Advanced EEG-based learning approaches to predict schizophrenia: Promises and pitfalls
•Machine learning shows promise in SZ onset prediction, detection of psychosis risk, and discrimination from other disorders.•We review EEG-based machine learning methods to discriminate SZ from healthy, at-risk, and subjects with other disorders.•We synthesize EEG-based deep learning strategies for...
Saved in:
Published in | Artificial intelligence in medicine Vol. 114; pp. 1 - 13 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.04.2021
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 0933-3657 1873-2860 1873-2860 |
DOI | 10.1016/j.artmed.2021.102039 |
Cover
Loading…
Abstract | •Machine learning shows promise in SZ onset prediction, detection of psychosis risk, and discrimination from other disorders.•We review EEG-based machine learning methods to discriminate SZ from healthy, at-risk, and subjects with other disorders.•We synthesize EEG-based deep learning strategies for schizophrenia classification and risk prediction.•We discuss their potential and limitations and provide future directions in EEG-based model development.
The complexity and heterogeneity of schizophrenia symptoms challenge an objective diagnosis, which is typically based on behavioral and clinical manifestations. Moreover, the boundaries of schizophrenia are not precisely demarcated from other nosologic categories, such as bipolar disorder. The early detection of schizophrenia can lead to a more effective treatment, improving patients’ quality of life. Over the last decades, hundreds of studies aimed at specifying the neurobiological mechanisms that underpin clinical manifestations of schizophrenia, using techniques such as electroencephalography (EEG). Changes in event-related potentials of the EEG have been associated with sensory and cognitive deficits and proposed as biomarkers of schizophrenia. Besides contributing to a more effective diagnosis, biomarkers can be crucial to schizophrenia onset prediction and prognosis. However, any proposed biomarker requires substantial clinical research to prove its validity and cost-effectiveness. Fueled by developments in computational neuroscience, automatic classification of schizophrenia at different stages (prodromal, first episode, chronic) has been attempted, using brain imaging pattern recognition methods to capture differences in functional brain activity. Advanced learning techniques have been studied for this purpose, with promising results. This review provides an overview of recent machine learning-based methods for schizophrenia classification using EEG data, discussing their potentialities and limitations. This review is intended to serve as a starting point for future developments of effective EEG-based models that might predict the onset of schizophrenia, identify subjects at high-risk of psychosis conversion or differentiate schizophrenia from other disorders, promoting more effective early interventions. |
---|---|
AbstractList | The complexity and heterogeneity of schizophrenia symptoms challenge an objective diagnosis, which is typically based on behavioral and clinical manifestations. Moreover, the boundaries of schizophrenia are not precisely demarcated from other nosologic categories, such as bipolar disorder. The early detection of schizophrenia can lead to a more effective treatment, improving patients' quality of life. Over the last decades, hundreds of studies aimed at specifying the neurobiological mechanisms that underpin clinical manifestations of schizophrenia, using techniques such as electroencephalography (EEG). Changes in event-related potentials of the EEG have been associated with sensory and cognitive deficits and proposed as biomarkers of schizophrenia. Besides contributing to a more effective diagnosis, biomarkers can be crucial to schizophrenia onset prediction and prognosis. However, any proposed biomarker requires substantial clinical research to prove its validity and cost-effectiveness. Fueled by developments in computational neuroscience, automatic classification of schizophrenia at different stages (prodromal, first episode, chronic) has been attempted, using brain imaging pattern recognition methods to capture differences in functional brain activity. Advanced learning techniques have been studied for this purpose, with promising results. This review provides an overview of recent machine learning-based methods for schizophrenia classification using EEG data, discussing their potentialities and limitations. This review is intended to serve as a starting point for future developments of effective EEG-based models that might predict the onset of schizophrenia, identify subjects at high-risk of psychosis conversion or differentiate schizophrenia from other disorders, promoting more effective early interventions.The complexity and heterogeneity of schizophrenia symptoms challenge an objective diagnosis, which is typically based on behavioral and clinical manifestations. Moreover, the boundaries of schizophrenia are not precisely demarcated from other nosologic categories, such as bipolar disorder. The early detection of schizophrenia can lead to a more effective treatment, improving patients' quality of life. Over the last decades, hundreds of studies aimed at specifying the neurobiological mechanisms that underpin clinical manifestations of schizophrenia, using techniques such as electroencephalography (EEG). Changes in event-related potentials of the EEG have been associated with sensory and cognitive deficits and proposed as biomarkers of schizophrenia. Besides contributing to a more effective diagnosis, biomarkers can be crucial to schizophrenia onset prediction and prognosis. However, any proposed biomarker requires substantial clinical research to prove its validity and cost-effectiveness. Fueled by developments in computational neuroscience, automatic classification of schizophrenia at different stages (prodromal, first episode, chronic) has been attempted, using brain imaging pattern recognition methods to capture differences in functional brain activity. Advanced learning techniques have been studied for this purpose, with promising results. This review provides an overview of recent machine learning-based methods for schizophrenia classification using EEG data, discussing their potentialities and limitations. This review is intended to serve as a starting point for future developments of effective EEG-based models that might predict the onset of schizophrenia, identify subjects at high-risk of psychosis conversion or differentiate schizophrenia from other disorders, promoting more effective early interventions. •Machine learning shows promise in SZ onset prediction, detection of psychosis risk, and discrimination from other disorders.•We review EEG-based machine learning methods to discriminate SZ from healthy, at-risk, and subjects with other disorders.•We synthesize EEG-based deep learning strategies for schizophrenia classification and risk prediction.•We discuss their potential and limitations and provide future directions in EEG-based model development. The complexity and heterogeneity of schizophrenia symptoms challenge an objective diagnosis, which is typically based on behavioral and clinical manifestations. Moreover, the boundaries of schizophrenia are not precisely demarcated from other nosologic categories, such as bipolar disorder. The early detection of schizophrenia can lead to a more effective treatment, improving patients’ quality of life. Over the last decades, hundreds of studies aimed at specifying the neurobiological mechanisms that underpin clinical manifestations of schizophrenia, using techniques such as electroencephalography (EEG). Changes in event-related potentials of the EEG have been associated with sensory and cognitive deficits and proposed as biomarkers of schizophrenia. Besides contributing to a more effective diagnosis, biomarkers can be crucial to schizophrenia onset prediction and prognosis. However, any proposed biomarker requires substantial clinical research to prove its validity and cost-effectiveness. Fueled by developments in computational neuroscience, automatic classification of schizophrenia at different stages (prodromal, first episode, chronic) has been attempted, using brain imaging pattern recognition methods to capture differences in functional brain activity. Advanced learning techniques have been studied for this purpose, with promising results. This review provides an overview of recent machine learning-based methods for schizophrenia classification using EEG data, discussing their potentialities and limitations. This review is intended to serve as a starting point for future developments of effective EEG-based models that might predict the onset of schizophrenia, identify subjects at high-risk of psychosis conversion or differentiate schizophrenia from other disorders, promoting more effective early interventions. The complexity and heterogeneity of schizophrenia symptoms challenge an objective diagnosis, which is typically based on behavioral and clinical manifestations. Moreover, the boundaries of schizophrenia are not precisely demarcated from other nosologic categories, such as bipolar disorder. The early detection of schizophrenia can lead to a more effective treatment, improving patients' quality of life. Over the last decades, hundreds of studies aimed at specifying the neurobiological mechanisms that underpin clinical manifestations of schizophrenia, using techniques such as electroencephalography (EEG). Changes in event-related potentials of the EEG have been associated with sensory and cognitive deficits and proposed as biomarkers of schizophrenia. Besides contributing to a more effective diagnosis, biomarkers can be crucial to schizophrenia onset prediction and prognosis. However, any proposed biomarker requires substantial clinical research to prove its validity and cost-effectiveness. Fueled by developments in computational neuroscience, automatic classification of schizophrenia at different stages (prodromal, first episode, chronic) has been attempted, using brain imaging pattern recognition methods to capture differences in functional brain activity. Advanced learning techniques have been studied for this purpose, with promising results. This review provides an overview of recent machine learning-based methods for schizophrenia classification using EEG data, discussing their potentialities and limitations. This review is intended to serve as a starting point for future developments of effective EEG-based models that might predict the onset of schizophrenia, identify subjects at high-risk of psychosis conversion or differentiate schizophrenia from other disorders, promoting more effective early interventions. The complexity and heterogeneity of schizophrenia symptoms challenge an objective diagnosis, which is typically based on behavioral and clinical manifestations. Moreover, the boundaries of schizophrenia are not precisely demarcated from other nosologic categories, such as bipolar disorder. The early detection of schizophrenia can lead to a more effective treatment, improving patients' quality of life. Over the last decades, hundreds of studies aimed at specifying the neurobiological mechanisms that underpin clinical manifestations of schizophrenia, using techniques such as electroencephalography (EEG). Changes in event-related potentials of the EEG have been associated with sensory and cognitive deficits and proposed as biomarkers of schizophrenia. Besides contributing to a more effective diagnosis, biomarkers can be crucial to schizophrenia onset prediction and prognosis. However, any proposed biomarker requires substantial clinical research to prove its validity and cost-effectiveness. Fueled by developments in computational neuroscience, automatic classification of schizophrenia at different stages (prodromal, first episode, chronic) has been attempted, using brain imaging pattern recognition methods to capture differences in functional brain activity. Advanced learning techniques have been studied for this purpose, with promising results. This review provides an overview of recent machine learning-based methods for schizophrenia classification using EEG data, discussing their potentialities and limitations. This review is intended to serve as a starting point for future developments of effective EEG-based models that might predict the onset of schizophrenia, identify subjects at high-risk of psychosis conversion or differentiate schizophrenia from other disorders, promoting more effective early interventions. This work was supported by Grant SFRH/BD/111083/2015, funded by Fundacao para a Ciencia e Tecnologia (FCT) under the Programa Operacional Capital Humano (PO CH) co-funded by Portugal 2020 and European Social Fund, by Grant PTDC/MHC-PCN/0101/2014 funded by FCT, and by project UIDB/04436/2020 funded by FCT through national funds. |
ArticleNumber | 102039 |
Author | Silva, Carlos A. Pinheiro, Ana P. Barros, Carla |
Author_xml | – sequence: 1 givenname: Carla surname: Barros fullname: Barros, Carla organization: Center for Research in Psychology (CIPsi), School of Psychology, University of Minho, Braga, Portugal – sequence: 2 givenname: Carlos A. surname: Silva fullname: Silva, Carlos A. organization: Center for Microelectromechanical Systems (CMEMS), School of Engineering, University of Minho, Guimarães, Portugal – sequence: 3 givenname: Ana P. surname: Pinheiro fullname: Pinheiro, Ana P. email: appinheiro@psicologia.ulisboa.pt organization: Center for Research in Psychology (CIPsi), School of Psychology, University of Minho, Braga, Portugal |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33875158$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1r3DAQhkVJaTZJ_0EpPvbijb5sy6EUQtgkhUB7aHMVY2nc1dYru5J2If311eI0h1z2NEI872jm0Rk58aNHQj4wumSU1ZebJYS0RbvklLN8xalo35AFU40ouarpCVnQVohS1FVzSs5i3FBKG8nqd-RUCNVUrFIL8nht9-AN2mK1uis7iPk0IATv_K8CpimMYNYYizQWU0DrTCqiWbu_47QO6B1cFd_DuHUxI-BtMbnUwzDEC_I214jvn-s5-Xm7-nFzXz58u_t6c_1QGilpKhWTfa8kg05YYSrKqKlkZTrgSvWVaTqgHaBtZWNkKy3ra45d1bY1cGGbphHn5NPcNw_6Z4cx6TyLwWEAj-Muap63rJXIOjL68RnddVmbnoLbQnjS_11kQM6ACWOMAfsXhFF9UK43elauD8r1rDzHrl7FjEuQ3OhTADccCxdzOBiASQfcu5ggaqY416pVimXky4xg9rh3GHQ0Dg9f5gKapO3ojr3x-VUDMzjvDAy_8el4_B_PEL0O |
