Advanced EEG-based learning approaches to predict schizophrenia: Promises and pitfalls

•Machine learning shows promise in SZ onset prediction, detection of psychosis risk, and discrimination from other disorders.•We review EEG-based machine learning methods to discriminate SZ from healthy, at-risk, and subjects with other disorders.•We synthesize EEG-based deep learning strategies for...

Full description

Saved in:
Bibliographic Details
Published inArtificial intelligence in medicine Vol. 114; pp. 1 - 13
Main Authors Barros, Carla, Silva, Carlos A., Pinheiro, Ana P.
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.04.2021
Elsevier
Subjects
Online AccessGet full text
ISSN0933-3657
1873-2860
1873-2860
DOI10.1016/j.artmed.2021.102039

Cover

Loading…
Abstract •Machine learning shows promise in SZ onset prediction, detection of psychosis risk, and discrimination from other disorders.•We review EEG-based machine learning methods to discriminate SZ from healthy, at-risk, and subjects with other disorders.•We synthesize EEG-based deep learning strategies for schizophrenia classification and risk prediction.•We discuss their potential and limitations and provide future directions in EEG-based model development. The complexity and heterogeneity of schizophrenia symptoms challenge an objective diagnosis, which is typically based on behavioral and clinical manifestations. Moreover, the boundaries of schizophrenia are not precisely demarcated from other nosologic categories, such as bipolar disorder. The early detection of schizophrenia can lead to a more effective treatment, improving patients’ quality of life. Over the last decades, hundreds of studies aimed at specifying the neurobiological mechanisms that underpin clinical manifestations of schizophrenia, using techniques such as electroencephalography (EEG). Changes in event-related potentials of the EEG have been associated with sensory and cognitive deficits and proposed as biomarkers of schizophrenia. Besides contributing to a more effective diagnosis, biomarkers can be crucial to schizophrenia onset prediction and prognosis. However, any proposed biomarker requires substantial clinical research to prove its validity and cost-effectiveness. Fueled by developments in computational neuroscience, automatic classification of schizophrenia at different stages (prodromal, first episode, chronic) has been attempted, using brain imaging pattern recognition methods to capture differences in functional brain activity. Advanced learning techniques have been studied for this purpose, with promising results. This review provides an overview of recent machine learning-based methods for schizophrenia classification using EEG data, discussing their potentialities and limitations. This review is intended to serve as a starting point for future developments of effective EEG-based models that might predict the onset of schizophrenia, identify subjects at high-risk of psychosis conversion or differentiate schizophrenia from other disorders, promoting more effective early interventions.
AbstractList The complexity and heterogeneity of schizophrenia symptoms challenge an objective diagnosis, which is typically based on behavioral and clinical manifestations. Moreover, the boundaries of schizophrenia are not precisely demarcated from other nosologic categories, such as bipolar disorder. The early detection of schizophrenia can lead to a more effective treatment, improving patients' quality of life. Over the last decades, hundreds of studies aimed at specifying the neurobiological mechanisms that underpin clinical manifestations of schizophrenia, using techniques such as electroencephalography (EEG). Changes in event-related potentials of the EEG have been associated with sensory and cognitive deficits and proposed as biomarkers of schizophrenia. Besides contributing to a more effective diagnosis, biomarkers can be crucial to schizophrenia onset prediction and prognosis. However, any proposed biomarker requires substantial clinical research to prove its validity and cost-effectiveness. Fueled by developments in computational neuroscience, automatic classification of schizophrenia at different stages (prodromal, first episode, chronic) has been attempted, using brain imaging pattern recognition methods to capture differences in functional brain activity. Advanced learning techniques have been studied for this purpose, with promising results. This review provides an overview of recent machine learning-based methods for schizophrenia classification using EEG data, discussing their potentialities and limitations. This review is intended to serve as a starting point for future developments of effective EEG-based models that might predict the onset of schizophrenia, identify subjects at high-risk of psychosis conversion or differentiate schizophrenia from other disorders, promoting more effective early interventions.The complexity and heterogeneity of schizophrenia symptoms challenge an objective diagnosis, which is typically based on behavioral and clinical manifestations. Moreover, the boundaries of schizophrenia are not precisely demarcated from other nosologic categories, such as bipolar disorder. The early detection of schizophrenia can lead to a more effective treatment, improving patients' quality of life. Over the last decades, hundreds of studies aimed at specifying the neurobiological mechanisms that underpin clinical