Physics responsible for heating efficiency and self-controlled temperature rise of magnetic nanoparticles in magnetic hyperthermia therapy
Magnetic nanoparticles as heat-generating nanosources in hyperthermia treatment are still faced with many drawbacks for achieving sufficient clinical potential. In this context, increase in heating ability of magnetic nanoparticles in a biologically safe alternating magnetic field and also approach...
Saved in:
Published in | Progress in biophysics and molecular biology Vol. 133; pp. 9 - 19 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.03.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Magnetic nanoparticles as heat-generating nanosources in hyperthermia treatment are still faced with many drawbacks for achieving sufficient clinical potential. In this context, increase in heating ability of magnetic nanoparticles in a biologically safe alternating magnetic field and also approach to a precise control on temperature rise are two challenging subjects so that a significant part of researchers’ efforts has been devoted to them. Since a deep understanding of Physics concepts of heat generation by magnetic nanoparticles is essential to develop hyperthermia as a cancer treatment with non-adverse side effects, this review focuses on different mechanisms responsible for heat dissipation in a radio frequency magnetic field. Moreover, particular attention is given to ferrite-based nanoparticles because of their suitability in radio frequency magnetic fields. Also, the key role of Curie temperature in suppressing undesired temperature rise is highlighted.
[Display omitted]
•In MHT, the heat generated by MNPs is produced by independent mechanisms.•MHT demands MNPs with high heating efficiency in a safe alternating magnetic field.•Undesired temperature rise can be inhibited through Curie temperature of MNPs.•This review discusses about the Physics concepts involved in the above subjects. |
---|---|
AbstractList | Magnetic nanoparticles as heat-generating nanosources in hyperthermia treatment are still faced with many drawbacks for achieving sufficient clinical potential. In this context, increase in heating ability of magnetic nanoparticles in a biologically safe alternating magnetic field and also approach to a precise control on temperature rise are two challenging subjects so that a significant part of researchers' efforts has been devoted to them. Since a deep understanding of Physics concepts of heat generation by magnetic nanoparticles is essential to develop hyperthermia as a cancer treatment with non-adverse side effects, this review focuses on different mechanisms responsible for heat dissipation in a radio frequency magnetic field. Moreover, particular attention is given to ferrite-based nanoparticles because of their suitability in radio frequency magnetic fields. Also, the key role of Curie temperature in suppressing undesired temperature rise is highlighted. Magnetic nanoparticles as heat-generating nanosources in hyperthermia treatment are still faced with many drawbacks for achieving sufficient clinical potential. In this context, increase in heating ability of magnetic nanoparticles in a biologically safe alternating magnetic field and also approach to a precise control on temperature rise are two challenging subjects so that a significant part of researchers’ efforts has been devoted to them. Since a deep understanding of Physics concepts of heat generation by magnetic nanoparticles is essential to develop hyperthermia as a cancer treatment with non-adverse side effects, this review focuses on different mechanisms responsible for heat dissipation in a radio frequency magnetic field. Moreover, particular attention is given to ferrite-based nanoparticles because of their suitability in radio frequency magnetic fields. Also, the key role of Curie temperature in suppressing undesired temperature rise is highlighted. [Display omitted] •In MHT, the heat generated by MNPs is produced by independent mechanisms.•MHT demands MNPs with high heating efficiency in a safe alternating magnetic field.•Undesired temperature rise can be inhibited through Curie temperature of MNPs.•This review discusses about the Physics concepts involved in the above subjects. Magnetic nanoparticles as heat-generating nanosources in hyperthermia treatment are still faced with many drawbacks for achieving sufficient clinical potential. In this context, increase in heating ability of magnetic nanoparticles in a biologically safe alternating magnetic field and also approach to a precise control on temperature rise are two challenging subjects so that a significant part of researchers' efforts has been devoted to them. Since a deep understanding of Physics concepts of heat generation by magnetic nanoparticles is essential to develop hyperthermia as a cancer treatment with non-adverse side effects, this review focuses on different mechanisms responsible for heat dissipation in a radio frequency magnetic field. Moreover, particular attention is given to ferrite-based nanoparticles because of their suitability in radio frequency magnetic fields. Also, the key role of Curie temperature in suppressing undesired temperature rise is highlighted.Magnetic nanoparticles as heat-generating nanosources in hyperthermia treatment are still faced with many drawbacks for achieving sufficient clinical potential. In this context, increase in heating ability of magnetic nanoparticles in a biologically safe alternating magnetic field and also approach to a precise control on temperature rise are two challenging subjects so that a significant part of researchers' efforts has been devoted to them. Since a deep understanding of Physics concepts of heat generation by magnetic nanoparticles is essential to develop hyperthermia as a cancer treatment with non-adverse side effects, this review focuses on different mechanisms responsible for heat dissipation in a radio frequency magnetic field. Moreover, particular attention is given to ferrite-based nanoparticles because of their suitability in radio frequency magnetic fields. Also, the key role of Curie temperature in suppressing undesired temperature rise is highlighted. |
Author | Soleymani, Meysam Nabiyouni, Gholamreza Shaterabadi, Zhila |
Author_xml | – sequence: 1 givenname: Zhila surname: Shaterabadi fullname: Shaterabadi, Zhila organization: Department of Physics, Faculty of Science, Arak University, Arak, 38156-88349, Iran – sequence: 2 givenname: Gholamreza surname: Nabiyouni fullname: Nabiyouni, Gholamreza email: g-nabiyouni@araku.ac.ir organization: Department of Physics, Faculty of Science, Arak University, Arak, 38156-88349, Iran – sequence: 3 givenname: Meysam orcidid: 0000-0002-6270-8990 surname: Soleymani fullname: Soleymani, Meysam organization: Institute of Nanoscience and Nanotechnology, Arak university, Arak, Iran |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28993133$$D View this record in MEDLINE/PubMed |
BookMark | eNqNUU1v1DAQtVAR3Rb-AvKRS7YeO03iCxJUfFSqBAc4W44z7nrl2MH2IuUv8Kvxsq0qcYHLzGjmvTfSexfkLMSAhFBgW2DQXe23y-jiHH2tW86gr-stY_CMbGDoRQO94Gdkw1gvmw5Yf04uct4zxjj03QtyzgcpBQixIb--7tbsTKYJ8xJDdqNHamOiO9TFhXuK1jrjMJiV6jDRjN42JoaSovc40YLzgkmXQ0KaXEYaLZ31fcDiDA06xEWnOnrM1IWny26trLLDNDtNj10v60vy3Gqf8dVDvyTfP374dvO5ufvy6fbm3V1j2paVZuCtbVnfMm473mkB13aCOk4jk9cjH7nlwGU7QM8Abc8N8FHySbcD52AEF5fkzUl3SfHHAXNRs8sGvdcB4yErkK3spJBiqNDXD9DDOOOkluRmnVb16F8FvD0BTIo5J7TKuFKNOxqknVfA1DEwtVdPgaljYMdLDawKDH8JPP74D-r7ExWrWT8dJpX_BIWTS2iKmqL7t8hvRwm5aQ |
CitedBy_id | crossref_primary_10_1063_9_0000558 crossref_primary_10_1007_s10948_022_06232_6 crossref_primary_10_1016_j_apsb_2021_03_023 crossref_primary_10_31083_j_fbl2910349 crossref_primary_10_59717_j_xinn_mater_2024_100051 crossref_primary_10_1039_D1RA07389C crossref_primary_10_1016_j_mssp_2024_108950 crossref_primary_10_1088_2053_1591_ac804e crossref_primary_10_1016_j_jmmm_2019_166088 crossref_primary_10_1016_j_ceramint_2020_11_049 crossref_primary_10_1049_2024_8929168 crossref_primary_10_1016_j_jmmm_2020_167504 crossref_primary_10_1016_j_apt_2021_12_010 crossref_primary_10_3390_nano10030593 crossref_primary_10_1016_j_jmrt_2020_08_027 crossref_primary_10_1063_5_0038138 crossref_primary_10_1080_10739149_2021_1927075 crossref_primary_10_1039_D1QM00353D crossref_primary_10_1038_s41598_021_96238_2 crossref_primary_10_1002_pat_5417 crossref_primary_10_1088_1361_648X_ab26fa crossref_primary_10_1140_epjb_e2019_90567_2 crossref_primary_10_3390_s20072151 crossref_primary_10_1016_j_jmmm_2019_165382 crossref_primary_10_1016_j_jmmm_2024_171724 crossref_primary_10_1016_j_colsurfb_2022_113077 crossref_primary_10_3390_nano10061149 crossref_primary_10_1038_s41598_023_40627_2 crossref_primary_10_1038_s41598_025_94535_8 crossref_primary_10_1016_j_matpr_2022_04_176 crossref_primary_10_1016_j_colsurfa_2021_127672 crossref_primary_10_1039_D2CP05228H crossref_primary_10_1002_macp_202400136 crossref_primary_10_1016_j_colsurfb_2022_112814 crossref_primary_10_1016_j_jmmm_2024_171990 crossref_primary_10_1038_s41598_022_20558_0 crossref_primary_10_1007_s11307_023_01856_z crossref_primary_10_1016_j_compbiomed_2020_103741 crossref_primary_10_1039_D1NJ03845A crossref_primary_10_1007_s00339_020_03876_w crossref_primary_10_1021_acsmaterialslett_3c01654 crossref_primary_10_1186_s11671_019_3169_6 crossref_primary_10_1002_smll_202304527 crossref_primary_10_1111_jace_16160 crossref_primary_10_1016_j_molliq_2020_114731 crossref_primary_10_1039_D4MA00529E crossref_primary_10_31857_S0132342324030027 crossref_primary_10_1016_j_solidstatesciences_2021_106655 crossref_primary_10_1016_j_jallcom_2021_161544 crossref_primary_10_1016_j_msec_2020_111274 crossref_primary_10_1016_j_ijbiomac_2021_06_108 crossref_primary_10_1016_j_jmmm_2018_10_075 crossref_primary_10_1016_j_matchemphys_2025_130752 crossref_primary_10_1038_s41598_020_58605_3 crossref_primary_10_1016_j_slast_2023_02_002 crossref_primary_10_3390_pharmaceutics14112388 crossref_primary_10_1016_j_matchemphys_2022_126822 crossref_primary_10_3390_ma12193208 crossref_primary_10_1016_j_colsurfb_2019_110435 crossref_primary_10_1016_j_physleta_2024_129365 crossref_primary_10_1016_j_jallcom_2020_154724 crossref_primary_10_1186_s12645_023_00187_6 crossref_primary_10_1038_s41598_022_13572_9 crossref_primary_10_1007_s00339_022_05675_x crossref_primary_10_3390_molecules28062523 crossref_primary_10_1016_j_matdes_2022_110676 crossref_primary_10_1088_1741_2552_ac5b94 crossref_primary_10_1016_j_biomaterials_2024_122481 crossref_primary_10_1016_j_rinma_2023_100431 crossref_primary_10_1016_j_colsurfa_2023_133049 crossref_primary_10_1103_PhysRevB_108_134417 crossref_primary_10_1021_acs_jpcc_4c07127 crossref_primary_10_1016_j_ceramint_2023_08_088 crossref_primary_10_1016_j_ijhydene_2020_09_262 crossref_primary_10_1016_j_jallcom_2020_156907 crossref_primary_10_1016_j_jallcom_2023_171597 crossref_primary_10_1021_acsami_1c24148 crossref_primary_10_1007_s42114_023_00768_4 crossref_primary_10_1016_j_inoche_2022_110000 crossref_primary_10_1016_j_jddst_2021_102680 crossref_primary_10_1116_6_0003079 crossref_primary_10_2147_IJN_S434582 crossref_primary_10_1002_admi_202202089 crossref_primary_10_2147_CMAR_S477791 crossref_primary_10_1016_j_jallcom_2019_04_242 crossref_primary_10_3390_nano11020342 crossref_primary_10_1016_j_jallcom_2019_152548 crossref_primary_10_1021_acsami_9b20496 crossref_primary_10_1016_j_matchemphys_2021_124546 crossref_primary_10_1002_ppsc_202200095 crossref_primary_10_1016_j_carbpol_2020_116130 crossref_primary_10_1088_1361_6501_ac9d59 crossref_primary_10_3390_nano11112848 crossref_primary_10_1016_j_ijhydene_2025_01_202 crossref_primary_10_1016_j_jmmm_2019_165927 crossref_primary_10_4028_p_sc9eqe crossref_primary_10_1002_adtp_202000061 crossref_primary_10_1134_S1068162024030038 crossref_primary_10_34172_apb_2023_034 crossref_primary_10_1088_1361_6463_accc97 crossref_primary_10_1166_sl_2020_4297 crossref_primary_10_1007_s00339_024_07337_6 crossref_primary_10_1103_PhysRevApplied_12_034041 crossref_primary_10_3390_ijms24065685 crossref_primary_10_1021_acs_macromol_0c00182 crossref_primary_10_1021_acsbiomaterials_8b00244 crossref_primary_10_1088_1402_4896_ad3ae0 crossref_primary_10_1080_10717544_2020_1772409 crossref_primary_10_1109_TNB_2021_3126905 crossref_primary_10_1016_j_micromeso_2021_111458 crossref_primary_10_3390_nano11030797 crossref_primary_10_2139_ssrn_4143238 crossref_primary_10_1134_S1027451021040364 crossref_primary_10_1134_S1995078020010176 crossref_primary_10_1016_j_jallcom_2019_02_276 crossref_primary_10_31744_einstein_journal_2019AO4786 |