CitedBy_id | crossref_primary_10_3390_bioengineering10040493 crossref_primary_10_3390_biomedinformatics3010014 crossref_primary_10_1016_j_cmpb_2021_106450 crossref_primary_10_3389_fpsyt_2023_1205119 crossref_primary_10_1631_jzus_B2400103 crossref_primary_10_1177_15500594241253910 crossref_primary_10_1007_s11760_022_02479_7 crossref_primary_10_1126_sciadv_adh3920 crossref_primary_10_47485_2693_2490_1094 crossref_primary_10_1007_s40998_024_00738_6 crossref_primary_10_1007_s13246_024_01420_1 crossref_primary_10_1049_sil2_12230 crossref_primary_10_1038_s41386_023_01658_5 crossref_primary_10_1002_acm2_14039 crossref_primary_10_3390_diagnostics14232698 crossref_primary_10_3389_fninf_2022_893788 crossref_primary_10_1016_j_schres_2024_07_015 crossref_primary_10_1192_j_eurpsy_2023_2410 crossref_primary_10_1007_s10489_023_05155_6 crossref_primary_10_3389_fnhum_2023_1236832 crossref_primary_10_3390_brainsci12111497 crossref_primary_10_1007_s11920_022_01399_0 crossref_primary_10_3390_diagnostics13030509 crossref_primary_10_3390_diagnostics12092193 crossref_primary_10_3389_fnhum_2023_1280512 crossref_primary_10_1007_s11831_023_10047_6 crossref_primary_10_3390_diagnostics13111936 crossref_primary_10_3390_electronics10233037 crossref_primary_10_17116_jnevro2024124051113 crossref_primary_10_1109_ACCESS_2021_3138385 crossref_primary_10_1016_j_neubiorev_2024_105968 crossref_primary_10_1016_j_autcon_2022_104151 crossref_primary_10_1007_s10489_024_05669_7 crossref_primary_10_3390_bios12121097 crossref_primary_10_1142_S0129065723500065 crossref_primary_10_1007_s00500_023_08680_1 crossref_primary_10_1016_j_eswa_2022_117158 crossref_primary_10_1016_j_cmpb_2023_107360 crossref_primary_10_1177_15500594241227485 crossref_primary_10_21597_jist_1122315 crossref_primary_10_3389_fnhum_2024_1372985 crossref_primary_10_1016_j_bionps_2024_100107 crossref_primary_10_3390_app13042703 crossref_primary_10_3389_fpsyt_2021_813460 crossref_primary_10_17759_exppsy_2023160103 crossref_primary_10_3390_jcm13175108 crossref_primary_10_1192_j_eurpsy_2023_2432 crossref_primary_10_1016_j_engappai_2022_105602 crossref_primary_10_1002_ima_22700 crossref_primary_10_1093_schbul_sbae150 crossref_primary_10_1016_j_compbiomed_2022_105554 crossref_primary_10_1007_s41939_024_00612_2 crossref_primary_10_1016_j_brainres_2024_148876 crossref_primary_10_1016_j_medengphy_2023_103949 crossref_primary_10_1007_s00521_023_08350_1 crossref_primary_10_1016_j_jad_2023_11_017 crossref_primary_10_1007_s00115_021_01197_8 crossref_primary_10_1016_j_ijleo_2022_170037 |
Cites_doi | 10.1093/schbul/sbw047 10.1093/schbul/sbj050 10.1002/hbm.23730 10.1016/S0920-9964(01)00352-8 10.1016/j.clinph.2018.10.011 10.1016/j.nicl.2017.04.027 10.1371/journal.pone.0223127 10.1016/j.dsp.2017.10.011 10.1016/j.ijpsycho.2014.12.012 10.1016/j.psychres.2008.06.035 10.1016/S0006-3223(99)00153-5 10.1093/schbul/sbm016 10.1016/j.procs.2016.07.418 10.1146/annurev-vision-082114-035447 10.1093/schbul/sbn093 10.1016/j.pnpbp.2017.12.017 10.1016/j.schres.2017.10.023 10.31887/DCNS.2010.12.3/ajablensky 10.1371/journal.pmed.1000097 10.1192/bjp.bp.109.072827 10.1016/B978-0-7020-5307-8.00011-9 10.1038/nrn4005 10.1016/j.neuroimage.2017.06.061 10.1007/s00406-010-0176-0 10.1016/j.biopsych.2006.09.025 10.1016/j.schres.2019.08.032 10.1186/1753-4631-3-2 10.1016/j.schres.2015.01.027 10.1016/j.neunet.2017.05.012 10.1016/j.biopsych.2008.06.018 10.3389/fnhum.2019.00379 10.3390/bs3030330 10.1007/s11920-013-0388-x 10.1093/schbul/sbt151 10.3390/app9142870 10.1093/schbul/sbq171 10.1146/annurev-clinpsy-032816-045037 10.3389/fpsyt.2018.00554 10.1155/2013/510402 10.1186/s40810-016-0017-0 10.1016/j.psychres.2008.03.017 10.1176/appi.ajp.2010.09091379 10.1001/jamapsychiatry.2013.155 10.1146/annurev.clinpsy.032408.153502 10.1586/ern.10.93 10.1016/j.schres.2019.08.011 10.2174/1874440001307010015 10.1016/j.jad.2015.05.040 10.1016/j.jpsychires.2017.05.009 10.1037/0021-843X.107.2.305 10.1016/S0920-9964(01)00163-3 10.1016/j.euroneuro.2016.01.009 10.1016/j.psychres.2008.04.013 10.1109/TNSRE.2019.2913799 10.1007/s40474-018-0152-3 10.2147/nedt.2006.2.4.531 10.1007/s10916-019-1341-2 10.1016/j.psychres.2019.03.048 10.1038/nature14539 10.1016/j.schres.2017.01.039 10.1080/09332480.2014.914768 10.1504/IJBET.2018.094728 10.1016/j.schres.2017.02.026 10.1109/TNSRE.2019.2900725 10.1186/1741-7015-11-126 10.1097/HRP.0000000000000110 10.1016/j.schres.2016.05.007 10.1016/j.schres.2018.06.017 10.3390/ijms18040733 10.1016/j.eplepsyres.2009.03.018 10.1016/j.artmed.2009.03.003 10.1016/j.cmpb.2017.09.001 10.1111/eip.12792 10.1038/nrn2218 10.1080/14737175.2019.1601558 10.30773/pi.2018.12.21.2 10.1038/nrn2774 10.1007/s11517-020-02176-y 10.1016/j.schres.2017.04.019 10.1111/nyas.12730 10.1016/j.cmpb.2018.04.005 10.1016/S0006-3223(99)00151-1 10.2217/17520363.3.1.1 10.1016/j.neunet.2014.09.003 10.1017/S0033291719000151 10.1038/nature09552 10.1016/j.neuroimage.2005.05.022 10.1145/3236386.3241340 10.1016/j.psychres.2013.05.013 10.1177/1550059412465078 10.1177/0963721410377601 10.1109/ACCESS.2018.2854555 10.1016/j.biopsych.2014.09.025 10.3389/fpsyg.2017.00775 10.1088/1741-2552/ab0ab5 10.1001/jamapsychiatry.2016.2992 10.1016/j.biopsych.2010.09.021 10.1016/j.scog.2014.02.001 10.1007/s40273-016-0444-6 10.1017/S0033291712001626 10.2147/NDT.S96649 10.1016/B978-0-7020-5307-8.00006-5 10.1016/j.clinph.2018.07.012 10.1093/schbul/sbr188 10.1016/j.biopsycho.2015.10.010 10.1155/2016/2697971 10.1093/schbul/sbn135 10.1093/schbul/sbp134 10.1371/journal.pmed.0020141 10.1088/1741-2552/aab2f2 10.3389/neuro.09.048.2009 10.3390/electronics8030292 10.1017/S0033291708003814 10.1111/pcn.12090 10.3389/fnhum.2012.00136 10.1007/s13246-019-00839-1 10.1016/j.neubiorev.2017.12.008 10.1093/schizbullopen/sgaa016 10.1001/jamapsychiatry.2016.2619 10.1016/j.artmed.2019.07.006 |
ContentType | Journal Article |
Copyright | 2021 Elsevier B.V. Copyright © 2021 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2021 Elsevier B.V. – notice: Copyright © 2021 Elsevier B.V. All rights reserved. |
DBID | RCLKO AAYXX CITATION NPM 7X8 |
DOI | 10.1016/j.artmed.2021.102039 |
DatabaseName | RCAAP open access repository CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Computer Science |
DissertationSchool | Universidade do Minho |
EISSN | 1873-2860 |
EndPage | 13 |
ExternalDocumentID | 33875158 10_1016_j_artmed_2021_102039 1822_89881 S0933365721000324 |
Genre | Journal Article Review |
GroupedDBID | --- --K --M .1- .DC .FO .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 23N 4.4 457 4G. 53G 5GY 5VS 7-5 71M 77K 8P~ 9JM 9JN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAWTL AAXKI AAXUO AAYFN AAYWO ABBOA ABBQC ABFNM ABIVO ABJNI ABMAC ABMZM ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACNNM ACRLP ACRPL ACVFH ACZNC ADBBV ADCNI ADEZE ADJOM ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AOUOD APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HEA HMK HMO HVGLF HZ~ IHE J1W KOM LZ2 M29 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SAE SDF SDG SDP SEL SES SEW SPC SPCBC SSH SSV SSZ T5K UHS WH7 WUQ Z5R ~G- AACTN AAIAV ABLVK ABYKQ AFCTW AFKWA AJBFU AJOXV AMFUW EFLBG LCYCR RIG AGRNS RCLKO AAYXX CITATION NPM 77I 7X8 |
ID | FETCH-LOGICAL-c440t-814ff841ab3d3c5010c545cba288f5c7ba0baed947c494d1f62eb5996a23d7773 |
IEDL.DBID | .~1 |
ISSN | 0933-3657 1873-2860 |
IngestDate | Fri Sep 05 13:28:08 EDT 2025 Mon Jul 21 06:05:52 EDT 2025 Thu Apr 24 23:04:34 EDT 2025 Tue Jul 01 00:24:37 EDT 2025 Fri Aug 01 16:35:22 EDT 2025 Fri Feb 23 02:44:22 EST 2024 Tue Aug 26 17:11:02 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Deep learning Schizophrenia EEG Classification Machine learning Prediction |
Language | English |
License | Copyright © 2021 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c440t-814ff841ab3d3c5010c545cba288f5c7ba0baed947c494d1f62eb5996a23d7773 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
OpenAccessLink | http://hdl.handle.net/1822/89881 |
PMID | 33875158 |
PQID | 2515683860 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_2515683860 pubmed_primary_33875158 crossref_primary_10_1016_j_artmed_2021_102039 crossref_citationtrail_10_1016_j_artmed_2021_102039 rcaap_revistas_1822_89881 elsevier_sciencedirect_doi_10_1016_j_artmed_2021_102039 elsevier_clinicalkey_doi_10_1016_j_artmed_2021_102039 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2021 2021-04 2021-04-00 2021-Apr 20210401 |
PublicationDateYYYYMMDD | 2021-04-01 |
PublicationDate_xml | – month: 04 year: 2021 text: April 2021 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Artificial intelligence in medicine |
PublicationTitleAlternate | Artif Intell Med |
PublicationYear | 2021 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Alústiza, Radua, Pla, Martin, Ortuño (bib0270) 2017; 188 Schirrmeister, Springenberg, Fiederer, Glasstetter, Eggensperger, Tangermann (bib0710) 2017; 38 Chang, Liu, Tian, Wang, Luo, Zhang (bib0635) 2019; 13 Phang, Noman, Hussain, Ting, Ombao (bib0745) 2019 Seidman, Hellemann, Nuechterlein, Greenwood, Braff, Cadenhead (bib0355) 2015; 163 Vinogradov, Nagarajan (bib0255) 2017; 74 Turetsky, Greenwood, Olincy, Radant, Braff, Cadenhead (bib0405) 2008; 64 Neuhaus, Popescu, Rentzsch, Gallinat (bib0545) 2014; 40 Unterrassner, Wyss, Wotruba, Ajdacic-Gross, Haker, Rössler (bib0055) 2017; 8 Starke, De Clercq, Borgwardt, Elger (bib0500) 2020 Zheng, Yang, Xie (bib0815) 2020 Bowie, Harvey (bib0240) 2006; 2 Mwansisya, Hu, Li, Chen, Wu, Huang (bib0275) 2017; 189 Chu, Qiu, Liu, Ling, Zhang, Wang (bib0760) 2017 Tsai, Rosenheck (bib0835) 2013; 210 Thilakvathi, Shenbaga Devi, Bhanu, Malaippan (bib0585) 2017; 28 Foxe, Yeap, Snyder, Kelly, Thakore, Molholm (bib0390) 2011; 261 Nusslock, Young, Pornpattananangkul, Damme (bib0200) 2015 Insel, Cuthbert, Garvey, Heinssen, Pine, Quinn (bib0185) 2010; 167 Li, Wang, Liao, Yi, Jiang, Si (bib0590) 2019; 27 Uhlhaas, Singer (bib0655) 2010; 11 Luck (bib0140) 2014 Lee, Bressler, Kozma (bib0700) 2017; 92 Kaur, Sharma (bib0490) 2019; 43 Gold, Harvey (bib0235) 1993; 16 Naira, José (bib0755) 2019; 10 Buckley, Miller, Lehrer, Castle (bib0830) 2009; 35 Hao Hsieh, Yi Wu, Fu Liang (bib0570) 2018; 08 Devia, Mayol-Troncoso, Parrini, Orellana, Ruiz, Maldonado (bib0580) 2019; 27 Sabeti, Boostani, Katebi (bib0510) 2007 Pantlin, Davalos (bib0045) 2016; 2016 Ochsner, Kosslyn, Kosslyn (bib0320) 2013; Vol. 1 Karlsgodt, Sun, Cannon (bib0215) 2010; 19 Luo, Zhang, Zhao, Chang, Wang (bib0630) 2019; 19 Dewey (bib0820) 2018; 5 Kahn, Keefe (bib0250) 2013; 70 Xu, Stephane, Parhi (bib0525) 2013; 44 Robert (bib0460) 2014; 27 Cuthbert, Insel (bib0190) 2013; 11 Mathalon, Ford (bib0120) 2012; 6 van Os, Linscott (bib0095) 2012; 38 Ahmedt Aristizabal, Fernando, Denman, Robinson, Sridharan, Johnston (bib0640) 2020 Varoquaux (bib0790) 2018; 180 Onitsuka, Oribe, Nakamura, Kanba (bib0130) 2013; 67 Craik, He, Contreras-Vidal (bib0720) 2019; 16 van der Stelt, Belger (bib0125) 2007; 33 Kraguljac, Srivastava, Lahti (bib0280) 2013; 3 Zhang (bib0575) 2019 Jirsaraie, Sheffield, Barch (bib0040) 2018; 201 Shenton, Dickey, Frumin, McCarley (bib0220) 2001; 49 Schnack (bib0115) 2019; 214 Hof (bib0690) 2013 Kas, Penninx, Sommer, Serretti, Arango, Marston (bib0180) 2019; 97 Luck, Mathalon, O’Donnell, Hämäläinen, Spencer, Javitt (bib0365) 2011; 70 O’Donnell, Vohs, Krishnan, Rass, Hetrick, Morzorati (bib0435) 2013 Goshvarpour, Goshvarpour (bib0615) 2020; 43 Lotte, Bougrain, Cichocki, Clerc, Congedo, Rakotomamonjy (bib0810) 2018; 15 Jin, Mosweu (bib0025) 2017; 35 Bestelmeyer, Phillips, Crombie, Benson, Clair (bib0360) 2009; 169 Kriegeskorte (bib0725) 2015; 1 Klonowski (bib0800) 2009; 3 Schmidhuber (bib0695) 2015; 61 Lipton (bib0770) 2018; 16 Zhu, Goldberg (bib0480) 2009; 3 Alimardani, Cho, Boostani, Hwang (bib0645) 2018; 6 Zhang, Zhang, Wang, Habetler (bib0685) 2019 Montavon, Samek, Müller (bib0775) 2018; 73 Hasey, Kiang (bib0535) 2013; 15 van Os, Linscott, Myin-Germeys, Delespaul, Krabbendam (bib0090) 2009; 39 Buettner, Hirschmiller, Schlosser, Rossle, Fernandes, Timm (bib0610) 2019 Alom, Taha, Yakopcic, Westberg, Sidike, Nasrin (bib0680) 2019; 8 Moher, Liberati, Tetzlaff, Altman (bib0150) 2009; 6 Zhao, Zhu, Liu, Pu, Lai, Chen (bib0225) 2018; 83 Goodfellow, Bengio, Courville (bib0465) 2016 Darkhovsky, Pyriatinska (bib0660) 2013 Earls, Curran, Mittal (bib0350) 2016; 42 Mathalon, Ford, Rosenbloom, Pfefferbaum (bib0380) 2000; 47 Taylor, Matthews, Michie, Rosa, Garrido (bib0565) 2017; 15 Oh, Vicnesh, Ciaccio, Yuvaraj, Acharya (bib0740) 2019; 9 Roach, Mathalon (bib0650) 2008; 34 Green, Horan, Lee (bib0030) 2015; 16 Weickert, Weickert, Pillai, Buckley (bib0305) 2013; 35 Light, Swerdlow (bib0315) 2015; 1344 Lippé, Kovacevic, McIntosh (bib0665) 2009; 3 Luck (bib0795) 2014 Calhas, Romero, Henriques (bib0750) 2019 Parciauskaite, Voicikas, Jurkuvenas, Tarailis, Kraulaidis, Pipinis (bib0445) 2019; 14 Perkovic, Erjavec, Strac, Uzun, Kozumplik, Pivac (bib0310) 2017; 18 Taylor, McCarley, Salisbury (bib0415) 2013 Piryatinska, Darkhovsky, Kaplan (bib0595) 2017; 152 Bromet, Fennig (bib0010) 1999; 46 Verdoux, van Os (bib0075) 2002; 54 Joshi, Light (bib0035) 2018; 9 Lho, Kim, Lee, Bin Kwak, Kwon (bib0370) 2019; 130 Shim, Hwang, Kim, Lee, Im (bib0555) 2016; 176 Sabeti, Boostani (bib0600) 2018; 1 James, Witten, Hastie, Tibshirani (bib0765) 2013 Saha, Chant, Welham, McGrath (bib0005) 2005; 2 Laton, Van Schependom, Gielen, Decoster, Moons, De Keyser (bib0540) 2014 Dwyer, Falkai, Koutsouleris (bib0785) 2018; 14 Roach, Ford, Hoffman, Mathalon (bib0440) 2013 Rosburg (bib0400) 2018; 129 Chaiyakunapruk, Chong, Teoh, Wu, Kotirum, Chiou (bib0020) 2016; 12 Ye, Liu, Zhang, Pan, Yang, Wang (bib0620) 2017 Linscott, Van Os (bib0070) 2013; 43 Tandon, Tandon (bib0780) 2019; 214 Toh, Thomas, Rossell (bib0060) 2015; 184 Rodrigues-Amorim, Rivera-Baltanás, López, Spuch, Olivares, Agís-Balboa (bib0290) 2017; 93 Wallace, Isenberg, York, Shinde, Barron, Franchino-Elder (bib0100) 2020; 215 