manifestations of schizophrenia, using techniques such as electroencephalography (EEG). Changes in event-related potentials of the EEG have been associated with sensory and cognitive deficits and proposed as biomarkers of schizophrenia. Besides contributing to a more effective diagnosis, biomarkers can be crucial to schizophrenia onset prediction and prognosis. However, any proposed biomarker requires substantial clinical research to prove its validity and cost-effectiveness. Fueled by developments in computational neuroscience, automatic classification of schizophrenia at different stages (prodromal, first episode, chronic) has been attempted, using brain imaging pattern recognition methods to capture differences in functional brain activity. Advanced learning techniques have been studied for this purpose, with promising results. This review provides an overview of recent machine learning-based methods for schizophrenia classification using EEG data, discussing their potentialities and limitations. This review is intended to serve as a starting point for future developments of effective EEG-based models that might predict the onset of schizophrenia, identify subjects at high-risk of psychosis conversion or differentiate schizophrenia from other disorders, promoting more effective early interventions.
•Machine learning shows promise in SZ onset prediction, detection of psychosis risk, and discrimination from other disorders.•We review EEG-based machine learning methods to discriminate SZ from healthy, at-risk, and subjects with other disorders.•We synthesize EEG-based deep learning strategies for schizophrenia classification and risk prediction.•We discuss their potential and limitations and provide future directions in EEG-based model development. The complexity and heterogeneity of schizophrenia symptoms challenge an objective diagnosis, which is typically based on behavioral and clinical manifestations. Moreover, the boundaries of schizophrenia are not precisely demarcated from other nosologic categories, such as bipolar disorder. The early detection of schizophrenia can lead to a more effective treatment, improving patients’ quality of life. Over the last decades, hundreds of studies aimed at specifying the neurobiological mechanisms that underpin clinical manifestations of schizophrenia, using techniques such as electroencephalography (EEG). Changes in event-related potentials of the EEG have been associated with sensory and cognitive deficits and proposed as biomarkers of schizophrenia. Besides contributing to a more effective diagnosis, biomarkers can be crucial to schizophrenia onset prediction and prognosis. However, any proposed biomarker requires substantial clinical research to prove its validity and cost-effectiveness. Fueled by developments in computational neuroscience, automatic classification of schizophrenia at different stages (prodromal, first episode, chronic) has been attempted, using brain imaging pattern recognition methods to capture differences in functional brain activity. Advanced learning techniques have been studied for this purpose, with promising results. This review provides an overview of recent machine learning-based methods for schizophrenia classification using EEG data, discussing their potentialities and limitations. This review is intended to serve as a starting point for future developments of effective EEG-based models that might predict the onset of schizophrenia, identify subjects at high-risk of psychosis conversion or differentiate schizophrenia from other disorders, promoting more effective early interventions.
The complexity and heterogeneity of schizophrenia symptoms challenge an objective diagnosis, which is typically based on behavioral and clinical manifestations. Moreover, the boundaries of schizophrenia are not precisely demarcated from other nosologic categories, such as bipolar disorder. The early detection of schizophrenia can lead to a more effective treatment, improving patients' quality of life. Over the last decades, hundreds of studies aimed at specifying the neurobiological mechanisms that underpin clinical manifestations of schizophrenia, using techniques such as electroencephalography (EEG). Changes in event-related potentials of the EEG have been associated with sensory and cognitive deficits and proposed as biomarkers of schizophrenia. Besides contributing to a more effective diagnosis, biomarkers can be crucial to schizophrenia onset prediction and prognosis. However, any proposed biomarker requires substantial clinical research to prove its validity and cost-effectiveness. Fueled by developments in computational neuroscience, automatic classification of schizophrenia at different stages (prodromal, first episode, chronic) has been attempted, using brain imaging pattern recognition methods to capture differences in functional brain activity. Advanced learning techniques have been studied for this purpose, with promising results. This review provides an overview of recent machine learning-based methods for schizophrenia classification using EEG data, discussing their potentialities and limitations. This review is intended to serve as a starting point for future developments of effective EEG-based models that might predict the onset of schizophrenia, identify subjects at high-risk of psychosis conversion or differentiate schizophrenia from other disorders, promoting more effective early interventions.