Cites_doi | 10.1109/TMAG.2006.872198 10.1088/0953-8984/18/38/S26 10.1039/C4NR03482A 10.1016/S0378-5173(99)00447-0 10.1063/1.2712825 10.1016/j.jallcom.2016.08.223 10.1016/j.addr.2012.08.015 10.1016/j.ceramint.2015.02.075 10.1016/j.colsurfb.2012.11.028 10.1088/0957-4484/21/1/015706 10.1002/jbm.b.33068 10.1016/j.materresbull.2015.01.033 10.1016/j.jmmm.2013.11.006 10.1016/S1003-6326(07)60293-3 10.1155/2013/752973 10.1016/0304-8853(93)91115-N 10.1039/b902394a 10.1016/j.apsusc.2013.09.169 10.1016/j.jmmm.2016.06.080 10.1109/TMAG.2011.2173474 10.1063/1.1855131 10.1039/C2DT31114C 10.1016/j.powtec.2015.03.022 10.1088/0022-3727/47/6/065503 10.1016/S0304-8853(99)00088-8 10.1016/j.msec.2016.03.033 10.1016/j.jmmm.2009.02.075 10.1016/j.addr.2012.09.029 10.1007/s00249-006-0042-1 10.1016/j.jmmm.2013.04.064 10.1016/j.jmmm.2016.10.099 10.1016/j.jmmm.2004.09.138 10.3109/02656736.2013.836758 10.1016/j.jallcom.2014.02.138 10.1016/j.jmmm.2006.11.199 10.1088/1742-6596/187/1/012069 10.1016/j.jmmm.2016.06.057 10.1016/j.jmmm.2014.11.061 10.1016/S0142-9612(01)00267-8 10.1016/j.matchemphys.2014.02.047 10.1016/j.jmmm.2015.03.039 10.1007/s11051-014-2321-6 10.1103/PhysRevB.59.6321 10.1007/s11051-010-0117-x 10.1016/j.progsolidstchem.2009.02.001 10.1016/0360-3016(82)90297-8 10.1186/s40199-015-0124-7 10.1103/PhysRevB.63.184414 10.1016/j.jmmm.2015.05.029 10.1593/neo.05769 10.1063/1.364659 10.3109/02656736.2013.837200 10.1016/S0304-8853(98)00558-7 10.1016/j.carbpol.2012.09.098 10.1002/smll.201100927 10.1016/j.bbagen.2017.02.022 10.1021/bc050335b 10.1016/j.phrs.2009.12.012 10.1016/j.tca.2011.02.012 10.1007/s11060-010-0389-0 10.1016/j.jmmm.2006.10.1156 10.1016/j.jallcom.2016.07.030 10.1063/1.2830975 10.1016/j.ssc.2009.01.007 10.1016/j.ijpharm.2015.10.058 10.1016/j.cap.2014.09.025 10.1016/S0304-8853(02)00706-0 10.1063/1.3187538 10.1016/j.msec.2010.04.016 10.1063/1.1599959 10.1016/j.jmmm.2009.05.047 10.1016/j.ijpharm.2015.07.059 10.1111/j.1551-2916.1999.tb20058.x 10.1016/j.jmmm.2013.09.037 10.1016/j.cis.2011.04.003 10.1016/j.jmmm.2014.04.001 10.1080/01932691.2015.1056531 10.1016/j.powtec.2016.07.052 10.1016/j.jmmm.2013.05.030 10.1021/ja067457e 10.1109/20.718537 10.1016/B978-0-12-415769-9.00013-3 10.1016/j.stam.2007.04.007 10.1016/j.physb.2012.07.030 10.1016/j.nimb.2016.03.041 10.1166/jnn.2008.15348 10.1016/j.jmmm.2006.11.179 10.1016/j.nantod.2010.05.003 10.1016/j.bej.2008.07.009 10.1063/1.3074136 10.1088/0022-3727/42/22/224002 10.1016/j.jmmm.2010.10.027 10.1109/TBME.1984.325372 10.1016/j.drudis.2013.10.005 10.1063/1.1850333 10.1021/ja051455x 10.1007/s11060-006-9195-0 10.1016/j.physrep.2014.09.007 10.1016/j.jmmm.2014.05.015 10.1016/j.addr.2012.10.008 10.3109/02656731003745740 10.3109/02656739709023559 10.1016/j.msec.2017.02.143 10.1016/0304-8853(95)00943-4 10.1007/s00262-003-0416-5 10.1039/b402025a 10.1039/C7TB00922D 10.1016/j.jmmm.2016.05.016 10.1063/1.3551582 |
ContentType | Journal Article |
Copyright | 2017 Elsevier Ltd Copyright © 2017 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2017 Elsevier Ltd – notice: Copyright © 2017 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1016/j.pbiomolbio.2017.10.001 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1873-1732 |
EndPage | 19 |
ExternalDocumentID | 28993133 10_1016_j_pbiomolbio_2017_10_001 S0079610717301499 |
Genre | Research Support, Non-U.S. Gov't Journal Article Review |
GroupedDBID | --- --K --M -~X .GJ .~1 0R~ 123 1B1 1RT 1~. 1~5 29P 3O- 4.4 457 4G. 53G 5RE 5VS 7-5 71M 8P~ 9JM AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABFRF ABGSF ABJNI ABLJU ABMAC ABTAH ABUDA ABXDB ABYKQ ACDAQ ACGFO ACGFS ACIUM ACRLP ADBBV ADEZE ADMUD ADUVX AEBSH AEFWE AEHWI AEKER AENEX AFFNX AFKWA AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DOVZS DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F20 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA HLW HVGLF HX~ HZ~ IHE J1W KOM LX3 M41 MO0 MVM N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBG SDF SDG SDP SES SEW SPCBC SPD SSU SSZ T5K UNMZH UQL VQP WUQ XFK ZGI ZY4 ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH CGR CUY CVF ECM EIF NPM 7X8 EFKBS |
ID | FETCH-LOGICAL-c440t-824f407402f626a315fd1f62db095b2b2f2129481701ef72c12b92da48221c323 |
IEDL.DBID | .~1 |
ISSN | 0079-6107 1873-1732 |
IngestDate | Mon Jul 21 09:27:32 EDT 2025 Wed Feb 19 02:32:27 EST 2025 Tue Jul 01 00:42:39 EDT 2025 Thu Apr 24 22:50:40 EDT 2025 Fri Feb 23 02:29:19 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Ferrite nanoparticles Superparamagnetic Heat generation mechanisms Magnetic hyperthermia therapy (MHT) Specific loss power (SLP) Curie temperature |
Language | English |
License | Copyright © 2017 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c440t-824f407402f626a315fd1f62db095b2b2f2129481701ef72c12b92da48221c323 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-6270-8990 |
PMID | 28993133 |
PQID | 1949693938 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_1949693938 pubmed_primary_28993133 crossref_citationtrail_10_1016_j_pbiomolbio_2017_10_001 crossref_primary_10_1016_j_pbiomolbio_2017_10_001 elsevier_sciencedirect_doi_10_1016_j_pbiomolbio_2017_10_001 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2018 2018-03-00 20180301 |
PublicationDateYYYYMMDD | 2018-03-01 |
PublicationDate_xml | – month: 03 year: 2018 text: March 2018 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Progress in biophysics and molecular biology |
PublicationTitleAlternate | Prog Biophys Mol Biol |
PublicationYear | 2018 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Iftikhar, Islam, Awan, Ahmad, Naseem, Iqbal (bib46) 2014; 601 Easo, Mohanan (bib26) 2013; 92 Kodama, Berkowitz (bib66) 1999; 59 Mojica Pisciotti, Lima, Vasquez Mansilla, Tognoli, Troiani, Pasa, Creczynski-Pasa, Silva, Gurman, Colombo, Goya (bib86) 2014; 102 Thanh, Green (bib116) 2010; 5 Deatsch, Evans (bib18) 2014; 354 Soleymani, Edrissi, Alizadeh (bib112) 2015; 47 Maier-Hauff, Ulrich, Nestler, Niehoff, Wust, Thiesen, Orawa, Budach, Jordan (bib82) 2011; 103 Haralkar, Kadam, More, Shirsath, Mane, Patil, Mane (bib38) 2012; 407 Soleymani, Edrissi (bib110) 2016; 39 Ciftja (bib14) 2009; 149 Papisov, Bogdanov, Schaffer, Nossiff, Shen, Weissleder, Brady (bib96) 1993; 122 Alexiou, Schmid, Jurgons, Kremer, Wanner, Bergemann, Huenges, Nawroth, Arnold, Parak (bib1) 2006; 35 Ferk, Drofenik, Lisjak, Hamler, Jagličić, Makovec (bib28) 2014; 350 Figuerola, Di Corato, Manna, Pellegrino (bib29) 2010; 62 Makridis, Chatzitheodorou, Topouridou, Yavropoulou, Angelakeris, Dendrinou-Samara (bib83) 2016; 63 Brezovich (bib10) 1998; 16 Jordan, Scholz, Wust, Schirra, Schiestel, Schmidt, Felix (bib54) 1999; 194 López-Ortega, Estrader, Salazar-Alvarez, Roca (bib78) 2015; 553 Thorat, Khot, Salunkhe, Ningthoujam, Pawar (bib117) 2013; 104 Jordan, Scholz, Wust, Fähling, Krause, Wlodarczyk, Sander, Vogl, Felix (bib52) 1997; 13 Esmaeili, Hadad (bib27) 2015; 41 Qiao, Yang, Gao (bib100) 2009; 19 Atkinson, Brezovich, Chakraborty (bib7) 1984; 31 Jing, Sohn, Kline, Victora, Wang (bib50) 2009; 105 Lee, Jang, Choi, Moon, Noh, Kim, Kim, Kim, Park, Cheon (bib72) 2011; 6 Salunkhe, Khot, Ruso, Patil (bib104) 2016; 419 Hanini, Lartigue, Gavard, Kacem, Wilhelm, Gazeau, Chau, Ammar (bib37) 2016; 416 Kaman, Veverka, Jirák, Maryško, Knížek, Veverka, Kašpar, Burian, Šepelák, Pollert (bib56) 2011; 13 Goya, Berquó, Fonseca, Morales (bib35) 2003; 94 Bharali, Lucey, Jayakumar, Pudavar, Prasad (bib9) 2005; 127 Mathew, Juang (bib85) 2007; 129 Zhang (bib126) 2014 Khot, Salunkhe, Ruso, Pawar (bib61) 2015; 384 Das, Sakamoto, Aono, Shinozaki, Suzuki, Wakiya (bib17) 2015; 392 Oleson (bib94) 1982; 8 Gaur, Sahoo, De Tapas, Ghosh, Maitra, Ghosh (bib32) 2009; 202 Li, Huang, Liu, Lin, Bai, Li (bib73) 2007; 8 Li, Kawashita, Araki, Mitsumori, Hiraoka, Doi (bib74) 2010; 30 Bakoglidis, Simeonidis, Sakellari, Stefanou, Angelakeris (bib8) 2012; 48 Soleymani, Edrissi, Alizadeh (bib113) 2017 Cao, Dan, Guo, Park, Fujita (bib11) 2007; 17 Çelik, Can, Firat (bib13) 2014; 16 Mamiya (bib84) 2013; 2013 Soleymani, Edrissi (bib111) 2016; 37 Xu, Sun (bib122) 2013; 65 Duguet, Vasseur, Mornet, Goglio, Demourgues, Portier, Grasset, Veverka, Pollert (bib24) 2006; 29 Araújo-Neto, Silva-Freitas, Carvalho, Pontes, Silva, Damasceno, Egito, Dantas, Morales, Carriço (bib4) 2014; 364 Zhang, Gu, Wang (bib125) 2007; 311 Amiri, Shokrollahi (bib2) 2013; 345 Hong, Feng, Chen, Liu, Li, Zheng, Wei (bib44) 2008; 42 Pethig (bib98) 1988 Rosensweig (bib103) 2002; 252 Wang, Dong, Ouyang, Wang, Tang (bib120) 2012; 27 Curiale, Granada, Troiani, Sánchez, Leyva, Levy, Samwer (bib16) 2009; 95 Arulmurugan, Jeyadevan, Vaidyanathan, Sendhilnathan (bib5) 2005; 288 Shaterabadi, Nabiyouni, Soleymani (bib105) 2017; 75 Gabal (bib31) 2009; 321 Delavari, Madaah Hosseini, Simchi (bib20) 2011; 383 Hervault, Thanh (bib43) 2014; 6 Roca, Costo, Rebolledo, Veintemillas-Verdaguer, Tartaj, Gonzalez-Carreno, Morales, Serna (bib102) 2009; 42 Oumezzine, Hcini, Baazaoui, Hlil, Oumezzine (bib95) 2015; 278 Kuznetsov, Leontiev, Brukvin, Vorozhtsov, Kogan, Shlyakhtin, Yunin, Tsybin, Kuznetsov (bib70) 2007; 311 Kulkarni, Trivedi, Joshi, Baldha (bib69) 1996; 159 Nam, Won, Bang, Jin, Park, Jung, Jung, Park (bib91) 2013; 65 Kim, Shima (bib62) 2007; 101 Zhang, Kohler, Zhang (bib124) 2002; 23 Montet, Montet-Abou, Reynolds, Weissleder, Josephson (bib87) 2006; 8 Dennis, Ivkov (bib21) 2013; 29 Pollert, Veverka, Veverka, Kaman, Závěta, Vasseur, Epherre, Goglio, Duguet (bib99) 2009; 37 Giri, Pradhan, Sriharsha, Bahadur (bib33) 2005; 97 Cullity, Graham (bib15) 2011 Sugimoto (bib115) 1999; 82 Hergt, Dutz, Müller, Zeisberger (bib41) 2006; 18 Lima-Tenório, Pineda, Ahmad, Fessi, Elaissari (bib76) 2015; 493 Kozissnik, Bohorquez, Dobson, Rinaldi (bib68) 2013; 29 Maenosono, Saita (bib79) 2006; 42 Mozaffari, Amighian, Tavakoli (bib89) 2015; 379 Wahba, Ali, Eltabey (bib119) 2014; 146 Jordan, Scholz, Wust, Fähling, Felix (bib53) 1999; 201 Stolnik, Illum, Davis (bib114) 2012; 64 del Pino, Pelaz (bib19) 2012 Jain, Morales, Sahoo, Leslie-Pelecky, Labhasetwar (bib48) 2005; 2 Kim, Jeon, Hong, Rhim, Lee, Youn, Chung, Lee, Lee, Kang, Nam (bib63) 2011; 7 Singh, Sahoo (bib108) 2014; 19 Laurent, Dutz, Häfeli, Mahmoudi (bib71) 2011; 166 Soleymani, Edrissi (bib109) 2015; 38 Kodama, Berkowitz, McNiff, Foner (bib67) 1997; 81 Muroi, Street, McCormick, Amighian (bib90) 2001; 63 Ito, Matsuoka, Honda, Kobayashi (bib47) 2004; 53 Yanase, Shinkai, Honda, Wakabayashi, Yoshida, Kobayashi (bib123) 1998; 89 Dixit, Van den Bossche, Sherman, Thompson, Andres (bib23) 2006; 17 Nguyen, Kim (bib92) 2016; 301 Carrey, Mehdaoui, Respaud (bib12) 2011; 109 Hergt, Andra, d'Ambly, Hilger, Kaiser, Richter, Schmidt (bib40) 1998; 34 Mahmoud, Elshahawy, Makhlouf, Hamdeh (bib80) 2013; 343 Johannsen, Thiesen, Wust, Jordan (bib51) 2010; 26 Maier-Hauff, Rothe, Scholz, Gneveckow, Wust, Thiesen, Feussner, von Deimling, Waldoefner, Felix, Jordan (bib81) 2007; 81 Dipesh, Wang, Adhikari, Alam, Mishra (bib22) 2016; 688 Ichiyanagi, Shigeoka, Hiroki, Mashino, Kimura, Tomitaka, Ueda, Takemura (bib45) 2012; 532 Jasso-Terán, Cortés-Hernández, Sánchez-Fuentes, Reyes-Rodríguez, de-León-Prado, Escobedo-Bocardo, Almanza-Robles (bib49) 2017; 427 Angelakeris (bib3) 2017; 1861 Dunn, Jacobo, Bercoff (bib25) 2017; 691 Fortin, Wilhelm, Servais, Ménager, Bacri, Gazeau (bib30) 2007; 129 Habib, Ondeck, Chaudhary, Bockstaller, McHenry (bib36) 2008; 103 Hergt, Dutz (bib39) 2007; 311 Kargar, Asgarian, Mozaffari (bib58) 2016; 375 Shoushtari, Emami, Ghahfarokhi (bib107) 2016; 419 Aslibeiki (bib6) 2014; 14 Linh, Van Thach, Tuan, Thuan, Phuc (bib77) 2009; 187 Mornet, Vasseur, Grasset, Duguet (bib88) 2004; 14 Knobel, Nunes, Socolovsky, De Biasi, Vargas, Denardin (bib64) 2008; 8 Liangruksa, Ganguly, Puri (bib75) 2011; 323 Kallumadil, Tada, Nakagawa, Abe, Southern, Pankhurst (bib55) 2009; 321 Kobayashi (bib65) 2011; 6 Veverka, Závěta, Kaman, Veverka, Knížek, Pollert, Burian, Kašpar (bib118) 2014; 7 Khalkhali, Rostamizadeh, Sadighian, Khoeini, Naghibi, Hamidi (bib59) 2015; 23 Parker, Ladieu, Vincent, Mériguet, Dubois, Dupuis, Perzynski (bib97) 2005; 97 Shete, Patil, Thorat, Prasad, Ningthoujam, Ghosh, Pawar (bib106) 2014; 288 Khot, Salunkhe, Thorat, Ningthoujam, Pawar (bib60) 2013; 42 Ramimoghadam, Bagheri, Hamid (bib101) 2014; 368 Goldman (bib34) 2006 Wang, Rai, Mishra (bib121) 2015; 65 Hergt, Dutz, Zeisberger (bib42) 2009; 21 Kandasamy, Maity (bib57) 2015; 496 Obaidat, Issa, Haik (bib93) 2015; 5 Mojica Pisciotti (10.1016/j.pbiomolbio.2017.10.001_bib86) 2014; 102 Obaidat (10.1016/j.pbiomolbio.2017.10.001_bib93) 2015; 5 Khot (10.1016/j.pbiomolbio.2017.10.001_bib61) 2015; 384 Kim (10.1016/j.pbiomolbio.2017.10.001_bib63) 2011; 7 Lee (10.1016/j.pbiomolbio.2017.10.001_bib72) 2011; 6 Das (10.1016/j.pbiomolbio.2017.10.001_bib17) 2015; 392 Fortin (10.1016/j.pbiomolbio.2017.10.001_bib30) 2007; 129 Jordan (10.1016/j.pbiomolbio.2017.10.001_bib53) 1999; 201 Kargar (10.1016/j.pbiomolbio.2017.10.001_bib58) 2016; 375 Wang (10.1016/j.pbiomolbio.2017.10.001_bib121) 2015; 65 Duguet (10.1016/j.pbiomolbio.2017.10.001_bib24) 2006; 29 Laurent (10.1016/j.pbiomolbio.2017.10.001_bib71) 2011; 166 Angelakeris (10.1016/j.pbiomolbio.2017.10.001_bib3) 2017; 1861 Kaman (10.1016/j.pbiomolbio.2017.10.001_bib56) 2011; 13 Sugimoto (10.1016/j.pbiomolbio.2017.10.001_bib115) 1999; 82 Soleymani (10.1016/j.pbiomolbio.2017.10.001_bib111) 2016; 37 Jordan (10.1016/j.pbiomolbio.2017.10.001_bib54) 1999; 194 Salunkhe (10.1016/j.pbiomolbio.2017.10.001_bib104) 2016; 419 Kim (10.1016/j.pbiomolbio.2017.10.001_bib62) 2007; 101 Iftikhar (10.1016/j.pbiomolbio.2017.10.001_bib46) 2014; 601 Thanh (10.1016/j.pbiomolbio.2017.10.001_bib116) 2010; 5 Ciftja (10.1016/j.pbiomolbio.2017.10.001_bib14) 2009; 149 Brezovich (10.1016/j.pbiomolbio.2017.10.001_bib10) 1998; 16 Alexiou (10.1016/j.pbiomolbio.2017.10.001_bib1) 2006; 35 Arulmurugan (10.1016/j.pbiomolbio.2017.10.001_bib5) 2005; 288 Kodama (10.1016/j.pbiomolbio.2017.10.001_bib67) 1997; 81 Kodama (10.1016/j.pbiomolbio.2017.10.001_bib66) 1999; 59 Mamiya (10.1016/j.pbiomolbio.2017.10.001_bib84) 2013; 2013 Dixit (10.1016/j.pbiomolbio.2017.10.001_bib23) 2006; 17 Dennis (10.1016/j.pbiomolbio.2017.10.001_bib21) 2013; 29 Habib (10.1016/j.pbiomolbio.2017.10.001_bib36) 2008; 103 Shete (10.1016/j.pbiomolbio.2017.10.001_bib106) 2014; 288 Goldman (10.1016/j.pbiomolbio.2017.10.001_bib34) 2006 Soleymani (10.1016/j.pbiomolbio.2017.10.001_bib110) 2016; 39 Stolnik (10.1016/j.pbiomolbio.2017.10.001_bib114) 2012; 64 Muroi (10.1016/j.pbiomolbio.2017.10.001_bib90) 2001; 63 Liangruksa (10.1016/j.pbiomolbio.2017.10.001_bib75) 2011; 323 Araújo-Neto (10.1016/j.pbiomolbio.2017.10.001_bib4) 2014; 364 Oleson (10.1016/j.pbiomolbio.2017.10.001_bib94) 1982; 8 Soleymani (10.1016/j.pbiomolbio.2017.10.001_bib109) 2015; 38 Maier-Hauff (10.1016/j.pbiomolbio.2017.10.001_bib82) 2011; 103 Jain (10.1016/j.pbiomolbio.2017.10.001_bib48) 2005; 2 Mozaffari (10.1016/j.pbiomolbio.2017.10.001_bib89) 2015; 379 Ramimoghadam (10.1016/j.pbiomolbio.2017.10.001_bib101) 2014; 368 Hergt (10.1016/j.pbiomolbio.2017.10.001_bib42) 2009; 21 Cullity (10.1016/j.pbiomolbio.2017.10.001_bib15) 2011 Jing (10.1016/j.pbiomolbio.2017.10.001_bib50) 2009; 105 Parker (10.1016/j.pbiomolbio.2017.10.001_bib97) 2005; 97 Shaterabadi (10.1016/j.pbiomolbio.2017.10.001_bib105) 2017; 75 Atkinson (10.1016/j.pbiomolbio.2017.10.001_bib7) 1984; 31 Bakoglidis (10.1016/j.pbiomolbio.2017.10.001_bib8) 2012; 48 Carrey (10.1016/j.pbiomolbio.2017.10.001_bib12) 2011; 109 Gaur (10.1016/j.pbiomolbio.2017.10.001_bib32) 2009; 202 Nam (10.1016/j.pbiomolbio.2017.10.001_bib91) 2013; 65 Hervault (10.1016/j.pbiomolbio.2017.10.001_bib43) 2014; 6 Pollert (10.1016/j.pbiomolbio.2017.10.001_bib99) 2009; 37 Amiri (10.1016/j.pbiomolbio.2017.10.001_bib2) 2013; 345 Giri (10.1016/j.pbiomolbio.2017.10.001_bib33) 2005; 97 Hergt (10.1016/j.pbiomolbio.2017.10.001_bib40) 1998; 34 Lima-Tenório (10.1016/j.pbiomolbio.2017.10.001_bib76) 2015; 493 Soleymani (10.1016/j.pbiomolbio.2017.10.001_bib113) 2017 Khalkhali (10.1016/j.pbiomolbio.2017.10.001_bib59) 2015; 23 Li (10.1016/j.pbiomolbio.2017.10.001_bib73) 2007; 8 Linh (10.1016/j.pbiomolbio.2017.10.001_bib77) 2009; 187 Hergt (10.1016/j.pbiomolbio.2017.10.001_bib41) 2006; 18 Wahba (10.1016/j.pbiomolbio.2017.10.001_bib119) 2014; 146 Soleymani (10.1016/j.pbiomolbio.2017.10.001_bib112) 2015; 47 Kobayashi (10.1016/j.pbiomolbio.2017.10.001_bib65) 2011; 6 Kulkarni (10.1016/j.pbiomolbio.2017.10.001_bib69) 1996; 159 Hergt (10.1016/j.pbiomolbio.2017.10.001_bib39) 2007; 311 Roca (10.1016/j.pbiomolbio.2017.10.001_bib102) 2009; 42 Easo (10.1016/j.pbiomolbio.2017.10.001_bib26) 2013; 92 Oumezzine (10.1016/j.pbiomolbio.2017.10.001_bib95) 2015; 278 Pethig (10.1016/j.pbiomolbio.2017.10.001_bib98) 1988 Khot (10.1016/j.pbiomolbio.2017.10.001_bib60) 2013; 42 Papisov (10.1016/j.pbiomolbio.2017.10.001_bib96) 1993; 122 Delavari (10.1016/j.pbiomolbio.2017.10.001_bib20) 2011; 383 Kozissnik (10.1016/j.pbiomolbio.2017.10.001_bib68) 2013; 29 Bharali (10.1016/j.pbiomolbio.2017.10.001_bib9) 2005; 127 Haralkar (10.1016/j.pbiomolbio.2017.10.001_bib38) 2012; 407 Kuznetsov (10.1016/j.pbiomolbio.2017.10.001_bib70) 2007; 311 Dipesh (10.1016/j.pbiomolbio.2017.10.001_bib22) 2016; 688 Figuerola (10.1016/j.pbiomolbio.2017.10.001_bib29) 2010; 62 Deatsch (10.1016/j.pbiomolbio.2017.10.001_bib18) 2014; 354 Mornet (10.1016/j.pbiomolbio.2017.10.001_bib88) 2004; 14 Cao (10.1016/j.pbiomolbio.2017.10.001_bib11) 2007; 17 Gabal (10.1016/j.pbiomolbio.2017.10.001_bib31) 2009; 321 Mathew (10.1016/j.pbiomolbio.2017.10.001_bib85) 2007; 129 Zhang (10.1016/j.pbiomolbio.2017.10.001_bib126) 2014 Li (10.1016/j.pbiomolbio.2017.10.001_bib74) 2010; 30 Ferk (10.1016/j.pbiomolbio.2017.10.001_bib28) 2014; 350 del Pino (10.1016/j.pbiomolbio.2017.10.001_bib19) 2012 Thorat (10.1016/j.pbiomolbio.2017.10.001_bib117) 2013; 104 Curiale (10.1016/j.pbiomolbio.2017.10.001_bib16) 2009; 95 Zhang (10.1016/j.pbiomolbio.2017.10.001_bib125) 2007; 311 Goya (10.1016/j.pbiomolbio.2017.10.001_bib35) 2003; 94 Wang (10.1016/j.pbiomolbio.2017.10.001_bib120) 2012; 27 Montet (10.1016/j.pbiomolbio.2017.10.001_bib87) 2006; 8 Dunn (10.1016/j.pbiomolbio.2017.10.001_bib25) 2017; 691 Johannsen (10.1016/j.pbiomolbio.2017.10.001_bib51) 2010; 26 Veverka (10.1016/j.pbiomolbio.2017.10.001_bib118) 2014; 7 Ito (10.1016/j.pbiomolbio.2017.10.001_bib47) 2004; 53 Zhang (10.1016/j.pbiomolbio.2017.10.001_bib124) 2002; 23 Esmaeili (10.1016/j.pbiomolbio.2017.10.001_bib27) 2015; 41 Hanini (10.1016/j.pbiomolbio.2017.10.001_bib37) 2016; 416 Singh (10.1016/j.pbiomolbio.2017.10.001_bib108) 2014; 19 Nguyen (10.1016/j.pbiomolbio.2017.10.001_bib92) 2016; 301 Jordan (10.1016/j.pbiomolbio.2017.10.001_bib52) 1997; 13 Shoushtari (10.1016/j.pbiomolbio.2017.10.001_bib107) 2016; 419 Mahmoud (10.1016/j.pbiomolbio.2017.10.001_bib80) 2013; 343 Ichiyanagi (10.1016/j.pbiomolbio.2017.10.001_bib45) 2012; 532 Kandasamy (10.1016/j.pbiomolbio.2017.10.001_bib57) 2015; 496 Aslibeiki (10.1016/j.pbiomolbio.2017.10.001_bib6) 2014; 14 Rosensweig (10.1016/j.pbiomolbio.2017.10.001_bib103) 2002; 252 Yanase (10.1016/j.pbiomolbio.2017.10.001_bib123) 1998; 89 Knobel (10.1016/j.pbiomolbio.2017.10.001_bib64) 2008; 8 Xu (10.1016/j.pbiomolbio.2017.10.001_bib122) 2013; 65 Hong (10.1016/j.pbiomolbio.2017.10.001_bib44) 2008; 42 Qiao (10.1016/j.pbiomolbio.2017.10.001_bib100) 2009; 19 Maenosono (10.1016/j.pbiomolbio.2017.10.001_bib79) 2006; 42 Maier-Hauff (10.1016/j.pbiomolbio.2017.10.001_bib81) 2007; 81 Makridis (10.1016/j.pbiomolbio.2017.10.001_bib83) 2016; 63 Çelik (10.1016/j.pbiomolbio.2017.10.001_bib13) 2014; 16 Jasso-Terán (10.1016/j.pbiomolbio.2017.10.001_bib49) 2017; 427 López-Ortega (10.1016/j.pbiomolbio.2017.10.001_bib78) 2015; 553 Kallumadil (10.1016/j.pbiomolbio.2017.10.001_bib55) 2009; 321 |
References_xml | – volume: 149 start-page: 532 year: 2009 end-page: 536 ident: bib14 article-title: Lamellar-like structures in ferrofluids placed in strong magnetic fields publication-title: J. Solid State Commun. – start-page: 2229 year: 2014 end-page: 2244 ident: bib126 article-title: Magnetic nanomaterials: conventional synthesis and properties publication-title: Dekker Encyclopedia of Nanoscience and Nanotechnology – volume: 63 start-page: 184414 year: 2001 ident: bib90 article-title: Magnetic properties of ultrafine MnFe publication-title: J. Phys. Rev. B – volume: 27 start-page: 719 year: 2012 end-page: 726 ident: bib120 article-title: Anticancer effect and feasibility study of hyperthermia treatment of pancreatic cancer using magnetic nanoparticles publication-title: J. Oncol. Rep. – volume: 7 start-page: 065503 year: 2014 ident: bib118 article-title: Magnetic heating by silica-coated Co–Zn ferrite particles publication-title: J. Phys. D. Appl. Phys. – volume: 29 start-page: 581 year: 2006 end-page: 586 ident: bib24 article-title: Towards a versatile platform based on magnetic nanoparticles for in vivo applications publication-title: J. Bull. Mater. Sci. – volume: 202 start-page: 1 year: 2009 end-page: 10 ident: bib32 article-title: Biodistribution of fluoresceinated dextran using novel nanoparticles evading reticuloendothelial system publication-title: Int. J. Pharm. – volume: 122 start-page: 383 year: 1993 end-page: 386 ident: bib96 article-title: Colloidal magnetic resonance contrast agents: effect of particle surface on biodistribution publication-title: J. Magnetism Magnetic Mater. – volume: 392 start-page: 91 year: 2015 end-page: 100 ident: bib17 article-title: Investigations of superparamagnetism in magnesium ferrite nano-sphere synthesized by ultrasonic spray pyrolysis technique for hyperthermia application publication-title: J. Magnetism Magnetic Mater. – volume: 688 start-page: 413 year: 2016 end-page: 421 ident: bib22 article-title: Influence of Al publication-title: J. Alloys Compd. – volume: 6 start-page: 1342 year: 2011 end-page: 1347 ident: bib65 article-title: Cancer hyperthermia using magnetic nanoparticles publication-title: J. Biotechnol. – volume: 97 start-page: 10A502 year: 2005 ident: bib97 article-title: Experimental investigation of superspin glass dynamics publication-title: J. Appl. Phys. – volume: 129 start-page: 2628 year: 2007 end-page: 2635 ident: bib30 article-title: Size-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia publication-title: J. Am. Chem. Soc. – volume: 368 start-page: 207 year: 2014 end-page: 229 ident: bib101 article-title: Progress in electrochemical synthesis of magnetic iron oxide nanoparticles publication-title: J. Magnetism Magnetic Mater. – volume: 39 start-page: 487 year: 2016 end-page: 490 ident: bib110 article-title: Preparation of manganese-based perovskite nanoparticles using a reverse microemulsion method: biomedical applications publication-title: J. Bull. Mater. Sci. – volume: 18 start-page: S2919 year: 2006 ident: bib41 article-title: Magnetic particle hyperthermia: nanoparticle magnetism and materials development for cancer therapy publication-title: J. Phys. Condens. Matter – volume: 26 start-page: 790 year: 2010 end-page: 795 ident: bib51 article-title: Magnetic nanoparticle hyperthermia for prostate cancer publication-title: Int. J. Hyperth. – volume: 30 start-page: 990 year: 2010 end-page: 996 ident: bib74 article-title: Magnetite nanoparticles with high heating efficiencies for application in the hyperthermia of cancer publication-title: J. Mater. Sci. Eng. C – year: 2006 ident: bib34 article-title: Modern ferrite technology – volume: 17 start-page: 1451 year: 2007 end-page: 1455 ident: bib11 article-title: Size and shape effects on Curie temperature of ferromagnetic nanoparticles publication-title: J. Trans. Nonferrous Metals Soc. China – volume: 416 start-page: 315 year: 2016 end-page: 320 ident: bib37 article-title: Zinc substituted ferrite nanoparticles with Zn publication-title: J. Magnetism Magnetic Mater. – volume: 553 start-page: 1 year: 2015 end-page: 32 ident: bib78 article-title: Nogués. Applications of exchange coupled bi-magnetic hard/soft and soft/hard magnetic core/shell nanoparticles publication-title: J. Phys. Rep. – volume: 323 start-page: 708 year: 2011 end-page: 716 ident: bib75 article-title: Parametric investigation of heating due to magnetic fluid hyperthermia in a tumor with blood perfusion publication-title: J. Magnetism Magnetic Mater. – volume: 37 start-page: 693 year: 2016 end-page: 698 ident: bib111 article-title: Synthesis of bilayer surfactant-coated magnetic nanoparticles for application in magnetic fluid hyperthermia publication-title: J. Dispersion Sci. Technol. – volume: 8 start-page: 448 year: 2007 end-page: 454 ident: bib73 article-title: Effect of aggregates on the magnetization property of ferrofluids: a model of gaslike compression publication-title: J. Sci. Technol. Adv. Mater. – volume: 427 start-page: 241 year: 2017 end-page: 244 ident: bib49 article-title: Synthesis, characterization and hemolysis studies of Zn publication-title: J. Magnetism Magnetic Mater. – volume: 2013 start-page: 1 year: 2013 end-page: 17 ident: bib84 article-title: Recent advances in understanding magnetic nanoparticles in AC magnetic fields and optimal design for targeted hyperthermia publication-title: J. Nanomater. – volume: 493 start-page: 313 year: 2015 end-page: 327 ident: bib76 article-title: Magnetic nanoparticles: in vivo cancer diagnosis and therapy publication-title: J. Int. J. Pharm. – volume: 47 start-page: 797 year: 2015 end-page: 801 ident: bib112 article-title: Thermosensitive polymer-coated La0.73Sr0.27MnO3 nanoparticles: potential applications in cancer hyperthermia therapy and magnetically activated drug delivery systems publication-title: J. Polym J. – volume: 104 start-page: 40 year: 2013 end-page: 47 ident: bib117 article-title: Functionalization of La publication-title: J. Colloids Surfaces B Biointerfaces – volume: 127 start-page: 11364 year: 2005 end-page: 11371 ident: bib9 article-title: Folate-receptor-mediated delivery of InP quantum dots for bioimaging using confocal and two-photon microscopy publication-title: J. Am. Chem. Soc. – volume: 109 start-page: 083921 year: 2011 ident: bib12 article-title: Simple models for dynamic hysteresis loop calculations of magnetic single-domain nanoparticles: application to magnetic hyperthermia optimization publication-title: J. Appl. Phys. – volume: 34 start-page: 3745 year: 1998 end-page: 3754 ident: bib40 article-title: Physical limits of hyperthermia using magnetite fine particles publication-title: Magnetics. J. IEEE Trans. – volume: 64 start-page: 290 year: 2012 end-page: 301 ident: bib114 article-title: Long circulating microparticulate drug carriers publication-title: J. Adv. drug Deliv. Rev. – volume: 16 start-page: 82 year: 1998 end-page: 111 ident: bib10 article-title: Low frequency hyperthermia: capacitive and ferromagnetic thermoseed methods publication-title: J. Med. Phys. Monogr. – volume: 311 start-page: 187 year: 2007 end-page: 192 ident: bib39 article-title: Magnetic particle hyperthermia—biophysical limitations of a visionary tumour therapy publication-title: J. Magnetism Magnetic Mater. – volume: 321 start-page: 3144 year: 2009 end-page: 3148 ident: bib31 article-title: Effect of Mg substitution on the magnetic properties of NiCuZn ferrite nanoparticles prepared through a novel method using egg white publication-title: J. Magnetism Magnetic Mater. – volume: 101 start-page: 09M516 year: 2007 ident: bib62 article-title: Reduced magnetization in magnetic oxide nanoparticles publication-title: J. Appl. Phys. – volume: 81 start-page: 53 year: 2007 end-page: 60 ident: bib81 article-title: Intracranial thermotherapy using magnetic nanoparticles combined with external beam radiotherapy: results of a feasibility study on patients with glioblastoma multiforme publication-title: J. Neuro-Oncology – volume: 379 start-page: 208 year: 2015 end-page: 212 ident: bib89 article-title: The effect of yttrium substitution on the magnetic properties of magnetite nanoparticles publication-title: J. Magnetism Magnetic Mater. – volume: 532 start-page: 123 year: 2012 end-page: 126 ident: bib45 article-title: Study on increase in temperature of Co–Ti ferrite nanoparticles for magnetic hyperthermia treatment publication-title: J. Thermochim. Acta – volume: 194 start-page: 185 year: 1999 end-page: 196 ident: bib54 article-title: Endocytosis of dextran and silan-coated magnetite nanoparticles and the effect of intracellular hyperthermia on human mammary carcinoma cells in vitro publication-title: J. Magnetism Magnetic Mater. – volume: 301 start-page: 1112 year: 2016 end-page: 1118 ident: bib92 article-title: Controlled synthesis of monodisperse magnetite nanoparticles for hyperthermia-based treatments publication-title: J. Powder Technol. – volume: 38 start-page: 1633 year: 2015 end-page: 1638 ident: bib109 article-title: Heating ability and biocompatibility study of silica-coated magnetic nanoparticles as heating mediators for magnetic hyperthermia and magnetically triggered drug delivery systems publication-title: J. Bull. Mater. Sci. – volume: 41 start-page: 7529 year: 2015 end-page: 7535 ident: bib27 article-title: Preparation of ZnFe publication-title: J. Ceram. Int. – volume: 21 start-page: 015706 year: 2009 ident: bib42 article-title: Validity limits of the Néel relaxation model of magnetic nanoparticles for hyperthermia publication-title: J. Nanotechnol. – volume: 53 start-page: 26 year: 2004 end-page: 32 ident: bib47 article-title: Antitumor effects of combined therapy of recombinant heat shock protein 70 and hyperthermia using magnetic nanoparticles in an experimental subcutaneous murine melanoma publication-title: J. Cancer Immunol. Immunother. – volume: 407 start-page: 4338 year: 2012 end-page: 4346 ident: bib38 article-title: Substitutional effect of Cr publication-title: J. Phys. B Condens. Matter – volume: 35 start-page: 446 year: 2006 end-page: 450 ident: bib1 article-title: Targeting cancer cells: magnetic nanoparticles as drug carriers publication-title: J. Eur. Biophysics J. – volume: 105 start-page: 07B305 year: 2009 ident: bib50 article-title: Experimental and theoretical investigation of cubic FeCo nanoparticles for magnetic hyperthermia publication-title: J. Appl. Phys. – volume: 95 start-page: 043106 year: 2009 ident: bib16 article-title: Magnetic dead layer in ferromagnetic manganite nanoparticles publication-title: J. Appl. Phys. Lett. – volume: 2 start-page: 194 year: 2005 end-page: 205 ident: bib48 article-title: Iron oxide nanoparticles for sustained delivery of anticancer agents publication-title: J. Mol. Pharm. – volume: 103 start-page: 317 year: 2011 end-page: 324 ident: bib82 article-title: Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme publication-title: J. Neuro-Oncology – volume: 29 start-page: 715 year: 2013 end-page: 729 ident: bib21 article-title: Physics of heat generation using magnetic nanoparticles for hyperthermia publication-title: J. Int. J. Hyperth. – volume: 17 start-page: 603 year: 2006 end-page: 609 ident: bib23 article-title: Synthesis and grafting of thioctic acid− PEG− folate conjugates onto Au nanoparticles for selective targeting of folate receptor-positive tumor cells publication-title: J. Bioconjugate Chem. – volume: 23 start-page: 1553 year: 2002 end-page: 1561 ident: bib124 article-title: Surface modification of superparamagnetic magnetite nanoparticles and their intracellular uptake publication-title: J. Biomater. – volume: 92 start-page: 726 year: 2013 end-page: 732 ident: bib26 article-title: Dextran stabilized iron oxide nanoparticles: synthesis, characterization and in vitro studies publication-title: J. Carbohydr. Polym. – volume: 48 start-page: 1320 year: 2012 end-page: 1323 ident: bib8 article-title: Size-dependent mechanisms in AC magnetic hyperthermia response of iron-oxide nanoparticles publication-title: J. IEEE Trans. Magnetics. – volume: 42 start-page: 1638 year: 2006 end-page: 1642 ident: bib79 article-title: Theoretical assessment of FePt nanoparticles as heating elements for magnetic hyperthermia publication-title: J. IEEE Trans. Magnetics – volume: 82 start-page: 269 year: 1999 end-page: 280 ident: bib115 article-title: The past, present, and future of ferrites publication-title: J. Am. Ceram. Soc. – volume: 94 start-page: 3520 year: 2003 end-page: 3528 ident: bib35 article-title: Static and dynamic magnetic properties of spherical magnetite nanoparticles publication-title: J. Appl. Phys. – volume: 42 start-page: 290 year: 2008 end-page: 300 ident: bib44 article-title: Synthesis, characterization and MRI application of dextran-coated Fe publication-title: J. Biochem. Eng. J. – volume: 187 start-page: 012069 year: 2009 ident: bib77 article-title: Magnetic fluid based on Fe publication-title: J. Phys. Conf. Ser. – volume: 8 start-page: 214 year: 2006 end-page: 222 ident: bib87 article-title: Nanoparticle imaging of integrins on tumor cells publication-title: J. Neoplasia – volume: 419 start-page: 572 year: 2016 end-page: 579 ident: bib107 article-title: Effect of bismuth doping on the structural and magnetic properties of zinc-ferrite nanoparticles prepared by a microwave combustion method publication-title: J. Magnetism Magnetic Mater. – volume: 42 start-page: 1249 year: 2013 end-page: 1258 ident: bib60 article-title: Induction heating studies of dextran coated MgFe publication-title: J. Dalton Trans. – volume: 81 start-page: 5552 year: 1997 end-page: 5557 ident: bib67 article-title: Surface spin disorder in ferrite nanoparticles publication-title: J. Appl. Phys. – volume: 288 start-page: 470 year: 2005 end-page: 477 ident: bib5 article-title: Effect of zinc substitution on Co–Zn and Mn–Zn ferrite nanoparticles prepared by co-precipitation publication-title: J. Magnetism Magnetic Mater. – volume: 354 start-page: 163 year: 2014 end-page: 172 ident: bib18 article-title: Evans. Heating efficiency in magnetic nanoparticle hyperthermia publication-title: J. Magnetism Magnetic Mater. – volume: 75 start-page: 947 year: 2017 end-page: 956 ident: bib105 article-title: High impact of in situ dextran coating on biocompatibility, stability and magnetic properties of iron oxide nanoparticles publication-title: J. Mater. Sci. Eng. C – volume: 345 start-page: 18 year: 2013 end-page: 23 ident: bib2 article-title: Magnetic and structural properties of RE doped Co-ferrite (REåNd, Eu, and Gd) nano-particles synthesized by co-precipitation publication-title: J. Magnetism Magnetic Mater. – volume: 29 start-page: 706 year: 2013 end-page: 714 ident: bib68 publication-title: Int. J. Hyperth. – volume: 19 start-page: 6274 year: 2009 end-page: 6293 ident: bib100 article-title: Superparamagnetic iron oxide nanoparticles: from preparations to in vivo MRI applications publication-title: J. Mater. Chem. – volume: 97 start-page: 10Q916 year: 2005 ident: bib33 article-title: Preparation and investigation of potentiality of different soft ferrites for hyperthermia applications publication-title: J. Appl. Phys. – volume: 383 start-page: 1 year: 2011 end-page: 5 ident: bib20 article-title: A simple model for the size and shape dependent Curie temperature of freestanding Ni and Fe nanoparticles based on the average coordination number and atomic cohesive energy publication-title: J. Chem. Phys. – volume: 103 start-page: 07A307 year: 2008 ident: bib36 article-title: Evaluation of iron-cobalt/ferrite core-shell nanoparticles for cancer thermotherapy publication-title: J. Appl. Phys. – volume: 129 start-page: 51 year: 2007 end-page: 65 ident: bib85 article-title: An overview of the structure and magnetism of spinel ferrite nanoparticles and their synthesis in microemulsions publication-title: J. Chem. Eng. J. – volume: 8 start-page: 2836 year: 2008 end-page: 2857 ident: bib64 article-title: Superparamagnetism and other magnetic features in granular materials: a review on ideal and real systems publication-title: J. Nanosci. Nanotechnol. – volume: 89 start-page: 775 year: 1998 end-page: 782 ident: bib123 article-title: Antitumor immunity induction by intracellular hyperthermia using magnetite cationic liposomes publication-title: J. Cancer Sci. – volume: 159 start-page: 375 year: 1996 end-page: 380 ident: bib69 article-title: Magnetic properties of copper ferrite aluminates publication-title: J. Magnetism Magnetic Mater. – volume: 288 start-page: 149 year: 2014 end-page: 157 ident: bib106 article-title: Magnetic chitosan nanocomposite for hyperthermia therapy application: preparation, characterization and in vitro experiments publication-title: J. Appl. Surf. Sci. – volume: 37 start-page: 1 year: 2009 end-page: 14 ident: bib99 article-title: Search of new core materials for magnetic fluid hyperthermia: preliminary chemical and physical issues publication-title: J. Prog. Solid State Chem. – volume: 14 start-page: 1659 year: 2014 end-page: 1664 ident: bib6 article-title: Nanostructural, magnetic and electrical properties of Ag doped Mn-ferrite nanoparticles publication-title: J. Curr. Appl. Phys. – volume: 375 start-page: 71 year: 2016 end-page: 78 ident: bib58 article-title: Positron annihilation and magnetic properties studies of copper substituted nickel ferrite nanoparticles publication-title: J. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms – volume: 63 start-page: 663 year: 2016 end-page: 670 ident: bib83 article-title: Facile microwave synthetic route for ferrite nanoparticles with direct impact in magnetic particle hyperthermia publication-title: J. Mater. Sci. Eng. C – volume: 146 start-page: 224 year: 2014 end-page: 229 ident: bib119 article-title: Effect of Al-ion substitution on structural and magnetic properties of Co–Ni ferrites nanoparticles prepared via citrate precursor method publication-title: J. Mater. Chem. Phys. – volume: 65 start-page: 183 year: 2015 end-page: 194 ident: bib121 article-title: Structural and magnetic study of Al publication-title: J. Mater. Res. Bull. – volume: 311 start-page: 228 year: 2007 end-page: 233 ident: bib125 article-title: Magnetite ferrofluid with high specific absorption rate for application in hyperthermia publication-title: J. Magnetism Magnetic Mater. – volume: 1861 start-page: 1642 year: 2017 end-page: 1651 ident: bib3 article-title: Magnetic nanoparticles: a multifunctional vehicle for modern theranostics publication-title: J. Biochimica Biophysica Acta (BBA)-General Subj. – volume: 23 start-page: 45 year: 2015 ident: bib59 article-title: The impact of polymer coatings on magnetite nanoparticles performance as MRI contrast agents: a comparative study publication-title: DARU J. Pharm. Sci. – volume: 278 start-page: 189 year: 2015 end-page: 195 ident: bib95 article-title: Structural, magnetic and magnetocaloric properties of Zn publication-title: J. Powder Technol. – volume: 496 start-page: 191 year: 2015 end-page: 218 ident: bib57 article-title: Recent advances in superparamagnetic iron oxide nanoparticles (SPIONs) for in vitro and in vivo cancer nanotheranostics publication-title: J. Int. J. Pharm. – start-page: 309 year: 2012 end-page: 335 ident: bib19 article-title: Hyperthermia using inorganic nanoparticles publication-title: Frontiers of Nanoscience – volume: 65 start-page: 622 year: 2013 end-page: 648 ident: bib91 article-title: Kim, SSurface engineering of inorganic nanoparticles for imaging and therapy publication-title: J. Adv. drug Deliv. Rev. – volume: 31 start-page: 70 year: 1984 end-page: 75 ident: bib7 article-title: Usable frequencies in hyperthermia with thermal seeds publication-title: J. Biomed. Eng. IEEE Trans. – volume: 8 start-page: 1747 year: 1982 end-page: 1756 ident: bib94 article-title: Hyperthermia by magnetic induction: I. Physical characteristics of the technique publication-title: J. Radiat. Oncology*Biology*Physics – volume: 691 start-page: 130 year: 2017 end-page: 137 ident: bib25 article-title: Structural and magnetic influence of yttrium-for-iron substitution in cobalt ferrite publication-title: J. Alloys Compd. – volume: 321 start-page: 1509 year: 2009 end-page: 1513 ident: bib55 article-title: Suitability of commercial colloids for magnetic hyperthermia publication-title: J. Magnetism Magnetic Mater. – volume: 419 start-page: 533 year: 2016 end-page: 542 ident: bib104 article-title: Water dispersible superparamagnetic Cobalt iron oxide nanoparticles for magnetic fluid hyperthermia publication-title: J. Magnetism Magnetic Mater. – volume: 350 start-page: 124 year: 2014 end-page: 128 ident: bib28 article-title: Synthesis and characterization of Mg publication-title: J. Magnetism Magnetic Mater. – volume: 7 start-page: 2052 year: 2011 end-page: 2060 ident: bib63 article-title: Tumor targeting and imaging using cyclic RGD-PEGylated Gold nanoparticle probes with directly conjugated Iodine-125 publication-title: J. Small. – volume: 6 start-page: 418 year: 2011 end-page: 422 ident: bib72 article-title: Exchange-coupled magnetic nanoparticles for efficient heat induction publication-title: J. Nat. Nano – volume: 5 start-page: 213 year: 2010 end-page: 230 ident: bib116 article-title: Functionalisation of nanoparticles for biomedical applications publication-title: J. Nano Today – volume: 5 start-page: 63 year: 2015 end-page: 89 ident: bib93 article-title: Magnetic properties of magnetic nanoparticles for efficient hyperthermia publication-title: J. Nanomater. – volume: 14 start-page: 2161 year: 2004 end-page: 2175 ident: bib88 article-title: Magnetic nanoparticle design for medical diagnosis and therapy publication-title: J. Mater. Chem. – volume: 601 start-page: 116 year: 2014 end-page: 119 ident: bib46 article-title: Synthesis of super paramagnetic particles of Mn publication-title: J. Alloys Compd. – volume: 364 start-page: 72 year: 2014 end-page: 79 ident: bib4 article-title: Monodisperse sodium oleate coated magnetite high susceptibility nanoparticles for hyperthermia applications publication-title: J. Magnetism Magnetic Mater. – volume: 59 start-page: 6321 year: 1999 ident: bib66 article-title: Atomic-scale magnetic modeling of oxide nanoparticles publication-title: J. Phys. Rev. B – volume: 65 start-page: 732 year: 2013 end-page: 743 ident: bib122 article-title: New forms of superparamagnetic nanoparticles for biomedical applications publication-title: J. Adv. Drug Deliv. Rev. – volume: 384 start-page: 335 year: 2015 end-page: 343 ident: bib61 article-title: Improved magnetic induction heating of nanoferrites for hyperthermia applications: correlation with colloidal stability and magneto-structural properties publication-title: J. Magnetism Magnetic Mater. – volume: 16 start-page: 1 year: 2014 end-page: 7 ident: bib13 article-title: Size dependent heating ability of CoFe publication-title: J. Nanoparticle Res. – year: 2017 ident: bib113 article-title: Tailoring La publication-title: J. Mater. Chem. B – volume: 13 start-page: 587 year: 1997 end-page: 605 ident: bib52 article-title: Effects of magnetic fluid hyperthermia (MFH) on C3H mammary carcinoma in vivo publication-title: Int. J. Hyperth. – volume: 19 start-page: 474 year: 2014 end-page: 481 ident: bib108 article-title: Magnetic nanoparticles: a novel platform for cancer theranostics publication-title: J. Drug Discov. Today – start-page: 125 year: 1988 ident: bib98 article-title: Modern Bioelectricity – volume: 201 start-page: 413 year: 1999 end-page: 419 ident: bib53 article-title: Magnetic fluid hyperthermia (MFH): cancer treatment with AC magnetic field induced excitation of biocompatible superparamagnetic nanoparticles publication-title: J. Magnetism Magnetic Mater. – volume: 13 start-page: 1237 year: 2011 end-page: 1252 ident: bib56 article-title: The magnetic and hyperthermia studies of bare and silica-coated La publication-title: J. Nanoparticle Res. – year: 2011 ident: bib15 article-title: Introduction to Magnetic Materials – volume: 6 start-page: 11553 year: 2014 end-page: 11573 ident: bib43 article-title: Magnetic nanoparticle-based therapeutic agents for thermo-chemotherapy treatment of cancer publication-title: J. Nanoscale – volume: 42 start-page: 224002 year: 2009 ident: bib102 article-title: Progress in the preparation of magnetic nanoparticles for applications in biomedicine publication-title: J. Phys. D Appl. Phys. – volume: 166 start-page: 8 year: 2011 end-page: 23 ident: bib71 article-title: Magnetic fluid hyperthermia: focus on superparamagnetic iron oxide nanoparticles publication-title: J. Adv. Colloid Interface Sci. – volume: 343 start-page: 21 year: 2013 end-page: 26 ident: bib80 article-title: Mössbauer and magnetization studies of nickel ferrite nanoparticles synthesized by the microwave-combustion method publication-title: J. Magnetism Magnetic Mater. – volume: 311 start-page: 197 year: 2007 end-page: 203 ident: bib70 article-title: Local radiofrequency-induced hyperthermia using CuNi nanoparticles with therapeutically suitable Curie temperature publication-title: J. Magnetism Magnetic Mater. – volume: 62 start-page: 126 year: 2010 end-page: 143 ident: bib29 article-title: From iron oxide nanoparticles towards advanced iron-based inorganic materials designed for biomedical applications publication-title: J. Pharmacol. Res. – volume: 252 start-page: 370 year: 2002 end-page: 374 ident: bib103 article-title: Heating magnetic fluid with alternating magnetic field publication-title: J. Magnetism Magnetic Mater. – volume: 102 start-page: 860 year: 2014 end-page: 868 ident: bib86 article-title: In vitro and in vivo experiments with iron oxide nanoparticles functionalized with DEXTRAN or polyethylene glycol for medical applications: magnetic targeting publication-title: J. Biomed. Mater. Res. Part B Appl. Biomaterials – volume: 42 start-page: 1638 year: 2006 ident: 10.1016/j.pbiomolbio.2017.10.001_bib79 article-title: Theoretical assessment of FePt nanoparticles as heating elements for magnetic hyperthermia publication-title: J. IEEE Trans. Magnetics doi: 10.1109/TMAG.2006.872198 – volume: 18 start-page: S2919 year: 2006 ident: 10.1016/j.pbiomolbio.2017.10.001_bib41 article-title: Magnetic particle hyperthermia: nanoparticle magnetism and materials development for cancer therapy publication-title: J. Phys. Condens. Matter doi: 10.1088/0953-8984/18/38/S26 – volume: 6 start-page: 11553 year: 2014 ident: 10.1016/j.pbiomolbio.2017.10.001_bib43 article-title: Magnetic nanoparticle-based therapeutic agents for thermo-chemotherapy treatment of cancer publication-title: J. Nanoscale doi: 10.1039/C4NR03482A – volume: 202 start-page: 1 year: 2009 ident: 10.1016/j.pbiomolbio.2017.10.001_bib32 article-title: Biodistribution of fluoresceinated dextran using novel nanoparticles evading reticuloendothelial system publication-title: Int. J. Pharm. doi: 10.1016/S0378-5173(99)00447-0 – volume: 101 start-page: 09M516 year: 2007 ident: 10.1016/j.pbiomolbio.2017.10.001_bib62 article-title: Reduced magnetization in magnetic oxide nanoparticles publication-title: J. Appl. Phys. doi: 10.1063/1.2712825 – volume: 691 start-page: 130 year: 2017 ident: 10.1016/j.pbiomolbio.2017.10.001_bib25 article-title: Structural and magnetic influence of yttrium-for-iron substitution in cobalt ferrite publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2016.08.223 – volume: 65 start-page: 622 year: 2013 ident: 10.1016/j.pbiomolbio.2017.10.001_bib91 article-title: Kim, SSurface engineering of inorganic nanoparticles for imaging and therapy publication-title: J. Adv. drug Deliv. Rev. doi: 10.1016/j.addr.2012.08.015 – volume: 41 start-page: 7529 year: 2015 ident: 10.1016/j.pbiomolbio.2017.10.001_bib27 article-title: Preparation of ZnFe2O4–chitosan-doxorubicin hydrochloride nanoparticles and investigation of their hyperthermic heat-generating characteristics publication-title: J. Ceram. Int. doi: 10.1016/j.ceramint.2015.02.075 – volume: 104 start-page: 40 year: 2013 ident: 10.1016/j.pbiomolbio.2017.10.001_bib117 article-title: Functionalization of La0.7Sr0.3MnO3 nanoparticles with polymer: studies on enhanced hyperthermia and biocompatibility properties for biomedical applications publication-title: J. Colloids Surfaces B Biointerfaces doi: 10.1016/j.colsurfb.2012.11.028 – volume: 21 start-page: 015706 year: 2009 ident: 10.1016/j.pbiomolbio.2017.10.001_bib42 article-title: Validity limits of the Néel relaxation model of magnetic nanoparticles for hyperthermia publication-title: J. Nanotechnol. doi: 10.1088/0957-4484/21/1/015706 – volume: 102 start-page: 860 year: 2014 ident: 10.1016/j.pbiomolbio.2017.10.001_bib86 article-title: In vitro and in vivo experiments with iron oxide nanoparticles functionalized with DEXTRAN or polyethylene glycol for medical applications: magnetic targeting publication-title: J. Biomed. Mater. Res. Part B Appl. Biomaterials doi: 10.1002/jbm.b.33068 – volume: 65 start-page: 183 year: 2015 ident: 10.1016/j.pbiomolbio.2017.10.001_bib121 article-title: Structural and magnetic study of Al3+ doped Ni0.75Zn0.25Fe2−xAlxO4 nanoferrites publication-title: J. Mater. Res. Bull. doi: 10.1016/j.materresbull.2015.01.033 – volume: 354 start-page: 163 year: 2014 ident: 10.1016/j.pbiomolbio.2017.10.001_bib18 article-title: Evans. Heating efficiency in magnetic nanoparticle hyperthermia publication-title: J. Magnetism Magnetic Mater. doi: 10.1016/j.jmmm.2013.11.006 – volume: 17 start-page: 1451 year: 2007 ident: 10.1016/j.pbiomolbio.2017.10.001_bib11 article-title: Size and shape effects on Curie temperature of ferromagnetic nanoparticles publication-title: J. Trans. Nonferrous Metals Soc. China doi: 10.1016/S1003-6326(07)60293-3 – volume: 2013 start-page: 1 year: 2013 ident: 10.1016/j.pbiomolbio.2017.10.001_bib84 article-title: Recent advances in understanding magnetic nanoparticles in AC magnetic fields and optimal design for targeted hyperthermia publication-title: J. Nanomater. doi: 10.1155/2013/752973 – volume: 122 start-page: 383 year: 1993 ident: 10.1016/j.pbiomolbio.2017.10.001_bib96 article-title: Colloidal magnetic resonance contrast agents: effect of particle surface on biodistribution publication-title: J. Magnetism Magnetic Mater. doi: 10.1016/0304-8853(93)91115-N – volume: 19 start-page: 6274 year: 2009 ident: 10.1016/j.pbiomolbio.2017.10.001_bib100 article-title: Superparamagnetic iron oxide nanoparticles: from preparations to in vivo MRI applications publication-title: J. Mater. Chem. doi: 10.1039/b902394a – volume: 288 start-page: 149 year: 2014 ident: 10.1016/j.pbiomolbio.2017.10.001_bib106 article-title: Magnetic chitosan nanocomposite for hyperthermia therapy application: preparation, characterization and in vitro experiments publication-title: J. Appl. Surf. Sci. doi: 10.1016/j.apsusc.2013.09.169 – volume: 419 start-page: 572 year: 2016 ident: 10.1016/j.pbiomolbio.2017.10.001_bib107 article-title: Effect of bismuth doping on the structural and magnetic properties of zinc-ferrite nanoparticles prepared by a microwave combustion method publication-title: J. Magnetism Magnetic Mater. doi: 10.1016/j.jmmm.2016.06.080 – volume: 48 start-page: 1320 year: 2012 ident: 10.1016/j.pbiomolbio.2017.10.001_bib8 article-title: Size-dependent mechanisms in AC magnetic hyperthermia response of iron-oxide nanoparticles publication-title: J. IEEE Trans. Magnetics. doi: 10.1109/TMAG.2011.2173474 – volume: 97 start-page: 10Q916 year: 2005 ident: 10.1016/j.pbiomolbio.2017.10.001_bib33 article-title: Preparation and investigation of potentiality of different soft ferrites for hyperthermia applications publication-title: J. Appl. Phys. doi: 10.1063/1.1855131 – volume: 42 start-page: 1249 year: 2013 ident: 10.1016/j.pbiomolbio.2017.10.001_bib60 article-title: Induction heating studies of dextran coated MgFe2O4 nanoparticles for magnetic hyperthermia publication-title: J. Dalton Trans. doi: 10.1039/C2DT31114C – volume: 278 start-page: 189 year: 2015 ident: 10.1016/j.pbiomolbio.2017.10.001_bib95 article-title: Structural, magnetic and magnetocaloric properties of Zn0.6 − xNixCu0.4Fe2O4 ferrite nanoparticles prepared by Pechini sol-gel method publication-title: J. Powder Technol. doi: 10.1016/j.powtec.2015.03.022 – volume: 39 start-page: 487 year: 2016 ident: 10.1016/j.pbiomolbio.2017.10.001_bib110 article-title: Preparation of manganese-based perovskite nanoparticles using a reverse microemulsion method: biomedical applications publication-title: J. Bull. Mater. Sci. – volume: 7 start-page: 065503 year: 2014 ident: 10.1016/j.pbiomolbio.2017.10.001_bib118 article-title: Magnetic heating by silica-coated Co–Zn ferrite particles publication-title: J. Phys. D. Appl. Phys. doi: 10.1088/0022-3727/47/6/065503 – volume: 201 start-page: 413 year: 1999 ident: 10.1016/j.pbiomolbio.2017.10.001_bib53 article-title: Magnetic fluid hyperthermia (MFH): cancer treatment with AC magnetic field induced excitation of biocompatible superparamagnetic nanoparticles publication-title: J. Magnetism Magnetic Mater. doi: 10.1016/S0304-8853(99)00088-8 – volume: 63 start-page: 663 year: 2016 ident: 10.1016/j.pbiomolbio.2017.10.001_bib83 article-title: Facile microwave synthetic route for ferrite nanoparticles with direct impact in magnetic particle hyperthermia publication-title: J. Mater. Sci. Eng. C doi: 10.1016/j.msec.2016.03.033 – volume: 321 start-page: 1509 year: 2009 ident: 10.1016/j.pbiomolbio.2017.10.001_bib55 article-title: Suitability of commercial colloids for magnetic hyperthermia publication-title: J. Magnetism Magnetic Mater. doi: 10.1016/j.jmmm.2009.02.075 – volume: 64 start-page: 290 year: 2012 ident: 10.1016/j.pbiomolbio.2017.10.001_bib114 article-title: Long circulating microparticulate drug carriers publication-title: J. Adv. drug Deliv. Rev. doi: 10.1016/j.addr.2012.09.029 – volume: 35 start-page: 446 year: 2006 ident: 10.1016/j.pbiomolbio.2017.10.001_bib1 article-title: Targeting cancer cells: magnetic nanoparticles as drug carriers publication-title: J. Eur. Biophysics J. doi: 10.1007/s00249-006-0042-1 – volume: 343 start-page: 21 year: 2013 ident: 10.1016/j.pbiomolbio.2017.10.001_bib80 article-title: Mössbauer and magnetization studies of nickel ferrite nanoparticles synthesized by the microwave-combustion method publication-title: J. Magnetism Magnetic Mater. doi: 10.1016/j.jmmm.2013.04.064 – volume: 427 start-page: 241 year: 2017 ident: 10.1016/j.pbiomolbio.2017.10.001_bib49 article-title: Synthesis, characterization and hemolysis studies of Zn(1−x)CaxFe2O4 ferrites synthesized by sol-gel for hyperthermia treatment applications publication-title: J. Magnetism Magnetic Mater. doi: 10.1016/j.jmmm.2016.10.099 – volume: 288 start-page: 470 year: 2005 ident: 10.1016/j.pbiomolbio.2017.10.001_bib5 article-title: Effect of zinc substitution on Co–Zn and Mn–Zn ferrite nanoparticles prepared by co-precipitation publication-title: J. Magnetism Magnetic Mater. doi: 10.1016/j.jmmm.2004.09.138 – volume: 29 start-page: 715 year: 2013 ident: 10.1016/j.pbiomolbio.2017.10.001_bib21 article-title: Physics of heat generation using magnetic nanoparticles for hyperthermia publication-title: J. Int. J. Hyperth. doi: 10.3109/02656736.2013.836758 – volume: 601 start-page: 116 year: 2014 ident: 10.1016/j.pbiomolbio.2017.10.001_bib46 article-title: Synthesis of super paramagnetic particles of Mn1−xMgxFe2O4 ferrites for hyperthermia applications publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2014.02.138 – volume: 6 start-page: 1342 year: 2011 ident: 10.1016/j.pbiomolbio.2017.10.001_bib65 article-title: Cancer hyperthermia using magnetic nanoparticles publication-title: J. Biotechnol. – volume: 311 start-page: 197 year: 2007 ident: 10.1016/j.pbiomolbio.2017.10.001_bib70 article-title: Local radiofrequency-induced hyperthermia using CuNi nanoparticles with therapeutically suitable Curie temperature publication-title: J. Magnetism Magnetic Mater. doi: 10.1016/j.jmmm.2006.11.199 – volume: 187 start-page: 012069 year: 2009 ident: 10.1016/j.pbiomolbio.2017.10.001_bib77 article-title: Magnetic fluid based on Fe3O4 nanoparticles: preparation and hyperthermia application publication-title: J. Phys. Conf. Ser. doi: 10.1088/1742-6596/187/1/012069 – volume: 419 start-page: 533 year: 2016 ident: 10.1016/j.pbiomolbio.2017.10.001_bib104 article-title: Water dispersible superparamagnetic Cobalt iron oxide nanoparticles for magnetic fluid hyperthermia publication-title: J. Magnetism Magnetic Mater. doi: 10.1016/j.jmmm.2016.06.057 – volume: 379 start-page: 208 year: 2015 ident: 10.1016/j.pbiomolbio.2017.10.001_bib89 article-title: The effect of yttrium substitution on the magnetic properties of magnetite nanoparticles publication-title: J. Magnetism Magnetic Mater. doi: 10.1016/j.jmmm.2014.11.061 – volume: 23 start-page: 1553 year: 2002 ident: 10.1016/j.pbiomolbio.2017.10.001_bib124 article-title: Surface modification of superparamagnetic magnetite nanoparticles and their intracellular uptake publication-title: J. Biomater. doi: 10.1016/S0142-9612(01)00267-8 – volume: 146 start-page: 224 year: 2014 ident: 10.1016/j.pbiomolbio.2017.10.001_bib119 article-title: Effect of Al-ion substitution on structural and magnetic properties of Co–Ni ferrites nanoparticles prepared via citrate precursor method publication-title: J. Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2014.02.047 – volume: 384 start-page: 335 year: 2015 ident: 10.1016/j.pbiomolbio.2017.10.001_bib61 article-title: Improved magnetic induction heating of nanoferrites for hyperthermia applications: correlation with colloidal stability and magneto-structural properties publication-title: J. Magnetism Magnetic Mater. doi: 10.1016/j.jmmm.2015.03.039 – volume: 16 start-page: 1 year: 2014 ident: 10.1016/j.pbiomolbio.2017.10.001_bib13 article-title: Size dependent heating ability of CoFe2O4 nanoparticles in AC magnetic field for magnetic nanofluid hyperthermia publication-title: J. Nanoparticle Res. doi: 10.1007/s11051-014-2321-6 – volume: 59 start-page: 6321 year: 1999 ident: 10.1016/j.pbiomolbio.2017.10.001_bib66 article-title: Atomic-scale magnetic modeling of oxide nanoparticles publication-title: J. Phys. Rev. B doi: 10.1103/PhysRevB.59.6321 – volume: 13 start-page: 1237 year: 2011 ident: 10.1016/j.pbiomolbio.2017.10.001_bib56 article-title: The magnetic and hyperthermia studies of bare and silica-coated La0.75Sr0.25MnO3 nanoparticles publication-title: J. Nanoparticle Res. doi: 10.1007/s11051-010-0117-x – volume: 38 start-page: 1633 year: 2015 ident: 10.1016/j.pbiomolbio.2017.10.001_bib109 article-title: Heating ability and biocompatibility study of silica-coated magnetic nanoparticles as heating mediators for magnetic hyperthermia and magnetically triggered drug delivery systems publication-title: J. Bull. Mater. Sci. – volume: 37 start-page: 1 year: 2009 ident: 10.1016/j.pbiomolbio.2017.10.001_bib99 article-title: Search of new core materials for magnetic fluid hyperthermia: preliminary chemical and physical issues publication-title: J. Prog. Solid State Chem. doi: 10.1016/j.progsolidstchem.2009.02.001 – volume: 8 start-page: 1747 year: 1982 ident: 10.1016/j.pbiomolbio.2017.10.001_bib94 article-title: Hyperthermia by magnetic induction: I. Physical characteristics of the technique publication-title: J. Radiat. Oncology*Biology*Physics doi: 10.1016/0360-3016(82)90297-8 – volume: 23 start-page: 45 year: 2015 ident: 10.1016/j.pbiomolbio.2017.10.001_bib59 article-title: The impact of polymer coatings on magnetite nanoparticles performance as MRI contrast agents: a comparative study publication-title: DARU J. Pharm. Sci. doi: 10.1186/s40199-015-0124-7 – volume: 63 start-page: 184414 year: 2001 ident: 10.1016/j.pbiomolbio.2017.10.001_bib90 article-title: Magnetic properties of ultrafine MnFe 2 O4 powders prepared by mechanochemical processing publication-title: J. Phys. Rev. B doi: 10.1103/PhysRevB.63.184414 – volume: 89 start-page: 775 year: 1998 ident: 10.1016/j.pbiomolbio.2017.10.001_bib123 article-title: Antitumor immunity induction by intracellular hyperthermia using magnetite cationic liposomes publication-title: J. Cancer Sci. – volume: 392 start-page: 91 year: 2015 ident: 10.1016/j.pbiomolbio.2017.10.001_bib17 article-title: Investigations of superparamagnetism in magnesium ferrite nano-sphere synthesized by ultrasonic spray pyrolysis technique for hyperthermia application publication-title: J. Magnetism Magnetic Mater. doi: 10.1016/j.jmmm.2015.05.029 – volume: 8 start-page: 214 year: 2006 ident: 10.1016/j.pbiomolbio.2017.10.001_bib87 article-title: Nanoparticle imaging of integrins on tumor cells publication-title: J. Neoplasia doi: 10.1593/neo.05769 – volume: 383 start-page: 1 year: 2011 ident: 10.1016/j.pbiomolbio.2017.10.001_bib20 article-title: A simple model for the size and shape dependent Curie temperature of freestanding Ni and Fe nanoparticles based on the average coordination number and atomic cohesive energy publication-title: J. Chem. Phys. – volume: 81 start-page: 5552 year: 1997 ident: 10.1016/j.pbiomolbio.2017.10.001_bib67 article-title: Surface spin disorder in ferrite nanoparticles publication-title: J. Appl. Phys. doi: 10.1063/1.364659 – volume: 29 start-page: 706 year: 2013 ident: 10.1016/j.pbiomolbio.2017.10.001_bib68 publication-title: Int. J. Hyperth. doi: 10.3109/02656736.2013.837200 – volume: 194 start-page: 185 year: 1999 ident: 10.1016/j.pbiomolbio.2017.10.001_bib54 article-title: Endocytosis of dextran and silan-coated magnetite nanoparticles and the effect of intracellular hyperthermia on human mammary carcinoma cells in vitro publication-title: J. Magnetism Magnetic Mater. doi: 10.1016/S0304-8853(98)00558-7 – start-page: 125 year: 1988 ident: 10.1016/j.pbiomolbio.2017.10.001_bib98 – volume: 92 start-page: 726 year: 2013 ident: 10.1016/j.pbiomolbio.2017.10.001_bib26 article-title: Dextran stabilized iron oxide nanoparticles: synthesis, characterization and in vitro studies publication-title: J. Carbohydr. Polym. doi: 10.1016/j.carbpol.2012.09.098 – volume: 7 start-page: 2052 year: 2011 ident: 10.1016/j.pbiomolbio.2017.10.001_bib63 article-title: Tumor targeting and imaging using cyclic RGD-PEGylated Gold nanoparticle probes with directly conjugated Iodine-125 publication-title: J. Small. doi: 10.1002/smll.201100927 – volume: 1861 start-page: 1642 year: 2017 ident: 10.1016/j.pbiomolbio.2017.10.001_bib3 article-title: Magnetic nanoparticles: a multifunctional vehicle for modern theranostics publication-title: J. Biochimica Biophysica Acta (BBA)-General Subj. doi: 10.1016/j.bbagen.2017.02.022 – volume: 17 start-page: 603 year: 2006 ident: 10.1016/j.pbiomolbio.2017.10.001_bib23 article-title: Synthesis and grafting of thioctic acid− PEG− folate conjugates onto Au nanoparticles for selective targeting of folate receptor-positive tumor cells publication-title: J. Bioconjugate Chem. doi: 10.1021/bc050335b – volume: 62 start-page: 126 year: 2010 ident: 10.1016/j.pbiomolbio.2017.10.001_bib29 article-title: From iron oxide nanoparticles towards advanced iron-based inorganic materials designed for biomedical applications publication-title: J. Pharmacol. Res. doi: 10.1016/j.phrs.2009.12.012 – volume: 532 start-page: 123 year: 2012 ident: 10.1016/j.pbiomolbio.2017.10.001_bib45 article-title: Study on increase in temperature of Co–Ti ferrite nanoparticles for magnetic hyperthermia treatment publication-title: J. Thermochim. Acta doi: 10.1016/j.tca.2011.02.012 – volume: 103 start-page: 317 year: 2011 ident: 10.1016/j.pbiomolbio.2017.10.001_bib82 article-title: Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme publication-title: J. Neuro-Oncology doi: 10.1007/s11060-010-0389-0 – volume: 2 start-page: 194 year: 2005 ident: 10.1016/j.pbiomolbio.2017.10.001_bib48 article-title: Iron oxide nanoparticles for sustained delivery of anticancer agents publication-title: J. Mol. Pharm. – volume: 311 start-page: 187 year: 2007 ident: 10.1016/j.pbiomolbio.2017.10.001_bib39 article-title: Magnetic particle hyperthermia—biophysical limitations of a visionary tumour therapy publication-title: J. Magnetism Magnetic Mater. doi: 10.1016/j.jmmm.2006.10.1156 – volume: 688 start-page: 413 year: 2016 ident: 10.1016/j.pbiomolbio.2017.10.001_bib22 article-title: Influence of Al3+ doping on structural and magnetic properties of CoFe2-xAlxO4 Ferrite nanoparticles publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2016.07.030 – volume: 103 start-page: 07A307 year: 2008 ident: 10.1016/j.pbiomolbio.2017.10.001_bib36 article-title: Evaluation of iron-cobalt/ferrite core-shell nanoparticles for cancer thermotherapy publication-title: J. Appl. Phys. doi: 10.1063/1.2830975 – volume: 149 start-page: 532 year: 2009 ident: 10.1016/j.pbiomolbio.2017.10.001_bib14 article-title: Lamellar-like structures in ferrofluids placed in strong magnetic fields publication-title: J. Solid State Commun. doi: 10.1016/j.ssc.2009.01.007 – volume: 496 start-page: 191 year: 2015 ident: 10.1016/j.pbiomolbio.2017.10.001_bib57 article-title: Recent advances in superparamagnetic iron oxide nanoparticles (SPIONs) for in vitro and in vivo cancer nanotheranostics publication-title: J. Int. J. Pharm. doi: 10.1016/j.ijpharm.2015.10.058 – volume: 14 start-page: 1659 year: 2014 ident: 10.1016/j.pbiomolbio.2017.10.001_bib6 article-title: Nanostructural, magnetic and electrical properties of Ag doped Mn-ferrite nanoparticles publication-title: J. Curr. Appl. Phys. doi: 10.1016/j.cap.2014.09.025 – year: 2006 ident: 10.1016/j.pbiomolbio.2017.10.001_bib34 – volume: 252 start-page: 370 year: 2002 ident: 10.1016/j.pbiomolbio.2017.10.001_bib103 article-title: Heating magnetic fluid with alternating magnetic field publication-title: J. Magnetism Magnetic Mater. doi: 10.1016/S0304-8853(02)00706-0 – volume: 95 start-page: 043106 year: 2009 ident: 10.1016/j.pbiomolbio.2017.10.001_bib16 article-title: Magnetic dead layer in ferromagnetic manganite nanoparticles publication-title: J. Appl. Phys. Lett. doi: 10.1063/1.3187538 – volume: 30 start-page: 990 year: 2010 ident: 10.1016/j.pbiomolbio.2017.10.001_bib74 article-title: Magnetite nanoparticles with high heating efficiencies for application in the hyperthermia of cancer publication-title: J. Mater. Sci. Eng. C doi: 10.1016/j.msec.2010.04.016 – volume: 94 start-page: 3520 year: 2003 ident: 10.1016/j.pbiomolbio.2017.10.001_bib35 article-title: Static and dynamic magnetic properties of spherical magnetite nanoparticles publication-title: J. Appl. Phys. doi: 10.1063/1.1599959 – volume: 27 start-page: 719 year: 2012 ident: 10.1016/j.pbiomolbio.2017.10.001_bib120 article-title: Anticancer effect and feasibility study of hyperthermia treatment of pancreatic cancer using magnetic nanoparticles publication-title: J. Oncol. Rep. – volume: 321 start-page: 3144 year: 2009 ident: 10.1016/j.pbiomolbio.2017.10.001_bib31 article-title: Effect of Mg substitution on the magnetic properties of NiCuZn ferrite nanoparticles prepared through a novel method using egg white publication-title: J. Magnetism Magnetic Mater. doi: 10.1016/j.jmmm.2009.05.047 – volume: 493 start-page: 313 year: 2015 ident: 10.1016/j.pbiomolbio.2017.10.001_bib76 article-title: Magnetic nanoparticles: in vivo cancer diagnosis and therapy publication-title: J. Int. J. Pharm. doi: 10.1016/j.ijpharm.2015.07.059 – volume: 5 start-page: 63 year: 2015 ident: 10.1016/j.pbiomolbio.2017.10.001_bib93 article-title: Magnetic properties of magnetic nanoparticles for efficient hyperthermia publication-title: J. Nanomater. – volume: 82 start-page: 269 year: 1999 ident: 10.1016/j.pbiomolbio.2017.10.001_bib115 article-title: The past, present, and future of ferrites publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1551-2916.1999.tb20058.x – volume: 350 start-page: 124 year: 2014 ident: 10.1016/j.pbiomolbio.2017.10.001_bib28 article-title: Synthesis and characterization of Mg1+xFe2−2xTixO4 nanoparticles with an adjustable Curie point publication-title: J. Magnetism Magnetic Mater. doi: 10.1016/j.jmmm.2013.09.037 – volume: 166 start-page: 8 year: 2011 ident: 10.1016/j.pbiomolbio.2017.10.001_bib71 article-title: Magnetic fluid hyperthermia: focus on superparamagnetic iron oxide nanoparticles publication-title: J. Adv. Colloid Interface Sci. doi: 10.1016/j.cis.2011.04.003 – volume: 364 start-page: 72 year: 2014 ident: 10.1016/j.pbiomolbio.2017.10.001_bib4 article-title: Monodisperse sodium oleate coated magnetite high susceptibility nanoparticles for hyperthermia applications publication-title: J. Magnetism Magnetic Mater. doi: 10.1016/j.jmmm.2014.04.001 – volume: 37 start-page: 693 year: 2016 ident: 10.1016/j.pbiomolbio.2017.10.001_bib111 article-title: Synthesis of bilayer surfactant-coated magnetic nanoparticles for application in magnetic fluid hyperthermia publication-title: J. Dispersion Sci. Technol. doi: 10.1080/01932691.2015.1056531 – volume: 301 start-page: 1112 year: 2016 ident: 10.1016/j.pbiomolbio.2017.10.001_bib92 article-title: Controlled synthesis of monodisperse magnetite nanoparticles for hyperthermia-based treatments publication-title: J. Powder Technol. doi: 10.1016/j.powtec.2016.07.052 – volume: 345 start-page: 18 year: 2013 ident: 10.1016/j.pbiomolbio.2017.10.001_bib2 article-title: Magnetic and structural properties of RE doped Co-ferrite (REåNd, Eu, and Gd) nano-particles synthesized by co-precipitation publication-title: J. Magnetism Magnetic Mater. doi: 10.1016/j.jmmm.2013.05.030 – volume: 129 start-page: 2628 year: 2007 ident: 10.1016/j.pbiomolbio.2017.10.001_bib30 article-title: Size-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia publication-title: J. Am. Chem. Soc. doi: 10.1021/ja067457e – volume: 34 start-page: 3745 year: 1998 ident: 10.1016/j.pbiomolbio.2017.10.001_bib40 article-title: Physical limits of hyperthermia using magnetite fine particles publication-title: Magnetics. J. IEEE Trans. doi: 10.1109/20.718537 – start-page: 309 year: 2012 ident: 10.1016/j.pbiomolbio.2017.10.001_bib19 article-title: Hyperthermia using inorganic nanoparticles doi: 10.1016/B978-0-12-415769-9.00013-3 – volume: 8 start-page: 448 year: 2007 ident: 10.1016/j.pbiomolbio.2017.10.001_bib73 article-title: Effect of aggregates on the magnetization property of ferrofluids: a model of gaslike compression publication-title: J. Sci. Technol. Adv. Mater. doi: 10.1016/j.stam.2007.04.007 – volume: 407 start-page: 4338 year: 2012 ident: 10.1016/j.pbiomolbio.2017.10.001_bib38 article-title: Substitutional effect of Cr3+ ions on the properties of Mg–Zn ferrite nanoparticles publication-title: J. Phys. B Condens. Matter doi: 10.1016/j.physb.2012.07.030 – volume: 375 start-page: 71 year: 2016 ident: 10.1016/j.pbiomolbio.2017.10.001_bib58 article-title: Positron annihilation and magnetic properties studies of copper substituted nickel ferrite nanoparticles publication-title: J. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms doi: 10.1016/j.nimb.2016.03.041 – volume: 16 start-page: 82 year: 1998 ident: 10.1016/j.pbiomolbio.2017.10.001_bib10 article-title: Low frequency hyperthermia: capacitive and ferromagnetic thermoseed methods publication-title: J. Med. Phys. Monogr. – volume: 8 start-page: 2836 year: 2008 ident: 10.1016/j.pbiomolbio.2017.10.001_bib64 article-title: Superparamagnetism and other magnetic features in granular materials: a review on ideal and real systems publication-title: J. Nanosci. Nanotechnol. doi: 10.1166/jnn.2008.15348 – volume: 311 start-page: 228 year: 2007 ident: 10.1016/j.pbiomolbio.2017.10.001_bib125 article-title: Magnetite ferrofluid with high specific absorption rate for application in hyperthermia publication-title: J. Magnetism Magnetic Mater. doi: 10.1016/j.jmmm.2006.11.179 – volume: 6 start-page: 418 year: 2011 ident: 10.1016/j.pbiomolbio.2017.10.001_bib72 article-title: Exchange-coupled magnetic nanoparticles for efficient heat induction publication-title: J. Nat. Nano – volume: 5 start-page: 213 year: 2010 ident: 10.1016/j.pbiomolbio.2017.10.001_bib116 article-title: Functionalisation of nanoparticles for biomedical applications publication-title: J. Nano Today doi: 10.1016/j.nantod.2010.05.003 – volume: 47 start-page: 797 year: 2015 ident: 10.1016/j.pbiomolbio.2017.10.001_bib112 article-title: Thermosensitive polymer-coated La0.73Sr0.27MnO3 nanoparticles: potential applications in cancer hyperthermia therapy and magnetically activated drug delivery systems publication-title: J. Polym J. – volume: 42 start-page: 290 year: 2008 ident: 10.1016/j.pbiomolbio.2017.10.001_bib44 article-title: Synthesis, characterization and MRI application of dextran-coated Fe3O4 magnetic nanoparticles publication-title: J. Biochem. Eng. J. doi: 10.1016/j.bej.2008.07.009 – volume: 105 start-page: 07B305 year: 2009 ident: 10.1016/j.pbiomolbio.2017.10.001_bib50 article-title: Experimental and theoretical investigation of cubic FeCo nanoparticles for magnetic hyperthermia publication-title: J. Appl. Phys. doi: 10.1063/1.3074136 – volume: 42 start-page: 224002 year: 2009 ident: 10.1016/j.pbiomolbio.2017.10.001_bib102 article-title: Progress in the preparation of magnetic nanoparticles for applications in biomedicine publication-title: J. Phys. D Appl. Phys. doi: 10.1088/0022-3727/42/22/224002 – volume: 323 start-page: 708 year: 2011 ident: 10.1016/j.pbiomolbio.2017.10.001_bib75 article-title: Parametric investigation of heating due to magnetic fluid hyperthermia in a tumor with blood perfusion publication-title: J. Magnetism Magnetic Mater. doi: 10.1016/j.jmmm.2010.10.027 – volume: 31 start-page: 70 year: 1984 ident: 10.1016/j.pbiomolbio.2017.10.001_bib7 article-title: Usable frequencies in hyperthermia with thermal seeds publication-title: J. Biomed. Eng. IEEE Trans. doi: 10.1109/TBME.1984.325372 – volume: 19 start-page: 474 year: 2014 ident: 10.1016/j.pbiomolbio.2017.10.001_bib108 article-title: Magnetic nanoparticles: a novel platform for cancer theranostics publication-title: J. Drug Discov. Today doi: 10.1016/j.drudis.2013.10.005 – volume: 129 start-page: 51 year: 2007 ident: 10.1016/j.pbiomolbio.2017.10.001_bib85 article-title: An overview of the structure and magnetism of spinel ferrite nanoparticles and their synthesis in microemulsions publication-title: J. Chem. Eng. J. – volume: 97 start-page: 10A502 year: 2005 ident: 10.1016/j.pbiomolbio.2017.10.001_bib97 article-title: Experimental investigation of superspin glass dynamics publication-title: J. Appl. Phys. doi: 10.1063/1.1850333 – volume: 29 start-page: 581 year: 2006 ident: 10.1016/j.pbiomolbio.2017.10.001_bib24 article-title: Towards a versatile platform based on magnetic nanoparticles for in vivo applications publication-title: J. Bull. Mater. Sci. – volume: 127 start-page: 11364 year: 2005 ident: 10.1016/j.pbiomolbio.2017.10.001_bib9 article-title: Folate-receptor-mediated delivery of InP quantum dots for bioimaging using confocal and two-photon microscopy publication-title: J. Am. Chem. Soc. doi: 10.1021/ja051455x – volume: 81 start-page: 53 year: 2007 ident: 10.1016/j.pbiomolbio.2017.10.001_bib81 article-title: Intracranial thermotherapy using magnetic nanoparticles combined with external beam radiotherapy: results of a feasibility study on patients with glioblastoma multiforme publication-title: J. Neuro-Oncology doi: 10.1007/s11060-006-9195-0 – volume: 553 start-page: 1 year: 2015 ident: 10.1016/j.pbiomolbio.2017.10.001_bib78 article-title: Nogués. Applications of exchange coupled bi-magnetic hard/soft and soft/hard magnetic core/shell nanoparticles publication-title: J. Phys. Rep. doi: 10.1016/j.physrep.2014.09.007 – volume: 368 start-page: 207 year: 2014 ident: 10.1016/j.pbiomolbio.2017.10.001_bib101 article-title: Progress in electrochemical synthesis of magnetic iron oxide nanoparticles publication-title: J. Magnetism Magnetic Mater. doi: 10.1016/j.jmmm.2014.05.015 – year: 2011 ident: 10.1016/j.pbiomolbio.2017.10.001_bib15 – volume: 65 start-page: 732 year: 2013 ident: 10.1016/j.pbiomolbio.2017.10.001_bib122 article-title: New forms of superparamagnetic nanoparticles for biomedical applications publication-title: J. Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2012.10.008 – start-page: 2229 year: 2014 ident: 10.1016/j.pbiomolbio.2017.10.001_bib126 article-title: Magnetic nanomaterials: conventional synthesis and properties – volume: 26 start-page: 790 year: 2010 ident: 10.1016/j.pbiomolbio.2017.10.001_bib51 article-title: Magnetic nanoparticle hyperthermia for prostate cancer publication-title: Int. J. Hyperth. doi: 10.3109/02656731003745740 – volume: 13 start-page: 587 year: 1997 ident: 10.1016/j.pbiomolbio.2017.10.001_bib52 article-title: Effects of magnetic fluid hyperthermia (MFH) on C3H mammary carcinoma in vivo publication-title: Int. J. Hyperth. doi: 10.3109/02656739709023559 – volume: 75 start-page: 947 year: 2017 ident: 10.1016/j.pbiomolbio.2017.10.001_bib105 article-title: High impact of in situ dextran coating on biocompatibility, stability and magnetic properties of iron oxide nanoparticles publication-title: J. Mater. Sci. Eng. C doi: 10.1016/j.msec.2017.02.143 – volume: 159 start-page: 375 year: 1996 ident: 10.1016/j.pbiomolbio.2017.10.001_bib69 article-title: Magnetic properties of copper ferrite aluminates publication-title: J. Magnetism Magnetic Mater. doi: 10.1016/0304-8853(95)00943-4 – volume: 53 start-page: 26 year: 2004 ident: 10.1016/j.pbiomolbio.2017.10.001_bib47 article-title: Antitumor effects of combined therapy of recombinant heat shock protein 70 and hyperthermia using magnetic nanoparticles in an experimental subcutaneous murine melanoma publication-title: J. Cancer Immunol. Immunother. doi: 10.1007/s00262-003-0416-5 – volume: 14 start-page: 2161 year: 2004 ident: 10.1016/j.pbiomolbio.2017.10.001_bib88 article-title: Magnetic nanoparticle design for medical diagnosis and therapy publication-title: J. Mater. Chem. doi: 10.1039/b402025a – year: 2017 ident: 10.1016/j.pbiomolbio.2017.10.001_bib113 article-title: Tailoring La1-xSrxMnO3 (0.25≤ x≤ 0.35) nanoparticles for self-regulating magnetic hyperthermia therapy; in vivo study publication-title: J. Mater. Chem. B doi: 10.1039/C7TB00922D – volume: 416 start-page: 315 year: 2016 ident: 10.1016/j.pbiomolbio.2017.10.001_bib37 article-title: Zinc substituted ferrite nanoparticles with Zn0.9Fe2.1O4 formula used as heating agents for in vitro hyperthermia assay on glioma cells publication-title: J. Magnetism Magnetic Mater. doi: 10.1016/j.jmmm.2016.05.016 – volume: 109 start-page: 083921 year: 2011 ident: 10.1016/j.pbiomolbio.2017.10.001_bib12 article-title: Simple models for dynamic hysteresis loop calculations of magnetic single-domain nanoparticles: application to magnetic hyperthermia optimization publication-title: J. Appl. Phys. doi: 10.1063/1.3551582 |
SSID | ssj0002176 |
Score | 2.538047 |
SecondaryResourceType | review_article |
Snippet | Magnetic nanoparticles as heat-generating nanosources in hyperthermia treatment are still faced with many drawbacks for achieving sufficient clinical... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 9 |
SubjectTerms | Animals Curie temperature Ferrite nanoparticles Heat generation mechanisms Hot Temperature Humans Hyperthermia, Induced - methods Magnetic hyperthermia therapy (MHT) Magnetic Phenomena Magnets - chemistry Nanoparticles Specific loss power (SLP) Superparamagnetic |
Title | Physics responsible for heating efficiency and self-controlled temperature rise of magnetic nanoparticles in magnetic hyperthermia therapy |
URI | https://dx.doi.org/10.1016/j.pbiomolbio.2017.10.001 https://www.ncbi.nlm.nih.gov/pubmed/28993133 https://www.proquest.com/docview/1949693938 |
Volume | 133 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA6iCF7Et-uLCF6r5rHbBk_LoqyKnhS8lSRNdKWbXXbXgxd_gL_amTZ18SAIXkrbNLR0kpnvI99MCDlpZ4JxDUzVQbRIIELBnNNtnhSWFcpbwVWGucN3953-o7x5aj8tkF6TC4Oyyuj7a59eeet45yz-zbPxYIA5vqmC4I_LyIjzMYlPyhRH-enHXOYBkLtar4SHE3w6qnlqjdcYc9xHJRxR5JWeVjov9luI-g2CVqHoao2sRgxJu_VnrpMFFzbIcr2r5Psm-axUnXZKJ43-tXQUsClFvwuRirqqbATmXFIdCjp1pU-iZL10BcVqVbHUMgUX4OjI06F-DpjuSIMOQLOjmo4OwrzlBRjtBOHkcKBpndb1vkUery4fev0kbrmQWCnPZ0nGpQeKB6TSA9PRgrV9weC0MADFDDfcQ6jDAi_pOXM-5ZZxo3ihJeAMBpYV22QxjILbJdRok9pOYZgBygXkV1nBpMmETZUX4FVbJG3-cm5jPXLcFqPMG-HZaz63T472wRawT4uw757juibHH_pcNIbMf4yvHELHH3ofN7bPYfrhmooObvQ2zZmSqqOEElmL7NSD4vubkMsKJsTev969T1bgKqt1bwdkcTZ5c4cAhGbmqBrpR2Spe33bv_8Cp9kLOg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Na9wwEB3SDaG9lKTpx7ZJqkKvbiLJXlv0FELD5mtPCeQmJFlqtzjaZXdzyF_or-6MLW_oIRDoxRjLwkIjz7yH3owAvhaV5MIgU_UYLTKMUPjPmUJkteO1Ck4KVVHu8NVkNL7Jz2-L2w046XNhSFaZfH_n01tvnZ4cptk8nE-nlONbKgz-tI1MOF-9gE2qTlUMYPP47GI8WTtkRN3tliW-n1GHJOjpZF5zSnOfNXglnVf5rZV68aei1FMotI1Gp9vwOsFIdtyNdAc2fHwDW93Bkg-78KcVdrolW_QS2MYzhKeMXC8GK-bbyhGUdslMrNnSNyFLqvXG14wKVqVqywy9gGezwO7Mz0gZjyyaiEw7CerYND62_EJSuyBEeTc1rMvsengLN6c_rk_GWTp1IXN5frTKKpEHZHnIKwOSHSN5EWqOt7VFNGaFFQGjHdV4KY-4D6VwXFglapMj1OBoXPkOBnEW_Qdg1tjSjWrLLbIu5L_KSZ7bSrpSBYmOdQhlP8vapZLkdDJGo3vt2W_9aB9N9qEWtM8Q-LrnvCvL8Yw-33tD6n-WmMbo8YzeX3rba_wDaVvFRD-7X2qucjVSUslqCO-7RbEeE9FZyaX8-F_f_gwvx9dXl_rybHLxCV5hS9XJ4PZgsFrc-33ERSt7kNb9X7vLDes |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Physics+responsible+for+heating+efficiency+and+self-controlled+temperature+rise+of+magnetic+nanoparticles+in+magnetic+hyperthermia+therapy&rft.jtitle=Progress+in+biophysics+and+molecular+biology&rft.au=Shaterabadi%2C+Zhila&rft.au=Nabiyouni%2C+Gholamreza&rft.au=Soleymani%2C+Meysam&rft.date=2018-03-01&rft.issn=1873-1732&rft.eissn=1873-1732&rft.volume=133&rft.spage=9&rft_id=info:doi/10.1016%2Fj.pbiomolbio.2017.10.001&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0079-6107&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0079-6107&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0079-6107&client=summon |