Faust, Hagiwara, Hong, Lih, Acharya (bib0715) 2018; 161 Chapelle, Schlkopf, Zien (bib0485) 2010 Rosburg, Boutros, Ford (bib0395) 2008; 161 LeCun, Bengio (bib0735) 1995; 3361 Newman, Moffitt, Caspi, Silva (bib0825) 1998; 107 Schirrmeister, Gemein, Eggensperger, Hutter, Ball (bib0705) 2017 Potter, Summerfelt, Gold, Buchanan (bib0385) 2005; 32 Kim, Sangjun, Kim, Lee (bib0730) 2016; 88 Turetsky, Bilker, Siegel, Kohler, Gur (bib0230) 2009; 165 Bramon, McDonald, Croft, Landau, Filbey, Gruzelier (bib0375) 2005; 27 A.P. Association (bib0165) 2013 Erickson, Kappenman, Luck (bib0285) 2018; 3 Cong, Ristaniemi, Lyytinen (bib0345) 2015 Niedermeyer, da Silva (bib0805) 2005 Lawrie, Hall, McIntosh, Owens, Johnstone (bib0085) 2010; 197 Javitt (bib0260) 2009; 5 Beauchaine (bib0295) 2009; 3 Ioakeimidis, Haenschel, Yarrow, Kyriakopoulos, Dima (bib0210) 2020; 1 Lavoie, Polari, Goldstone, Nelson, McGorry (bib0325) 2019; 13 Jablensky (bib0155) 2010; 12 Shung, Smith, Tsui (bib0205) 2012 Hall, Taylor, Sham, Schulze, Rijsdijk, Picchioni (bib0420) 2011; 37 Green, Bearden, Cannon, Fiske, Hellemann, Horan (bib0050) 2012; 38 Santos-Mayo, San-Jose-Revuelta, Arribas (bib0560) 2017; 64 Alpaydin (bib0475) 2009 Green, Harvey (bib0245) 2014; 1 Hiesh, Lam Andy, Shen, Chen, Lin, Sung (bib0530) 2013 Thuné, Recasens, Uhlhaas (bib0430) 2016; 73 Walsh-Messinger, Jiang, Lee, Rothman, Ahn, Malaspina (bib0195) 2019; 278 Larson, Walker, Compton (bib0110) 2010; 10 Näätänen, Shiga, Asano, Yabe (bib0335) 2015; 95 Hyman (bib0175) 2007; 8 Johannesen, Bi, Jiang, Kenney, Chen (bib0550) 2016; 2 Gur, Gur (bib0265) 2010; 12 Bodatsch, Brockhaus-Dumke, Klosterkötter, Ruhrmann (bib0330) 2015; 77 Kahn, Sommer, Murray, Meyer-Lindenberg, Weinberger, Cannon (bib0015) 2015; 1 Gaebel, Riesbeck, Larach, Falkai, Zielasek (bib0160) 2019 Cohen (bib0135) 2014 Bzdok, Meyer-Lindenberg (bib0145) 2018; 3 LeCun, Bengio, Hinton (bib0675) 2015; 521 Owens, Bachman, Glahn, Bearden (bib0410) 2016; 24 Elliott, Joyce, Shorvon (bib0065) 2009; 85 Randeniya, Oestreich, Garrido (bib0080) 2018; 191 Goff, Romero, Paul, Mercedes Perez-Rodriguez, Crandall, Potkin (bib0450) 2016; 26 Sabeti, Katebi, Boostani (bib0515) 2009; 47 Bishop (bib0470) 2006 Näätänen, Todd, Schall (bib0340) 2016; 116 Jahmunah, Lih Oh, Rajinikanth, Ciaccio, Hao Cheong, Arunkumar (bib0605) 2019; 100 Insel (bib0105) 2010; 468 Schretlen, Cascella, Meyer, Kingery, Testa, Munro (bib0670) 2007; 62 Cho, Yim, Choi, Ko, Lee (bib0505) 2019; 16 Fujimoto, Okumura, Takeuchi, Kodabashi, Otsubo, Nakamura (bib0425) 2013; 7 Taghavi, Boostani, Sabeti, Taghavi (bib0520) 2011; 5 Javitt, Daniel, Keefe, Walling, Ereshefsky (bib0455) 2019 Liu, Zhang, Ye, Pan, Yang, Wang (bib0625) 2017 Koukkou, Koenig, Bänninger, Rieger, Diaz Hernandez, Higuchi (bib0300) 2019 World Health Organization (bib0170) 1992 Shatte, Hutchinson, Teague (bib0495) 2019; 49 Moher (10.1016/j.artmed.2021.102039_bib0150) 2009; 6 Shatte (10.1016/j.artmed.2021.102039_bib0495) 2019; 49 Naira (10.1016/j.artmed.2021.102039_bib0755) 2019; 10 Faust (10.1016/j.artmed.2021.102039_bib0715) 2018; 161 Potter (10.1016/j.artmed.2021.102039_bib0385) 2005; 32 Larson (10.1016/j.artmed.2021.102039_bib0110) 2010; 10 James (10.1016/j.artmed.2021.102039_bib0765) 2013 Zhu (10.1016/j.artmed.2021.102039_bib0480) 2009; 3 Goshvarpour (10.1016/j.artmed.2021.102039_bib0615) 2020; 43 Calhas (10.1016/j.artmed.2021.102039_bib0750) 2019 Verdoux (10.1016/j.artmed.2021.102039_bib0075) 2002; 54 Starke (10.1016/j.artmed.2021.102039_bib0500) 2020 Zhang (10.1016/j.artmed.2021.102039_bib0575) 2019 Robert (10.1016/j.artmed.2021.102039_bib0460) 2014; 27 Sabeti (10.1016/j.artmed.2021.102039_bib0515) 2009; 47 Buettner (10.1016/j.artmed.2021.102039_bib0610) 2019 Joshi (10.1016/j.artmed.2021.102039_bib0035) 2018; 9 Fujimoto (10.1016/j.artmed.2021.102039_bib0425) 2013; 7 Neuhaus (10.1016/j.artmed.2021.102039_bib0545) 2014; 40 Karlsgodt (10.1016/j.artmed.2021.102039_bib0215) 2010; 19 Alústiza (10.1016/j.artmed.2021.102039_bib0270) 2017; 188 Kahn (10.1016/j.artmed.2021.102039_bib0015) 2015; 1 van der Stelt (10.1016/j.artmed.2021.102039_bib0125) 2007; 33 Weickert (10.1016/j.artmed.2021.102039_bib0305) 2013; 35 Zhao (10.1016/j.artmed.2021.102039_bib0225) 2018; 83 Insel (10.1016/j.artmed.2021.102039_bib0105) 2010; 468 Darkhovsky (10.1016/j.artmed.2021.102039_bib0660) 2013 Wallace (10.1016/j.artmed.2021.102039_bib0100) 2020; 215 Luo (10.1016/j.artmed.2021.102039_bib0630) 2019; 19 Shim (10.1016/j.artmed.2021.102039_bib0555) 2016; 176 Varoquaux (10.1016/j.artmed.2021.102039_bib0790) 2018; 180 Light (10.1016/j.artmed.2021.102039_bib0315) 2015; 1344 O’Donnell (10.1016/j.artmed.2021.102039_bib0435) 2013 Jirsaraie (10.1016/j.artmed.2021.102039_bib0040) 2018; 201 Javitt (10.1016/j.artmed.2021.102039_bib0455) 2019 Bishop (10.1016/j.artmed.2021.102039_bib0470) 2006 Phang (10.1016/j.artmed.2021.102039_bib0745) 2019 Santos-Mayo (10.1016/j.artmed.2021.102039_bib0560) 2017; 64 Tsai (10.1016/j.artmed.2021.102039_bib0835) 2013; 210 Cohen (10.1016/j.artmed.2021.102039_bib0135) 2014 Green (10.1016/j.artmed.2021.102039_bib0050) 2012; 38 Lipton (10.1016/j.artmed.2021.102039_bib0770) 2018; 16 Hao Hsieh (10.1016/j.artmed.2021.102039_bib0570) 2018; 08 A.P. Association (10.1016/j.artmed.2021.102039_bib0165) 2013 Liu (10.1016/j.artmed.2021.102039_bib0625) 2017 Saha (10.1016/j.artmed.2021.102039_bib0005) 2005; 2 Zhang (10.1016/j.artmed.2021.102039_bib0685) 2019 Thuné (10.1016/j.artmed.2021.102039_bib0430) 2016; 73 Buckley (10.1016/j.artmed.2021.102039_bib0830) 2009; 35 Lee (10.1016/j.artmed.2021.102039_bib0700) 2017; 92 Gold (10.1016/j.artmed.2021.102039_bib0235) 1993; 16 Bowie (10.1016/j.artmed.2021.102039_bib0240) 2006; 2 Mwansisya (10.1016/j.artmed.2021.102039_bib0275) 2017; 189 Green (10.1016/j.artmed.2021.102039_bib0030) 2015; 16 Lippé (10.1016/j.artmed.2021.102039_bib0665) 2009; 3 Sabeti (10.1016/j.artmed.2021.102039_bib0510) 2007 Nusslock (10.1016/j.artmed.2021.102039_bib0200) 2015 Dewey (10.1016/j.artmed.2021.102039_bib0820) 2018; 5 Walsh-Messinger (10.1016/j.artmed.2021.102039_bib0195) 2019; 278 Newman (10.1016/j.artmed.2021.102039_bib0825) 1998; 107 Roach (10.1016/j.artmed.2021.102039_bib0440) 2013 Devia (10.1016/j.artmed.2021.102039_bib0580) 2019; 27 Hof (10.1016/j.artmed.2021.102039_bib0690) 2013 Earls (10.1016/j.artmed.2021.102039_bib0350) 2016; 42 Pantlin (10.1016/j.artmed.2021.102039_bib0045) 2016; 2016 Ochsner (10.1016/j.artmed.2021.102039_bib0320) 2013; Vol. 1 Johannesen (10.1016/j.artmed.2021.102039_bib0550) 2016; 2 Bzdok (10.1016/j.artmed.2021.102039_bib0145) 2018; 3 Seidman (10.1016/j.artmed.2021.102039_bib0355) 2015; 163 Tandon (10.1016/j.artmed.2021.102039_bib0780) 2019; 214 Niedermeyer (10.1016/j.artmed.2021.102039_bib0805) 2005 Kriegeskorte (10.1016/j.artmed.2021.102039_bib0725) 2015; 1 Lavoie (10.1016/j.artmed.2021.102039_bib0325) 2019; 13 Chaiyakunapruk (10.1016/j.artmed.2021.102039_bib0020) 2016; 12 Ye (10.1016/j.artmed.2021.102039_bib0620) 2017 Gur (10.1016/j.artmed.2021.102039_bib0265) 2010; 12 Hall (10.1016/j.artmed.2021.102039_bib0420) 2011; 37 Piryatinska (10.1016/j.artmed.2021.102039_bib0595) 2017; 152 Näätänen (10.1016/j.artmed.2021.102039_bib0335) 2015; 95 van Os (10.1016/j.artmed.2021.102039_bib0090) 2009; 39 Ioakeimidis (10.1016/j.artmed.2021.102039_bib0210) 2020; 1 Schirrmeister (10.1016/j.artmed.2021.102039_bib0705) 2017 Kaur (10.1016/j.artmed.2021.102039_bib0490) 2019; 43 Goff (10.1016/j.artmed.2021.102039_bib0450) 2016; 26 Lotte (10.1016/j.artmed.2021.102039_bib0810) 2018; 15 Luck (10.1016/j.artmed.2021.102039_bib0140) 2014 Unterrassner (10.1016/j.artmed.2021.102039_bib0055) 2017; 8 Jahmunah (10.1016/j.artmed.2021.102039_bib0605) 2019; 100 Ahmedt Aristizabal (10.1016/j.artmed.2021.102039_bib0640) 2020 Mathalon (10.1016/j.artmed.2021.102039_bib0120) 2012; 6 Chu (10.1016/j.artmed.2021.102039_bib0760) 2017 Insel (10.1016/j.artmed.2021.102039_bib0185) 2010; 167 Jin (10.1016/j.artmed.2021.102039_bib0025) 2017; 35 Foxe (10.1016/j.artmed.2021.102039_bib0390) 2011; 261 van Os (10.1016/j.artmed.2021.102039_bib0095) 2012; 38 Cong (10.1016/j.artmed.2021.102039_bib0345) 2015 Randeniya (10.1016/j.artmed.2021.102039_bib0080) 2018; 191 Taghavi (10.1016/j.artmed.2021.102039_bib0520) 2011; 5 LeCun (10.1016/j.artmed.2021.102039_bib0675) 2015; 521 Vinogradov (10.1016/j.artmed.2021.102039_bib0255) 2017; 74 Goodfellow (10.1016/j.artmed.2021.102039_bib0465) 2016 Toh (10.1016/j.artmed.2021.102039_bib0060) 2015; 184 Lho (10.1016/j.artmed.2021.102039_bib0370) 2019; 130 Bestelmeyer (10.1016/j.artmed.2021.102039_bib0360) 2009; 169 Sabeti (10.1016/j.artmed.2021.102039_bib0600) 2018; 1 Parciauskaite (10.1016/j.artmed.2021.102039_bib0445) 2019; 14 Xu (10.1016/j.artmed.2021.102039_bib0525) 2013; 44 Cuthbert (10.1016/j.artmed.2021.102039_bib0190) 2013; 11 Luck (10.1016/j.artmed.2021.102039_bib0795) 2014 Perkovic (10.1016/j.artmed.2021.102039_bib0310) 2017; 18 Rosburg (10.1016/j.artmed.2021.102039_bib0395) 2008; 161 Linscott (10.1016/j.artmed.2021.102039_bib0070) 2013; 43 Elliott (10.1016/j.artmed.2021.102039_bib0065) 2009; 85 Craik (10.1016/j.artmed.2021.102039_bib0720) 2019; 16 Rodrigues-Amorim (10.1016/j.artmed.2021.102039_bib0290) 2017; 93 Li (10.1016/j.artmed.2021.102039_bib0590) 2019; 27 Luck (10.1016/j.artmed.2021.102039_bib0365) 2011; 70 Zheng (10.1016/j.artmed.2021.102039_bib0815) 2020 Alpaydin (10.1016/j.artmed.2021.102039_bib0475) 2009 Näätänen (10.1016/j.artmed.2021.102039_bib0340) 2016; 116 Bodatsch (10.1016/j.artmed.2021.102039_bib0330) 2015; 77 Roach (10.1016/j.artmed.2021.102039_bib0650) 2008; 34 Beauchaine (10.1016/j.artmed.2021.102039_bib0295) 2009; 3 Cho (10.1016/j.artmed.2021.102039_bib0505) 2019; 16 World Health Organization (10.1016/j.artmed.2021.102039_bib0170) 1992 Hiesh (10.1016/j.artmed.2021.102039_bib0530) 2013 Hyman (10.1016/j.artmed.2021.102039_bib0175) 2007; 8 Onitsuka (10.1016/j.artmed.2021.102039_bib0130) 2013; 67 Schirrmeister (10.1016/j.artmed.2021.102039_bib0710) 2017; 38 Laton (10.1016/j.artmed.2021.102039_bib0540) 2014 Jablensky (10.1016/j.artmed.2021.102039_bib0155) 2010; 12 Alimardani (10.1016/j.artmed.2021.102039_bib0645) 2018; 6 Uhlhaas (10.1016/j.artmed.2021.102039_bib0655) 2010; 11 Hasey (10.1016/j.artmed.2021.102039_bib0535) 2013; 15 Kim (10.1016/j.artmed.2021.102039_bib0730) 2016; 88 Bromet (10.1016/j.artmed.2021.102039_bib0010) 1999; 46 Shung (10.1016/j.artmed.2021.102039_bib0205) 2012 Taylor (10.1016/j.artmed.2021.102039_bib0415) 2013 Thilakvathi (10.1016/j.artmed.2021.102039_bib0585) 2017; 28 Turetsky (10.1016/j.artmed.2021.102039_bib0230) 2009; 165 Owens (10.1016/j.artmed.2021.102039_bib0410) 2016; 24 Turetsky (10.1016/j.artmed.2021.102039_bib0405) 2008; 64 Chapelle (10.1016/j.artmed.2021.102039_bib0485) 2010 Lawrie (10.1016/j.artmed.2021.102039_bib0085) 2010; 197 Kas (10.1016/j.artmed.2021.102039_bib0180) 2019; 97 Gaebel (10.1016/j.artmed.2021.102039_bib0160) 2019 Erickson (10.1016/j.artmed.2021.102039_bib0285) 2018; 3 Dwyer (10.1016/j.artmed.2021.102039_bib0785) 2018; 14 Schmidhuber (10.1016/j.artmed.2021.102039_bib0695) 2015; 61 Kraguljac (10.1016/j.artmed.2021.102039_bib0280) 2013; 3 Montavon (10.1016/j.artmed.2021.102039_bib0775) 2018; 73 Green (10.1016/j.artmed.2021.102039_bib0245) 2014; 1 Oh (10.1016/j.artmed.2021.102039_bib0740) 2019; 9 Shenton (10.1016/j.artmed.2021.102039_bib0220) 2001; 49 Kahn (10.1016/j.artmed.2021.102039_bib0250) 2013; 70 Mathalon (10.1016/j.artmed.2021.102039_bib0380) 2000; 47 Alom (10.1016/j.artmed.2021.102039_bib0680) 2019; 8 Schretlen (10.1016/j.artmed.2021.102039_bib0670) 2007; 62 Chang (10.1016/j.artmed.2021.102039_bib0635) 2019; 13 Schnack (10.1016/j.artmed.2021.102039_bib0115) 2019; 214 Klonowski (10.1016/j.artmed.2021.102039_bib0800) 2009; 3 Rosburg (10.1016/j.artmed.2021.102039_bib0400) 2018; 129 Taylor (10.1016/j.artmed.2021.102039_bib0565) 2017; 15 LeCun (10.1016/j.artmed.2021.102039_bib0735) 1995; 3361 Bramon (10.1016/j.artmed.2021.102039_bib0375) 2005; 27 Javitt (10.1016/j.artmed.2021.102039_bib0260) 2009; 5 Koukkou (10.1016/j.artmed.2021.102039_bib0300) 2019 |