The complexity and heterogeneity of schizophrenia symptoms challenge an objective diagnosis, which is typically based on behavioral and clinical manifestations. Moreover, the boundaries of schizophrenia are not precisely demarcated from other nosologic categories, such as bipolar disorder. The early detection of schizophrenia can lead to a more effective treatment, improving patients' quality of life. Over the last decades, hundreds of studies aimed at specifying the neurobiological mechanisms that underpin clinical manifestations of schizophrenia, using techniques such as electroencephalography (EEG). Changes in event-related potentials of the EEG have been associated with sensory and cognitive deficits and proposed as biomarkers of schizophrenia. Besides contributing to a more effective diagnosis, biomarkers can be crucial to schizophrenia onset prediction and prognosis. However, any proposed biomarker requires substantial clinical research to prove its validity and cost-effectiveness. Fueled by developments in computational neuroscience, automatic classification of schizophrenia at different stages (prodromal, first episode, chronic) has been attempted, using brain imaging pattern recognition methods to capture differences in functional brain activity. Advanced learning techniques have been studied for this purpose, with promising results. This review provides an overview of recent machine learning-based methods for schizophrenia classification using EEG data, discussing their potentialities and limitations. This review is intended to serve as a starting point for future developments of effective EEG-based models that might predict the onset of schizophrenia, identify subjects at high-risk of psychosis conversion or differentiate schizophrenia from other disorders, promoting more effective early interventions. This work was supported by Grant SFRH/BD/111083/2015, funded by Fundacao para a Ciencia e Tecnologia (FCT) under the Programa Operacional Capital Humano (PO CH) co-funded by Portugal 2020 and European Social Fund, by Grant PTDC/MHC-PCN/0101/2014 funded by FCT, and by project UIDB/04436/2020 funded by FCT through national funds.
ArticleNumber 102039
Author Silva, Carlos A.
Pinheiro, Ana P.
Barros, Carla
Author_xml – sequence: 1
  givenname: Carla
  surname: Barros
  fullname: Barros, Carla
  organization: Center for Research in Psychology (CIPsi), School of Psychology, University of Minho, Braga, Portugal
– sequence: 2
  givenname: Carlos A.
  surname: Silva
  fullname: Silva, Carlos A.
  organization: Center for Microelectromechanical Systems (CMEMS), School of Engineering, University of Minho, Guimarães, Portugal
– sequence: 3
  givenname: Ana P.
  surname: Pinheiro
  fullname: Pinheiro, Ana P.
