iulianelli, De Falco, Liguori (bib4) 2008; 6 Natile, Poletto, Galenda, Glisenti, Montini, De Rogatis (bib22) 2008; 20 Wanat, Venkataraman, Schmidt (bib11) 2004; 276 Aupretre, Descorme, Duprez, Casanave, Uzio (bib18) 2005; 233 Laosiripojana, Assabumrungrat (bib8) 2006; 66 Tosti, Basile, Bettinali, Borgognoni, Gallucci, Rizzello (bib14) 2008; 33 Srinivas, Satyanarayana, Potdar, Ratnasamy (bib33) 2003; 246 Breen, Burch, Coleman (bib25) 2002; 39 Fatsikostas, Verykios (bib12) 2004; 225 Haryanto, Fernando, Murali, Adhikari (bib7) 2005; 19 Nishiguchi, Matsumoto, Kanai, Utani, Matsumura, Shen (bib23) 2005; 279 Duan, Senkan (bib5) 2005; 44 Ni, Leung, Leung (bib17) 2007; 32 Barroso, Gomez, Arrua, Abello (bib36) 2006; 304 Di Cosimo, Diez, Xu, Iglesia, Apesteguia (bib21) 1998; 178 Wipke, Sprik, Kurtz, Thomas, Garbak (bib1) 2008; 2 Liberatori, Ribeiro, Zanchet, Noronha, Bueno (bib9) 2007; 327 Feng, Tan, Ji, Zheng (bib10) 2006; 52 Sun, Qiu, Wu, Zhu (bib31) 2005; 30 Zhang, Li, Liu, Guo, Wang, Zhang (bib32) 2009; 88 bib16 Frusteri, Freni, Spadaro, Chiodo, Bonura, Donato (bib35) 2004; 5 Xu, Froment (bib41) 1989; 35 Yang, Ma, Wu (bib37) 2006; 31 bib2 Gallucci, De Falco, Tosti, Marrelli, Basile (bib13) 2008; 33 Goula, Kontou, Tsiakaras (bib27) 2004; 49 Casanovas, Llorca, Homs, Fierro, de la Piscina (bib28) 2006; 250 Ferrandon, Krause (bib39) 2006; 311 Ahluwalia, Hua, Peng (bib3) 2007; 32 |
References_xml | – volume: 327 start-page: 197 year: 2007 end-page: 204 ident: bib9 article-title: Steam reforming of ethanol on supported nickel catalysts publication-title: Appl Catal A contributor: fullname: Bueno – volume: 4 start-page: 259 year: 2003 end-page: 268 ident: bib30 article-title: Production of hydrogen for MC fuel cell by steam reforming of ethanol over MgO supported Ni and Co catalysts publication-title: Catal Commun contributor: fullname: Frusteri – volume: 66 start-page: 29 year: 2006 end-page: 39 ident: bib8 article-title: Catalytic steam reforming of ethanol over high surface area CeO publication-title: Appl Catal B contributor: fullname: Assabumrungrat – volume: 270 start-page: 1 year: 2004 end-page: 7 ident: bib34 article-title: Steam reforming of bio-ethanol on alkali-doped Ni/MgO catalysts: hydrogen production for MC fuel cell publication-title: Appl Catal A contributor: fullname: Bonura – volume: 276 start-page: 155 year: 2004 end-page: 162 ident: bib11 article-title: Steam reforming and water–gas shift of ethanol on Rh and Rh–Ce catalysts in a catalytic wall reactor publication-title: Appl Catal A contributor: fullname: Schmidt – ident: bib15 article-title: Hydrogen, fuel cells & infrastructure technologies program-DOE multi-year research, development and demonstration plan – volume: 2 start-page: 4 year: 2008 end-page: 17 ident: bib1 article-title: FCV learning demonstration: project midpoint status and first-generation vehicle results publication-title: WEV J contributor: fullname: Garbak – volume: 33 start-page: 5098 year: 2008 end-page: 5105 ident: bib14 article-title: Design and process study of Pd membrane reactors publication-title: Int J Hydrogen Energy contributor: fullname: Rizzello – volume: 304 start-page: 116 year: 2006 end-page: 123 ident: bib36 