References_xml | – volume: 278 start-page: 27 year: 2019 end-page: 34 ident: bib0195 article-title: Relative importance of symptoms, cognition, and other multilevel variables for psychiatric disease classifications by machine learning publication-title: Psychiatry Res – volume: 16 year: 2019 ident: bib0720 article-title: Deep learning for electroencephalogram (EEG) classification tasks: a review publication-title: J Neural Eng – volume: 18 start-page: 733 year: 2017 ident: bib0310 article-title: Theranostic biomarkers for schizophrenia publication-title: Int J Mol Sci – volume: 3 start-page: 1 year: 2009 end-page: 130 ident: bib0480 article-title: Introduction to semi-supervised learning publication-title: Synth Lect Artif Intell Mach Learn – volume: 64 start-page: 1051 year: 2008 end-page: 1059 ident: bib0405 article-title: Abnormal auditory N100 amplitude: a heritable endophenotype in first-degree relatives of schizophrenia probands publication-title: Biol Psychiatry – volume: 67 start-page: 461 year: 2013 end-page: 470 ident: bib0130 article-title: Review of neurophysiological findings in patients with schizophrenia publication-title: Psychiatry Clin Neurosci – year: 2015 ident: bib0345 article-title: Advanced Signal processing on brain event-related potentials publication-title: World Sci – volume: 16 start-page: 295 year: 1993 end-page: 312 ident: bib0235 article-title: Cognitive deficits in schizophrenia publication-title: Psychiatr Clin – volume: 3 start-page: 1 year: 2009 end-page: 3 ident: bib0295 article-title: Role of biomarkers and endophenotypes in prevention and treatment of psychopathological disorders publication-title: Biomark Med – year: 2017 ident: bib0625 article-title: A data driven approach for resting-state EEG signal classification of schizophrenia with control participants using random matrix theory – volume: 6 start-page: 40379 year: 2018 end-page: 40388 ident: bib0645 article-title: Classification of bipolar disorder and schizophrenia using steady-State visual evoked potential based features publication-title: IEEE Access – volume: 88 start-page: 145 year: 2016 end-page: 154 ident: bib0730 article-title: Convolutional neural network with biologically inspired retinal structure publication-title: Procedia Comput Sci – volume: 35 start-page: 25 year: 2017 end-page: 42 ident: bib0025 article-title: The societal cost of schizophrenia: a systematic review publication-title: Pharmacoeconomics. – volume: 176 start-page: 314 year: 2016 end-page: 319 ident: bib0555 article-title: Machine-learning-based diagnosis of schizophrenia using combined sensor-level and source-level EEG features publication-title: Schizophr Res – volume: 184 start-page: 18 year: 2015 end-page: 28 ident: bib0060 article-title: Auditory verbal hallucinations in bipolar disorder (BD) and major depressive disorder (MDD): a systematic review publication-title: J Affect Disord – start-page: 433 year: 2019 end-page: 459 ident: bib0300 article-title: Neurobiology of schizophrenia: electrophysiological indices publication-title: Adv. Psychiatry – volume: 28 year: 2017 ident: bib0585 article-title: EEG signal complexity analysis for schizophrenia during rest and mental activity publication-title: Biomed Res – volume: 49 start-page: 1 year: 2001 end-page: 52 ident: bib0220 article-title: A review of MRI findings in schizophrenia publication-title: Schizophr Res – year: 2019 ident: bib0685 article-title: Machine learning and deep learning algorithms for bearing fault diagnostics -- a comprehensive review – volume: 201 start-page: 237 year: 2018 end-page: 242 ident: bib0040 article-title: Neural correlates of global and specific cognitive deficits in schizophrenia publication-title: Schizophr Res – volume: 70 start-page: 1107 year: 2013 end-page: 1112 ident: bib0250 article-title: Schizophrenia is a cognitive illness: time for a change in focus publication-title: JAMA Psychiatry – volume: 73 start-page: 1 year: 2018 end-page: 15 ident: bib0775 article-title: Methods for interpreting and understanding deep neural networks publication-title: Digit Signal Process – volume: 43 start-page: 1133 year: 2013 end-page: 1149 ident: bib0070 article-title: An updated and conservative systematic review and meta-analysis of epidemiological evidence on psychotic experiences in children and adults: on the pathway from proneness to persistence to dimensional expression across mental disorders publication-title: Psychol Med – volume: 2 year: 2005 ident: bib0005 article-title: A systematic review of the prevalence of schizophrenia publication-title: PLoS Med – volume: 107 start-page: 305 year: 1998 ident: bib0825 article-title: Comorbid mental disorders: implications for treatment and sample selection publication-title: J Abnorm Psychol – volume: 191 start-page: 109 year: 2018 end-page: 122 ident: bib0080 article-title: Sensory prediction errors in the continuum of psychosis publication-title: Schizophr Res – year: 2009 ident: bib0475 article-title: Introduction to machine learning – volume: 47 start-page: 263 year: 2009 end-page: 274 ident: bib0515 article-title: Entropy and complexity measures for EEG signal classification of schizophrenic and control participants publication-title: Artif Intell Med – year: 2006 ident: bib0470 article-title: Pattern recognition and machine learning – volume: 214 start-page: 70 year: 2019 end-page: 75 ident: bib0780 article-title: Using machine learning to explain the heterogeneity of schizophrenia. Realizing the promise and avoiding the hype publication-title: Schizophr Res – volume: 13 start-page: 1319 year: 2019 end-page: 1328 ident: bib0325 article-title: Staging model in psychiatry: review of the evolution of electroencephalography abnormalities in major psychiatric disorders publication-title: Early Interv Psychiatry – volume: 37 start-page: 778 year: 2011 end-page: 787 ident: bib0420 article-title: The early auditory gamma-band response Is heritable and a putative endophenotype of schizophrenia publication-title: Schizophr Bull – volume: 8 start-page: 292 year: 2019 ident: bib0680 article-title: A State-of-the-art survey on deep learning theory and architectures publication-title: Electronics – volume: 6 year: 2012 ident: bib0120 article-title: Neurobiology of schizophrenia: search for the elusive correlation with symptoms publication-title: Front Hum Neurosci – volume: 12 start-page: 357 year: 2016 ident: bib0020 article-title: Global economic burden of schizophrenia: a systematic review publication-title: Neuropsychiatr Dis Treat – volume: 1 start-page: 1 year: 2018 ident: bib0600 article-title: Optimizing brain map for the diagnosis of schizophrenia publication-title: Int J Biomed Eng Technol – volume: 92 start-page: 1 year: 2017 end-page: 2 ident: bib0700 article-title: Advances in cognitive engineering using neural networks publication-title: Neural Networks. – volume: 38 start-page: 227 year: 2012 end-page: 230 ident: bib0095 article-title: Introduction: the extended psychosis phenotype--relationship with schizophrenia and with ultrahigh risk Status for psychosis publication-title: Schizophr Bull – volume: 214 start-page: 34 year: 2019 end-page: 42 ident: bib0115 article-title: Improving individual predictions: machine learning approaches for detecting and attacking heterogeneity in schizophrenia (and other psychiatric diseases) publication-title: Schizophr Res – volume: 16 start-page: 620 year: 2015 end-page: 631 ident: bib0030 article-title: Social cognition in schizophrenia publication-title: Nat Rev Neurosci – volume: 19 start-page: 459 year: 2019 end-page: 470 ident: bib0630 article-title: Discriminating schizophrenia disease progression using a P50 sensory gating task with dense-array EEG, clinical assessments, and cognitive tests publication-title: Expert Rev Neurother – volume: 3 start-page: 1 year: 2009 end-page: 5 ident: bib0800 article-title: Everything you wanted to ask about EEG but were afraid to get the right answer publication-title: Nonlinear Biomed Phys – volume: 1 start-page: 417 year: 2015 end-page: 446 ident: bib0725 article-title: Deep neural networks: a New framework for modeling biological vision and brain information processing publication-title: Annu Rev Vis Sci – start-page: 1 year: 2015 end-page: 9 ident: bib0200 article-title: Neurophysiological and neuroimaging techniques publication-title: Encycl. Clin. Psychol – volume: 13 start-page: 379 year: 2019 ident: bib0635 article-title: EEG-based brain functional connectivity in first-episode schizophrenia patients, ultra-High-risk individuals, and healthy controls during P50 suppression publication-title: Front Hum Neurosci – start-page: 1 year: 2014 end-page: 4 ident: bib0540 article-title: In search of biomarkers for schizophrenia using electroencephalography publication-title: 2014 Int. Work. Pattern Recognit. Neuroimaging – volume: 1344 start-page: 105 year: 2015 end-page: 119 ident: bib0315 article-title: Future clinical uses of neurophysiological biomarkers to predict and monitor treatment response for schizophrenia publication-title: Ann N Y Acad Sci – volume: 54 start-page: 59 year: 2002 end-page: 65 ident: bib0075 article-title: Psychotic symptoms in non-clinical populations and the continuum of psychosis publication-title: Schizophr Res – volume: Vol. 1 year: 2013 ident: bib0320 publication-title: The Oxford handbook of cognitive neuroscience – volume: 61 start-page: 85 year: 2015 end-page: 117 ident: bib0695 article-title: Deep learning in neural networks: an overview publication-title: Neural Networks. – volume: 27 start-page: 960 year: 2005 end-page: 968 ident: bib0375 article-title: Is the P300 wave an endophenotype for schizophrenia? A meta-analysis and a family study publication-title: Neuroimage. – volume: 26 start-page: 923 year: 2016 end-page: 937 ident: bib0450 article-title: Biomarkers for drug development in early psychosis: current issues and promising directions publication-title: Eur Neuropsychopharmacol – year: 2020 ident: bib0815 article-title: EEG classification across sessions and across subjects through transfer learning in motor imagery-based brain-machine interface system publication-title: Med Biol Eng Comput – volume: 3 start-page: 223 year: 2018 end-page: 230 ident: bib0145 article-title: Machine learning for precision psychiatry: opportunities and challenges publication-title: Biol Psychiatry Cogn Neurosci Neuroimaging – volume: 1 year: 2015 ident: bib0015 article-title: Schizophrenia publication-title: Nat Rev Dis Prim – volume: 197 start-page: 423 year: 2010 end-page: 425 ident: bib0085 article-title: The ‘continuum of psychosis’: scientifically unproven and clinically impractical publication-title: Br J Psychiatry – volume: 6 year: 2009 ident: bib0150 article-title: Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement publication-title: PLoS Med. – volume: 116 start-page: 36 year: 2016 end-page: 40 ident: bib0340 article-title: Mismatch negativity (MMN) as biomarker predicting psychosis in clinically at-risk individuals publication-title: Biol Psychol – volume: 24 start-page: 129 year: 2016 end-page: 147 ident: bib0410 article-title: Electrophysiological endophenotypes for schizophrenia publication-title: Harv Rev Psychiatry – volume: 40 start-page: 1062 year: 2014 end-page: 1071 ident: bib0545 article-title: Critical evaluation of auditory event-related potential deficits in schizophrenia: evidence from large-scale single-subject pattern classification publication-title: Schizophr Bull – start-page: 163 year: 2013 end-page: 180 ident: bib0440 article-title: Converging evidence for gamma synchrony deficits in schizophrenia publication-title: Suppl. Clin. Neurophysiol. – volume: 27 start-page: 594 year: 2019 end-page: 602 ident: bib0590 article-title: Differentiation of schizophrenia by combining the spatial EEG brain network patterns of rest and task P300, IEEE trans publication-title: Neural Syst Rehabil Eng – volume: 3361 year: 1995 ident: bib0735 article-title: Convolutional networks for images, speech, and time series publication-title: Handb Brain Theory Neural Networks – volume: 9 year: 2018 ident: bib0035 article-title: Using EEG-guided basket and umbrella trials in psychiatry: a precision medicine approach for cognitive impairment in schizophrenia publication-title: Front Psychiatry – volume: 1 start-page: e1 year: 2014 end-page: e9 ident: bib0245 article-title: Cognition in schizophrenia: past, present, and future publication-title: Schizophr Res Cogn – volume: 3 start-page: 330 year: 2013 end-page: 347 ident: bib0280 article-title: Memory deficits in schizophrenia: a selective review of functional magnetic resonance imaging (FMRI) studies publication-title: Behav Sci (Basel) – volume: 27 start-page: 62 year: 2014 end-page: 63 ident: bib0460 article-title: Machine learning, a probabilistic perspective publication-title: Chance – year: 2010 ident: bib0485 article-title: Semi-supervised learning – year: 2013 ident: bib0765 article-title: An introduction to statistical learning – volume: 8 year: 2017 ident: bib0055 article-title: Psychotic-like experiences at the healthy End of the psychosis continuum publication-title: Front Psychol – volume: 130 start-page: 46 year: 2019 end-page: 54 ident: bib0370 article-title: Predicting prognosis in patients with first-episode psychosis using auditory P300: a 1-year follow-up study publication-title: Clin Neurophysiol – volume: 167 start-page: 748 year: 2010 end-page: 751 ident: bib0185 article-title: research domain criteria (RDoC): toward a New classification framework for research on mental disorders publication-title: Am J Psychiatry – volume: 210 start-page: 16 year: 2013 end-page: 20 ident: bib0835 article-title: Psychiatric comorbidity among adults with schizophrenia: a latent class analysis publication-title: Psychiatry Res – volume: 2016 start-page: 1 year: 2016 end-page: 5 ident: bib0045 article-title: Neurophysiology for detection of High risk for psychosis publication-title: Schizophr Res Treatment – volume: 152 start-page: 131 year: 2017 end-page: 139 ident: bib0595 article-title: Binary classification of multichannel-EEG records based on the ε-complexity of continuous vector functions publication-title: Comput Methods Programs Biomed – volume: 15 start-page: 31005 year: 2018 ident: bib0810 article-title: A review of classification algorithms for EEG-based brain--computer interfaces: a 10 year update publication-title: J Neural Eng – volume: 163 start-page: 73 year: 2015 end-page: 79 ident: bib0355 article-title: Factor structure and heritability of endophenotypes in schizophrenia: findings from the consortium on the genetics of schizophrenia (COGS-1) publication-title: Schizophr Res – volume: 188 start-page: 21 year: 2017 end-page: 32 ident: bib0270 article-title: Meta-analysis of functional magnetic resonance imaging studies of timing and cognitive control in schizophrenia and bipolar disorder: evidence of a primary time deficit publication-title: Schizophr Res – volume: 42 start-page: 1504 year: 2016 end-page: 1516 ident: bib0350 article-title: A meta-analytic review of auditory event-related potential components as endophenotypes for schizophrenia: perspectives from first-degree relatives publication-title: Schizophr Bull – volume: 11 start-page: 100 year: 2010 end-page: 113 ident: bib0655 article-title: Abnormal neural oscillations and synchrony in schizophrenia publication-title: Nat Rev Neurosci – year: 2013 ident: bib0660 article-title: Epsilon-complexity of continuous functions – start-page: 131 year: 2013 end-page: 145 ident: bib0415 article-title: Early auditory gamma band response abnormalities in first hospitalized schizophrenia publication-title: Appl. brain oscil. Neuropsychiatr. dis. – start-page: 1 year: 2017 end-page: 7 ident: bib0705 article-title: Deep learning with convolutional neural networks for decoding and visualization of EEG pathology publication-title: 2017 IEEE Signal Process. Med. Biol. Symp. – volume: 77 start-page: 951 year: 2015 end-page: 958 ident: bib0330 article-title: Forecasting psychosis by event-related potentials—systematic review and specific meta-analysis publication-title: Biol Psychiatry – start-page: 1 year: 2019 end-page: 6 ident: bib0610 article-title: High-performance exclusion of schizophrenia using a novel machine learning method on EEG data publication-title: 2019 IEEE Int. Conf. E-Health Networking, Appl. Serv. – year: 2017 ident: bib0620 article-title: Improvement of resting-state EEG analysis process with spectrum weight-voting based on LES – volume: 129 start-page: 2099 year: 2018 end-page: 2111 ident: bib0400 article-title: Auditory N100 gating in patients with schizophrenia: a systematic meta-analysis publication-title: Clin Neurophysiol – volume: 83 start-page: 27 year: 2018 end-page: 32 ident: bib0225 article-title: Structural and functional brain abnormalities in schizophrenia: a cross-sectional study at different stages of the disease publication-title: Prog Neuro-Psychopharmacol Biol Psychiatry – volume: 74 start-page: 17 year: 2017 end-page: 18 ident: bib0255 article-title: Association of sensory processing with higher-order cognition and functioning in schizophrenia: mapping the world publication-title: JAMA Psychiatry – volume: 39 start-page: 179 year: 2009 end-page: 195 ident: bib0090 article-title: A systematic review and meta-analysis of the psychosis continuum: evidence for a psychosis proneness–persistence–impairment model of psychotic disorder publication-title: Psychol Med – volume: 12 start-page: 271 year: 2010 end-page: 287 ident: bib0155 article-title: The diagnostic concept of schizophrenia: its history, evolution, and future prospects publication-title: Dialogues Clin Neurosci – volume: 34 start-page: 907 year: 2008 end-page: 926 ident: bib0650 article-title: Event-related EEG time-frequency analysis: an overview of measures and an analysis of early gamma band phase locking in schizophrenia publication-title: Schizophr Bull – year: 2013 ident: bib0165 article-title: Diagnostic and statistical manual of mental disorders (DSM-5®) – volume: 5 start-page: 235 year: 2018 end-page: 242 ident: bib0820 article-title: What is comorbidity and why does it matter in neurodevelopmental disorders? publication-title: Curr Dev Disord Reports – volume: 14 start-page: 91 year: 2018 end-page: 118 ident: bib0785 article-title: Machine learning approaches for clinical psychology and psychiatry publication-title: Annu Rev Clin Psychol – volume: 8 start-page: 725 year: 2007 end-page: 732 ident: bib0175 article-title: Can neuroscience be integrated into the DSM-v? publication-title: Nat Rev Neurosci – volume: 19 start-page: 226 year: 2010 end-page: 231 ident: bib0215 article-title: Structural and functional brain abnormalities in schizophrenia publication-title: Curr Dir Psychol Sci – volume: 93 start-page: 37 year: 2017 end-page: 49 ident: bib0290 article-title: Schizophrenia: a review of potential biomarkers publication-title: J Psychiatr Res – volume: 14 year: 2019 ident: bib0445 article-title: 40-Hz auditory steady-state responses and the complex information processing: an exploratory study in healthy young males publication-title: PLoS One. – start-page: 101 year: 2013 end-page: 112 ident: bib0435 article-title: The auditory steady-state response (ASSR) publication-title: Suppl. Clin. Neurophysiol. – volume: 2 start-page: 3 year: 2016 ident: bib0550 article-title: Machine learning identification of EEG features predicting working memory performance in schizophrenia and healthy adults publication-title: Neuropsychiatr Electrophysiol – volume: 27 start-page: 1193 year: 2019 end-page: 1199 ident: bib0580 article-title: EEG classification during scene Free-viewing for schizophrenia detection publication-title: IEEE Trans Neural Syst Rehabil Eng. – year: 2019 ident: bib0750 article-title: On the use of pairwise distance learning for brain Signal classification with limited observations publication-title: ArXiv Prepr – volume: 3 start-page: 4 year: 2018 end-page: 6 ident: bib0285 article-title: High temporal resolution measurement of cognitive and affective processes in psychopathology: what electroencephalography and magnetoencephalography can tell us about mental illness publication-title: Biol Psychiatry Cogn Neurosci Neuroimaging – volume: 215 start-page: 392 year: 2020 end-page: 398 ident: bib0100 article-title: Detecting schizophrenia early: prediagnosis healthcare utilization characteristics of patients with schizophrenia may aid early detection publication-title: Schizophr Res – volume: 64 start-page: 395 year: 2017 end-page: 407 ident: bib0560 article-title: A computer-aided diagnosis system with EEG based on the P3b wave during an auditory odd-ball task in schizophrenia, IEEE trans publication-title: Biomed Eng – volume: 180 start-page: 68 year: 2018 end-page: 77 ident: bib0790 article-title: Cross-validation failure: small sample sizes lead to large error bars publication-title: Neuroimage – volume: 49 start-page: 1426 year: 2019 end-page: 1448 ident: bib0495 article-title: Machine learning in mental health: a scoping review of methods and applications publication-title: Psychol Med – volume: 15 start-page: 388 year: 2013 ident: bib0535 article-title: A review of recent literature employing electroencephalographic techniques to study the pathophysiology, phenomenology, and treatment response of schizophrenia publication-title: Curr Psychiatry Rep – volume: 33 start-page: 955 year: 2007 end-page: 970 ident: bib0125 article-title: Application of electroencephalography to the study of cognitive and brain functions in schizophrenia publication-title: Schizophr Bull – year: 1992 ident: bib0170 article-title: The ICD-10 classification of mental and behavioural disorders: clinical descriptions and diagnostic guidelines – volume: 35 start-page: 3 year: 2013 end-page: 9 ident: bib0305 article-title: Biomarkers in schizophrenia: a brief conceptual consideration publication-title: Dis Markers – volume: 11 start-page: 126 year: 2013 ident: bib0190 article-title: Toward the future of psychiatric diagnosis: the seven pillars of RDoC publication-title: BMC Med. – volume: 2 start-page: 531 year: 2006 ident: bib0240 article-title: Cognitive deficits and functional outcome in schizophrenia publication-title: Neuropsychiatr Dis Treat – start-page: 1 year: 2020 end-page: 7 ident: bib0500 article-title: Computing schizophrenia: ethical challenges for machine learning in psychiatry publication-title: Psychol Med – volume: 10 start-page: 511 year: 2019 end-page: 516 ident: bib0755 article-title: Classification of people who suffer schizophrenia and healthy people by EEG signals using deep learning publication-title: Int J Adv Comput Sci Appl – year: 2012 ident: bib0205 article-title: Principles of medical imaging – start-page: 6047 year: 2013 end-page: 6050 ident: bib0530 article-title: Classification of schizophrenia using genetic algorithm-support vector machine (GA-SVM) publication-title: 2013 35th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. – volume: 165 start-page: 27 year: 2009 end-page: 37 ident: bib0230 article-title: Profile of auditory information-processing deficits in schizophrenia publication-title: Psychiatry Res – volume: 43 start-page: 204 year: 2019 ident: bib0490 article-title: Diagnosis of human psychological disorders using supervised learning and nature-inspired computing techniques: a meta-analysis publication-title: J Med Syst – year: 2014 ident: bib0135 article-title: Analyzing neural time series data: theory and practice – volume: 43 start-page: 227 year: 2020 end-page: 238 ident: bib0615 article-title: Schizophrenia diagnosis using innovative EEG feature-level fusion schemes publication-title: Phys Eng Sci Med – volume: 12 start-page: 333 year: 2010 ident: bib0265 article-title: Functional magnetic resonance imaging in schizophrenia, dialogues publication-title: Clin Neurosci – volume: 16 start-page: 31 year: 2018 end-page: 57 ident: bib0770 article-title: The mythos of model interpretability publication-title: Queue – start-page: 523 year: 2014 end-page: 546 ident: bib0140 article-title: Event-related potentials publication-title: APA Handb. Res. Methods psychol. Vol 1 found. Planning, Meas. Psychom – volume: 5 start-page: 249 year: 2009 end-page: 275 ident: bib0260 article-title: When doors of perception close: bottom-up models of disrupted cognition in schizophrenia publication-title: Annu Rev Clin Psychol – volume: 73 start-page: 1145 year: 2016 ident: bib0430 article-title: The 40-Hz auditory steady-State response in patients with schizophrenia publication-title: JAMA Psychiatry – volume: 1 year: 2020 ident: bib0210 article-title: A meta-analysis of structural and functional brain abnormalities in early-onset schizophrenia publication-title: Schizophr Bull Open – volume: 10 start-page: 1347 year: 2010 end-page: 1359 ident: bib0110 article-title: Early signs, diagnosis and therapeutics of the prodromal phase of schizophrenia and related psychotic disorders publication-title: Expert Rev Neurother – volume: 468 start-page: 187 year: 2010 end-page: 193 ident: bib0105 article-title: Rethinking schizophrenia publication-title: Nature – volume: 38 start-page: 854 year: 2012 end-page: 864 ident: bib0050 article-title: Social cognition in schizophrenia, part 1: performance across phase of illness publication-title: Schizophr Bull – volume: 189 start-page: 9 year: 2017 end-page: 18 ident: bib0275 article-title: Task and resting-state fMRI studies in first-episode schizophrenia: a systematic review publication-title: Schizophr Res – start-page: 4521 year: 2019 end-page: 4524 ident: bib0575 article-title: EEG signals classification using machine learning for the identification and diagnosis of schizophrenia publication-title: 2019 41st Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. – volume: 3 start-page: 48 year: 2009 ident: bib0665 article-title: Differential maturation of brain signal complexity in the human auditory and visual system publication-title: Front Hum Neurosci – volume: 44 start-page: 135 year: 2013 end-page: 143 ident: bib0525 article-title: Multidimensional analysis of the abnormal neural oscillations associated with lexical processing in schizophrenia publication-title: Clin EEG Neurosci – volume: 100 start-page: 101698 year: 2019 ident: bib0605 article-title: Automated detection of schizophrenia using nonlinear signal processing methods publication-title: Artif Intell Med – volume: 5 start-page: 62 year: 2011 end-page: 70 ident: bib0520 article-title: Usefulness of approximate entropy in the diagnosis of schizophrenia, Iran publication-title: J Psychiatry Behav Sci – volume: 161 start-page: 1 year: 2018 end-page: 13 ident: bib0715 article-title: Deep learning for healthcare applications based on physiological signals: a review publication-title: Comput Methods Programs Biomed – volume: 7 start-page: 15 year: 2013 end-page: 26 ident: bib0425 article-title: Dysfunctional cortical connectivity during the auditory oddball task in patients with schizophrenia publication-title: Open Neuroimag J – volume: 46 start-page: 871 year: 1999 end-page: 881 ident: bib0010 article-title: Epidemiology and natural history of schizophrenia publication-title: Biol Psychiatry – start-page: 123 year: 2007 end-page: 126 ident: bib0510 article-title: A New approach to classify the schizophrenic and Normal subjects by finding the Best channels and frequency bands publication-title: 2007 15th Int. Conf. Digit. Signal Process – volume: 15 start-page: 264 year: 2017 end-page: 273 ident: bib0565 article-title: Auditory prediction errors as individual biomarkers of schizophrenia publication-title: NeuroImage Clin. – year: 2020 ident: bib0640 article-title: Identification of children at risk of schizophrenia via deep learning and EEG responses publication-title: IEEE J Biomed Heal Informatics – volume: 161 start-page: 259 year: 2008 end-page: 274 ident: bib0395 article-title: Reduced auditory evoked potential component N100 in schizophrenia — a critical review publication-title: Psychiatry Res – volume: 169 start-page: 212 year: 2009 end-page: 219 ident: bib0360 article-title: The P300 as a possible endophenotype for schizophrenia and bipolar disorder: evidence from twin and patient studies publication-title: Psychiatry Res – volume: 47 start-page: 413 year: 2000 end-page: 427 ident: bib0380 article-title: P300 reduction and prolongation with illness duration in schizophrenia publication-title: Biol Psychiatry – year: 2005 ident: bib0805 article-title: Electroencephalography: basic principles, clinical applications, and related fields – year: 2017 ident: bib0760 article-title: Individual recognition in schizophrenia using deep learning methods with random Forest and voting classifiers: insights from resting State EEG streams publication-title: ArXiv Prepr – volume: 95 start-page: 338 year: 2015 end-page: 344 ident: bib0335 article-title: Mismatch negativity (MMN) deficiency: a break-through biomarker in predicting psychosis onset publication-title: Int J Psychophysiol – volume: 16 start-page: 262 year: 2019 end-page: 269 ident: bib0505 article-title: Review of machine learning algorithms for diagnosing mental illness publication-title: Psychiatry Investig – start-page: 603 year: 2019 end-page: 619 ident: bib0160 article-title: Trends in schizophrenia diagnosis and treatment publication-title: Adv. Psychiatry – volume: 521 start-page: 436 year: 2015 end-page: 444 ident: bib0675 article-title: Deep learning publication-title: Nature – volume: 85 start-page: 162 year: 2009 end-page: 171 ident: bib0065 article-title: Delusions, illusions and hallucinations in epilepsy: 1. Elementary phenomena publication-title: Epilepsy Res. – volume: 9 start-page: 2870 year: 2019 ident: bib0740 article-title: Deep convolutional neural network model for automated diagnosis of schizophrenia using EEG signals publication-title: Appl Sci – volume: 08 year: 2018 ident: bib0570 article-title: Identification of schizophrenic patients and healthy controls based on musical perception using AEP analysis publication-title: Neuropsychiatry (London). – volume: 97 start-page: 3 year: 2019 end-page: 9 ident: bib0180 article-title: A quantitative approach to neuropsychiatry: the why and the how publication-title: Neurosci Biobehav Rev – volume: 62 start-page: 179 year: 2007 end-page: 186 ident: bib0670 article-title: Neuropsychological functioning in bipolar disorder and schizophrenia publication-title: Biol Psychiatry – year: 2013 ident: bib0690 article-title: Deep learning publication-title: MIT Technol Rev 10 Breakthr Technol – volume: 32 start-page: 692 year: 2005 end-page: 700 ident: bib0385 article-title: Review of clinical correlates of P50 sensory gating abnormalities in patients with schizophrenia publication-title: Schizophr Bull – year: 2016 ident: bib0465 article-title: Deep learning – volume: 38 start-page: 5391 year: 2017 end-page: 5420 ident: bib0710 article-title: Deep learning with convolutional neural networks for EEG decoding and visualization publication-title: Hum Brain Mapp – year: 2014 ident: bib0795 article-title: An introduction to the event-related potential technique – volume: 261 start-page: 331 year: 2011 end-page: 339 ident: bib0390 article-title: The N1 auditory evoked potential component as an endophenotype for schizophrenia: high-density electrical mapping in clinically unaffected first-degree relatives, first-episode, and chronic schizophrenia patients publication-title: Eur Arch Psychiatry Clin Neurosci – year: 2019 ident: bib0745 article-title: A multi-domain connectome convolutional neural network for identifying schizophrenia from EEG connectivity patterns publication-title: IEEE J Biomed Heal Informatics – volume: 35 start-page: 383 year: 2009 end-page: 402 ident: bib0830 article-title: Psychiatric comorbidities and schizophrenia publication-title: Schizophr Bull – volume: 70 start-page: 28 year: 2011 end-page: 34 ident: bib0365 article-title: A roadmap for the development and validation of event-related potential biomarkers in schizophrenia research publication-title: Biol Psychiatry – year: 2019 ident: bib0455 article-title: Biomarker qualification consortium – volume: 42 start-page: 1504 year: 2016 ident: 10.1016/j.artmed.2021.102039_bib0350 article-title: A meta-analytic review of auditory event-related potential components as endophenotypes for schizophrenia: perspectives from first-degree relatives publication-title: Schizophr Bull doi: 10.1093/schbul/sbw047 – volume: 32 start-page: 692 year: 2005 ident: 10.1016/j.artmed.2021.102039_bib0385 article-title: Review of clinical correlates of P50 sensory gating abnormalities in patients with schizophrenia publication-title: Schizophr Bull doi: 10.1093/schbul/sbj050 – volume: 38 start-page: 5391 year: 2017 ident: 10.1016/j.artmed.2021.102039_bib0710 article-title: Deep learning with convolutional neural networks for EEG decoding and visualization publication-title: Hum Brain Mapp doi: 10.1002/hbm.23730 – volume: 54 start-page: 59 year: 2002 ident: 10.1016/j.artmed.2021.102039_bib0075 article-title: Psychotic symptoms in non-clinical populations and the continuum of psychosis publication-title: Schizophr Res doi: 10.1016/S0920-9964(01)00352-8 – volume: 130 start-page: 46 year: 2019 ident: 10.1016/j.artmed.2021.102039_bib0370 article-title: Predicting prognosis in patients with first-episode psychosis using auditory P300: a 1-year follow-up study publication-title: Clin Neurophysiol doi: 10.1016/j.clinph.2018.10.011 – volume: 15 start-page: 264 year: 2017 ident: 10.1016/j.artmed.2021.102039_bib0565 article-title: Auditory prediction errors as individual biomarkers of schizophrenia publication-title: NeuroImage Clin. doi: 10.1016/j.nicl.2017.04.027 – volume: 16 start-page: 295 year: 1993 ident: 10.1016/j.artmed.2021.102039_bib0235 article-title: Cognitive deficits in schizophrenia publication-title: Psychiatr Clin – year: 2017 ident: 10.1016/j.artmed.2021.102039_bib0625 – year: 2013 ident: 10.1016/j.artmed.2021.102039_bib0765 – volume: 14 year: 2019 ident: 10.1016/j.artmed.2021.102039_bib0445 article-title: 40-Hz auditory steady-state responses and the complex information processing: an exploratory study in healthy young males publication-title: PLoS One. doi: 10.1371/journal.pone.0223127 – volume: 73 start-page: 1 year: 2018 ident: 10.1016/j.artmed.2021.102039_bib0775 article-title: Methods for interpreting and understanding deep neural networks publication-title: Digit Signal Process doi: 10.1016/j.dsp.2017.10.011 – year: 2014 ident: 10.1016/j.artmed.2021.102039_bib0795 – volume: 95 start-page: 338 year: 2015 ident: 10.1016/j.artmed.2021.102039_bib0335 article-title: Mismatch negativity (MMN) deficiency: a break-through biomarker in predicting psychosis onset publication-title: Int J Psychophysiol doi: 10.1016/j.ijpsycho.2014.12.012 – volume: 169 start-page: 212 year: 2009 ident: 10.1016/j.artmed.2021.102039_bib0360 article-title: The P300 as a possible endophenotype for schizophrenia and bipolar disorder: evidence from twin and patient studies publication-title: Psychiatry Res doi: 10.1016/j.psychres.2008.06.035 – volume: 46 start-page: 871 year: 1999 ident: 10.1016/j.artmed.2021.102039_bib0010 article-title: Epidemiology and natural history of schizophrenia publication-title: Biol Psychiatry doi: 10.1016/S0006-3223(99)00153-5 – volume: 33 start-page: 955 year: 2007 ident: 10.1016/j.artmed.2021.102039_bib0125 article-title: Application of electroencephalography to the study of cognitive and brain functions in schizophrenia publication-title: Schizophr Bull doi: 10.1093/schbul/sbm016 – volume: 88 start-page: 145 year: 2016 ident: 10.1016/j.artmed.2021.102039_bib0730 article-title: Convolutional neural network with biologically inspired retinal structure publication-title: Procedia Comput Sci doi: 10.1016/j.procs.2016.07.418 – volume: 1 start-page: 417 year: 2015 ident: 10.1016/j.artmed.2021.102039_bib0725 article-title: Deep neural networks: a New framework for modeling biological vision and brain information processing publication-title: Annu Rev Vis Sci doi: 10.1146/annurev-vision-082114-035447 – volume: 34 start-page: 907 year: 2008 ident: 10.1016/j.artmed.2021.102039_bib0650 article-title: Event-related EEG time-frequency analysis: an overview of measures and an analysis of early gamma band phase locking in schizophrenia publication-title: Schizophr Bull doi: 10.1093/schbul/sbn093 – year: 2013 ident: 10.1016/j.artmed.2021.102039_bib0660 – volume: 83 start-page: 27 year: 2018 ident: 10.1016/j.artmed.2021.102039_bib0225 article-title: Structural and functional brain abnormalities in schizophrenia: a cross-sectional study at different stages of the disease publication-title: Prog Neuro-Psychopharmacol Biol Psychiatry doi: 10.1016/j.pnpbp.2017.12.017 – volume: 214 start-page: 34 year: 2019 ident: 10.1016/j.artmed.2021.102039_bib0115 article-title: Improving individual predictions: machine learning approaches for detecting and attacking heterogeneity in schizophrenia (and other psychiatric diseases) publication-title: Schizophr Res doi: 10.1016/j.schres.2017.10.023 – volume: 12 start-page: 271 year: 2010 ident: 10.1016/j.artmed.2021.102039_bib0155 article-title: The diagnostic concept of schizophrenia: its history, evolution, and future prospects publication-title: Dialogues Clin Neurosci doi: 10.31887/DCNS.2010.12.3/ajablensky – year: 2019 ident: 10.1016/j.artmed.2021.102039_bib0455 – volume: 6 year: 2009 ident: 10.1016/j.artmed.2021.102039_bib0150 article-title: Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement publication-title: PLoS Med. doi: 10.1371/journal.pmed.1000097 – volume: 1 year: 2015 ident: 10.1016/j.artmed.2021.102039_bib0015 article-title: Schizophrenia publication-title: Nat Rev Dis Prim – volume: 197 start-page: 423 year: 2010 ident: 10.1016/j.artmed.2021.102039_bib0085 article-title: The ‘continuum of psychosis’: scientifically unproven and clinically impractical publication-title: Br J Psychiatry doi: 10.1192/bjp.bp.109.072827 – start-page: 163 year: 2013 ident: 10.1016/j.artmed.2021.102039_bib0440 article-title: Converging evidence for gamma synchrony deficits in schizophrenia doi: 10.1016/B978-0-7020-5307-8.00011-9 – volume: 16 start-page: 620 year: 2015 ident: 10.1016/j.artmed.2021.102039_bib0030 article-title: Social cognition in schizophrenia publication-title: Nat Rev Neurosci doi: 10.1038/nrn4005 – year: 2006 ident: 10.1016/j.artmed.2021.102039_bib0470 – volume: 180 start-page: 68 year: 2018 ident: 10.1016/j.artmed.2021.102039_bib0790 article-title: Cross-validation failure: small sample sizes lead to large error bars publication-title: Neuroimage doi: 10.1016/j.neuroimage.2017.06.061 – volume: 261 start-page: 331 year: 2011 ident: 10.1016/j.artmed.2021.102039_bib0390 article-title: The N1 auditory evoked potential component as an endophenotype for schizophrenia: high-density electrical mapping in clinically unaffected first-degree relatives, first-episode, and chronic schizophrenia patients publication-title: Eur Arch Psychiatry Clin Neurosci doi: 10.1007/s00406-010-0176-0 – volume: 62 start-page: 179 year: 2007 ident: 10.1016/j.artmed.2021.102039_bib0670 article-title: Neuropsychological functioning in bipolar disorder and schizophrenia publication-title: Biol Psychiatry doi: 10.1016/j.biopsych.2006.09.025 – volume: 214 start-page: 70 year: 2019 ident: 10.1016/j.artmed.2021.102039_bib0780 article-title: Using machine learning to explain the heterogeneity of schizophrenia. Realizing the promise and avoiding the hype publication-title: Schizophr Res doi: 10.1016/j.schres.2019.08.032 – volume: Vol. 1 year: 2013 ident: 10.1016/j.artmed.2021.102039_bib0320 – volume: 3 start-page: 1 year: 2009 ident: 10.1016/j.artmed.2021.102039_bib0800 article-title: Everything you wanted to ask about EEG but were afraid to get the right answer publication-title: Nonlinear Biomed Phys doi: 10.1186/1753-4631-3-2 – volume: 163 start-page: 73 year: 2015 ident: 10.1016/j.artmed.2021.102039_bib0355 article-title: Factor structure and heritability of endophenotypes in schizophrenia: findings from the consortium on the genetics of schizophrenia (COGS-1) publication-title: Schizophr Res doi: 10.1016/j.schres.2015.01.027 – volume: 92 start-page: 1 year: 2017 ident: 10.1016/j.artmed.2021.102039_bib0700 article-title: Advances in cognitive engineering using neural networks publication-title: Neural Networks. doi: 10.1016/j.neunet.2017.05.012 – volume: 64 start-page: 1051 year: 2008 ident: 10.1016/j.artmed.2021.102039_bib0405 article-title: Abnormal auditory N100 amplitude: a heritable endophenotype in first-degree relatives of schizophrenia probands publication-title: Biol Psychiatry doi: 10.1016/j.biopsych.2008.06.018 – volume: 13 start-page: 379 year: 2019 ident: 10.1016/j.artmed.2021.102039_bib0635 article-title: EEG-based brain functional connectivity in first-episode schizophrenia patients, ultra-High-risk individuals, and healthy controls during P50 suppression publication-title: Front Hum Neurosci doi: 10.3389/fnhum.2019.00379 – volume: 3 start-page: 330 year: 2013 ident: 10.1016/j.artmed.2021.102039_bib0280 article-title: Memory deficits in schizophrenia: a selective review of functional magnetic resonance imaging (FMRI) studies publication-title: Behav Sci (Basel) doi: 10.3390/bs3030330 – volume: 15 start-page: 388 year: 2013 ident: 10.1016/j.artmed.2021.102039_bib0535 article-title: A review of recent literature employing electroencephalographic techniques to study the pathophysiology, phenomenology, and treatment response of schizophrenia publication-title: Curr Psychiatry Rep doi: 10.1007/s11920-013-0388-x – volume: 40 start-page: 1062 year: 2014 ident: 10.1016/j.artmed.2021.102039_bib0545 article-title: Critical evaluation of auditory event-related potential deficits in schizophrenia: evidence from large-scale single-subject pattern classification publication-title: Schizophr Bull doi: 10.1093/schbul/sbt151 – start-page: 1 year: 2019 ident: 10.1016/j.artmed.2021.102039_bib0610 article-title: High-performance exclusion of schizophrenia using a novel machine learning method on EEG data – volume: 9 start-page: 2870 year: 2019 ident: 10.1016/j.artmed.2021.102039_bib0740 article-title: Deep convolutional neural network model for automated diagnosis of schizophrenia using EEG signals publication-title: Appl Sci doi: 10.3390/app9142870 – volume: 38 start-page: 854 year: 2012 ident: 10.1016/j.artmed.2021.102039_bib0050 article-title: Social cognition in schizophrenia, part 1: performance across phase of illness publication-title: Schizophr Bull doi: 10.1093/schbul/sbq171 – volume: 14 start-page: 91 year: 2018 ident: 10.1016/j.artmed.2021.102039_bib0785 article-title: Machine learning approaches for clinical psychology and psychiatry publication-title: Annu Rev Clin Psychol doi: 10.1146/annurev-clinpsy-032816-045037 – volume: 9 year: 2018 ident: 10.1016/j.artmed.2021.102039_bib0035 article-title: Using EEG-guided basket and umbrella trials in psychiatry: a precision medicine approach for cognitive impairment in schizophrenia publication-title: Front Psychiatry doi: 10.3389/fpsyt.2018.00554 – volume: 35 start-page: 3 year: 2013 ident: 10.1016/j.artmed.2021.102039_bib0305 article-title: Biomarkers in schizophrenia: a brief conceptual consideration publication-title: Dis Markers doi: 10.1155/2013/510402 – volume: 2 start-page: 3 year: 2016 ident: 10.1016/j.artmed.2021.102039_bib0550 article-title: Machine learning identification of EEG features predicting working memory performance in schizophrenia and healthy adults publication-title: Neuropsychiatr Electrophysiol doi: 10.1186/s40810-016-0017-0 – volume: 161 start-page: 259 year: 2008 ident: 10.1016/j.artmed.2021.102039_bib0395 article-title: Reduced auditory evoked potential component N100 in schizophrenia — a critical review publication-title: Psychiatry Res doi: 10.1016/j.psychres.2008.03.017 – year: 2009 ident: 10.1016/j.artmed.2021.102039_bib0475 – year: 2019 ident: 10.1016/j.artmed.2021.102039_bib0745 article-title: A multi-domain connectome convolutional neural network for identifying schizophrenia from EEG connectivity patterns publication-title: IEEE J Biomed Heal Informatics – volume: 167 start-page: 748 year: 2010 ident: 10.1016/j.artmed.2021.102039_bib0185 article-title: research domain criteria (RDoC): toward a New classification framework for research on mental disorders publication-title: Am J Psychiatry doi: 10.1176/appi.ajp.2010.09091379 – volume: 70 start-page: 1107 year: 2013 ident: 10.1016/j.artmed.2021.102039_bib0250 article-title: Schizophrenia is a cognitive illness: time for a change in focus publication-title: JAMA Psychiatry doi: 10.1001/jamapsychiatry.2013.155 – volume: 5 start-page: 249 year: 2009 ident: 10.1016/j.artmed.2021.102039_bib0260 article-title: When doors of perception close: bottom-up models of disrupted cognition in schizophrenia publication-title: Annu Rev Clin Psychol doi: 10.1146/annurev.clinpsy.032408.153502 – volume: 10 start-page: 511 year: 2019 ident: 10.1016/j.artmed.2021.102039_bib0755 article-title: Classification of people who suffer schizophrenia and healthy people by EEG signals using deep learning publication-title: Int J Adv Comput Sci Appl – volume: 10 start-page: 1347 year: 2010 ident: 10.1016/j.artmed.2021.102039_bib0110 article-title: Early signs, diagnosis and therapeutics of the prodromal phase of schizophrenia and related psychotic disorders publication-title: Expert Rev Neurother doi: 10.1586/ern.10.93 – volume: 215 start-page: 392 year: 2020 ident: 10.1016/j.artmed.2021.102039_bib0100 article-title: Detecting schizophrenia early: prediagnosis healthcare utilization characteristics of patients with schizophrenia may aid early detection publication-title: Schizophr Res doi: 10.1016/j.schres.2019.08.011 – year: 2005 ident: 10.1016/j.artmed.2021.102039_bib0805 – year: 2013 ident: 10.1016/j.artmed.2021.102039_bib0165 – volume: 7 start-page: 15 year: 2013 ident: 10.1016/j.artmed.2021.102039_bib0425 article-title: Dysfunctional cortical connectivity during the auditory oddball task in patients with schizophrenia publication-title: Open Neuroimag J doi: 10.2174/1874440001307010015 – volume: 184 start-page: 18 year: 2015 ident: 10.1016/j.artmed.2021.102039_bib0060 article-title: Auditory verbal hallucinations in bipolar disorder (BD) and major depressive disorder (MDD): a systematic review publication-title: J Affect Disord doi: 10.1016/j.jad.2015.05.040 – volume: 93 start-page: 37 year: 2017 ident: 10.1016/j.artmed.2021.102039_bib0290 article-title: Schizophrenia: a review of potential biomarkers publication-title: J Psychiatr Res doi: 10.1016/j.jpsychires.2017.05.009 – volume: 107 start-page: 305 year: 1998 ident: 10.1016/j.artmed.2021.102039_bib0825 article-title: Comorbid mental disorders: implications for treatment and sample selection publication-title: J Abnorm Psychol doi: 10.1037/0021-843X.107.2.305 – start-page: 433 year: 2019 ident: 10.1016/j.artmed.2021.102039_bib0300 article-title: Neurobiology of schizophrenia: electrophysiological indices – volume: 3 start-page: 1 year: 2009 ident: 10.1016/j.artmed.2021.102039_bib0480 article-title: Introduction to semi-supervised learning publication-title: Synth Lect Artif Intell Mach Learn – volume: 49 start-page: 1 year: 2001 ident: 10.1016/j.artmed.2021.102039_bib0220 article-title: A review of MRI findings in schizophrenia publication-title: Schizophr Res doi: 10.1016/S0920-9964(01)00163-3 – volume: 26 start-page: 923 year: 2016 ident: 10.1016/j.artmed.2021.102039_bib0450 article-title: Biomarkers for drug development in early psychosis: current issues and promising directions publication-title: Eur Neuropsychopharmacol doi: 10.1016/j.euroneuro.2016.01.009 – year: 2010 ident: 10.1016/j.artmed.2021.102039_bib0485 – volume: 165 start-page: 27 year: 2009 ident: 10.1016/j.artmed.2021.102039_bib0230 article-title: Profile of auditory information-processing deficits in schizophrenia publication-title: Psychiatry Res doi: 10.1016/j.psychres.2008.04.013 – volume: 27 start-page: 1193 year: 2019 ident: 10.1016/j.artmed.2021.102039_bib0580 article-title: EEG classification during scene Free-viewing for schizophrenia detection publication-title: IEEE Trans Neural Syst Rehabil Eng. doi: 10.1109/TNSRE.2019.2913799 – volume: 5 start-page: 235 year: 2018 ident: 10.1016/j.artmed.2021.102039_bib0820 article-title: What is comorbidity and why does it matter in neurodevelopmental disorders? publication-title: Curr Dev Disord Reports doi: 10.1007/s40474-018-0152-3 – volume: 2 start-page: 531 year: 2006 ident: 10.1016/j.artmed.2021.102039_bib0240 article-title: Cognitive deficits and functional outcome in schizophrenia publication-title: Neuropsychiatr Dis Treat doi: 10.2147/nedt.2006.2.4.531 – volume: 43 start-page: 204 year: 2019 ident: 10.1016/j.artmed.2021.102039_bib0490 article-title: Diagnosis of human psychological disorders using supervised learning and nature-inspired computing techniques: a meta-analysis publication-title: J Med Syst doi: 10.1007/s10916-019-1341-2 – volume: 278 start-page: 27 year: 2019 ident: 10.1016/j.artmed.2021.102039_bib0195 article-title: Relative importance of symptoms, cognition, and other multilevel variables for psychiatric disease classifications by machine learning publication-title: Psychiatry Res doi: 10.1016/j.psychres.2019.03.048 – volume: 521 start-page: 436 year: 2015 ident: 10.1016/j.artmed.2021.102039_bib0675 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – start-page: 6047 year: 2013 ident: 10.1016/j.artmed.2021.102039_bib0530 article-title: Classification of schizophrenia using genetic algorithm-support vector machine (GA-SVM) – volume: 188 start-page: 21 year: 2017 ident: 10.1016/j.artmed.2021.102039_bib0270 article-title: Meta-analysis of functional magnetic resonance imaging studies of timing and cognitive control in schizophrenia and bipolar disorder: evidence of a primary time deficit publication-title: Schizophr Res doi: 10.1016/j.schres.2017.01.039 – volume: 27 start-page: 62 year: 2014 ident: 10.1016/j.artmed.2021.102039_bib0460 article-title: Machine learning, a probabilistic perspective publication-title: Chance doi: 10.1080/09332480.2014.914768 – year: 2012 ident: 10.1016/j.artmed.2021.102039_bib0205 – volume: 1 start-page: 1 year: 2018 ident: 10.1016/j.artmed.2021.102039_bib0600 article-title: Optimizing brain map for the diagnosis of schizophrenia publication-title: Int J Biomed Eng Technol doi: 10.1504/IJBET.2018.094728 – volume: 189 start-page: 9 year: 2017 ident: 10.1016/j.artmed.2021.102039_bib0275 article-title: Task and resting-state fMRI studies in first-episode schizophrenia: a systematic review publication-title: Schizophr Res doi: 10.1016/j.schres.2017.02.026 – volume: 27 start-page: 594 year: 2019 ident: 10.1016/j.artmed.2021.102039_bib0590 article-title: Differentiation of schizophrenia by combining the spatial EEG brain network patterns of rest and task P300, IEEE trans publication-title: Neural Syst Rehabil Eng doi: 10.1109/TNSRE.2019.2900725 – year: 2014 ident: 10.1016/j.artmed.2021.102039_bib0135 – start-page: 603 year: 2019 ident: 10.1016/j.artmed.2021.102039_bib0160 article-title: Trends in schizophrenia diagnosis and treatment – year: 2019 ident: 10.1016/j.artmed.2021.102039_bib0685 – volume: 11 start-page: 126 year: 2013 ident: 10.1016/j.artmed.2021.102039_bib0190 article-title: Toward the future of psychiatric diagnosis: the seven pillars of RDoC publication-title: BMC Med. doi: 10.1186/1741-7015-11-126 – volume: 24 start-page: 129 year: 2016 ident: 10.1016/j.artmed.2021.102039_bib0410 article-title: Electrophysiological endophenotypes for schizophrenia publication-title: Harv Rev Psychiatry doi: 10.1097/HRP.0000000000000110 – volume: 176 start-page: 314 year: 2016 ident: 10.1016/j.artmed.2021.102039_bib0555 article-title: Machine-learning-based diagnosis of schizophrenia using combined sensor-level and source-level EEG features publication-title: Schizophr Res doi: 10.1016/j.schres.2016.05.007 – start-page: 131 year: 2013 ident: 10.1016/j.artmed.2021.102039_bib0415 article-title: Early auditory gamma band response abnormalities in first hospitalized schizophrenia – volume: 201 start-page: 237 year: 2018 ident: 10.1016/j.artmed.2021.102039_bib0040 article-title: Neural correlates of global and specific cognitive deficits in schizophrenia publication-title: Schizophr Res doi: 10.1016/j.schres.2018.06.017 – volume: 18 start-page: 733 year: 2017 ident: 10.1016/j.artmed.2021.102039_bib0310 article-title: Theranostic biomarkers for schizophrenia publication-title: Int J Mol Sci doi: 10.3390/ijms18040733 – volume: 85 start-page: 162 year: 2009 ident: 10.1016/j.artmed.2021.102039_bib0065 article-title: Delusions, illusions and hallucinations in epilepsy: 1. Elementary phenomena publication-title: Epilepsy Res. doi: 10.1016/j.eplepsyres.2009.03.018 – volume: 5 start-page: 62 year: 2011 ident: 10.1016/j.artmed.2021.102039_bib0520 article-title: Usefulness of approximate entropy in the diagnosis of schizophrenia, Iran publication-title: J Psychiatry Behav Sci – start-page: 123 year: 2007 ident: 10.1016/j.artmed.2021.102039_bib0510 article-title: A New approach to classify the schizophrenic and Normal subjects by finding the Best channels and frequency bands – year: 2020 ident: 10.1016/j.artmed.2021.102039_bib0640 article-title: Identification of children at risk of schizophrenia via deep learning and EEG responses publication-title: IEEE J Biomed Heal Informatics – start-page: 523 year: 2014 ident: 10.1016/j.artmed.2021.102039_bib0140 article-title: Event-related potentials – volume: 3 start-page: 4 year: 2018 ident: 10.1016/j.artmed.2021.102039_bib0285 article-title: High temporal resolution measurement of cognitive and affective processes in psychopathology: what electroencephalography and magnetoencephalography can tell us about mental illness publication-title: Biol Psychiatry Cogn Neurosci Neuroimaging – volume: 47 start-page: 263 year: 2009 ident: 10.1016/j.artmed.2021.102039_bib0515 article-title: Entropy and complexity measures for EEG signal classification of schizophrenic and control participants publication-title: Artif Intell Med doi: 10.1016/j.artmed.2009.03.003 – volume: 152 start-page: 131 year: 2017 ident: 10.1016/j.artmed.2021.102039_bib0595 article-title: Binary classification of multichannel-EEG records based on the ε-complexity of continuous vector functions publication-title: Comput Methods Programs Biomed doi: 10.1016/j.cmpb.2017.09.001 – volume: 13 start-page: 1319 year: 2019 ident: 10.1016/j.artmed.2021.102039_bib0325 article-title: Staging model in psychiatry: review of the evolution of electroencephalography abnormalities in major psychiatric disorders publication-title: Early Interv Psychiatry doi: 10.1111/eip.12792 – start-page: 4521 year: 2019 ident: 10.1016/j.artmed.2021.102039_bib0575 article-title: EEG signals classification using machine learning for the identification and diagnosis of schizophrenia – volume: 8 start-page: 725 year: 2007 ident: 10.1016/j.artmed.2021.102039_bib0175 article-title: Can neuroscience be integrated into the DSM-v? publication-title: Nat Rev Neurosci doi: 10.1038/nrn2218 – volume: 19 start-page: 459 year: 2019 ident: 10.1016/j.artmed.2021.102039_bib0630 article-title: Discriminating schizophrenia disease progression using a P50 sensory gating task with dense-array EEG, clinical assessments, and cognitive tests publication-title: Expert Rev Neurother doi: 10.1080/14737175.2019.1601558 – volume: 16 start-page: 262 year: 2019 ident: 10.1016/j.artmed.2021.102039_bib0505 article-title: Review of machine learning algorithms for diagnosing mental illness publication-title: Psychiatry Investig doi: 10.30773/pi.2018.12.21.2 – start-page: 1 year: 2014 ident: 10.1016/j.artmed.2021.102039_bib0540 article-title: In search of biomarkers for schizophrenia using electroencephalography – volume: 08 year: 2018 ident: 10.1016/j.artmed.2021.102039_bib0570 article-title: Identification of schizophrenic patients and healthy controls based on musical perception using AEP analysis publication-title: Neuropsychiatry (London). – volume: 11 start-page: 100 year: 2010 ident: 10.1016/j.artmed.2021.102039_bib0655 article-title: Abnormal neural oscillations and synchrony in schizophrenia publication-title: Nat Rev Neurosci doi: 10.1038/nrn2774 – year: 2020 ident: 10.1016/j.artmed.2021.102039_bib0815 article-title: EEG classification across sessions and across subjects through transfer learning in motor imagery-based brain-machine interface system publication-title: Med Biol Eng Comput doi: 10.1007/s11517-020-02176-y – volume: 191 start-page: 109 year: 2018 ident: 10.1016/j.artmed.2021.102039_bib0080 article-title: Sensory prediction errors in the continuum of psychosis publication-title: Schizophr Res doi: 10.1016/j.schres.2017.04.019 – volume: 1344 start-page: 105 year: 2015 ident: 10.1016/j.artmed.2021.102039_bib0315 article-title: Future clinical uses of neurophysiological biomarkers to predict and monitor treatment response for schizophrenia publication-title: Ann N Y Acad Sci doi: 10.1111/nyas.12730 – volume: 64 start-page: 395 year: 2017 ident: 10.1016/j.artmed.2021.102039_bib0560 article-title: A computer-aided diagnosis system with EEG based on the P3b wave during an auditory odd-ball task in schizophrenia, IEEE trans publication-title: Biomed Eng – year: 2016 ident: 10.1016/j.artmed.2021.102039_bib0465 – volume: 161 start-page: 1 year: 2018 ident: 10.1016/j.artmed.2021.102039_bib0715 article-title: Deep learning for healthcare applications based on physiological signals: a review publication-title: Comput Methods Programs Biomed doi: 10.1016/j.cmpb.2018.04.005 – volume: 47 start-page: 413 year: 2000 ident: 10.1016/j.artmed.2021.102039_bib0380 article-title: P300 reduction and prolongation with illness duration in schizophrenia publication-title: Biol Psychiatry doi: 10.1016/S0006-3223(99)00151-1 – volume: 3 start-page: 1 year: 2009 ident: 10.1016/j.artmed.2021.102039_bib0295 article-title: Role of biomarkers and endophenotypes in prevention and treatment of psychopathological disorders publication-title: Biomark Med doi: 10.2217/17520363.3.1.1 – volume: 12 start-page: 333 year: 2010 ident: 10.1016/j.artmed.2021.102039_bib0265 article-title: Functional magnetic resonance imaging in schizophrenia, dialogues publication-title: Clin Neurosci – volume: 61 start-page: 85 year: 2015 ident: 10.1016/j.artmed.2021.102039_bib0695 article-title: Deep learning in neural networks: an overview publication-title: Neural Networks. doi: 10.1016/j.neunet.2014.09.003 – volume: 49 start-page: 1426 year: 2019 ident: 10.1016/j.artmed.2021.102039_bib0495 article-title: Machine learning in mental health: a scoping review of methods and applications publication-title: Psychol Med doi: 10.1017/S0033291719000151 – volume: 468 start-page: 187 year: 2010 ident: 10.1016/j.artmed.2021.102039_bib0105 article-title: Rethinking schizophrenia publication-title: Nature doi: 10.1038/nature09552 – volume: 27 start-page: 960 year: 2005 ident: 10.1016/j.artmed.2021.102039_bib0375 article-title: Is the P300 wave an endophenotype for schizophrenia? A meta-analysis and a family study publication-title: Neuroimage. doi: 10.1016/j.neuroimage.2005.05.022 – volume: 16 start-page: 31 year: 2018 ident: 10.1016/j.artmed.2021.102039_bib0770 article-title: The mythos of model interpretability publication-title: Queue doi: 10.1145/3236386.3241340 – volume: 210 start-page: 16 year: 2013 ident: 10.1016/j.artmed.2021.102039_bib0835 article-title: Psychiatric comorbidity among adults with schizophrenia: a latent class analysis publication-title: Psychiatry Res doi: 10.1016/j.psychres.2013.05.013 – start-page: 1 year: 2017 ident: 10.1016/j.artmed.2021.102039_bib0705 article-title: Deep learning with convolutional neural networks for decoding and visualization of EEG pathology – volume: 44 start-page: 135 year: 2013 ident: 10.1016/j.artmed.2021.102039_bib0525 article-title: Multidimensional analysis of the abnormal neural oscillations associated with lexical processing in schizophrenia publication-title: Clin EEG Neurosci doi: 10.1177/1550059412465078 – volume: 19 start-page: 226 year: 2010 ident: 10.1016/j.artmed.2021.102039_bib0215 article-title: Structural and functional brain abnormalities in schizophrenia publication-title: Curr Dir Psychol Sci doi: 10.1177/0963721410377601 – volume: 6 start-page: 40379 year: 2018 ident: 10.1016/j.artmed.2021.102039_bib0645 article-title: Classification of bipolar disorder and schizophrenia using steady-State visual evoked potential based features publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2854555 – volume: 77 start-page: 951 year: 2015 ident: 10.1016/j.artmed.2021.102039_bib0330 article-title: Forecasting psychosis by event-related potentials—systematic review and specific meta-analysis publication-title: Biol Psychiatry doi: 10.1016/j.biopsych.2014.09.025 – volume: 8 year: 2017 ident: 10.1016/j.artmed.2021.102039_bib0055 article-title: Psychotic-like experiences at the healthy End of the psychosis continuum publication-title: Front Psychol doi: 10.3389/fpsyg.2017.00775 – volume: 16 year: 2019 ident: 10.1016/j.artmed.2021.102039_bib0720 article-title: Deep learning for electroencephalogram (EEG) classification tasks: a review publication-title: J Neural Eng doi: 10.1088/1741-2552/ab0ab5 – volume: 74 start-page: 17 year: 2017 ident: 10.1016/j.artmed.2021.102039_bib0255 article-title: Association of sensory processing with higher-order cognition and functioning in schizophrenia: mapping the world publication-title: JAMA Psychiatry doi: 10.1001/jamapsychiatry.2016.2992 – volume: 70 start-page: 28 year: 2011 ident: 10.1016/j.artmed.2021.102039_bib0365 article-title: A roadmap for the development and validation of event-related potential biomarkers in schizophrenia research publication-title: Biol Psychiatry doi: 10.1016/j.biopsych.2010.09.021 – volume: 1 start-page: e1 year: 2014 ident: 10.1016/j.artmed.2021.102039_bib0245 article-title: Cognition in schizophrenia: past, present, and future publication-title: Schizophr Res Cogn doi: 10.1016/j.scog.2014.02.001 – volume: 35 start-page: 25 year: 2017 ident: 10.1016/j.artmed.2021.102039_bib0025 article-title: The societal cost of schizophrenia: a systematic review publication-title: Pharmacoeconomics. doi: 10.1007/s40273-016-0444-6 – volume: 43 start-page: 1133 year: 2013 ident: 10.1016/j.artmed.2021.102039_bib0070 article-title: An updated and conservative systematic review and meta-analysis of epidemiological evidence on psychotic experiences in children and adults: on the pathway from proneness to persistence to dimensional expression across mental disorders publication-title: Psychol Med doi: 10.1017/S0033291712001626 – volume: 12 start-page: 357 year: 2016 ident: 10.1016/j.artmed.2021.102039_bib0020 article-title: Global economic burden of schizophrenia: a systematic review publication-title: Neuropsychiatr Dis Treat doi: 10.2147/NDT.S96649 – start-page: 101 year: 2013 ident: 10.1016/j.artmed.2021.102039_bib0435 article-title: The auditory steady-state response (ASSR) doi: 10.1016/B978-0-7020-5307-8.00006-5 – volume: 129 start-page: 2099 year: 2018 ident: 10.1016/j.artmed.2021.102039_bib0400 article-title: Auditory N100 gating in patients with schizophrenia: a systematic meta-analysis publication-title: Clin Neurophysiol doi: 10.1016/j.clinph.2018.07.012 – volume: 38 start-page: 227 year: 2012 ident: 10.1016/j.artmed.2021.102039_bib0095 article-title: Introduction: the extended psychosis phenotype--relationship with schizophrenia and with ultrahigh risk Status for psychosis publication-title: Schizophr Bull doi: 10.1093/schbul/sbr188 – volume: 116 start-page: 36 year: 2016 ident: 10.1016/j.artmed.2021.102039_bib0340 article-title: Mismatch negativity (MMN) as biomarker predicting psychosis in clinically at-risk individuals publication-title: Biol Psychol doi: 10.1016/j.biopsycho.2015.10.010 – volume: 2016 start-page: 1 year: 2016 ident: 10.1016/j.artmed.2021.102039_bib0045 article-title: Neurophysiology for detection of High risk for psychosis publication-title: Schizophr Res Treatment doi: 10.1155/2016/2697971 – volume: 3361 year: 1995 ident: 10.1016/j.artmed.2021.102039_bib0735 article-title: Convolutional networks for images, speech, and time series publication-title: Handb Brain Theory Neural Networks – volume: 35 start-page: 383 year: 2009 ident: 10.1016/j.artmed.2021.102039_bib0830 article-title: Psychiatric comorbidities and schizophrenia publication-title: Schizophr Bull doi: 10.1093/schbul/sbn135 – year: 1992 ident: 10.1016/j.artmed.2021.102039_bib0170 – volume: 37 start-page: 778 year: 2011 ident: 10.1016/j.artmed.2021.102039_bib0420 article-title: The early auditory gamma-band response Is heritable and a putative endophenotype of schizophrenia publication-title: Schizophr Bull doi: 10.1093/schbul/sbp134 – volume: 2 year: 2005 ident: 10.1016/j.artmed.2021.102039_bib0005 article-title: A systematic review of the prevalence of schizophrenia publication-title: PLoS Med doi: 10.1371/journal.pmed.0020141 – volume: 15 start-page: 31005 year: 2018 ident: 10.1016/j.artmed.2021.102039_bib0810 article-title: A review of classification algorithms for EEG-based brain--computer interfaces: a 10 year update publication-title: J Neural Eng doi: 10.1088/1741-2552/aab2f2 – start-page: 1 year: 2020 ident: 10.1016/j.artmed.2021.102039_bib0500 article-title: Computing schizophrenia: ethical challenges for machine learning in psychiatry publication-title: Psychol Med – volume: 3 start-page: 48 year: 2009 ident: 10.1016/j.artmed.2021.102039_bib0665 article-title: Differential maturation of brain signal complexity in the human auditory and visual system publication-title: Front Hum Neurosci doi: 10.3389/neuro.09.048.2009 – year: 2017 ident: 10.1016/j.artmed.2021.102039_bib0620 – volume: 8 start-page: 292 year: 2019 ident: 10.1016/j.artmed.2021.102039_bib0680 article-title: A State-of-the-art survey on deep learning theory and architectures publication-title: Electronics doi: 10.3390/electronics8030292 – volume: 39 start-page: 179 year: 2009 ident: 10.1016/j.artmed.2021.102039_bib0090 article-title: A systematic review and meta-analysis of the psychosis continuum: evidence for a psychosis proneness–persistence–impairment model of psychotic disorder publication-title: Psychol Med doi: 10.1017/S0033291708003814 – volume: 67 start-page: 461 year: 2013 ident: 10.1016/j.artmed.2021.102039_bib0130 article-title: Review of neurophysiological findings in patients with schizophrenia publication-title: Psychiatry Clin Neurosci doi: 10.1111/pcn.12090 – year: 2019 ident: 10.1016/j.artmed.2021.102039_bib0750 article-title: On the use of pairwise distance learning for brain Signal classification with limited observations publication-title: ArXiv Prepr – volume: 3 start-page: 223 year: 2018 ident: 10.1016/j.artmed.2021.102039_bib0145 article-title: Machine learning for precision psychiatry: opportunities and challenges publication-title: Biol Psychiatry Cogn Neurosci Neuroimaging – year: 2017 ident: 10.1016/j.artmed.2021.102039_bib0760 article-title: Individual recognition in schizophrenia using deep learning methods with random Forest and voting classifiers: insights from resting State EEG streams publication-title: ArXiv Prepr – volume: 6 year: 2012 ident: 10.1016/j.artmed.2021.102039_bib0120 article-title: Neurobiology of schizophrenia: search for the elusive correlation with symptoms publication-title: Front Hum Neurosci doi: 10.3389/fnhum.2012.00136 – volume: 28 year: 2017 ident: 10.1016/j.artmed.2021.102039_bib0585 article-title: EEG signal complexity analysis for schizophrenia during rest and mental activity publication-title: Biomed Res – volume: 43 start-page: 227 year: 2020 ident: 10.1016/j.artmed.2021.102039_bib0615 article-title: Schizophrenia diagnosis using innovative EEG feature-level fusion schemes publication-title: Phys Eng Sci Med doi: 10.1007/s13246-019-00839-1 – start-page: 1 year: 2015 ident: 10.1016/j.artmed.2021.102039_bib0200 article-title: Neurophysiological and neuroimaging techniques – volume: 97 start-page: 3 year: 2019 ident: 10.1016/j.artmed.2021.102039_bib0180 article-title: A quantitative approach to neuropsychiatry: the why and the how publication-title: Neurosci Biobehav Rev doi: 10.1016/j.neubiorev.2017.12.008 – year: 2015 ident: 10.1016/j.artmed.2021.102039_bib0345 article-title: Advanced Signal processing on brain event-related potentials publication-title: World Sci – volume: 1 year: 2020 ident: 10.1016/j.artmed.2021.102039_bib0210 article-title: A meta-analysis of structural and functional brain abnormalities in early-onset schizophrenia publication-title: Schizophr Bull Open doi: 10.1093/schizbullopen/sgaa016 – volume: 73 start-page: 1145 year: 2016 ident: 10.1016/j.artmed.2021.102039_bib0430 article-title: The 40-Hz auditory steady-State response in patients with schizophrenia publication-title: JAMA Psychiatry doi: 10.1001/jamapsychiatry.2016.2619 – volume: 100 start-page: 101698 year: 2019 ident: 10.1016/j.artmed.2021.102039_bib0605 article-title: Automated detection of schizophrenia using nonlinear signal processing methods publication-title: Artif Intell Med doi: 10.1016/j.artmed.2019.07.006 – year: 2013 ident: 10.1016/j.artmed.2021.102039_bib0690 article-title: Deep learning publication-title: MIT Technol Rev 10 Breakthr Technol |
SSID | ssj0007416 |
Score | 2.5297532 |
SecondaryResourceType | review_article |
Snippet | •Machine learning shows promise in SZ onset prediction, detection of psychosis risk, and discrimination from other disorders.•We review EEG-based machine... The complexity and heterogeneity of schizophrenia symptoms challenge an objective diagnosis, which is typically based on behavioral and clinical... |
SourceID | proquest pubmed crossref rcaap elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1 |
SubjectTerms | Biomarkers Brain Classification Deep learning Diagnosis EEG Electroencephalography Endophenotypes Humans Machine learning Prediction Prognosis Psychosis Psychotic Disorders Quality of Life Schizophrenia Science & Technology |
Title | Advanced EEG-based learning approaches to predict schizophrenia: Promises and pitfalls |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0933365721000324 https://dx.doi.org/10.1016/j.artmed.2021.102039 http://hdl.handle.net/1822/89881 https://www.ncbi.nlm.nih.gov/pubmed/33875158 https://www.proquest.com/docview/2515683860 |
Volume | 114 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwED5Nm4R4YTB-LDAmI_Ea2vh3eaumjgLahARDe7Mc20FFVRo12St_O-fEKUMgDfHYyte6vovv--rzdwCvJSI2pAEsV54iQaGyzK32LGeel7zyztFeYuPiUi6v-Idrcb0HZ-NdmFhWmfb-YU_vd-v0ziSt5qRZrSafIxdnUuB3RWBPoyYo5yrq57_58avMIyKOXm-P4QRw9Hh9rq_xws_DnIMskRZRw2AaW4b_PT39CT8RzW6dtc2tdHT-EB4kHEnmw1QfwV6oj-Bw7NFA0iN7BPcu0uH5Y_g6T-f9ZLF4l8f05UlqGvGNjNrioSXdhjTbaNWR9nZJ3lvyabvBsMAhtvakWXWVXa_bJ3B1vvhytsxTW4XccT7t4p9-VaV5YUvmmRNIyBzCKFdaqnUlnCrttLTBz7hyfMZ9UUkayqjiYinzSin2FPbrTR2OgSDZYALdWWnteXBciyALGaiVrph5oTJg42oalzTHY-uLtRmLy76bwQcm-sAMPsgg31k1g-bGHePF6Cgz3ifFHdBgUrjDTu3sfou5f7B8NcaDwXWPZyy2Dpub1iBcFFIzLacZPBsCZfcbGENyWAidQdZHjomF3MgBWoMkjxo907p4_t9zegH346uhqugE9rvtTXiJgKkrT_sn4hQO5u8_Li9_ArqXEaw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwED6NIQEvGwwGYQOMxGto419xeZumjgLrhMSG9mY5toOKqjRqslf-9p0TpwwxaYjXxJc4vrPv--LzHcA7iYgNaQBLc0eRoFBZpEY5ljLHC146a2mXYmN-JmcX_POluNyC4-EsTAirjGt_v6Z3q3W8MoqjOaoXi9G3wMWZFPiuAOwpvwf3uWB5MO33v37HeQTI0SXcY9gDbD6cn-uCvPCB6HSQJtIsJDEYh5rht_unv_Enwtm1Naa-4Y9OHsNOBJLkqO_rE9jy1R7sDkUaSJyze_BgHnfPn8L3o7jhT6bTj2nwX47EqhE_yJBc3DekXZF6HaRa0tyMyftAvq5XaBfYxFSO1Iu2NMtl8wwuTqbnx7M01lVILefjNvz1K0vFM1Mwx6xARmYRR9nCUKVKYfPCjAvj3YTnlk-4y0pJfRHSuBjKXJ7nbB-2q1XlXwBBtsEE6rNUynFvuRJeZtJTI202cSJPgA2jqW1MOh5qXyz1EF32U_c60EEHutdBAulGqu6TbtzRXgyK0sOBUlwCNXqFO-TyjdwfRvcPkm8He9A47mGTxVR-ddVoxItCKqbkOIHnvaFsvoExZIeZUAkkneXoEMmNJKDRyPKoVhOlspf_3ac38HB2Pj_Vp5_OvhzAo3CnDzE6hO12feVfIXpqi9fd7LgG8OkTQg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Advanced+EEG-based+learning+approaches+to+predict+schizophrenia%3A+Promises+and+pitfalls&rft.jtitle=Artificial+intelligence+in+medicine&rft.au=Barros%2C+Carla&rft.au=Silva%2C+Carlos+A&rft.au=Pinheiro%2C+Ana+P&rft.date=2021-04-01&rft.issn=1873-2860&rft.eissn=1873-2860&rft.volume=114&rft.spage=102039&rft_id=info:doi/10.1016%2Fj.artmed.2021.102039&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0933-3657&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0933-3657&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0933-3657&client=summon |