  email: appinheiro@psicologia.ulisboa.pt
  organization: Center for Research in Psychology (CIPsi), School of Psychology, University of Minho, Braga, Portugal
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33875158$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1r3DAQhkVJaTZJ_0EpPvbijb5sy6EUQtgkhUB7aHMVY2nc1dYru5J2If311eI0h1z2NEI872jm0Rk58aNHQj4wumSU1ZebJYS0RbvklLN8xalo35AFU40ouarpCVnQVohS1FVzSs5i3FBKG8nqd-RUCNVUrFIL8nht9-AN2mK1uis7iPk0IATv_K8CpimMYNYYizQWU0DrTCqiWbu_47QO6B1cFd_DuHUxI-BtMbnUwzDEC_I214jvn-s5-Xm7-nFzXz58u_t6c_1QGilpKhWTfa8kg05YYSrKqKlkZTrgSvWVaTqgHaBtZWNkKy3ra45d1bY1cGGbphHn5NPcNw_6Z4cx6TyLwWEAj-Muap63rJXIOjL68RnddVmbnoLbQnjS_11kQM6ACWOMAfsXhFF9UK43elauD8r1rDzHrl7FjEuQ3OhTADccCxdzOBiASQfcu5ggaqY416pVimXky4xg9rh3GHQ0Dg9f5gKapO3ojr3x-VUDMzjvDAy_8el4_B_PEL0O
CitedBy_id crossref_primary_10_3390_bioengineering10040493
crossref_primary_10_3390_biomedinformatics3010014
crossref_primary_10_1016_j_cmpb_2021_106450
crossref_primary_10_3389_fpsyt_2023_1205119
crossref_primary_10_1631_jzus_B2400103
crossref_primary_10_1177_15500594241253910
crossref_primary_10_1007_s11760_022_02479_7
crossref_primary_10_1126_sciadv_adh3920
crossref_primary_10_47485_2693_2490_1094
crossref_primary_10_1007_s40998_024_00738_6
crossref_primary_10_1007_s13246_024_01420_1
crossref_primary_10_1049_sil2_12230
crossref_primary_10_1038_s41386_023_01658_5
crossref_primary_10_1002_acm2_14039
crossref_primary_10_3390_diagnostics14232698
crossref_primary_10_3389_fninf_2022_893788
crossref_primary_10_1016_j_schres_2024_07_015
crossref_primary_10_1192_j_eurpsy_2023_2410
crossref_primary_10_1007_s10489_023_05155_6
crossref_primary_10_3389_fnhum_2023_1236832
crossref_primary_10_3390_brainsci12111497
crossref_primary_10_1007_s11920_022_01399_0
crossref_primary_10_3390_diagnostics13030509
crossref_primary_10_3390_diagnostics12092193
crossref_primary_10_3389_fnhum_2023_1280512
crossref_primary_10_1007_s11831_023_10047_6
crossref_primary_10_3390_diagnostics13111936
crossref_primary_10_3390_electronics10233037
crossref_primary_10_17116_jnevro2024124051113
crossref_primary_10_1109_ACCESS_2021_3138385
crossref_primary_10_1016_j_neubiorev_2024_105968
crossref_primary_10_1016_j_autcon_2022_104151
crossref_primary_10_1007_s10489_024_05669_7
crossref_primary_10_3390_bios12121097
crossref_primary_10_1142_S0129065723500065
crossref_primary_10_1007_s00500_023_08680_1
crossref_primary_10_1016_j_eswa_2022_117158
crossref_primary_10_1016_j_cmpb_2023_107360
crossref_primary_10_1177_15500594241227485
crossref_primary_10_21597_jist_1122315
crossref_primary_10_3389_fnhum_2024_1372985
crossref_primary_10_1016_j_bionps_2024_100107
crossref_primary_10_3390_app13042703
crossref_primary_10_3389_fpsyt_2021_813460
crossref_primary_10_17759_exppsy_2023160103
crossref_primary_10_3390_jcm13175108
crossref_primary_10_1192_j_eurpsy_2023_2432
crossref_primary_10_1016_j_engappai_2022_105602
crossref_primary_10_1002_ima_22700
crossref_primary_10_1093_schbul_sbae150
crossref_primary_10_1016_j_compbiomed_2022_105554
crossref_primary_10_1007_s41939_024_00612_2
crossref_primary_10_1016_j_brainres_2024_148876
crossref_primary_10_1016_j_medengphy_2023_103949
crossref_primary_10_1007_s00521_023_08350_1
crossref_primary_10_1016_j_jad_2023_11_017
crossref_primary_10_1007_s00115_021_01197_8
crossref_primary_10_1016_j_ijleo_2022_170037
Cites_doi 10.1093/schbul/sbw047
10.1093/schbul/sbj050
10.1002/hbm.23730
10.1016/S0920-9964(01)00352-8
10.1016/j.clinph.2018.10.011
10.1016/j.nicl.2017.04.027
10.1371/journal.pone.0223127
10.1016/j.dsp.2017.10.011
10.1016/j.ijpsycho.2014.12.012
10.1016/j.psychres.2008.06.035
10.1016/S0006-3223(99)00153-5
10.1093/schbul/sbm016
10.1016/j.procs.2016.07.418
10.1146/annurev-vision-082114-035447
10.1093/schbul/sbn093
10.1016/j.pnpbp.2017.12.017
10.1016/j.schres.2017.10.023
10.31887/DCNS.2010.12.3/ajablensky
10.1371/journal.pmed.1000097
10.1192/bjp.bp.109.072827
10.1016/B978-0-7020-5307-8.00011-9
10.1038/nrn4005
10.1016/j.neuroimage.2017.06.061
10.1007/s00406-010-0176-0
10.1016/j.biopsych.2006.09.025
10.1016/j.schres.2019.08.032
10.1186/1753-4631-3-2
10.1016/j.schres.2015.01.027
10.1016/j.neunet.2017.05.012
10.1016/j.biopsych.2008.06.018
10.3389/fnhum.2019.00379
10.3390/bs3030330
10.1007/s11920-013-0388-x
10.1093/schbul/sbt151
10.3390/app9142870
10.1093/schbul/sbq171
10.1146/annurev-clinpsy-032816-045037
10.3389/fpsyt.2018.00554
10.1155/2013/510402
10.1186/s40810-016-0017-0
10.1016/j.psychres.2008.03.017
10.1176/appi.ajp.2010.09091379
10.1001/jamapsychiatry.2013.155
10.1146/annurev.clinpsy.032408.153502
10.1586/ern.10.93
10.1016/j.schres.2019.08.011
10.2174/1874440001307010015
10.1016/j.jad.2015.05.040
10.1016/j.jpsychires.2017.05.009
10.1037/0021-843X.107.2.305
10.1016/S0920-9964(01)00163-3
10.1016/j.euroneuro.2016.01.009
10.1016/j.psychres.2008.04.013
10.1109/TNSRE.2019.2913799
10.1007/s40474-018-0152-3
10.2147/nedt.2006.2.4.531
10.1007/s10916-019-1341-2
10.1016/j.psychres.2019.03.048
10.1038/nature14539
10.1016/j.schres.2017.01.039
10.1080/09332480.2014.914768
10.1504/IJBET.2018.094728
10.1016/j.schres.2017.02.026
10.1109/TNSRE.2019.2900725
10.1186/1741-7015-11-126
10.1097/HRP.0000000000000110
10.1016/j.schres.2016.05.007
10.1016/j.schres.2018.06.017
10.3390/ijms18040733
10.1016/j.eplepsyres.2009.03.018
10.1016/j.artmed.2009.03.003
10.1016/j.cmpb.2017.09.001
10.1111/eip.12792
10.1038/nrn2218
10.1080/14737175.2019.1601558
10.30773/pi.2018.12.21.2
10.1038/nrn2774
10.1007/s11517-020-02176-y
10.1016/j.schres.2017.04.019
10.1111/nyas.12730
10.1016/j.cmpb.2018.04.005
10.1016/S0006-3223(99)00151-1
10.2217/17520363.3.1.1
10.1016/j.neunet.2014.09.003
10.1017/S0033291719000151
10.1038/nature09552
10.1016/j.neuroimage.2005.05.022
10.1145/3236386.3241340
10.1016/j.psychres.2013.05.013
10.1177/1550059412465078
10.1177/0963721410377601
10.1109/ACCESS.2018.2854555
10.1016/j.biopsych.2014.09.025
10.3389/fpsyg.2017.00775
10.1088/1741-2552/ab0ab5
10.1001/jamapsychiatry.2016.2992
10.1016/j.biopsych.2010.09.021
10.1016/j.scog.2014.02.001
10.1007/s40273-016-0444-6
10.1017/S0033291712001626
10.2147/NDT.S96649
10.1016/B978-0-7020-5307-8.00006-5
10.1016/j.clinph.2018.07.012
10.1093/schbul/sbr188
10.1016/j.biopsycho.2015.10.010
10.1155/2016/2697971
10.1093/schbul/sbn135
10.1093/schbul/sbp134
10.1371/journal.pmed.0020141
10.1088/1741-2552/aab2f2
10.3389/neuro.09.048.2009
10.3390/electronics8030292
10.1017/S0033291708003814
10.1111/pcn.12090
10.3389/fnhum.2012.00136
10.1007/s13246-019-00839-1
10.1016/j.neubiorev.2017.12.008
10.1093/schizbullopen/sgaa016
10.1001/jamapsychiatry.2016.2619
10.1016/j.artmed.2019.07.006
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright © 2021 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2021 Elsevier B.V.
– notice: Copyright © 2021 Elsevier B.V. All rights reserved.
DBID RCLKO
AAYXX
CITATION
NPM
7X8
DOI 10.1016/j.artmed.2021.102039
DatabaseName RCAAP open access repository
CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

PubMed


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Computer Science
DissertationSchool Universidade do Minho
EISSN 1873-2860
EndPage 13
ExternalDocumentID 33875158
10_1016_j_artmed_2021_102039
1822_89881
S0933365721000324
Genre Journal Article
Review
GroupedDBID ---
--K
--M
.1-
.DC
.FO
.~1
0R~
1B1
1P~
1RT
1~.
1~5
23N
4.4
457
4G.
53G
5GY
5VS
7-5
71M
77K
8P~
9JM
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAWTL
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABBQC
ABFNM
ABIVO
ABJNI
ABMAC
ABMZM
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACNNM
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HEA
HMK
HMO
HVGLF
HZ~
IHE
J1W
KOM
LZ2
M29
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SSV
SSZ
T5K
UHS
WH7
WUQ
Z5R
~G-
AACTN
AAIAV
ABLVK
ABYKQ
AFCTW
AFKWA
AJBFU
AJOXV
AMFUW
EFLBG
LCYCR
RIG
AGRNS
RCLKO
AAYXX
CITATION
NPM
77I
7X8
ID FETCH-LOGICAL-c440t-814ff841ab3d3c5010c545cba288f5c7ba0baed947c494d1f62eb5996a23d7773
IEDL.DBID .~1
ISSN 0933-3657
1873-2860
IngestDate Fri Sep 05 13:28:08 EDT 2025
Mon Jul 21 06:05:52 EDT 2025
Thu Apr 24 23:04:34 EDT 2025
Tue Jul 01 00:24:37 EDT 2025
Fri Aug 01 16:35:22 EDT 2025
Fri Feb 23 02:44:22 EST 2024
Tue Aug 26 17:11:02 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Schizophrenia
EEG
Classification
Machine learning
Prediction
Language English
License Copyright © 2021 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c440t-814ff841ab3d3c5010c545cba288f5c7ba0baed947c494d1f62eb5996a23d7773
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
OpenAccessLink http://hdl.handle.net/1822/89881
PMID 33875158
PQID 2515683860
PQPubID 23479
PageCount 13
ParticipantIDs proquest_miscellaneous_2515683860
pubmed_primary_33875158
crossref_primary_10_1016_j_artmed_2021_102039
crossref_citationtrail_10_1016_j_artmed_2021_102039
rcaap_revistas_1822_89881
elsevier_sciencedirect_doi_10_1016_j_artmed_2021_102039
elsevier_clinicalkey_doi_10_1016_j_artmed_2021_102039
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2021
2021-04
2021-04-00
2021-Apr
20210401
PublicationDateYYYYMMDD 2021-04-01
PublicationDate_xml – month: 04
  year: 2021
  text: April 2021
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Artificial intelligence in medicine
PublicationTitleAlternate Artif Intell Med
PublicationYear 2021
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Alústiza, Radua, Pla, Martin, Ortuño (bib0270) 2017; 188
Schirrmeister, Springenberg, Fiederer, Glasstetter, Eggensperger, Tangermann (bib0710) 2017; 38
Chang, Liu, Tian, Wang, Luo, Zhang (bib0635) 2019; 13
Phang, Noman, Hussain, Ting, Ombao (bib0745) 2019
Seidman, Hellemann, Nuechterlein, Greenwood, Braff, Cadenhead (bib0355) 2015; 163
Vinogradov, Nagarajan (bib0255) 2017; 74
Turetsky, Greenwood, Olincy, Radant, Braff, Cadenhead (bib0405) 2008; 64
Neuhaus, Popescu, Rentzsch, Gallinat (bib0545) 2014; 40
Unterrassner, Wyss, Wotruba, Ajdacic-Gross, Haker, Rössler (bib0055) 2017; 8
Starke, De Clercq, Borgwardt, Elger (bib0500) 2020
Zheng, Yang, Xie (bib0815) 2020
Bowie, Harvey (bib0240) 2006; 2
Mwansisya, Hu, Li, Chen, Wu, Huang (bib0275) 2017; 189
Chu, Qiu, Liu, Ling, Zhang, Wang (bib0760) 2017
Tsai, Rosenheck (bib0835) 2013; 210
Thilakvathi, Shenbaga Devi, Bhanu, Malaippan (bib0585) 2017; 28
Foxe, Yeap, Snyder, Kelly, Thakore, Molholm (bib0390) 2011; 261
Nusslock, Young, Pornpattananangkul, Damme (bib0200) 2015
Insel, Cuthbert, Garvey, Heinssen, Pine, Quinn (bib0185) 2010; 167
Li, Wang, Liao, Yi, Jiang, Si (bib0590) 2019; 27
Uhlhaas, Singer (bib0655) 2010; 11
Luck (bib0140) 2014
Lee, Bressler, Kozma (bib0700) 2017; 92
Kaur, Sharma (bib0490) 2019; 43
Gold, Harvey (bib0235) 1993; 16
Naira, José (bib0755) 2019; 10
Buckley, Miller, Lehrer, Castle (bib0830) 2009; 35
Hao Hsieh, Yi Wu, Fu Liang (bib0570) 2018; 08
Devia, Mayol-Troncoso, Parrini, Orellana, Ruiz, Maldonado (bib0580) 2019; 27
Sabeti, Boostani, Katebi (bib0510) 2007
Pantlin, Davalos (bib0045) 2016; 2016
Ochsner, Kosslyn, Kosslyn (bib0320) 2013; Vol. 1
Karlsgodt, Sun, Cannon (bib0215) 2010; 19
Luo, Zhang, Zhao, Chang, Wang (bib0630) 2019; 19
Dewey (bib0820) 2018; 5
Kahn, Keefe (bib0250) 2013; 70
Xu, Stephane, Parhi (bib0525) 2013; 44
Robert (bib0460) 2014; 27
Cuthbert, Insel (bib0190) 2013; 11
Mathalon, Ford (bib0120) 2012; 6
van Os, Linscott (bib0095) 2012; 38
Ahmedt Aristizabal, Fernando, Denman, Robinson, Sridharan, Johnston (bib0640) 2020
Varoquaux (bib0790) 2018; 180
Onitsuka, Oribe, Nakamura, Kanba (bib0130) 2013; 67
Craik, He, Contreras-Vidal (bib0720) 2019; 16
van der Stelt, Belger (bib0125) 2007; 33
Kraguljac, Srivastava, Lahti (bib0280) 2013; 3
Zhang (bib0575) 2019
Jirsaraie, Sheffield, Barch (bib0040) 2018; 201
Shenton, Dickey, Frumin, McCarley (bib0220) 2001; 49
Schnack (bib0115) 2019; 214
Hof (bib0690) 2013
Kas, Penninx, Sommer, Serretti, Arango, Marston (bib0180) 2019; 97
Luck, Mathalon, O’Donnell, Hämäläinen, Spencer, Javitt (bib0365) 2011; 70
O’Donnell, Vohs, Krishnan, Rass, Hetrick, Morzorati (bib0435) 2013
Goshvarpour, Goshvarpour (bib0615) 2020; 43
Lotte, Bougrain, