Physics responsible for heating efficiency and self-controlled temperature rise of magnetic nanoparticles in magnetic hyperthermia therapy

Magnetic nanoparticles as heat-generating nanosources in hyperthermia treatment are still faced with many drawbacks for achieving sufficient clinical potential. In this context, increase in heating ability of magnetic nanoparticles in a biologically safe alternating magnetic field and also approach...

Full description

Saved in:
Bibliographic Details
Published inProgress in biophysics and molecular biology Vol. 133; pp. 9 - 19
Main Authors Shaterabadi, Zhila, Nabiyouni, Gholamreza, Soleymani, Meysam
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.03.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Magnetic nanoparticles as heat-generating nanosources in hyperthermia treatment are still faced with many drawbacks for achieving sufficient clinical potential. In this context, increase in heating ability of magnetic nanoparticles in a biologically safe alternating magnetic field and also approach to a precise control on temperature rise are two challenging subjects so that a significant part of researchers’ efforts has been devoted to them. Since a deep understanding of Physics concepts of heat generation by magnetic nanoparticles is essential to develop hyperthermia as a cancer treatment with non-adverse side effects, this review focuses on different mechanisms responsible for heat dissipation in a radio frequency magnetic field. Moreover, particular attention is given to ferrite-based nanoparticles because of their suitability in radio frequency magnetic fields. Also, the key role of Curie temperature in suppressing undesired temperature rise is highlighted. [Display omitted] •In MHT, the heat generated by MNPs is produced by independent mechanisms.•MHT demands MNPs with high heating efficiency in a safe alternating magnetic field.•Undesired temperature rise can be inhibited through Curie temperature of MNPs.•This review discusses about the Physics concepts involved in the above subjects.
AbstractList Magnetic nanoparticles as heat-generating nanosources in hyperthermia treatment are still faced with many drawbacks for achieving sufficient clinical potential. In this context, increase in heating ability of magnetic nanoparticles in a biologically safe alternating magnetic field and also approach to a precise control on temperature rise are two challenging subjects so that a significant part of researchers' efforts has been devoted to them. Since a deep understanding of Physics concepts of heat generation by magnetic nanoparticles is essential to develop hyperthermia as a cancer treatment with non-adverse side effects, this review focuses on different mechanisms responsible for heat dissipation in a radio frequency magnetic field. Moreover, particular attention is given to ferrite-based nanoparticles because of their suitability in radio frequency magnetic fields. Also, the key role of Curie temperature in suppressing undesired temperature rise is highlighted.
Magnetic nanoparticles as heat-generating nanosources in hyperthermia treatment are still faced with many drawbacks for achieving sufficient clinical potential. In this context, increase in heating ability of magnetic nanoparticles in a biologically safe alternating magnetic field and also approach to a precise control on temperature rise are two challenging subjects so that a significant part of researchers’ efforts has been devoted to them. Since a deep understanding of Physics concepts of heat generation by magnetic nanoparticles is essential to develop hyperthermia as a cancer treatment with non-adverse side effects, this review focuses on different mechanisms responsible for heat dissipation in a radio frequency magnetic field. Moreover, particular attention is given to ferrite-based nanoparticles because of their suitability in radio frequency magnetic fields. Also, the key role of Curie temperature in suppressing undesired temperature rise is highlighted. [Display omitted] •In MHT, the heat generated by MNPs is produced by independent mechanisms.•MHT demands MNPs with high heating efficiency in a safe alternating magnetic field.•Undesired temperature rise can be inhibited through Curie temperature of MNPs.•This review discusses about the Physics concepts involved in the above subjects.
Magnetic nanoparticles as heat-generating nanosources in hyperthermia treatment are still faced with many drawbacks for achieving sufficient clinical potential. In this context, increase in heating ability of magnetic nanoparticles in a biologically safe alternating magnetic field and also approach to a precise control on temperature rise are two challenging subjects so that a significant part of researchers' efforts has been devoted to them. Since a deep understanding of Physics concepts of heat generation by magnetic nanoparticles is essential to develop hyperthermia as a cancer treatment with non-adverse side effects, this review focuses on different mechanisms responsible for heat dissipation in a radio frequency magnetic field. Moreover, particular attention is given to ferrite-based nanoparticles because of their suitability in radio frequency magnetic fields. Also, the key role of Curie temperature in suppressing undesired temperature rise is highlighted.Magnetic nanoparticles as heat-generating nanosources in hyperthermia treatment are still faced with many drawbacks for achieving sufficient clinical potential. In this context, increase in heating ability of magnetic nanoparticles in a biologically safe alternating magnetic field and also approach to a precise control on temperature rise are two challenging subjects so that a significant part of researchers' efforts has been devoted to them. Since a deep understanding of Physics concepts of heat generation by magnetic nanoparticles is essential to develop hyperthermia as a cancer treatment with non-adverse side effects, this review focuses on different mechanisms responsible for heat dissipation in a radio frequency magnetic field. Moreover, particular attention is given to ferrite-based nanoparticles because of their suitability in radio frequency magnetic fields. Also, the key role of Curie temperature in suppressing undesired temperature rise is highlighted.
Author Soleymani, Meysam
Nabiyouni, Gholamreza
Shaterabadi, Zhila
Author_xml – sequence: 1
  givenname: Zhila
  surname: Shaterabadi
  fullname: Shaterabadi, Zhila
  organization: Department of Physics, Faculty of Science, Arak University, Arak, 38156-88349, Iran
– sequence: 2
  givenname: Gholamreza
  surname: Nabiyouni
  fullname: Nabiyouni, Gholamreza
  email: g-nabiyouni@araku.ac.ir
  organization: Department of Physics, Faculty of Science, Arak University, Arak, 38156-88349, Iran
– sequence: 3
  givenname: Meysam
  orcidid: 0000-0002-6270-8990
  surname: Soleymani
  fullname: Soleymani, Meysam
  organization: Institute of Nanoscience and Nanotechnology, Arak university, Arak, Iran
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28993133$$D View this record in MEDLINE/PubMed
BookMark eNqNUU1v1DAQtVAR3Rb-AvKRS7YeO03iCxJUfFSqBAc4W44z7nrl2MH2IuUv8Kvxsq0qcYHLzGjmvTfSexfkLMSAhFBgW2DQXe23y-jiHH2tW86gr-stY_CMbGDoRQO94Gdkw1gvmw5Yf04uct4zxjj03QtyzgcpBQixIb--7tbsTKYJ8xJDdqNHamOiO9TFhXuK1jrjMJiV6jDRjN42JoaSovc40YLzgkmXQ0KaXEYaLZ31fcDiDA06xEWnOnrM1IWny26trLLDNDtNj10v60vy3Gqf8dVDvyTfP374dvO5ufvy6fbm3V1j2paVZuCtbVnfMm473mkB13aCOk4jk9cjH7nlwGU7QM8Abc8N8FHySbcD52AEF5fkzUl3SfHHAXNRs8sGvdcB4yErkK3spJBiqNDXD9DDOOOkluRmnVb16F8FvD0BTIo5J7TKuFKNOxqknVfA1DEwtVdPgaljYMdLDawKDH8JPP74D-r7ExWrWT8dJpX_BIWTS2iKmqL7t8hvRwm5aQ
CitedBy_id crossref_primary_10_1063_9_0000558
crossref_primary_10_1007_s10948_022_06232_6
crossref_primary_10_1016_j_apsb_2021_03_023
crossref_primary_10_31083_j_fbl2910349
crossref_primary_10_59717_j_xinn_mater_2024_100051
crossref_primary_10_1039_D1RA07389C
crossref_primary_10_1016_j_mssp_2024_108950
crossref_primary_10_1088_2053_1591_ac804e
crossref_primary_10_1016_j_jmmm_2019_166088
crossref_primary_10_1016_j_ceramint_2020_11_049
crossref_primary_10_1049_2024_8929168
crossref_primary_10_1016_j_jmmm_2020_167504
crossref_primary_10_1016_j_apt_2021_12_010
crossref_primary_10_3390_nano10030593
crossref_primary_10_1016_j_jmrt_2020_08_027
crossref_primary_10_1063_5_0038138
crossref_primary_10_1080_10739149_2021_1927075
crossref_primary_10_1039_D1QM00353D
crossref_primary_10_1038_s41598_021_96238_2
crossref_primary_10_1002_pat_5417
crossref_primary_10_1088_1361_648X_ab26fa
crossref_primary_10_1140_epjb_e2019_90567_2
crossref_primary_10_3390_s20072151
crossref_primary_10_1016_j_jmmm_2019_165382
crossref_primary_10_1016_j_jmmm_2024_171724
crossref_primary_10_1016_j_colsurfb_2022_113077
crossref_primary_10_3390_nano10061149
crossref_primary_10_1038_s41598_023_40627_2
crossref_primary_10_1038_s41598_025_94535_8
crossref_primary_10_1016_j_matpr_2022_04_176
crossref_primary_10_1016_j_colsurfa_2021_127672
crossref_primary_10_1039_D2CP05228H
crossref_primary_10_1002_macp_202400136
crossref_primary_10_1016_j_colsurfb_2022_112814
crossref_primary_10_1016_j_jmmm_2024_171990
crossref_primary_10_1038_s41598_022_20558_0
crossref_primary_10_1007_s11307_023_01856_z
crossref_primary_10_1016_j_compbiomed_2020_103741
crossref_primary_10_1039_D1NJ03845A
crossref_primary_10_1007_s00339_020_03876_w
crossref_primary_10_1021_acsmaterialslett_3c01654
crossref_primary_10_1186_s11671_019_3169_6
crossref_primary_10_1002_smll_202304527
crossref_primary_10_1111_jace_16160
crossref_primary_10_1016_j_molliq_2020_114731
crossref_primary_10_1039_D4MA00529E
crossref_primary_10_31857_S0132342324030027
crossref_primary_10_1016_j_solidstatesciences_2021_106655
crossref_primary_10_1016_j_jallcom_2021_161544
crossref_primary_10_1016_j_msec_2020_111274
crossref_primary_10_1016_j_ijbiomac_2021_06_108
crossref_primary_10_1016_j_jmmm_2018_10_075
crossref_primary_10_1016_j_matchemphys_2025_130752
crossref_primary_10_1038_s41598_020_58605_3
crossref_primary_10_1016_j_slast_2023_02_002
crossref_primary_10_3390_pharmaceutics14112388
crossref_primary_10_1016_j_matchemphys_2022_126822
crossref_primary_10_3390_ma12193208
crossref_primary_10_1016_j_colsurfb_2019_110435
crossref_primary_10_1016_j_physleta_2024_129365
crossref_primary_10_1016_j_jallcom_2020_154724
crossref_primary_10_1186_s12645_023_00187_6
crossref_primary_10_1038_s41598_022_13572_9
crossref_primary_10_1007_s00339_022_05675_x
crossref_primary_10_3390_molecules28062523
crossref_primary_10_1016_j_matdes_2022_110676
crossref_primary_10_1088_1741_2552_ac5b94
crossref_primary_10_1016_j_biomaterials_2024_122481
crossref_primary_10_1016_j_rinma_2023_100431
crossref_primary_10_1016_j_colsurfa_2023_133049
crossref_primary_10_1103_PhysRevB_108_134417
crossref_primary_10_1021_acs_jpcc_4c07127
crossref_primary_10_1016_j_ceramint_2023_08_088
crossref_primary_10_1016_j_ijhydene_2020_09_262
crossref_primary_10_1016_j_jallcom_2020_156907
crossref_primary_10_1016_j_jallcom_2023_171597
crossref_primary_10_1021_acsami_1c24148
crossref_primary_10_1007_s42114_023_00768_4
crossref_primary_10_1016_j_inoche_2022_110000
crossref_primary_10_1016_j_jddst_2021_102680
crossref_primary_10_1116_6_0003079
crossref_primary_10_2147_IJN_S434582
crossref_primary_10_1002_admi_202202089
crossref_primary_10_2147_CMAR_S477791
crossref_primary_10_1016_j_jallcom_2019_04_242
crossref_primary_10_3390_nano11020342
crossref_primary_10_1016_j_jallcom_2019_152548
crossref_primary_10_1021_acsami_9b20496
crossref_primary_10_1016_j_matchemphys_2021_124546
crossref_primary_10_1002_ppsc_202200095
crossref_primary_10_1016_j_carbpol_2020_116130
crossref_primary_10_1088_1361_6501_ac9d59
crossref_primary_10_3390_nano11112848
crossref_primary_10_1016_j_ijhydene_2025_01_202
crossref_primary_10_1016_j_jmmm_2019_165927
crossref_primary_10_4028_p_sc9eqe
crossref_primary_10_1002_adtp_202000061
crossref_primary_10_1134_S1068162024030038
crossref_primary_10_34172_apb_2023_034
crossref_primary_10_1088_1361_6463_accc97
crossref_primary_10_1166_sl_2020_4297
crossref_primary_10_1007_s00339_024_07337_6
crossref_primary_10_1103_PhysRevApplied_12_034041
crossref_primary_10_3390_ijms24065685
crossref_primary_10_1021_acs_macromol_0c00182
crossref_primary_10_1021_acsbiomaterials_8b00244
crossref_primary_10_1088_1402_4896_ad3ae0
crossref_primary_10_1080_10717544_2020_1772409
crossref_primary_10_1109_TNB_2021_3126905
crossref_primary_10_1016_j_micromeso_2021_111458
crossref_primary_10_3390_nano11030797
crossref_primary_10_2139_ssrn_4143238
crossref_primary_10_1134_S1027451021040364
crossref_primary_10_1134_S1995078020010176
crossref_primary_10_1016_j_jallcom_2019_02_276
crossref_primary_10_31744_einstein_journal_2019AO4786
Cites_doi 10.1109/TMAG.2006.872198
10.1088/0953-8984/18/38/S26
10.1039/C4NR03482A
10.1016/S0378-5173(99)00447-0
10.1063/1.2712825
10.1016/j.jallcom.2016.08.223
10.1016/j.addr.2012.08.015
10.1016/j.ceramint.2015.02.075
10.1016/j.colsurfb.2012.11.028
10.1088/0957-4484/21/1/015706
10.1002/jbm.b.33068
10.1016/j.materresbull.2015.01.033
10.1016/j.jmmm.2013.11.006
10.1016/S1003-6326(07)60293-3
10.1155/2013/752973
10.1016/0304-8853(93)91115-N
10.1039/b902394a
10.1016/j.apsusc.2013.09.169
10.1016/j.jmmm.2016.06.080
10.1109/TMAG.2011.2173474
10.1063/1.1855131
10.1039/C2DT31114C
10.1016/j.powtec.2015.03.022
10.1088/0022-3727/47/6/065503
10.1016/S0304-8853(99)00088-8
10.1016/j.msec.2016.03.033
10.1016/j.jmmm.2009.02.075
10.1016/j.addr.2012.09.029
10.1007/s00249-006-0042-1
10.1016/j.jmmm.2013.04.064
10.1016/j.jmmm.2016.10.099
10.1016/j.jmmm.2004.09.138
10.3109/02656736.2013.836758
10.1016/j.jallcom.2014.02.138
10.1016/j.jmmm.2006.11.199
10.1088/1742-6596/187/1/012069
10.1016/j.jmmm.2016.06.057
10.1016/j.jmmm.2014.11.061
10.1016/S0142-9612(01)00267-8
10.1016/j.matchemphys.2014.02.047
10.1016/j.jmmm.2015.03.039
10.1007/s11051-014-2321-6
10.1103/PhysRevB.59.6321
10.1007/s11051-010-0117-x
10.1016/j.progsolidstchem.2009.02.001
10.1016/0360-3016(82)90297-8
10.1186/s40199-015-0124-7
10.1103/PhysRevB.63.184414
10.1016/j.jmmm.2015.05.029
10.1593/neo.05769
10.1063/1.364659
10.3109/02656736.2013.837200
10.1016/S0304-8853(98)00558-7
10.1016/j.carbpol.2012.09.098
10.1002/smll.201100927
10.1016/j.bbagen.2017.02.022
10.1021/bc050335b
10.1016/j.phrs.2009.12.012
10.1016/j.tca.2011.02.012
10.1007/s11060-010-0389-0
10.1016/j.jmmm.2006.10.1156
10.1016/j.jallcom.2016.07.030
10.1063/1.2830975
10.1016/j.ssc.2009.01.007
10.1016/j.ijpharm.2015.10.058
10.1016/j.cap.2014.09.025
10.1016/S0304-8853(02)00706-0
10.1063/1.3187538
10.1016/j.msec.2010.04.016
10.1063/1.1599959
10.1016/j.jmmm.2009.05.047
10.1016/j.ijpharm.2015.07.059
10.1111/j.1551-2916.1999.tb20058.x
10.1016/j.jmmm.2013.09.037
10.1016/j.cis.2011.04.003
10.1016/j.jmmm.2014.04.001
10.1080/01932691.2015.1056531
10.1016/j.powtec.2016.07.052
10.1016/j.jmmm.2013.05.030
10.1021/ja067457e
10.1109/20.718537
10.1016/B978-0-12-415769-9.00013-3
10.1016/j.stam.2007.04.007
10.1016/j.physb.2012.07.030
10.1016/j.nimb.2016.03.041
10.1166/jnn.2008.15348
10.1016/j.jmmm.2006.11.179
10.1016/j.nantod.2010.05.003
10.1016/j.bej.2008.07.009
10.1063/1.3074136
10.1088/0022-3727/42/22/224002
10.1016/j.jmmm.2010.10.027
10.1109/TBME.1984.325372
10.1016/j.drudis.2013.10.005
10.1063/1.1850333
10.1021/ja051455x
10.1007/s11060-006-9195-0
10.1016/j.physrep.2014.09.007
10.1016/j.jmmm.2014.05.015
10.1016/j.addr.2012.10.008
10.3109/02656731003745740
10.3109/02656739709023559
10.1016/j.msec.2017.02.143
10.1016/0304-8853(95)00943-4
10.1007/s00262-003-0416-5
10.1039/b402025a
10.1039/C7TB00922D
10.1016/j.jmmm.2016.05.016
10.1063/1.3551582
ContentType Journal Article
Copyright 2017 Elsevier Ltd
Copyright © 2017 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2017 Elsevier Ltd
– notice: Copyright © 2017 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.pbiomolbio.2017.10.001
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1873-1732
EndPage 19
ExternalDocumentID 28993133
10_1016_j_pbiomolbio_2017_10_001
S0079610717301499
Genre Research Support, Non-U.S. Gov't
Journal Article
Review
GroupedDBID ---
--K
--M
-~X
.GJ
.~1
0R~
123
1B1
1RT
1~.
1~5
29P
3O-
4.4
457
4G.
53G
5RE
5VS
7-5
71M
8P~
9JM
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABFRF
ABGSF
ABJNI
ABLJU
ABMAC
ABTAH
ABUDA
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
ADMUD
ADUVX
AEBSH
AEFWE
AEHWI
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DOVZS
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F20
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HLW
HVGLF
HX~
HZ~
IHE
J1W
KOM
LX3
M41
MO0
MVM
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBG
SDF
SDG
SDP
SES
SEW
SPCBC
SPD
SSU
SSZ
T5K
UNMZH
UQL
VQP
WUQ
XFK
ZGI
ZY4
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EIF
NPM
7X8
EFKBS
ID FETCH-LOGICAL-c440t-824f407402f626a315fd1f62db095b2b2f2129481701ef72c12b92da48221c323
IEDL.DBID .~1
ISSN 0079-6107
1873-1732
IngestDate Mon Jul 21 09:27:32 EDT 2025
Wed Feb 19 02:32:27 EST 2025
Tue Jul 01 00:42:39 EDT 2025
Thu Apr 24 22:50:40 EDT 2025
Fri Feb 23 02:29:19 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Ferrite nanoparticles
Superparamagnetic
Heat generation mechanisms
Magnetic hyperthermia therapy (MHT)
Specific loss power (SLP)
Curie temperature
Language English
License Copyright © 2017 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c440t-824f407402f626a315fd1f62db095b2b2f2129481701ef72c12b92da48221c323
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0000-0002-6270-8990
PMID 28993133
PQID 1949693938
PQPubID 23479
PageCount 11
ParticipantIDs proquest_miscellaneous_1949693938
pubmed_primary_28993133
crossref_citationtrail_10_1016_j_pbiomolbio_2017_10_001
crossref_primary_10_1016_j_pbiomolbio_2017_10_001
elsevier_sciencedirect_doi_10_1016_j_pbiomolbio_2017_10_001
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2018
2018-03-00
20180301
PublicationDateYYYYMMDD 2018-03-01
PublicationDate_xml – month: 03
  year: 2018
  text: March 2018
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Progress in biophysics and molecular biology
PublicationTitleAlternate Prog Biophys Mol Biol
PublicationYear 2018
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Iftikhar, Islam, Awan, Ahmad, Naseem, Iqbal (bib46) 2014; 601
Easo, Mohanan (bib26) 2013; 92
Kodama, Berkowitz (bib66) 1999; 59
Mojica Pisciotti, Lima, Vasquez Mansilla, Tognoli, Troiani, Pasa, Creczynski-Pasa, Silva, Gurman, Colombo, Goya (bib86) 2014; 102
Thanh, Green (bib116) 2010; 5
Deatsch, Evans (bib18) 2014; 354
Soleymani, Edrissi, Alizadeh (bib112) 2015; 47
Maier-Hauff, Ulrich, Nestler, Niehoff, Wust, Thiesen, Orawa, Budach, Jordan (bib82) 2011; 103
Haralkar, Kadam, More, Shirsath, Mane, Patil, Mane (bib38) 2012; 407
Soleymani, Edrissi (bib110) 2016; 39
Ciftja (bib14) 2009; 149
Papisov, Bogdanov, Schaffer, Nossiff, Shen, Weissleder, Brady (bib96) 1993; 122
Alexiou, Schmid, Jurgons, Kremer, Wanner, Bergemann, Huenges, Nawroth, Arnold, Parak (bib1) 2006; 35
Ferk, Drofenik, Lisjak, Hamler, Jagličić, Makovec (bib28) 2014; 350
Figuerola, Di Corato, Manna, Pellegrino (bib29) 2010; 62
Makridis, Chatzitheodorou, Topouridou, Yavropoulou, Angelakeris, Dendrinou-Samara (bib83) 2016; 63
Brezovich (bib10) 1998; 16
Jordan, Scholz, Wust, Schirra, Schiestel, Schmidt, Felix (bib54) 1999; 194
López-Ortega, Estrader, Salazar-Alvarez, Roca (bib78) 2015; 553
Thorat, Khot, Salunkhe, Ningthoujam, Pawar (bib117) 2013; 104
Jordan, Scholz, Wust, Fähling, Krause, Wlodarczyk, Sander, Vogl, Felix (bib52) 1997; 13
Esmaeili, Hadad (bib27) 2015; 41
Qiao, Yang, Gao (bib100) 2009; 19
Atkinson, Brezovich, Chakraborty (bib7) 1984; 31
Jing, Sohn, Kline, Victora, Wang (bib50) 2009; 105
Lee, Jang, Choi, Moon, Noh, Kim, Kim, Kim, Park, Cheon (bib72) 2011; 6
Salunkhe, Khot, Ruso, Patil (bib104) 2016; 419
Hanini, Lartigue, Gavard, Kacem, Wilhelm, Gazeau, Chau, Ammar (bib37) 2016; 416
Kaman, Veverka, Jirák, Maryško, Knížek, Veverka, Kašpar, Burian, Šepelák, Pollert (bib56) 2011; 13
Goya, Berquó, Fonseca, Morales (bib35) 2003; 94
Bharali, Lucey, Jayakumar, Pudavar, Prasad (bib9) 2005; 127
Mathew, Juang (bib85) 2007; 129
Zhang (bib126) 2014
Khot, Salunkhe, Ruso, Pawar (bib61) 2015; 384
Das, Sakamoto, Aono, Shinozaki, Suzuki, Wakiya (bib17) 2015; 392
Oleson (bib94) 1982; 8
Gaur, Sahoo, De Tapas, Ghosh, Maitra, Ghosh (bib32) 2009; 202
Li, Huang, Liu, Lin, Bai, Li (bib73) 2007; 8
Li, Kawashita, Araki, Mitsumori, Hiraoka, Doi (bib74) 2010; 30
Bakoglidis, Simeonidis, Sakellari, Stefanou, Angelakeris (bib8) 2012; 48
Soleymani, Edrissi, Alizadeh (bib113) 2017
Cao, Dan, Guo, Park, Fujita (bib11) 2007; 17
Çelik, Can, Firat (bib13) 2014; 16
Mamiya (bib84) 2013; 2013
Soleymani, Edrissi (bib111) 2016; 37
Xu, Sun (bib122) 2013; 65
Duguet, Vasseur, Mornet, Goglio, Demourgues, Portier, Grasset, Veverka, Pollert (bib24) 2006; 29
Araújo-Neto, Silva-Freitas, Carvalho, Pontes, Silva, Damasceno, Egito, Dantas, Morales, Carriço (bib4) 2014; 364
Zhang, Gu, Wang (bib125) 2007; 311
Amiri, Shokrollahi (bib2) 2013; 345
Hong, Feng, Chen, Liu, Li, Zheng, Wei (bib44) 2008; 42
Pethig (bib98) 1988
Rosensweig (bib103) 2002; 252
Wang, Dong, Ouyang, Wang, Tang (bib120) 2012; 27
Curiale, Granada, Troiani, Sánchez, Leyva, Levy, Samwer (bib16) 2009; 95
Arulmurugan, Jeyadevan, Vaidyanathan, Sendhilnathan (bib5) 2005; 288
Shaterabadi, Nabiyouni, Soleymani (bib105) 2017; 75
Gabal (bib31) 2009; 321
Delavari, Madaah Hosseini, Simchi (bib20) 2011; 383
Hervault, Thanh (bib43) 2014; 6
Roca, Costo, Rebolledo, Veintemillas-Verdaguer, Tartaj, Gonzalez-Carreno, Morales, Serna (bib102) 2009; 42
Oumezzine, Hcini, Baazaoui, Hlil, Oumezzine (bib95) 2015; 278
Kuznetsov, Leontiev, Brukvin, Vorozhtsov, Kogan, Shlyakhtin, Yunin, Tsybin, Kuznetsov (bib70) 2007; 311
Kulkarni, Trivedi, Joshi, Baldha (bib69) 1996; 159
Nam, Won, Bang, Jin, Park, Jung, Jung, Park (bib91) 2013; 65
Kim, Shima (bib62) 2007; 101
Zhang, Kohler, Zhang (bib124) 2002; 23
Montet, Montet-Abou, Reynolds, Weissleder, Josephson (bib87) 2006; 8
Dennis, Ivkov (bib21) 2013; 29
Pollert, Veverka, Veverka, Kaman, Závěta, Vasseur, Epherre, Goglio, Duguet (bib99) 2009; 37
Giri, Pradhan, Sriharsha, Bahadur (bib33) 2005; 97
Cullity, Graham (bib15) 2011
Sugimoto (bib115) 1999; 82
Hergt, Dutz, Müller, Zeisberger (bib41) 2006; 18
Lima-Tenório, Pineda, Ahmad, Fessi, Elaissari (bib76) 2015; 493
Kozissnik, Bohorquez, Dobson, Rinaldi (bib68) 2013; 29
Maenosono, Saita (bib79) 2006; 42
Mozaffari, Amighian, Tavakoli (bib89) 2015; 379
Wahba, Ali, Eltabey (bib119) 2014; 146
Jordan, Scholz, Wust, Fähling, Felix (bib53) 1999; 201
Stolnik, Illum, Davis (bib114) 2012; 64
del Pino, Pelaz (bib19) 2012
Jain, Morales, Sahoo, Leslie-Pelecky, Labhasetwar (bib48) 2005; 2
Kim, Jeon, Hong, Rhim, Lee, Youn, Chung, Lee, Lee, Kang, Nam (bib63) 2011; 7
Singh, Sahoo (bib108) 2014; 19
Laurent, Dutz, Häfeli, Mahmoudi (bib71) 2011; 166
Soleymani, Edrissi (bib109) 2015; 38
Kodama, Berkowitz, McNiff, Foner (bib67) 1997; 81
Muroi, Street, McCormick, Amighian (bib90) 2001; 63
Ito, Matsuoka, Honda, Kobayashi (bib47) 2004; 53
Yanase, Shinkai, Honda, Wakabayashi, Yoshida, Kobayashi (bib123) 1998; 89
Dixit, Van den Bossche, Sherman, Thompson, Andres (bib23) 2006; 17
Nguyen, Kim (bib92) 2016; 301
Carrey, Mehdaoui, Respaud (bib12) 2011; 109
Hergt, Andra, d'Ambly, Hilger, Kaiser, Richter, Schmidt (bib40) 1998; 34
Mahmoud, Elshahawy, Makhlouf, Hamdeh (bib80) 2013; 343
Johannsen, Thiesen, Wust, Jordan (bib51) 2010; 26
Maier-Hauff, Rothe, Scholz, Gneveckow, Wust, Thiesen, Feussner, von Deimling, Waldoefner, Felix, Jordan (bib81) 2007; 81
Dipesh, Wang, Adhikari, Alam, Mishra (bib22) 2016; 688
Ichiyanagi, Shigeoka, Hiroki, Mashino, Kimura, Tomitaka, Ueda, Takemura (bib45) 2012; 532
Jasso-Terán, Cortés-Hernández, Sánchez-Fuentes, Reyes-Rodríguez, de-León-Prado, Escobedo-Bocardo, Almanza-Robles (bib49) 2017; 427
Angelakeris (bib3) 2017; 1861
Dunn, Jacobo, Bercoff (bib25) 2017; 691
Fortin, Wilhelm, Servais, Ménager, Bacri, Gazeau (bib30) 2007; 129
Habib, Ondeck, Chaudhary, Bockstaller, McHenry (bib36) 2008; 103
Hergt, Dutz (bib39) 2007; 311
Kargar, Asgarian, Mozaffari (bib58) 2016; 375
Shoushtari, Emami, Ghahfarokhi (bib107) 2016; 419
Aslibeiki (bib6) 2014; 14
Linh, Van Thach, Tuan, Thuan, Phuc (bib77) 2009; 187
Mornet, Vasseur, Grasset, Duguet (bib88) 2004; 14
Knobel, Nunes, Socolovsky, De Biasi, Vargas, Denardin (bib64) 2008; 8
Liangruksa, Ganguly, Puri (bib75) 2011; 323
Kallumadil, Tada, Nakagawa, Abe, Southern, Pankhurst (bib55) 2009; 321
Kobayashi (bib65) 2011; 6
Veverka, Závěta, Kaman, Veverka, Knížek, Pollert, Burian, Kašpar (bib118) 2014; 7
Khalkhali, Rostamizadeh, Sadighian, Khoeini, Naghibi, Hamidi (bib59) 2015; 23
Parker, Ladieu, Vincent, Mériguet, Dubois, Dupuis, Perzynski (bib97) 2005; 97
Shete, Patil, Thorat, Prasad, Ningthoujam, Ghosh, Pawar (bib106) 2014; 288
Khot, Salunkhe, Thorat, Ningthoujam, Pawar (bib60) 2013; 42
Ramimoghadam, Bagheri, Hamid (bib101) 2014; 368
Goldman (bib34) 2006
Wang, Rai, Mishra (bib121) 2015; 65
Hergt, Dutz, Zeisberger (bib42) 2009; 21
Kandasamy, Maity (bib57) 2015; 496
Obaidat, Issa, Haik (bib93) 2015; 5
Mojica Pisciotti (10.1016/j.pbiomolbio.2017.10.001_bib86) 2014; 102
Obaidat (10.1016/j.pbiomolbio.2017.10.001_bib93) 2015; 5
Khot (10.1016/j.pbiomolbio.2017.10.001_bib61) 2015; 384
Kim (10.1016/j.pbiomolbio.2017.10.001_bib63) 2011; 7
Lee (10.1016/j.pbiomolbio.2017.10.001_bib72) 2011; 6
Das (10.1016/j.pbiomolbio.2017.10.001_bib17) 2015; 392
Fortin (10.1016/j.pbiomolbio.2017.10.001_bib30) 2007; 129
Jordan (10.1016/j.pbiomolbio.2017.10.001_bib53) 1999; 201
Kargar (10.1016/j.pbiomolbio.2017.10.001_bib58) 2016; 375
Wang (10.1016/j.pbiomolbio.2017.10.001_bib121) 2015; 65
Duguet (10.1016/j.pbiomolbio.2017.10.001_bib24) 2006; 29
Laurent (10.1016/j.pbiomolbio.2017.10.001_bib71) 2011; 166
Angelakeris (10.1016/j.pbiomolbio.2017.10.001_bib3) 2017; 1861
Kaman (10.1016/j.pbiomolbio.2017.10.001_bib56) 2011; 13
Sugimoto (10.1016/j.pbiomolbio.2017.10.001_bib115) 1999; 82
Soleymani (10.1016/j.pbiomolbio.2017.10.001_bib111) 2016; 37
Jordan (10.1016/j.pbiomolbio.2017.10.001_bib54) 1999; 194
Salunkhe (10.1016/j.pbiomolbio.2017.10.001_bib104) 2016; 419
Kim (10.1016/j.pbiomolbio.2017.10.001_bib62) 2007; 101
Iftikhar (10.1016/j.pbiomolbio.2017.10.001_bib46) 2014; 601
Thanh (10.1016/j.pbiomolbio.2017.10.001_bib116) 2010; 5
Ciftja (10.1016/j.pbiomolbio.2017.10.001_bib14) 2009; 149
Brezovich (10.1016/j.pbiomolbio.2017.10.001_bib10) 1998; 16
Alexiou (10.1016/j.pbiomolbio.2017.10.001_bib1) 2006; 35
Arulmurugan (10.1016/j.pbiomolbio.2017.10.001_bib5) 2005; 288
Kodama (10.1016/j.pbiomolbio.2017.10.001_bib67) 1997; 81
Kodama (10.1016/j.pbiomolbio.2017.10.001_bib66) 1999; 59
Mamiya (10.1016/j.pbiomolbio.2017.10.001_bib84) 2013; 2013
Dixit (10.1016/j.pbiomolbio.2017.10.001_bib23) 2006; 17
Dennis (10.1016/j.pbiomolbio.2017.10.001_bib21) 2013; 29
Habib (10.1016/j.pbiomolbio.2017.10.001_bib36) 2008; 103
Shete (10.1016/j.pbiomolbio.2017.10.001_bib106) 2014; 288
Goldman (10.1016/j.pbiomolbio.2017.10.001_bib34) 2006
Soleymani (10.1016/j.pbiomolbio.2017.10.001_bib110) 2016; 39
Stolnik (10.1016/j.pbiomolbio.2017.10.001_bib114) 2012; 64
Muroi (10.1016/j.pbiomolbio.2017.10.001_bib90) 2001; 63
Liangruksa (10.1016/j.pbiomolbio.2017.10.001_bib75) 2011; 323
Araújo-Neto (10.1016/j.pbiomolbio.2017.10.001_bib4) 2014; 364
Oleson (10.1016/j.pbiomolbio.2017.10.001_bib94) 1982; 8
Soleymani (10.1016/j.pbiomolbio.2017.10.001_bib109) 2015; 38
Maier-Hauff (10.1016/j.pbiomolbio.2017.10.001_bib82) 2011; 103
Jain (10.1016/j.pbiomolbio.2017.10.001_bib48) 2005; 2
Mozaffari (10.1016/j.pbiomolbio.2017.10.001_bib89) 2015; 379
Ramimoghadam (10.1016/j.pbiomolbio.2017.10.001_bib101) 2014; 368
Hergt (10.1016/j.pbiomolbio.2017.10.001_bib42) 2009; 21
Cullity (10.1016/j.pbiomolbio.2017.10.001_bib15) 2011
Jing (10.1016/j.pbiomolbio.2017.10.001_bib50) 2009; 105
Parker (10.1016/j.pbiomolbio.2017.10.001_bib97) 2005; 97
Shaterabadi (10.1016/j.pbiomolbio.2017.10.001_bib105) 2017; 75
Atkinson (10.1016/j.pbiomolbio.2017.10.001_bib7) 1984; 31
Bakoglidis (10.1016/j.pbiomolbio.2017.10.001_bib8) 2012; 48
Carrey (10.1016/j.pbiomolbio.2017.10.001_bib12) 2011; 109
Gaur (10.1016/j.pbiomolbio.2017.10.001_bib32) 2009; 202
Nam (10.1016/j.pbiomolbio.2017.10.001_bib91) 2013; 65
Hervault (10.1016/j.pbiomolbio.2017.10.001_bib43) 2014; 6
Pollert (10.1016/j.pbiomolbio.2017.10.001_bib99) 2009; 37
Amiri (10.1016/j.pbiomolbio.2017.10.001_bib2) 2013; 345
Giri (10.1016/j.pbiomolbio.2017.10.001_bib33) 2005; 97
Hergt (10.1016/j.pbiomolbio.2017.10.001_bib40) 1998; 34
Lima-Tenório (10.1016/j.pbiomolbio.2017.10.001_bib76) 2015; 493
Soleymani (10.1016/j.pbiomolbio.2017.10.001_bib113) 2017
Khalkhali (10.1016/j.pbiomolbio.2017.10.001_bib59) 2015; 23
Li (10.1016/j.pbiomolbio.2017.10.001_bib73) 2007; 8
Linh (10.1016/j.pbiomolbio.2017.10.001_bib77) 2009; 187
Hergt (10.1016/j.pbiomolbio.2017.10.001_bib41) 2006; 18
Wahba (10.1016/j.pbiomolbio.2017.10.001_bib119) 2014; 146
Soleymani (10.1016/j.pbiomolbio.2017.10.001_bib112) 2015; 47
Kobayashi (10.1016/j.pbiomolbio.2017.10.001_bib65) 2011; 6
Kulkarni (10.1016/j.pbiomolbio.2017.10.001_bib69) 1996; 159
Hergt (10.1016/j.pbiomolbio.2017.10.001_bib39) 2007; 311
Roca (10.1016/j.pbiomolbio.2017.10.001_bib102) 2009; 42
Easo (10.1016/j.pbiomolbio.2017.10.001_bib26) 2013; 92
Oumezzine (10.1016/j.pbiomolbio.2017.10.001_bib95) 2015; 278
Pethig (10.1016/j.pbiomolbio.2017.10.001_bib98) 1988
Khot (10.1016/j.pbiomolbio.2017.10.001_bib60) 2013; 42
Papisov (10.1016/j.pbiomolbio.2017.10.001_bib96) 1993; 122
Delavari (10.1016/j.pbiomolbio.2017.10.001_bib20) 2011; 383
Kozissnik (10.1016/j.pbiomolbio.2017.10.001_bib68) 2013; 29
Bharali (10.1016/j.pbiomolbio.2017.10.001_bib9) 2005; 127
Haralkar (10.1016/j.pbiomolbio.2017.10.001_bib38) 2012; 407
Kuznetsov (10.1016/j.pbiomolbio.2017.10.001_bib70) 2007; 311
Dipesh (10.1016/j.pbiomolbio.2017.10.001_bib22) 2016; 688
Figuerola (10.1016/j.pbiomolbio.2017.10.001_bib29) 2010; 62
Deatsch (10.1016/j.pbiomolbio.2017.10.001_bib18) 2014; 354
Mornet (10.1016/j.pbiomolbio.2017.10.001_bib88) 2004; 14
Cao (10.1016/j.pbiomolbio.2017.10.001_bib11) 2007; 17
Gabal (10.1016/j.pbiomolbio.2017.10.001_bib31) 2009; 321
Mathew (10.1016/j.pbiomolbio.2017.10.001_bib85) 2007; 129
Zhang (10.1016/j.pbiomolbio.2017.10.001_bib126) 2014
Li (10.1016/j.pbiomolbio.2017.10.001_bib74) 2010; 30
Ferk (10.1016/j.pbiomolbio.2017.10.001_bib28) 2014; 350
del Pino (10.1016/j.pbiomolbio.2017.10.001_bib19) 2012
Thorat (10.1016/j.pbiomolbio.2017.10.001_bib117) 2013; 104
Curiale (10.1016/j.pbiomolbio.2017.10.001_bib16) 2009; 95
Zhang (10.1016/j.pbiomolbio.2017.10.001_bib125) 2007; 311
Goya (10.1016/j.pbiomolbio.2017.10.001_bib35) 2003; 94
Wang (10.1016/j.pbiomolbio.2017.10.001_bib120) 2012; 27
Montet (10.1016/j.pbiomolbio.2017.10.001_bib87) 2006; 8
Dunn (10.1016/j.pbiomolbio.2017.10.001_bib25) 2017; 691
Johannsen (10.1016/j.pbiomolbio.2017.10.001_bib51) 2010; 26
Veverka (10.1016/j.pbiomolbio.2017.10.001_bib118) 2014; 7
Ito (10.1016/j.pbiomolbio.2017.10.001_bib47) 2004; 53
Zhang (10.1016/j.pbiomolbio.2017.10.001_bib124) 2002; 23
Esmaeili (10.1016/j.pbiomolbio.2017.10.001_bib27) 2015; 41
Hanini (10.1016/j.pbiomolbio.2017.10.001_bib37) 2016; 416
Singh (10.1016/j.pbiomolbio.2017.10.001_bib108) 2014; 19
Nguyen (10.1016/j.pbiomolbio.2017.10.001_bib92) 2016; 301
Jordan (10.1016/j.pbiomolbio.2017.10.001_bib52) 1997; 13
Shoushtari (10.1016/j.pbiomolbio.2017.10.001_bib107) 2016; 419
Mahmoud (10.1016/j.pbiomolbio.2017.10.001_bib80) 2013; 343
Ichiyanagi (10.1016/j.pbiomolbio.2017.10.001_bib45) 2012; 532
Kandasamy (10.1016/j.pbiomolbio.2017.10.001_bib57) 2015; 496
Aslibeiki (10.1016/j.pbiomolbio.2017.10.001_bib6) 2014; 14
Rosensweig (10.1016/j.pbiomolbio.2017.10.001_bib103) 2002; 252
Yanase (10.1016/j.pbiomolbio.2017.10.001_bib123) 1998; 89
Knobel (10.1016/j.pbiomolbio.2017.10.001_bib64) 2008; 8
Xu (10.1016/j.pbiomolbio.2017.10.001_bib122) 2013; 65
Hong (10.1016/j.pbiomolbio.2017.10.001_bib44) 2008; 42
Qiao (10.1016/j.pbiomolbio.2017.10.001_bib100) 2009; 19
Maenosono (10.1016/j.pbiomolbio.2017.10.001_bib79) 2006; 42
Maier-Hauff (10.1016/j.pbiomolbio.2017.10.001_bib81) 2007; 81
Makridis (10.1016/j.pbiomolbio.2017.10.001_bib83) 2016; 63
Çelik (10.1016/j.pbiomolbio.2017.10.001_bib13) 2014; 16
Jasso-Terán (10.1016/j.pbiomolbio.2017.10.001_bib49) 2017; 427
López-Ortega (10.1016/j.pbiomolbio.2017.10.001_bib78) 2015; 553
Kallumadil (10.1016/j.pbiomolbio.2017.10.001_bib55) 2009; 321
References_xml – volume: 149
  start-page: 532
  year: 2009
  end-page: 536
  ident: bib14
  article-title: Lamellar-like structures in ferrofluids placed in strong magnetic fields
  publication-title: J. Solid State Commun.
– start-page: 2229
  year: 2014
  end-page: 2244
  ident: bib126
  article-title: Magnetic nanomaterials: conventional synthesis and properties
  publication-title: Dekker Encyclopedia of Nanoscience and Nanotechnology
– volume: 63
  start-page: 184414
  year: 2001
  ident: bib90
  article-title: Magnetic properties of ultrafine MnFe
  publication-title: J. Phys. Rev. B
– volume: 27
  start-page: 719
  year: 2012
  end-page: 726
  ident: bib120
  article-title: Anticancer effect and feasibility study of hyperthermia treatment of pancreatic cancer using magnetic nanoparticles
  publication-title: J. Oncol. Rep.
– volume: 7
  start-page: 065503
  year: 2014
  ident: bib118
  article-title: Magnetic heating by silica-coated Co–Zn ferrite particles
  publication-title: J. Phys. D. Appl. Phys.
– volume: 29
  start-page: 581
  year: 2006
  end-page: 586
  ident: bib24
  article-title: Towards a versatile platform based on magnetic nanoparticles for in vivo applications
  publication-title: J. Bull. Mater. Sci.
– volume: 202
  start-page: 1
  year: 2009
  end-page: 10
  ident: bib32
  article-title: Biodistribution of fluoresceinated dextran using novel nanoparticles evading reticuloendothelial system
  publication-title: Int. J. Pharm.
– volume: 122
  start-page: 383
  year: 1993
  end-page: 386
  ident: bib96
  article-title: Colloidal magnetic resonance contrast agents: effect of particle surface on biodistribution
  publication-title: J. Magnetism Magnetic Mater.
– volume: 392
  start-page: 91
  year: 2015
  end-page: 100
  ident: bib17
  article-title: Investigations of superparamagnetism in magnesium ferrite nano-sphere synthesized by ultrasonic spray pyrolysis technique for hyperthermia application
  publication-title: J. Magnetism Magnetic Mater.
– volume: 688
  start-page: 413
  year: 2016
  end-page: 421
  ident: bib22
  article-title: Influence of Al
  publication-title: J. Alloys Compd.
– volume: 6
  start-page: 1342
  year: 2011
  end-page: 1347
  ident: bib65
  article-title: Cancer hyperthermia using magnetic nanoparticles
  publication-title: J. Biotechnol.
– volume: 97
  start-page: 10A502
  year: 2005
  ident: bib97
  article-title: Experimental investigation of superspin glass dynamics
  publication-title: J. Appl. Phys.
– volume: 129
  start-page: 2628
  year: 2007
  end-page: 2635
  ident: bib30
  article-title: Size-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia
  publication-title: J. Am. Chem. Soc.
– volume: 368
  start-page: 207
  year: 2014
  end-page: 229
  ident: bib101
  article-title: Progress in electrochemical synthesis of magnetic iron oxide nanoparticles
  publication-title: J. Magnetism Magnetic Mater.
– volume: 39
  start-page: 487
  year: 2016
  end-page: 490
  ident: bib110
  article-title: Preparation of manganese-based perovskite nanoparticles using a reverse microemulsion method: biomedical applications
  publication-title: J. Bull. Mater. Sci.
– volume: 18
  start-page: S2919
  year: 2006
  ident: bib41
  article-title: Magnetic particle hyperthermia: nanoparticle magnetism and materials development for cancer therapy
  publication-title: J. Phys. Condens. Matter
– volume: 26
  start-page: 790
  year: 2010
  end-page: 795
  ident: bib51
  article-title: Magnetic nanoparticle hyperthermia for prostate cancer
  publication-title: Int. J. Hyperth.
– volume: 30
  start-page: 990
  year: 2010
  end-page: 996
  ident: bib74
  article-title: Magnetite nanoparticles with high heating efficiencies for application in the hyperthermia of cancer
  publication-title: J. Mater. Sci. Eng. C
– year: 2006
  ident: bib34
  article-title: Modern ferrite technology
– volume: 17
  start-page: 1451
  year: 2007
  end-page: 1455
  ident: bib11
  article-title: Size and shape effects on Curie temperature of ferromagnetic nanoparticles
  publication-title: J. Trans. Nonferrous Metals Soc. China
– volume: 416
  start-page: 315
  year: 2016
  end-page: 320
  ident: bib37
  article-title: Zinc substituted ferrite nanoparticles with Zn
  publication-title: J. Magnetism Magnetic Mater.
– volume: 553
  start-page: 1
  year: 2015
  end-page: 32
  ident: bib78
  article-title: Nogués. Applications of exchange coupled bi-magnetic hard/soft and soft/hard magnetic core/shell nanoparticles
  publication-title: J. Phys. Rep.
– volume: 323
  start-page: 708
  year: 2011
  end-page: 716
  ident: bib75
  article-title: Parametric investigation of heating due to magnetic fluid hyperthermia in a tumor with blood perfusion
  publication-title: J. Magnetism Magnetic Mater.
– volume: 37
  start-page: 693
  year: 2016
  end-page: 698
  ident: bib111
  article-title: Synthesis of bilayer surfactant-coated magnetic nanoparticles for application in magnetic fluid hyperthermia
  publication-title: J. Dispersion Sci. Technol.
– volume: 8
  start-page: 448
  year: 2007
  end-page: 454
  ident: bib73
  article-title: Effect of aggregates on the magnetization property of ferrofluids: a model of gaslike compression
  publication-title: J. Sci. Technol. Adv. Mater.
– volume: 427
  start-page: 241
  year: 2017
  end-page: 244
  ident: bib49
  article-title: Synthesis, characterization and hemolysis studies of Zn
  publication-title: J. Magnetism Magnetic Mater.
– volume: 2013
  start-page: 1
  year: 2013
  end-page: 17
  ident: bib84
  article-title: Recent advances in understanding magnetic nanoparticles in AC magnetic fields and optimal design for targeted hyperthermia
  publication-title: J. Nanomater.
– volume: 493
  start-page: 313
  year: 2015
  end-page: 327
  ident: bib76
  article-title: Magnetic nanoparticles: in vivo cancer diagnosis and therapy
  publication-title: J. Int. J. Pharm.
– volume: 47
  start-page: 797
  year: 2015
  end-page: 801
  ident: bib112
  article-title: Thermosensitive polymer-coated La0.73Sr0.27MnO3 nanoparticles: potential applications in cancer hyperthermia therapy and magnetically activated drug delivery systems
  publication-title: J. Polym J.
– volume: 104
  start-page: 40
  year: 2013
  end-page: 47
  ident: bib117
  article-title: Functionalization of La
  publication-title: J. Colloids Surfaces B Biointerfaces
– volume: 127
  start-page: 11364
  year: 2005
  end-page: 11371
  ident: bib9
  article-title: Folate-receptor-mediated delivery of InP quantum dots for bioimaging using confocal and two-photon microscopy
  publication-title: J. Am. Chem. Soc.
– volume: 109
  start-page: 083921
  year: 2011
  ident: bib12
  article-title: Simple models for dynamic hysteresis loop calculations of magnetic single-domain nanoparticles: application to magnetic hyperthermia optimization
  publication-title: J. Appl. Phys.
– volume: 34
  start-page: 3745
  year: 1998
  end-page: 3754
  ident: bib40
  article-title: Physical limits of hyperthermia using magnetite fine particles
  publication-title: Magnetics. J. IEEE Trans.
– volume: 64
  start-page: 290
  year: 2012
  end-page: 301
  ident: bib114
  article-title: Long circulating microparticulate drug carriers
  publication-title: J. Adv. drug Deliv. Rev.
– volume: 16
  start-page: 82
  year: 1998
  end-page: 111
  ident: bib10
  article-title: Low frequency hyperthermia: capacitive and ferromagnetic thermoseed methods
  publication-title: J. Med. Phys. Monogr.
– volume: 311
  start-page: 187
  year: 2007
  end-page: 192
  ident: bib39
  article-title: Magnetic particle hyperthermia—biophysical limitations of a visionary tumour therapy
  publication-title: J. Magnetism Magnetic Mater.
– volume: 321
  start-page: 3144
  year: 2009
  end-page: 3148
  ident: bib31
  article-title: Effect of Mg substitution on the magnetic properties of NiCuZn ferrite nanoparticles prepared through a novel method using egg white
  publication-title: J. Magnetism Magnetic Mater.
– volume: 101
  start-page: 09M516
  year: 2007
  ident: bib62
  article-title: Reduced magnetization in magnetic oxide nanoparticles
  publication-title: J. Appl. Phys.
– volume: 81
  start-page: 53
  year: 2007
  end-page: 60
  ident: bib81
  article-title: Intracranial thermotherapy using magnetic nanoparticles combined with external beam radiotherapy: results of a feasibility study on patients with glioblastoma multiforme
  publication-title: J. Neuro-Oncology
– volume: 379
  start-page: 208
  year: 2015
  end-page: 212
  ident: bib89
  article-title: The effect of yttrium substitution on the magnetic properties of magnetite nanoparticles
  publication-title: J. Magnetism Magnetic Mater.
– volume: 532
  start-page: 123
  year: 2012
  end-page: 126
  ident: bib45
  article-title: Study on increase in temperature of Co–Ti ferrite nanoparticles for magnetic hyperthermia treatment
  publication-title: J. Thermochim. Acta
– volume: 194
  start-page: 185
  year: 1999
  end-page: 196
  ident: bib54
  article-title: Endocytosis of dextran and silan-coated magnetite nanoparticles and the effect of intracellular hyperthermia on human mammary carcinoma cells in vitro
  publication-title: J. Magnetism Magnetic Mater.
– volume: 301
  start-page: 1112
  year: 2016
  end-page: 1118
  ident: bib92
  article-title: Controlled synthesis of monodisperse magnetite nanoparticles for hyperthermia-based treatments
  publication-title: J. Powder Technol.
– volume: 38
  start-page: 1633
  year: 2015
  end-page: 1638
  ident: bib109
  article-title: Heating ability and biocompatibility study of silica-coated magnetic nanoparticles as heating mediators for magnetic hyperthermia and magnetically triggered drug delivery systems
  publication-title: J. Bull. Mater. Sci.
– volume: 41
  start-page: 7529
  year: 2015
  end-page: 7535
  ident: bib27
  article-title: Preparation of ZnFe
  publication-title: J. Ceram. Int.
– volume: 21
  start-page: 015706
  year: 2009
  ident: bib42
  article-title: Validity limits of the Néel relaxation model of magnetic nanoparticles for hyperthermia
  publication-title: J. Nanotechnol.
– volume: 53
  start-page: 26
  year: 2004
  end-page: 32
  ident: bib47
  article-title: Antitumor effects of combined therapy of recombinant heat shock protein 70 and hyperthermia using magnetic nanoparticles in an experimental subcutaneous murine melanoma
  publication-title: J. Cancer Immunol. Immunother.
– volume: 407
  start-page: 4338
  year: 2012
  end-page: 4346
  ident: bib38
  article-title: Substitutional effect of Cr
  publication-title: J. Phys. B Condens. Matter
– volume: 35
  start-page: 446
  year: 2006
  end-page: 450
  ident: bib1
  article-title: Targeting cancer cells: magnetic nanoparticles as drug carriers
  publication-title: J. Eur. Biophysics J.
– volume: 105
  start-page: 07B305
  year: 2009
  ident: bib50
  article-title: Experimental and theoretical investigation of cubic FeCo nanoparticles for magnetic hyperthermia
  publication-title: J. Appl. Phys.
– volume: 95
  start-page: 043106
  year: 2009
  ident: bib16
  article-title: Magnetic dead layer in ferromagnetic manganite nanoparticles
  publication-title: J. Appl. Phys. Lett.
– volume: 2
  start-page: 194
  year: 2005
  end-page: 205
  ident: bib48
  article-title: Iron oxide nanoparticles for sustained delivery of anticancer agents
  publication-title: J. Mol. Pharm.
– volume: 103
  start-page: 317
  year: 2011
  end-page: 324
  ident: bib82
  article-title: Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme
  publication-title: J. Neuro-Oncology
– volume: 29
  start-page: 715
  year: 2013
  end-page: 729
  ident: bib21
  article-title: Physics of heat generation using magnetic nanoparticles for hyperthermia
  publication-title: J. Int. J. Hyperth.
– volume: 17
  start-page: 603
  year: 2006
  end-page: 609
  ident: bib23
  article-title: Synthesis and grafting of thioctic acid− PEG− folate conjugates onto Au nanoparticles for selective targeting of folate receptor-positive tumor cells
  publication-title: J. Bioconjugate Chem.
– volume: 23
  start-page: 1553
  year: 2002
  end-page: 1561
  ident: bib124
  article-title: Surface modification of superparamagnetic magnetite nanoparticles and their intracellular uptake
  publication-title: J. Biomater.
– volume: 92
  start-page: 726
  year: 2013
  end-page: 732
  ident: bib26
  article-title: Dextran stabilized iron oxide nanoparticles: synthesis, characterization and in vitro studies
  publication-title: J. Carbohydr. Polym.
– volume: 48
  start-page: 1320
  year: 2012
  end-page: 1323
  ident: bib8
  article-title: Size-dependent mechanisms in AC magnetic hyperthermia response of iron-oxide nanoparticles
  publication-title: J. IEEE Trans. Magnetics.
– volume: 42
  start-page: 1638
  year: 2006
  end-page: 1642
  ident: bib79
  article-title: Theoretical assessment of FePt nanoparticles as heating elements for magnetic hyperthermia
  publication-title: J. IEEE Trans. Magnetics
– volume: 82
  start-page: 269
  year: 1999
  end-page: 280
  ident: bib115
  article-title: The past, present, and future of ferrites
  publication-title: J. Am. Ceram. Soc.
– volume: 94
  start-page: 3520
  year: 2003
  end-page: 3528
  ident: bib35
  article-title: Static and dynamic magnetic properties of spherical magnetite nanoparticles
  publication-title: J. Appl. Phys.
– volume: 42
  start-page: 290
  year: 2008
  end-page: 300
  ident: bib44
  article-title: Synthesis, characterization and MRI application of dextran-coated Fe
  publication-title: J. Biochem. Eng. J.
– volume: 187
  start-page: 012069
  year: 2009
  ident: bib77
  article-title: Magnetic fluid based on Fe
  publication-title: J. Phys. Conf. Ser.
– volume: 8
  start-page: 214
  year: 2006
  end-page: 222
  ident: bib87
  article-title: Nanoparticle imaging of integrins on tumor cells
  publication-title: J. Neoplasia
– volume: 419
  start-page: 572
  year: 2016
  end-page: 579
  ident: bib107
  article-title: Effect of bismuth doping on the structural and magnetic properties of zinc-ferrite nanoparticles prepared by a microwave combustion method
  publication-title: J. Magnetism Magnetic Mater.
– volume: 42
  start-page: 1249
  year: 2013
  end-page: 1258
  ident: bib60
  article-title: Induction heating studies of dextran coated MgFe
  publication-title: J. Dalton Trans.
– volume: 81
  start-page: 5552
  year: 1997
  end-page: 5557
  ident: bib67
  article-title: Surface spin disorder in ferrite nanoparticles
  publication-title: J. Appl. Phys.
– volume: 288
  start-page: 470
  year: 2005
  end-page: 477
  ident: bib5
  article-title: Effect of zinc substitution on Co–Zn and Mn–Zn ferrite nanoparticles prepared by co-precipitation
  publication-title: J. Magnetism Magnetic Mater.
– volume: 354
  start-page: 163
  year: 2014
  end-page: 172
  ident: bib18
  article-title: Evans. Heating efficiency in magnetic nanoparticle hyperthermia
  publication-title: J. Magnetism Magnetic Mater.
– volume: 75
  start-page: 947
  year: 2017
  end-page: 956
  ident: bib105
  article-title: High impact of in situ dextran coating on biocompatibility, stability and magnetic properties of iron oxide nanoparticles
  publication-title: J. Mater. Sci. Eng. C
– volume: 345
  start-page: 18
  year: 2013
  end-page: 23
  ident: bib2
  article-title: Magnetic and structural properties of RE doped Co-ferrite (REåNd, Eu, and Gd) nano-particles synthesized by co-precipitation
  publication-title: J. Magnetism Magnetic Mater.
– volume: 29
  start-page: 706
  year: 2013
  end-page: 714
  ident: bib68
  publication-title: Int. J. Hyperth.
– volume: 19
  start-page: 6274
  year: 2009
  end-page: 6293
  ident: bib100
  article-title: Superparamagnetic iron oxide nanoparticles: from preparations to in vivo MRI applications
  publication-title: J. Mater. Chem.
– volume: 97
  start-page: 10Q916
  year: 2005
  ident: bib33
  article-title: Preparation and investigation of potentiality of different soft ferrites for hyperthermia applications
  publication-title: J. Appl. Phys.
– volume: 383
  start-page: 1
  year: 2011
  end-page: 5
  ident: bib20
  article-title: A simple model for the size and shape dependent Curie temperature of freestanding Ni and Fe nanoparticles based on the average coordination number and atomic cohesive energy
  publication-title: J. Chem. Phys.
– volume: 103
  start-page: 07A307
  year: 2008
  ident: bib36
  article-title: Evaluation of iron-cobalt/ferrite core-shell nanoparticles for cancer thermotherapy
  publication-title: J. Appl. Phys.
– volume: 129
  start-page: 51
  year: 2007
  end-page: 65
  ident: bib85
  article-title: An overview of the structure and magnetism of spinel ferrite nanoparticles and their synthesis in microemulsions
  publication-title: J. Chem. Eng. J.
– volume: 8
  start-page: 2836
  year: 2008
  end-page: 2857
  ident: bib64
  article-title: Superparamagnetism and other magnetic features in granular materials: a review on ideal and real systems
  publication-title: J. Nanosci. Nanotechnol.
– volume: 89
  start-page: 775
  year: 1998
  end-page: 782
  ident: bib123
  article-title: Antitumor immunity induction by intracellular hyperthermia using magnetite cationic liposomes
  publication-title: J. Cancer Sci.
– volume: 159
  start-page: 375
  year: 1996
  end-page: 380
  ident: bib69
  article-title: Magnetic properties of copper ferrite aluminates
  publication-title: J. Magnetism Magnetic Mater.
– volume: 288
  start-page: 149
  year: 2014
  end-page: 157
  ident: bib106
  article-title: Magnetic chitosan nanocomposite for hyperthermia therapy application: preparation, characterization and in vitro experiments
  publication-title: J. Appl. Surf. Sci.
– volume: 37
  start-page: 1
  year: 2009
  end-page: 14
  ident: bib99
  article-title: Search of new core materials for magnetic fluid hyperthermia: preliminary chemical and physical issues
  publication-title: J. Prog. Solid State Chem.
– volume: 14
  start-page: 1659
  year: 2014
  end-page: 1664
  ident: bib6
  article-title: Nanostructural, magnetic and electrical properties of Ag doped Mn-ferrite nanoparticles
  publication-title: J. Curr. Appl. Phys.
– volume: 375
  start-page: 71
  year: 2016
  end-page: 78
  ident: bib58
  article-title: Positron annihilation and magnetic properties studies of copper substituted nickel ferrite nanoparticles
  publication-title: J. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms
– volume: 63
  start-page: 663
  year: 2016
  end-page: 670
  ident: bib83
  article-title: Facile microwave synthetic route for ferrite nanoparticles with direct impact in magnetic particle hyperthermia
  publication-title: J. Mater. Sci. Eng. C
– volume: 146
  start-page: 224
  year: 2014
  end-page: 229
  ident: bib119
  article-title: Effect of Al-ion substitution on structural and magnetic properties of Co–Ni ferrites nanoparticles prepared via citrate precursor method
  publication-title: J. Mater. Chem. Phys.
– volume: 65
  start-page: 183
  year: 2015
  end-page: 194
  ident: bib121
  article-title: Structural and magnetic study of Al
  publication-title: J. Mater. Res. Bull.
– volume: 311
  start-page: 228
  year: 2007
  end-page: 233
  ident: bib125
  article-title: Magnetite ferrofluid with high specific absorption rate for application in hyperthermia
  publication-title: J. Magnetism Magnetic Mater.
– volume: 1861
  start-page: 1642
  year: 2017
  end-page: 1651
  ident: bib3
  article-title: Magnetic nanoparticles: a multifunctional vehicle for modern theranostics
  publication-title: J. Biochimica Biophysica Acta (BBA)-General Subj.
– volume: 23
  start-page: 45
  year: 2015
  ident: bib59
  article-title: The impact of polymer coatings on magnetite nanoparticles performance as MRI contrast agents: a comparative study
  publication-title: DARU J. Pharm. Sci.
– volume: 278
  start-page: 189
  year: 2015
  end-page: 195
  ident: bib95
  article-title: Structural, magnetic and magnetocaloric properties of Zn
  publication-title: J. Powder Technol.
– volume: 496
  start-page: 191
  year: 2015
  end-page: 218
  ident: bib57
  article-title: Recent advances in superparamagnetic iron oxide nanoparticles (SPIONs) for in vitro and in vivo cancer nanotheranostics
  publication-title: J. Int. J. Pharm.
– start-page: 309
  year: 2012
  end-page: 335
  ident: bib19
  article-title: Hyperthermia using inorganic nanoparticles
  publication-title: Frontiers of Nanoscience
– volume: 65
  start-page: 622
  year: 2013
  end-page: 648
  ident: bib91
  article-title: Kim, SSurface engineering of inorganic nanoparticles for imaging and therapy
  publication-title: J. Adv. drug Deliv. Rev.
– volume: 31
  start-page: 70
  year: 1984
  end-page: 75
  ident: bib7
  article-title: Usable frequencies in hyperthermia with thermal seeds
  publication-title: J. Biomed. Eng. IEEE Trans.
– volume: 8
  start-page: 1747
  year: 1982
  end-page: 1756
  ident: bib94
  article-title: Hyperthermia by magnetic induction: I. Physical characteristics of the technique
  publication-title: J. Radiat. Oncology*Biology*Physics
– volume: 691
  start-page: 130
  year: 2017
  end-page: 137
  ident: bib25
  article-title: Structural and magnetic influence of yttrium-for-iron substitution in cobalt ferrite
  publication-title: J. Alloys Compd.
– volume: 321
  start-page: 1509
  year: 2009
  end-page: 1513
  ident: bib55
  article-title: Suitability of commercial colloids for magnetic hyperthermia
  publication-title: J. Magnetism Magnetic Mater.
– volume: 419
  start-page: 533
  year: 2016
  end-page: 542
  ident: bib104
  article-title: Water dispersible superparamagnetic Cobalt iron oxide nanoparticles for magnetic fluid hyperthermia
  publication-title: J. Magnetism Magnetic Mater.
– volume: 350
  start-page: 124
  year: 2014
  end-page: 128
  ident: bib28
  article-title: Synthesis and characterization of Mg
  publication-title: J. Magnetism Magnetic Mater.
– volume: 7
  start-page: 2052
  year: 2011
  end-page: 2060
  ident: bib63
  article-title: Tumor targeting and imaging using cyclic RGD-PEGylated Gold nanoparticle probes with directly conjugated Iodine-125
  publication-title: J. Small.
– volume: 6
  start-page: 418
  year: 2011
  end-page: 422
  ident: bib72
  article-title: Exchange-coupled magnetic nanoparticles for efficient heat induction
  publication-title: J. Nat. Nano
– volume: 5
  start-page: 213
  year: 2010
  end-page: 230
  ident: bib116
  article-title: Functionalisation of nanoparticles for biomedical applications
  publication-title: J. Nano Today
– volume: 5
  start-page: 63
  year: 2015
  end-page: 89
  ident: bib93
  article-title: Magnetic properties of magnetic nanoparticles for efficient hyperthermia
  publication-title: J. Nanomater.
– volume: 14
  start-page: 2161
  year: 2004
  end-page: 2175
  ident: bib88
  article-title: Magnetic nanoparticle design for medical diagnosis and therapy
  publication-title: J. Mater. Chem.
– volume: 601
  start-page: 116
  year: 2014
  end-page: 119
  ident: bib46
  article-title: Synthesis of super paramagnetic particles of Mn
  publication-title: J. Alloys Compd.
– volume: 364
  start-page: 72
  year: 2014
  end-page: 79
  ident: bib4
  article-title: Monodisperse sodium oleate coated magnetite high susceptibility nanoparticles for hyperthermia applications
  publication-title: J. Magnetism Magnetic Mater.
– volume: 59
  start-page: 6321
  year: 1999
  ident: bib66
  article-title: Atomic-scale magnetic modeling of oxide nanoparticles
  publication-title: J. Phys. Rev. B
– volume: 65
  start-page: 732
  year: 2013
  end-page: 743
  ident: bib122
  article-title: New forms of superparamagnetic nanoparticles for biomedical applications
  publication-title: J. Adv. Drug Deliv. Rev.
– volume: 384
  start-page: 335
  year: 2015
  end-page: 343
  ident: bib61
  article-title: Improved magnetic induction heating of nanoferrites for hyperthermia applications: correlation with colloidal stability and magneto-structural properties
  publication-title: J. Magnetism Magnetic Mater.
– volume: 16
  start-page: 1
  year: 2014
  end-page: 7
  ident: bib13
  article-title: Size dependent heating ability of CoFe
  publication-title: J. Nanoparticle Res.
– year: 2017
  ident: bib113
  article-title: Tailoring La
  publication-title: J. Mater. Chem. B
– volume: 13
  start-page: 587
  year: 1997
  end-page: 605
  ident: bib52
  article-title: Effects of magnetic fluid hyperthermia (MFH) on C3H mammary carcinoma in vivo
  publication-title: Int. J. Hyperth.
– volume: 19
  start-page: 474
  year: 2014
  end-page: 481
  ident: bib108
  article-title: Magnetic nanoparticles: a novel platform for cancer theranostics
  publication-title: J. Drug Discov. Today
– start-page: 125
  year: 1988
  ident: bib98
  article-title: Modern Bioelectricity
– volume: 201
  start-page: 413
  year: 1999
  end-page: 419
  ident: bib53
  article-title: Magnetic fluid hyperthermia (MFH): cancer treatment with AC magnetic field induced excitation of biocompatible superparamagnetic nanoparticles
  publication-title: J. Magnetism Magnetic Mater.
– volume: 13
  start-page: 1237
  year: 2011
  end-page: 1252
  ident: bib56
  article-title: The magnetic and hyperthermia studies of bare and silica-coated La
  publication-title: J. Nanoparticle Res.
– year: 2011
  ident: bib15
  article-title: Introduction to Magnetic Materials
– volume: 6
  start-page: 11553
  year: 2014
  end-page: 11573
  ident: bib43
  article-title: Magnetic nanoparticle-based therapeutic agents for thermo-chemotherapy treatment of cancer
  publication-title: J. Nanoscale
– volume: 42
  start-page: 224002
  year: 2009
  ident: bib102
  article-title: Progress in the preparation of magnetic nanoparticles for applications in biomedicine
  publication-title: J. Phys. D Appl. Phys.
– volume: 166
  start-page: 8
  year: 2011
  end-page: 23
  ident: bib71
  article-title: Magnetic fluid hyperthermia: focus on superparamagnetic iron oxide nanoparticles
  publication-title: J. Adv. Colloid Interface Sci.
– volume: 343
  start-page: 21
  year: 2013
  end-page: 26
  ident: bib80
  article-title: Mössbauer and magnetization studies of nickel ferrite nanoparticles synthesized by the microwave-combustion method
  publication-title: J. Magnetism Magnetic Mater.
– volume: 311
  start-page: 197
  year: 2007
  end-page: 203
  ident: bib70
  article-title: Local radiofrequency-induced hyperthermia using CuNi nanoparticles with therapeutically suitable Curie temperature
  publication-title: J. Magnetism Magnetic Mater.
– volume: 62
  start-page: 126
  year: 2010
  end-page: 143
  ident: bib29
  article-title: From iron oxide nanoparticles towards advanced iron-based inorganic materials designed for biomedical applications
  publication-title: J. Pharmacol. Res.
– volume: 252
  start-page: 370
  year: 2002
  end-page: 374
  ident: bib103
  article-title: Heating magnetic fluid with alternating magnetic field
  publication-title: J. Magnetism Magnetic Mater.
– volume: 102
  start-page: 860
  year: 2014
  end-page: 868
  ident: bib86
  article-title: In vitro and in vivo experiments with iron oxide nanoparticles functionalized with DEXTRAN or polyethylene glycol for medical applications: magnetic targeting
  publication-title: J. Biomed. Mater. Res. Part B Appl. Biomaterials
– volume: 42
  start-page: 1638
  year: 2006
  ident: 10.1016/j.pbiomolbio.2017.10.001_bib79
  article-title: Theoretical assessment of FePt nanoparticles as heating elements for magnetic hyperthermia
  publication-title: J. IEEE Trans. Magnetics
  doi: 10.1109/TMAG.2006.872198
– volume: 18
  start-page: S2919
  year: 2006
  ident: 10.1016/j.pbiomolbio.2017.10.001_bib41
  article-title: Magnetic particle hyperthermia: nanoparticle magnetism and materials development for cancer therapy
  publication-title: J. Phys. Condens. Matter
  doi: 10.1088/0953-8984/18/38/S26
– volume: 6
  start-page: 11553
  year: 2014
  ident: 10.1016/j.pbiomolbio.2017.10.001_bib43
  article-title: Magnetic nanoparticle-based therapeutic agents for thermo-chemotherapy treatment of cancer
  publication-title: J. Nanoscale
  doi: 10.1039/C4NR03482A
– volume: 202
  start-page: 1
  year: 2009
  ident: 10.1016/j.pbiomolbio.2017.10.001_bib32
  article-title: Biodistribution of fluoresceinated dextran using novel nanoparticles evading reticuloendothelial system
  publication-title: Int. J. Pharm.
  doi: 10.1016/S0378-5173(99)00447-0
– volume: 101
  start-page: 09M516
  year: 2007
  ident: 10.1016/j.pbiomolbio.2017.10.001_bib62
  article-title: Reduced magnetization in magnetic oxide nanoparticles
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.2712825
– volume: 691
  start-page: 130
  year: 2017
  ident: 10.1016/j.pbiomolbio.2017.10.001_bib25
  article-title: Structural and magnetic influence of yttrium-for-iron substitution in cobalt ferrite
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2016.08.223
– volume: 65
  start-page: 622
  year: 2013
  ident: 10.1016/j.pbiomolbio.2017.10.001_bib91
  article-title: Kim, SSurface engineering of inorganic nanoparticles for imaging and therapy
  publication-title: J. Adv. drug Deliv. Rev.
  doi: 10.1016/j.addr.2012.08.015
– volume: 41
  start-page: 7529
  year: 2015
  ident: 10.1016/j.pbiomolbio.2017.10.001_bib27
  article-title: Preparation of ZnFe2O4–chitosan-doxorubicin hydrochloride nanoparticles and investigation of their hyperthermic heat-generating characteristics
  publication-title: J. Ceram. Int.
  doi: 10.1016/j.ceramint.2015.02.075
– volume: 104
  start-page: 40
  year: 2013
  ident: 10.1016/j.pbiomolbio.2017.10.001_bib117
  article-title: Functionalization of La0.7Sr0.3MnO3 nanoparticles with polymer: studies on enhanced hyperthermia and biocompatibility properties for biomedical applications
  publication-title: J. Colloids Surfaces B Biointerfaces
  doi: 10.1016/j.colsurfb.2012.11.028
– volume: 21
  start-page: 015706
  year: 2009
  ident: 10.1016/j.pbiomolbio.2017.10.001_bib42
  article-title: Validity limits of the Néel relaxation model of magnetic nanoparticles for hyperthermia
  publication-title: J. Nanotechnol.
  doi: 10.1088/0957-4484/21/1/015706
– volume: 102
  start-page: 860
  year: 2014
  ident: 10.1016/j.pbiomolbio.2017.10.001_bib86
  article-title: In vitro and in vivo experiments with iron oxide nanoparticles functionalized with DEXTRAN or polyethylene glycol for medical applications: magnetic targeting
  publication-title: J. Biomed. Mater. Res. Part B Appl. Biomaterials
  doi: 10.1002/jbm.b.33068
– volume: 65
  start-page: 183
  year: 2015
  ident: 10.1016/j.pbiomolbio.2017.10.001_bib121
  article-title: Structural and magnetic study of Al3+ doped Ni0.75Zn0.25Fe2−xAlxO4 nanoferrites
  publication-title: J. Mater. Res. Bull.
  doi: 10.1016/j.materresbull.2015.01.033
– volume: 354
  start-page: 163
  year: 2014
  ident: 10.1016/j.pbiomolbio.2017.10.001_bib18
  article-title: Evans. Heating efficiency in magnetic nanoparticle hyperthermia
  publication-title: J. Magnetism Magnetic Mater.
  doi: 10.1016/j.jmmm.2013.11.006
– volume: 17
  start-page: 1451
  year: 2007
  ident: 10.1016/j.pbiomolbio.2017.10.001_bib11
  article-title: Size and shape effects on Curie temperature of ferromagnetic nanoparticles
  publication-title: J. Trans. Nonferrous Metals Soc. China
  doi: 10.1016/S1003-6326(07)60293-3
– volume: 2013
  start-page: 1
  year: 2013
  ident: 10.1016/j.pbiomolbio.2017.10.001_bib84
  article-title: Recent advances in understanding magnetic nanoparticles in AC magnetic fields and optimal design for targeted hyperthermia
  publication-title: J. Nanomater.
  doi: 10.1155/2013/752973
– volume: 122
  start-page: 383
  year: 1993
  ident: 10.1016/j.pbiomolbio.2017.10.001_bib96
  article-title: Colloidal magnetic resonance contrast agents: effect of particle surface on biodistribution
  publication-title: J. Magnetism Magnetic Mater.
  doi: 10.1016/0304-8853(93)91115-N
– volume: 19
  start-page: 6274
  year: 2009
  ident: 10.1016/j.pbiomolbio.2017.10.001_bib100
  article-title: Superparamagnetic iron oxide nanoparticles: from preparations to in vivo MRI applications
  publication-title: J. Mater. Chem.
  doi: 10.1039/b902394a
– volume: 288
  start-page: 149
  year: 2014
  ident: 10.1016/j.pbiomolbio.2017.10.001_bib106
  article-title: Magnetic chitosan nanocomposite for hyperthermia therapy application: preparation, characterization and in vitro experiments
  publication-title: J. Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2013.09.169
– volume: 419
  start-page: 572
  year: 2016
  ident: 10.1016/j.pbiomolbio.2017.10.001_bib107
  article-title: Effect of bismuth doping on the structural and magnetic properties of zinc-ferrite nanoparticles prepared by a microwave combustion method
  publication-title: J. Magnetism Magnetic Mater.
  doi: 10.1016/j.jmmm.2016.06.080
– volume: 48
  start-page: 1320
  year: 2012
  ident: 10.1016/j.pbiomolbio.2017.10.001_bib8
  article-title: Size-dependent mechanisms in AC magnetic hyperthermia response of iron-oxide nanoparticles
  publication-title: J. IEEE Trans. Magnetics.
  doi: 10.1109/TMAG.2011.2173474
– volume: 97
  start-page: 10Q916
  year: 2005
  ident: 10.1016/j.pbiomolbio.2017.10.001_bib33
  article-title: Preparation and investigation of potentiality of different soft ferrites for hyperthermia applications
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1855131
– volume: 42
  start-page: 1249
  year: 2013
  ident: 10.1016/j.pbiomolbio.2017.10.001_bib60
  article-title: Induction heating studies of dextran coated MgFe2O4 nanoparticles for magnetic hyperthermia
  publication-title: J. Dalton Trans.
  doi: 10.1039/C2DT31114C
– volume: 278
  start-page: 189
  year: 2015
  ident: 10.1016/j.pbiomolbio.2017.10.001_bib95
  article-title: Structural, magnetic and magnetocaloric properties of Zn0.6 − xNixCu0.4Fe2O4 ferrite nanoparticles prepared by Pechini sol-gel method
  publication-title: J. Powder Technol.
  doi: 10.1016/j.powtec.2015.03.022
– volume: 39
  start-page: 487
  year: 2016
  ident: 10.1016/j.pbiomolbio.2017.10.001_bib110
  article-title: Preparation of manganese-based perovskite nanoparticles using a reverse microemulsion method: biomedical applications
  publication-title: J. Bull. Mater. Sci.
– volume: 7
  start-page: 065503
  year: 2014
  ident: 10.1016/j.pbiomolbio.2017.10.001_bib118
  article-title: Magnetic heating by silica-coated Co–Zn ferrite particles
  publication-title: J. Phys. D. Appl. Phys.
  doi: 10.1088/0022-3727/47/6/065503
– volume: 201
  start-page: 413
  year: 1999
  ident: 10.1016/j.pbiomolbio.2017.10.001_bib53
  article-title: Magnetic fluid hyperthermia (MFH): cancer treatment with AC magnetic field induced excitation of biocompatible superparamagnetic nanoparticles
  publication-title: J. Magnetism Magnetic Mater.
  doi: 10.1016/S0304-8853(99)00088-8
– volume: 63
  start-page: 663
  year: 2016
  ident: 10.1016/j.pbiomolbio.2017.10.001_bib83
  article-title: Facile microwave synthetic route for ferrite nanoparticles with direct impact in magnetic particle hyperthermia
  publication-title: J. Mater. Sci. Eng. C
  doi: 10.1016/j.msec.2016.03.033
– volume: 321
  start-page: 1509
  year: 2009
  ident: 10.1016/j.pbiomolbio.2017.10.001_bib55
  article-title: Suitability of commercial colloids for magnetic hyperthermia
  publication-title: J. Magnetism Magnetic Mater.
  doi: 10.1016/j.jmmm.2009.02.075
– volume: 64
  start-page: 290
  year: 2012
  ident: 10.1016/j.pbiomolbio.2017.10.001_bib114
  article-title: Long circulating microparticulate drug carriers
  publication-title: J. Adv. drug Deliv. Rev.
  doi: 10.1016/j.addr.2012.09.029
– volume: 35
  start-page: 446
  year: 2006
  ident: 10.1016/j.pbiomolbio.2017.10.001_bib1
  article-title: Targeting cancer cells: magnetic nanoparticles as drug carriers
  publication-title: J. Eur. Biophysics J.
  doi: 10.1007/s00249-006-0042-1
– volume: 343
  start-page: 21
  year: 2013
  ident: 10.1016/j.pbiomolbio.2017.10.001_bib80
  article-title: Mössbauer and magnetization studies of nickel ferrite nanoparticles synthesized by the microwave-combustion method
  publication-title: J. Magnetism Magnetic Mater.
  doi: 10.1016/j.jmmm.2013.04.064
– volume: 427
  start-page: 241
  year: 2017
  ident: 10.1016/j.pbiomolbio.2017.10.001_bib49
  article-title: Synthesis, characterization and hemolysis studies of Zn(1−x)CaxFe2O4 ferrites synthesized by sol-gel for hyperthermia treatment applications
  publication-title: J. Magnetism Magnetic Mater.
  doi: 10.1016/j.jmmm.2016.10.099
– volume: 288
  start-page: 470
  year: 2005
  ident: 10.1016/j.pbiomolbio.2017.10.001_bib5
  article-title: Effect of zinc substitution on Co–Zn and Mn–Zn ferrite nanoparticles prepared by co-precipitation
  publication-title: J. Magnetism Magnetic Mater.
  doi: 10.1016/j.jmmm.2004.09.138
– volume: 29
  start-page: 715
  year: 2013
  ident: 10.1016/j.pbiomolbio.2017.10.001_bib21
  article-title: Physics of heat generation using magnetic nanoparticles for hyperthermia
  publication-title: J. Int. J. Hyperth.
  doi: 10.3109/02656736.2013.836758
– volume: 601
  start-page: 116
  year: 2014
  ident: 10.1016/j.pbiomolbio.2017.10.001_bib46
  article-title: Synthesis of super paramagnetic particles of Mn1−xMgxFe2O4 ferrites for hyperthermia applications
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2014.02.138
– volume: 6
  start-page: 1342
  year: 2011
  ident: 10.1016/j.pbiomolbio.2017.10.001_bib65
  article-title: Cancer hyperthermia using magnetic nanoparticles
  publication-title: J. Biotechnol.
– volume: 311
  start-page: 197
  year: 2007
  ident: 10.1016/j.pbiomolbio.2017.10.001_bib70
  article-title: Local radiofrequency-induced hyperthermia using CuNi nanoparticles with therapeutically suitable Curie temperature
  publication-title: J. Magnetism Magnetic Mater.
  doi: 10.1016/j.jmmm.2006.11.199
– volume: 187
  start-page: 012069
  year: 2009
  ident: 10.1016/j.pbiomolbio.2017.10.001_bib77
  article-title: Magnetic fluid based on Fe3O4 nanoparticles: preparation and hyperthermia application
  publication-title: J. Phys. Conf. Ser.
  doi: 10.1088/1742-6596/187/1/012069
– volume: 419
  start-page: 533
  year: 2016
  ident: 10.1016/j.pbiomolbio.2017.10.001_bib104
  article-title: Water dispersible superparamagnetic Cobalt iron oxide nanoparticles for magnetic fluid hyperthermia
  publication-title: J. Magnetism Magnetic Mater.
  doi: 10.1016/j.jmmm.2016.06.057
– volume: 379
  start-page: 208
  year: 2015
  ident: 10.1016/j.pbiomolbio.2017.10.001_bib89
  article-title: The effect of yttrium substitution on the magnetic properties of magnetite nanoparticles
  publication-title: J. Magnetism Magnetic Mater.
  doi: 10.1016/j.jmmm.2014.11.061
– volume: 23
  start-page: 1553
  year: 2002
  ident: 10.1016/j.pbiomolbio.2017.10.001_bib124
  article-title: Surface modification of superparamagnetic magnetite nanoparticles and their intracellular uptake
  publication-title: J. Biomater.
  doi: 10.1016/S0142-9612(01)00267-8
– volume: 146
  start-page: 224
  year: 2014
  ident: 10.1016/j.pbiomolbio.2017.10.001_bib119
  article-title: Effect of Al-ion substitution on structural and magnetic properties of Co–Ni ferrites nanoparticles prepared via citrate precursor method
  publication-title: J. Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2014.02.047
– volume: 384
  start-page: 335
  year: 2015
  ident: 10.1016/j.pbiomolbio.2017.10.001_bib61
  article-title: Improved magnetic induction heating of nanoferrites for hyperthermia applications: correlation with colloidal stability and magneto-structural properties
  publication-title: J. Magnetism Magnetic Mater.
  doi: 10.1016/j.jmmm.2015.03.039
– volume: 16
  start-page: 1
  year: 2014
  ident: 10.1016/j.pbiomolbio.2017.10.001_bib13
  article-title: Size dependent heating ability of CoFe2O4 nanoparticles in AC magnetic field for magnetic nanofluid hyperthermia
  publication-title: J. Nanoparticle Res.
  doi: 10.1007/s11051-014-2321-6
– volume: 59
  start-page: 6321
  year: 1999
  ident: 10.1016/j.pbiomolbio.2017.10.001_bib66
  article-title: Atomic-scale magnetic modeling of oxide nanoparticles
  publication-title: J. Phys. Rev. B
  doi: 10.1103/PhysRevB.59.6321
– volume: 13
  start-page: 1237
  year: 2011
  ident: 10.1016/j.pbiomolbio.2017.10.001_bib56
  article-title: The magnetic and hyperthermia studies of bare and silica-coated La0.75Sr0.25MnO3 nanoparticles
  publication-title: J. Nanoparticle Res.
  doi: 10.1007/s11051-010-0117-x
– volume: 38
  start-page: 1633
  year: 2015
  ident: 10.1016/j.pbiomolbio.2017.10.001_bib109
  article-title: Heating ability and biocompatibility study of silica-coated magnetic nanoparticles as heating mediators for magnetic hyperthermia and magnetically triggered drug delivery systems
  publication-title: J. Bull. Mater. Sci.
– volume: 37
  start-page: 1
  year: 2009
  ident: 10.1016/j.pbiomolbio.2017.10.001_bib99
  article-title: Search of new core materials for magnetic fluid hyperthermia: preliminary chemical and physical issues
  publication-title: J. Prog. Solid State Chem.
  doi: 10.1016/j.progsolidstchem.2009.02.001
– volume: 8
  start-page: 1747
  year: 1982
  ident: 10.1016/j.pbiomolbio.2017.10.001_bib94
  article-title: Hyperthermia by magnetic induction: I. Physical characteristics of the technique
  publication-title: J. Radiat. Oncology*Biology*Physics
  doi: 10.1016/0360-3016(82)90297-8
– volume: 23
  start-page: 45
  year: 2015
  ident: 10.1016/j.pbiomolbio.2017.10.001_bib59
  article-title: The impact of polymer coatings on magnetite nanoparticles performance as MRI contrast agents: a comparative study
  publication-title: DARU J. Pharm. Sci.
  doi: 10.1186/s40199-015-0124-7
– volume: 63
  start-page: 184414
  year: 2001
  ident: 10.1016/j.pbiomolbio.2017.10.001_bib90
  article-title: Magnetic properties of ultrafine MnFe 2 O4 powders prepared by mechanochemical processing
  publication-title: J. Phys. Rev. B
  doi: 10.1103/PhysRevB.63.184414
– volume: 89
  start-page: 775
  year: 1998
  ident: 10.1016/j.pbiomolbio.2017.10.001_bib123
  article-title: Antitumor immunity induction by intracellular hyperthermia using magnetite cationic liposomes
  publication-title: J. Cancer Sci.
– volume: 392
  start-page: 91
  year: 2015
  ident: 10.1016/j.pbiomolbio.2017.10.001_bib17
  article-title: Investigations of superparamagnetism in magnesium ferrite nano-sphere synthesized by ultrasonic spray pyrolysis technique for hyperthermia application
  publication-title: J. Magnetism Magnetic Mater.
  doi: 10.1016/j.jmmm.2015.05.029
– volume: 8
  start-page: 214
  year: 2006
  ident: 10.1016/j.pbiomolbio.2017.10.001_bib87
  article-title: Nanoparticle imaging of integrins on tumor cells
  publication-title: J. Neoplasia
  doi: 10.1593/neo.05769
– volume: 383
  start-page: 1
  year: 2011
  ident: 10.1016/j.pbiomolbio.2017.10.001_bib20
  article-title: A simple model for the size and shape dependent Curie temperature of freestanding Ni and Fe nanoparticles based on the average coordination number and atomic cohesive energy
  publication-title: J. Chem. Phys.
– volume: 81
  start-page: 5552
  year: 1997
  ident: 10.1016/j.pbiomolbio.2017.10.001_bib67
  article-title: Surface spin disorder in ferrite nanoparticles
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.364659
– volume: 29
  start-page: 706
  year: 2013
  ident: 10.1016/j.pbiomolbio.2017.10.001_bib68
  publication-title: Int. J. Hyperth.
  doi: 10.3109/02656736.2013.837200
– volume: 194
  start-page: 185
  year: 1999
  ident: 10.1016/j.pbiomolbio.2017.10.001_bib54
  article-title: Endocytosis of dextran and silan-coated magnetite nanoparticles and the effect of intracellular hyperthermia on human mammary carcinoma cells in vitro
  publication-title: J. Magnetism Magnetic Mater.
  doi: 10.1016/S0304-8853(98)00558-7
– start-page: 125
  year: 1988
  ident: 10.1016/j.pbiomolbio.2017.10.001_bib98
– volume: 92
  start-page: 726
  year: 2013
  ident: 10.1016/j.pbiomolbio.2017.10.001_bib26
  article-title: Dextran stabilized iron oxide nanoparticles: synthesis, characterization and in vitro studies
  publication-title: J. Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2012.09.098
– volume: 7
  start-page: 2052
  year: 2011
  ident: 10.1016/j.pbiomolbio.2017.10.001_bib63
  article-title: Tumor targeting and imaging using cyclic RGD-PEGylated Gold nanoparticle probes with directly conjugated Iodine-125
  publication-title: J. Small.
  doi: 10.1002/smll.201100927
– volume: 1861
  start-page: 1642
  year: 2017
  ident: 10.1016/j.pbiomolbio.2017.10.001_bib3
  article-title: Magnetic nanoparticles: a multifunctional vehicle for modern theranostics
  publication-title: J. Biochimica Biophysica Acta (BBA)-General Subj.
  doi: 10.1016/j.bbagen.2017.02.022
– volume: 17
  start-page: 603
  year: 2006
  ident: 10.1016/j.pbiomolbio.2017.10.001_bib23
  article-title: Synthesis and grafting of thioctic acid− PEG− folate conjugates onto Au nanoparticles for selective targeting of folate receptor-positive tumor cells
  publication-title: J. Bioconjugate Chem.
  doi: 10.1021/bc050335b
– volume: 62
  start-page: 126
  year: 2010
  ident: 10.1016/j.pbiomolbio.2017.10.001_bib29
  article-title: From iron oxide nanoparticles towards advanced iron-based inorganic materials designed for biomedical applications
  publication-title: J. Pharmacol. Res.
  doi: 10.1016/j.phrs.2009.12.012
– volume: 532
  start-page: 123
  year: 2012
  ident: 10.1016/j.pbiomolbio.2017.10.001_bib45
  article-title: Study on increase in temperature of Co–Ti ferrite nanoparticles for magnetic hyperthermia treatment
  publication-title: J. Thermochim. Acta
  doi: 10.1016/j.tca.2011.02.012
– volume: 103
  start-page: 317
  year: 2011
  ident: 10.1016/j.pbiomolbio.2017.10.001_bib82
  article-title: Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme
  publication-title: J. Neuro-Oncology
  doi: 10.1007/s11060-010-0389-0
– volume: 2
  start-page: 194
  year: 2005
  ident: 10.1016/j.pbiomolbio.2017.10.001_bib48
  article-title: Iron oxide nanoparticles for sustained delivery of anticancer agents
  publication-title: J. Mol. Pharm.
– volume: 311
  start-page: 187
  year: 2007
  ident: 10.1016/j.pbiomolbio.2017.10.001_bib39
  article-title: Magnetic particle hyperthermia—biophysical limitations of a visionary tumour therapy
  publication-title: J. Magnetism Magnetic Mater.
  doi: 10.1016/j.jmmm.2006.10.1156
– volume: 688
  start-page: 413
  year: 2016
  ident: 10.1016/j.pbiomolbio.2017.10.001_bib22
  article-title: Influence of Al3+ doping on structural and magnetic properties of CoFe2-xAlxO4 Ferrite nanoparticles
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2016.07.030
– volume: 103
  start-page: 07A307
  year: 2008
  ident: 10.1016/j.pbiomolbio.2017.10.001_bib36
  article-title: Evaluation of iron-cobalt/ferrite core-shell nanoparticles for cancer thermotherapy
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.2830975
– volume: 149
  start-page: 532
  year: 2009
  ident: 10.1016/j.pbiomolbio.2017.10.001_bib14
  article-title: Lamellar-like structures in ferrofluids placed in strong magnetic fields
  publication-title: J. Solid State Commun.
  doi: 10.1016/j.ssc.2009.01.007
– volume: 496
  start-page: 191
  year: 2015
  ident: 10.1016/j.pbiomolbio.2017.10.001_bib57
  article-title: Recent advances in superparamagnetic iron oxide nanoparticles (SPIONs) for in vitro and in vivo cancer nanotheranostics
  publication-title: J. Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2015.10.058
– volume: 14
  start-page: 1659
  year: 2014
  ident: 10.1016/j.pbiomolbio.2017.10.001_bib6
  article-title: Nanostructural, magnetic and electrical properties of Ag doped Mn-ferrite nanoparticles
  publication-title: J. Curr. Appl. Phys.
  doi: 10.1016/j.cap.2014.09.025
– year: 2006
  ident: 10.1016/j.pbiomolbio.2017.10.001_bib34
– volume: 252
  start-page: 370
  year: 2002
  ident: 10.1016/j.pbiomolbio.2017.10.001_bib103
  article-title: Heating magnetic fluid with alternating magnetic field
  publication-title: J. Magnetism Magnetic Mater.
  doi: 10.1016/S0304-8853(02)00706-0
– volume: 95
  start-page: 043106
  year: 2009
  ident: 10.1016/j.pbiomolbio.2017.10.001_bib16
  article-title: Magnetic dead layer in ferromagnetic manganite nanoparticles
  publication-title: J. Appl. Phys. Lett.
  doi: 10.1063/1.3187538
– volume: 30
  start-page: 990
  year: 2010
  ident: 10.1016/j.pbiomolbio.2017.10.001_bib74
  article-title: Magnetite nanoparticles with high heating efficiencies for application in the hyperthermia of cancer
  publication-title: J. Mater. Sci. Eng. C
  doi: 10.1016/j.msec.2010.04.016
– volume: 94
  start-page: 3520
  year: 2003
  ident: 10.1016/j.pbiomolbio.2017.10.001_bib35
  article-title: Static and dynamic magnetic properties of spherical magnetite nanoparticles
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1599959
– volume: 27
  start-page: 719
  year: 2012
  ident: 10.1016/j.pbiomolbio.2017.10.001_bib120
  article-title: Anticancer effect and feasibility study of hyperthermia treatment of pancreatic cancer using magnetic nanoparticles
  publication-title: J. Oncol. Rep.
– volume: 321
  start-page: 3144
  year: 2009
  ident: 10.1016/j.pbiomolbio.2017.10.001_bib31
  article-title: Effect of Mg substitution on the magnetic properties of NiCuZn ferrite nanoparticles prepared through a novel method using egg white
  publication-title: J. Magnetism Magnetic Mater.
  doi: 10.1016/j.jmmm.2009.05.047
– volume: 493
  start-page: 313
  year: 2015
  ident: 10.1016/j.pbiomolbio.2017.10.001_bib76
  article-title: Magnetic nanoparticles: in vivo cancer diagnosis and therapy
  publication-title: J. Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2015.07.059
– volume: 5
  start-page: 63
  year: 2015
  ident: 10.1016/j.pbiomolbio.2017.10.001_bib93
  article-title: Magnetic properties of magnetic nanoparticles for efficient hyperthermia
  publication-title: J. Nanomater.
– volume: 82
  start-page: 269
  year: 1999
  ident: 10.1016/j.pbiomolbio.2017.10.001_bib115
  article-title: The past, present, and future of ferrites
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/j.1551-2916.1999.tb20058.x
– volume: 350
  start-page: 124
  year: 2014
  ident: 10.1016/j.pbiomolbio.2017.10.001_bib28
  article-title: Synthesis and characterization of Mg1+xFe2−2xTixO4 nanoparticles with an adjustable Curie point
  publication-title: J. Magnetism Magnetic Mater.
  doi: 10.1016/j.jmmm.2013.09.037
– volume: 166
  start-page: 8
  year: 2011
  ident: 10.1016/j.pbiomolbio.2017.10.001_bib71
  article-title: Magnetic fluid hyperthermia: focus on superparamagnetic iron oxide nanoparticles
  publication-title: J. Adv. Colloid Interface Sci.
  doi: 10.1016/j.cis.2011.04.003
– volume: 364
  start-page: 72
  year: 2014
  ident: 10.1016/j.pbiomolbio.2017.10.001_bib4
  article-title: Monodisperse sodium oleate coated magnetite high susceptibility nanoparticles for hyperthermia applications
  publication-title: J. Magnetism Magnetic Mater.
  doi: 10.1016/j.jmmm.2014.04.001
– volume: 37
  start-page: 693
  year: 2016
  ident: 10.1016/j.pbiomolbio.2017.10.001_bib111
  article-title: Synthesis of bilayer surfactant-coated magnetic nanoparticles for application in magnetic fluid hyperthermia
  publication-title: J. Dispersion Sci. Technol.
  doi: 10.1080/01932691.2015.1056531
– volume: 301
  start-page: 1112
  year: 2016
  ident: 10.1016/j.pbiomolbio.2017.10.001_bib92
  article-title: Controlled synthesis of monodisperse magnetite nanoparticles for hyperthermia-based treatments
  publication-title: J. Powder Technol.
  doi: 10.1016/j.powtec.2016.07.052
– volume: 345
  start-page: 18
  year: 2013
  ident: 10.1016/j.pbiomolbio.2017.10.001_bib2
  article-title: Magnetic and structural properties of RE doped Co-ferrite (REåNd, Eu, and Gd) nano-particles synthesized by co-precipitation
  publication-title: J. Magnetism Magnetic Mater.
  doi: 10.1016/j.jmmm.2013.05.030
– volume: 129
  start-page: 2628
  year: 2007
  ident: 10.1016/j.pbiomolbio.2017.10.001_bib30
  article-title: Size-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja067457e
– volume: 34
  start-page: 3745
  year: 1998
  ident: 10.1016/j.pbiomolbio.2017.10.001_bib40
  article-title: Physical limits of hyperthermia using magnetite fine particles
  publication-title: Magnetics. J. IEEE Trans.
  doi: 10.1109/20.718537
– start-page: 309
  year: 2012
  ident: 10.1016/j.pbiomolbio.2017.10.001_bib19
  article-title: Hyperthermia using inorganic nanoparticles
  doi: 10.1016/B978-0-12-415769-9.00013-3
– volume: 8
  start-page: 448
  year: 2007
  ident: 10.1016/j.pbiomolbio.2017.10.001_bib73
  article-title: Effect of aggregates on the magnetization property of ferrofluids: a model of gaslike compression
  publication-title: J. Sci. Technol. Adv. Mater.
  doi: 10.1016/j.stam.2007.04.007
– volume: 407
  start-page: 4338
  year: 2012
  ident: 10.1016/j.pbiomolbio.2017.10.001_bib38
  article-title: Substitutional effect of Cr3+ ions on the properties of Mg–Zn ferrite nanoparticles
  publication-title: J. Phys. B Condens. Matter
  doi: 10.1016/j.physb.2012.07.030
– volume: 375
  start-page: 71
  year: 2016
  ident: 10.1016/j.pbiomolbio.2017.10.001_bib58
  article-title: Positron annihilation and magnetic properties studies of copper substituted nickel ferrite nanoparticles
  publication-title: J. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms
  doi: 10.1016/j.nimb.2016.03.041
– volume: 16
  start-page: 82
  year: 1998
  ident: 10.1016/j.pbiomolbio.2017.10.001_bib10
  article-title: Low frequency hyperthermia: capacitive and ferromagnetic thermoseed methods
  publication-title: J. Med. Phys. Monogr.
– volume: 8
  start-page: 2836
  year: 2008
  ident: 10.1016/j.pbiomolbio.2017.10.001_bib64
  article-title: Superparamagnetism and other magnetic features in granular materials: a review on ideal and real systems
  publication-title: J. Nanosci. Nanotechnol.
  doi: 10.1166/jnn.2008.15348
– volume: 311
  start-page: 228
  year: 2007
  ident: 10.1016/j.pbiomolbio.2017.10.001_bib125
  article-title: Magnetite ferrofluid with high specific absorption rate for application in hyperthermia
  publication-title: J. Magnetism Magnetic Mater.
  doi: 10.1016/j.jmmm.2006.11.179
– volume: 6
  start-page: 418
  year: 2011
  ident: 10.1016/j.pbiomolbio.2017.10.001_bib72
  article-title: Exchange-coupled magnetic nanoparticles for efficient heat induction
  publication-title: J. Nat. Nano
– volume: 5
  start-page: 213
  year: 2010
  ident: 10.1016/j.pbiomolbio.2017.10.001_bib116
  article-title: Functionalisation of nanoparticles for biomedical applications
  publication-title: J. Nano Today
  doi: 10.1016/j.nantod.2010.05.003
– volume: 47
  start-page: 797
  year: 2015
  ident: 10.1016/j.pbiomolbio.2017.10.001_bib112
  article-title: Thermosensitive polymer-coated La0.73Sr0.27MnO3 nanoparticles: potential applications in cancer hyperthermia therapy and magnetically activated drug delivery systems
  publication-title: J. Polym J.
– volume: 42
  start-page: 290
  year: 2008
  ident: 10.1016/j.pbiomolbio.2017.10.001_bib44
  article-title: Synthesis, characterization and MRI application of dextran-coated Fe3O4 magnetic nanoparticles
  publication-title: J. Biochem. Eng. J.
  doi: 10.1016/j.bej.2008.07.009
– volume: 105
  start-page: 07B305
  year: 2009
  ident: 10.1016/j.pbiomolbio.2017.10.001_bib50
  article-title: Experimental and theoretical investigation of cubic FeCo nanoparticles for magnetic hyperthermia
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3074136
– volume: 42
  start-page: 224002
  year: 2009
  ident: 10.1016/j.pbiomolbio.2017.10.001_bib102
  article-title: Progress in the preparation of magnetic nanoparticles for applications in biomedicine
  publication-title: J. Phys. D Appl. Phys.
  doi: 10.1088/0022-3727/42/22/224002
– volume: 323
  start-page: 708
  year: 2011
  ident: 10.1016/j.pbiomolbio.2017.10.001_bib75
  article-title: Parametric investigation of heating due to magnetic fluid hyperthermia in a tumor with blood perfusion
  publication-title: J. Magnetism Magnetic Mater.
  doi: 10.1016/j.jmmm.2010.10.027
– volume: 31
  start-page: 70
  year: 1984
  ident: 10.1016/j.pbiomolbio.2017.10.001_bib7
  article-title: Usable frequencies in hyperthermia with thermal seeds
  publication-title: J. Biomed. Eng. IEEE Trans.
  doi: 10.1109/TBME.1984.325372
– volume: 19
  start-page: 474
  year: 2014
  ident: 10.1016/j.pbiomolbio.2017.10.001_bib108
  article-title: Magnetic nanoparticles: a novel platform for cancer theranostics
  publication-title: J. Drug Discov. Today
  doi: 10.1016/j.drudis.2013.10.005
– volume: 129
  start-page: 51
  year: 2007
  ident: 10.1016/j.pbiomolbio.2017.10.001_bib85
  article-title: An overview of the structure and magnetism of spinel ferrite nanoparticles and their synthesis in microemulsions
  publication-title: J. Chem. Eng. J.
– volume: 97
  start-page: 10A502
  year: 2005
  ident: 10.1016/j.pbiomolbio.2017.10.001_bib97
  article-title: Experimental investigation of superspin glass dynamics
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1850333
– volume: 29
  start-page: 581
  year: 2006
  ident: 10.1016/j.pbiomolbio.2017.10.001_bib24
  article-title: Towards a versatile platform based on magnetic nanoparticles for in vivo applications
  publication-title: J. Bull. Mater. Sci.
– volume: 127
  start-page: 11364
  year: 2005
  ident: 10.1016/j.pbiomolbio.2017.10.001_bib9
  article-title: Folate-receptor-mediated delivery of InP quantum dots for bioimaging using confocal and two-photon microscopy
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja051455x
– volume: 81
  start-page: 53
  year: 2007
  ident: 10.1016/j.pbiomolbio.2017.10.001_bib81
  article-title: Intracranial thermotherapy using magnetic nanoparticles combined with external beam radiotherapy: results of a feasibility study on patients with glioblastoma multiforme
  publication-title: J. Neuro-Oncology
  doi: 10.1007/s11060-006-9195-0
– volume: 553
  start-page: 1
  year: 2015
  ident: 10.1016/j.pbiomolbio.2017.10.001_bib78
  article-title: Nogués. Applications of exchange coupled bi-magnetic hard/soft and soft/hard magnetic core/shell nanoparticles
  publication-title: J. Phys. Rep.
  doi: 10.1016/j.physrep.2014.09.007
– volume: 368
  start-page: 207
  year: 2014
  ident: 10.1016/j.pbiomolbio.2017.10.001_bib101
  article-title: Progress in electrochemical synthesis of magnetic iron oxide nanoparticles
  publication-title: J. Magnetism Magnetic Mater.
  doi: 10.1016/j.jmmm.2014.05.015
– year: 2011
  ident: 10.1016/j.pbiomolbio.2017.10.001_bib15
– volume: 65
  start-page: 732
  year: 2013
  ident: 10.1016/j.pbiomolbio.2017.10.001_bib122
  article-title: New forms of superparamagnetic nanoparticles for biomedical applications
  publication-title: J. Adv. Drug Deliv. Rev.
  doi: 10.1016/j.addr.2012.10.008
– start-page: 2229
  year: 2014
  ident: 10.1016/j.pbiomolbio.2017.10.001_bib126
  article-title: Magnetic nanomaterials: conventional synthesis and properties
– volume: 26
  start-page: 790
  year: 2010
  ident: 10.1016/j.pbiomolbio.2017.10.001_bib51
  article-title: Magnetic nanoparticle hyperthermia for prostate cancer
  publication-title: Int. J. Hyperth.
  doi: 10.3109/02656731003745740
– volume: 13
  start-page: 587
  year: 1997
  ident: 10.1016/j.pbiomolbio.2017.10.001_bib52
  article-title: Effects of magnetic fluid hyperthermia (MFH) on C3H mammary carcinoma in vivo
  publication-title: Int. J. Hyperth.
  doi: 10.3109/02656739709023559
– volume: 75
  start-page: 947
  year: 2017
  ident: 10.1016/j.pbiomolbio.2017.10.001_bib105
  article-title: High impact of in situ dextran coating on biocompatibility, stability and magnetic properties of iron oxide nanoparticles
  publication-title: J. Mater. Sci. Eng. C
  doi: 10.1016/j.msec.2017.02.143
– volume: 159
  start-page: 375
  year: 1996
  ident: 10.1016/j.pbiomolbio.2017.10.001_bib69
  article-title: Magnetic properties of copper ferrite aluminates
  publication-title: J. Magnetism Magnetic Mater.
  doi: 10.1016/0304-8853(95)00943-4
– volume: 53
  start-page: 26
  year: 2004
  ident: 10.1016/j.pbiomolbio.2017.10.001_bib47
  article-title: Antitumor effects of combined therapy of recombinant heat shock protein 70 and hyperthermia using magnetic nanoparticles in an experimental subcutaneous murine melanoma
  publication-title: J. Cancer Immunol. Immunother.
  doi: 10.1007/s00262-003-0416-5
– volume: 14
  start-page: 2161
  year: 2004
  ident: 10.1016/j.pbiomolbio.2017.10.001_bib88
  article-title: Magnetic nanoparticle design for medical diagnosis and therapy
  publication-title: J. Mater. Chem.
  doi: 10.1039/b402025a
– year: 2017
  ident: 10.1016/j.pbiomolbio.2017.10.001_bib113
  article-title: Tailoring La1-xSrxMnO3 (0.25≤ x≤ 0.35) nanoparticles for self-regulating magnetic hyperthermia therapy; in vivo study
  publication-title: J. Mater. Chem. B
  doi: 10.1039/C7TB00922D
– volume: 416
  start-page: 315
  year: 2016
  ident: 10.1016/j.pbiomolbio.2017.10.001_bib37
  article-title: Zinc substituted ferrite nanoparticles with Zn0.9Fe2.1O4 formula used as heating agents for in vitro hyperthermia assay on glioma cells
  publication-title: J. Magnetism Magnetic Mater.
  doi: 10.1016/j.jmmm.2016.05.016
– volume: 109
  start-page: 083921
  year: 2011
  ident: 10.1016/j.pbiomolbio.2017.10.001_bib12
  article-title: Simple models for dynamic hysteresis loop calculations of magnetic single-domain nanoparticles: application to magnetic hyperthermia optimization
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3551582
SSID ssj0002176
Score 2.538047
SecondaryResourceType review_article
Snippet Magnetic nanoparticles as heat-generating nanosources in hyperthermia treatment are still faced with many drawbacks for achieving sufficient clinical...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 9
SubjectTerms Animals
Curie temperature
Ferrite nanoparticles
Heat generation mechanisms
Hot Temperature
Humans
Hyperthermia, Induced - methods
Magnetic hyperthermia therapy (MHT)
Magnetic Phenomena
Magnets - chemistry
Nanoparticles
Specific loss power (SLP)
Superparamagnetic
Title Physics responsible for heating efficiency and self-controlled temperature rise of magnetic nanoparticles in magnetic hyperthermia therapy
URI https://dx.doi.org/10.1016/j.pbiomolbio.2017.10.001
https://www.ncbi.nlm.nih.gov/pubmed/28993133
https://www.proquest.com/docview/1949693938
Volume 133
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA6iCF7Et-uLCF6r5rHbBk_LoqyKnhS8lSRNdKWbXXbXgxd_gL_amTZ18SAIXkrbNLR0kpnvI99MCDlpZ4JxDUzVQbRIIELBnNNtnhSWFcpbwVWGucN3953-o7x5aj8tkF6TC4Oyyuj7a59eeet45yz-zbPxYIA5vqmC4I_LyIjzMYlPyhRH-enHXOYBkLtar4SHE3w6qnlqjdcYc9xHJRxR5JWeVjov9luI-g2CVqHoao2sRgxJu_VnrpMFFzbIcr2r5Psm-axUnXZKJ43-tXQUsClFvwuRirqqbATmXFIdCjp1pU-iZL10BcVqVbHUMgUX4OjI06F-DpjuSIMOQLOjmo4OwrzlBRjtBOHkcKBpndb1vkUery4fev0kbrmQWCnPZ0nGpQeKB6TSA9PRgrV9weC0MADFDDfcQ6jDAi_pOXM-5ZZxo3ihJeAMBpYV22QxjILbJdRok9pOYZgBygXkV1nBpMmETZUX4FVbJG3-cm5jPXLcFqPMG-HZaz63T472wRawT4uw757juibHH_pcNIbMf4yvHELHH3ofN7bPYfrhmooObvQ2zZmSqqOEElmL7NSD4vubkMsKJsTev969T1bgKqt1bwdkcTZ5c4cAhGbmqBrpR2Spe33bv_8Cp9kLOg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Na9wwEB3SDaG9lKTpx7ZJqkKvbiLJXlv0FELD5mtPCeQmJFlqtzjaZXdzyF_or-6MLW_oIRDoxRjLwkIjz7yH3owAvhaV5MIgU_UYLTKMUPjPmUJkteO1Ck4KVVHu8NVkNL7Jz2-L2w046XNhSFaZfH_n01tvnZ4cptk8nE-nlONbKgz-tI1MOF-9gE2qTlUMYPP47GI8WTtkRN3tliW-n1GHJOjpZF5zSnOfNXglnVf5rZV68aei1FMotI1Gp9vwOsFIdtyNdAc2fHwDW93Bkg-78KcVdrolW_QS2MYzhKeMXC8GK-bbyhGUdslMrNnSNyFLqvXG14wKVqVqywy9gGezwO7Mz0gZjyyaiEw7CerYND62_EJSuyBEeTc1rMvsengLN6c_rk_GWTp1IXN5frTKKpEHZHnIKwOSHSN5EWqOt7VFNGaFFQGjHdV4KY-4D6VwXFglapMj1OBoXPkOBnEW_Qdg1tjSjWrLLbIu5L_KSZ7bSrpSBYmOdQhlP8vapZLkdDJGo3vt2W_9aB9N9qEWtM8Q-LrnvCvL8Yw-33tD6n-WmMbo8YzeX3rba_wDaVvFRD-7X2qucjVSUslqCO-7RbEeE9FZyaX8-F_f_gwvx9dXl_rybHLxCV5hS9XJ4PZgsFrc-33ERSt7kNb9X7vLDes
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Physics+responsible+for+heating+efficiency+and+self-controlled+temperature+rise+of+magnetic+nanoparticles+in+magnetic+hyperthermia+therapy&rft.jtitle=Progress+in+biophysics+and+molecular+biology&rft.au=Shaterabadi%2C+Zhila&rft.au=Nabiyouni%2C+Gholamreza&rft.au=Soleymani%2C+Meysam&rft.date=2018-03-01&rft.issn=1873-1732&rft.eissn=1873-1732&rft.volume=133&rft.spage=9&rft_id=info:doi/10.1016%2Fj.pbiomolbio.2017.10.001&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0079-6107&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0079-6107&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0079-6107&client=summon