article-title: Hydrogen production by ethanol reforming over NiZnAl catalysts publication-title: Appl Catal A contributor: fullname: Abello – volume: 6 year: 2008 ident: bib4 article-title: Hydrogen production by ethanol steam reforming: experimental study of a Pd–Ag membrane reactor and traditional reactor behaviour publication-title: Int J Chem Reactor Eng contributor: fullname: Liguori – ident: bib2 article-title: Fuel cell vehicle and infrastructure learning demonstration status and results – volume: 44 start-page: 6381 year: 2005 end-page: 6386 ident: bib5 article-title: Catalytic conversion of ethanol to hydrogen using combinatorial methods publication-title: Ind Eng Chem Res contributor: fullname: Senkan – volume: 250 start-page: 44 year: 2006 end-page: 49 ident: bib28 article-title: Ethanol reforming processes over ZnO-supported palladium catalysts: effect of alloy formation publication-title: J Mol Catal A Chem contributor: fullname: de la Piscina – volume: 31 start-page: 877 year: 2006 end-page: 882 ident: bib37 article-title: Production of hydrogen by steam reforming of ethanol over a Ni/ZnO catalyst publication-title: Int J Hydrogen Energy contributor: fullname: Wu – volume: 30 start-page: 437 year: 2005 end-page: 445 ident: bib31 article-title: H publication-title: Int J Hydrogen Energy contributor: fullname: Zhu – volume: 116 start-page: 367 year: 2006 end-page: 376 ident: bib6 article-title: Hydrogen formation in ethanol reforming on supported noble metal catalysts publication-title: Catal Today contributor: fullname: Baán – volume: 52 start-page: 2260 year: 2006 end-page: 2270 ident: bib10 article-title: Exploration of hydrogen production in a membrane reformer publication-title: AIChE J contributor: fullname: Zheng – volume: 32 start-page: 3238 year: 2007 end-page: 3247 ident: bib17 article-title: A review on reforming bio-ethanol for hydrogen production publication-title: Int J Hydrogen Energy contributor: fullname: Leung – volume: 178 start-page: 499 year: 1998 end-page: 510 ident: bib21 article-title: Structure and surface and catalytic properties of Mg–Al basic oxides publication-title: J Catal contributor: fullname: Apesteguia – ident: bib16 article-title: HSC chemistry 6.0 – volume: 39 start-page: 65 year: 2002 end-page: 74 ident: bib25 article-title: Metal-catalysed steam reforming of ethanol in the production of hydrogen for fuel cell applications publication-title: Appl Catal B contributor: fullname: Coleman – volume: 238 start-page: 430 year: 2006 end-page: 440 ident: bib26 article-title: Effects of nanocrystalline CeO publication-title: J Catal contributor: fullname: Chin – volume: 49 start-page: 135 year: 2004 end-page: 144 ident: bib27 article-title: Hydrogen production by ethanol steam reforming over a commercial Pd/γ-Al publication-title: Appl Catal B contributor: fullname: Tsiakaras – volume: 35 start-page: 88 year: 1989 end-page: 96 ident: bib41 article-title: Methane steam reforming, methanation and water-gas shift .1. Intrinsic kinetics publication-title: AIChE J contributor: fullname: Froment – volume: 32 start-page: 3592 year: 2007 end-page: 3602 ident: bib3 article-title: Fuel cycle efficiencies of different automotive on-board hydrogen storage options publication-title: Int J Hydrogen Energy contributor: fullname: Peng – volume: 279 start-page: 273 year: 2005 end-page: 277 ident: bib23 article-title: Catalytic steam reforming of ethanol to produce hydrogen and acetone publication-title: Appl Catal A contributor: fullname: Shen – volume: 20 start-page: 2314 year: 2008 end-page: 2327 ident: bib22 article-title: La publication-title: Chem Mater contributor: fullname: De Rogatis – volume: 19 start-page: 2098 year: 2005 end-page: 2106 ident: bib7 article-title: Current status of hydrogen production techniques by steam reforming of ethanol: a review publication-title: Energy Fuels contributor: fullname: Adhikari – volume: 311 start-page: 135 year: 2006 end-page: 145 ident: bib39 article-title: Role of the oxide support on the performance of Rh catalysts for the autothermal reforming of gasoline and gasoline surrogates to hydrogen publication-title: Appl Catal A contributor: fullname: Krause – volume: 88 start-page: 511 year: 2009 end-page: 518 ident: bib32 article-title: Ethanol steam reforming reactions over Al publication-title: Fuel contributor: fullname: Zhang – volume: 197 start-page: 200 year: 2001 end-page: 209 ident: bib38 article-title: Sintering of nickel steam-reforming catalysts on MgAl publication-title: J Catal contributor: fullname: Datye – volume: 5 start-page: 611 year: 2004 end-page: 615 ident: bib35 article-title: H publication-title: Catal Commun contributor: fullname: Donato – volume: 225 start-page: 439 year: 2004 end-page: 452 ident: bib12 article-title: Reaction network of steam reforming of ethanol over Ni-based catalysts publication-title: J Catal contributor: fullname: Verykios – volume: 33 start-page: 644 year: 2008 end-page: 651 ident: bib13 article-title: Ethanol steam reforming in a dense Pd–Ag membrane reactor: a modelling work. Comparison with the traditional system publication-title: Int J Hydrogen Energy contributor: fullname: Basile – volume: 108 start-page: 53 year: 2002 end-page: 57 ident: bib29 article-title: Steam reforming of ethanol on Ni/MgO catalysts: H publication-title: J Power Sources contributor: fullname: Frusteri – year: 2004 ident: bib40 article-title: Membrane technology and applications contributor: fullname: Baker – volume: 249 start-page: 119 year: 2003 end-page: 128 ident: bib24 article-title: Performance of Rh/Al publication-title: Appl Catal A contributor: fullname: Frusteri – volume: 108 start-page: 15 year: 2006 end-page: 19 ident: bib19 article-title: Low temperature and H publication-title: Catal Lett contributor: fullname: Chin – volume: 43 start-page: 345 year: 2003 end-page: 354 ident: bib20 article-title: Production of hydrogen for fuel cells by steam reforming of ethanol over supported noble metal catalysts publication-title: Appl Catal B contributor: fullname: Verykios – volume: 233 start-page: 464 year: 2005 end-page: 477 ident: bib18 article-title: Ethanol steam reforming over Mg publication-title: J Catal contributor: fullname: Uzio – volume: 246 start-page: 323 year: 2003 end-page: 334 ident: bib33 article-title: Structural studies on NiO–CeO publication-title: Appl Catal A contributor: fullname: Ratnasamy |
SSID | ssj0017049 |
Score | 2.2370582 |
Snippet | The objective of this work was to explore the benefits of high-pressure steam reforming of ethanol for the production of hydrogen needed to refuel the... |
SourceID | proquest crossref pascalfrancis elsevier |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 2004 |
SubjectTerms | Alternative fuels. Production and utilization Applied sciences Catalysts Energy Energy. Thermal use of fuels Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc Ethanol Ethanol steam reforming Ethyl alcohol Exact sciences and technology Flux Fuel cells Fuels High-pressure reforming Hydrogen Hydrogen from biofuels Hydrogen membrane reactor Mathematical models Membranes Reactors Reforming |
Title | An analytical and experimental investigation of high-pressure catalytic steam reforming of ethanol in a hydrogen selective membrane reactor |
URI | https://dx.doi.org/10.1016/j.ijhydene.2009.12.042 https://search.proquest.com/docview/901669005 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwELZ4XBYhBLug7S5UPnANdW0nqY9VBSogcQEkbpYTj3dbqUnVx2Ev_IH90zuTBxStEAduUeSJHc94Hvb4G8bOE-GzoAf9yCQYm2hQPjKx8ZHMgwteO1BQZfneJeNHffMUP22xUXsXhtIqG91f6_RKWzdves1s9uaTSe8edS9dwTECTZpJCfFzF80RndXuDq9vx3cvhwlp4wVj-4gINi4KTy8m099_cIVDDV1JO4Navmej9uduiTMX6pIX_2nvyiRdHbKDxpfkw3q4R2wLiq9sbwNh8Bv7Oyy4I9yRassaHz3fxPTnk1eYjbLgZeAEXxxVybHrBfBqc4doOQnDjONQS0qe-UVNgXbdS_oGdxx_b1GiMPJlVVgHdSifwQxD8QKQqirqc8wery4fRuOoqb8Q5VqLVTRIBMRBuFQgQzPtBzJ45xyGgBlIZ6RQXkHqvA7SSwMYeWROJYQ4luVCelAnbKcoC_jOeJ7HSgtIvcowFs_EIAeNvqEEFwcJQXVYr51xO69hNmybfza1LY-oZqaxfWmRRx1mWsbYNwJj0RZ8SNt9w8mXLtEXFRLVf4fxlrUWlxudoeB0leulRVlLEoOq68cn-v_JvtRJCJTKdsp2Vos1nKFvs8q6bPviud9tJPgfQYz-aw |
link.rule.ids | 314,780,784,4502,24116,27924,27925,45585,45679 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxELYQHAqqqpaCCFDqA9dtjO3djY8RahQKzQWQuFne9RgSKbtRHof-hv7pzuwjBCHEobfVyl57PeN5efwNY-eJ8FnQvYvIJOibaFA-MrHxkcyDC147UFBl-Y6S4b3-9RA_bLHL9i4MpVU2sr-W6ZW0bt50m9Xszsbj7i3KXrqCYwSqNJMS4ucOWgMpsvZO_-p6OFofJqSNFYztI-qwcVF48mM8efqDOxxq6EqKDGr5lo76OHMLXLlQl7x4Jb0rlTT4zD41tiTv19P9wrag2Gd7GwiDX9nffsEd4Y5UIWt89HwT05-Pn2E2yoKXgRN8cVQlx67mwKvgDvXlxAxTjlMtKXnmkZoCRd1L-gZ3HH9vXiIz8kVVWAdlKJ_CFF3xArBXVdTngN0Pft5dDqOm_kKUay2WUS8REAfhUoEEzbTvyeCdc-gCZiCdkUJ5BanzOkgvDaDnkTmVEOJYlgvpQR2y7aIs4IjxPI-VFpB6laEvnoleDhptQwkuDhKC6rBuu-J2VsNs2Db_bGJbGlHNTGMvpEUadZhpCWNfMIxFXfBu37MXlFwPibaokCj-O4y3pLW43egMBZerXC0s8lqSGBRdx_8x_nf2YXj3-8beXI2uT9hunZBAaW2nbHs5X8E3tHOW2VnDx_8AgaMAdw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+analytical+and+experimental+investigation+of+high-pressure+catalytic+steam+reforming+of+ethanol+in+a+hydrogen+selective+membrane+reactor&rft.jtitle=International+journal+of+hydrogen+energy&rft.au=PAPADIAS%2C+Dennis+D&rft.au=LEE%2C+Sheldon+H.+D&rft.au=FERRANDON%2C+Magali&rft.au=AHMED%2C+Shabbir&rft.date=2010-03-01&rft.pub=Elsevier&rft.issn=0360-3199&rft.eissn=1879-3487&rft.volume=35&rft.issue=5&rft.spage=2004&rft.epage=2017&rft_id=info:doi/10.1016%2Fj.ijhydene.2009.12.042&rft.externalDBID=n%2Fa&rft.externalDocID=22602911 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-3199&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-3199&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-3199&client=summon |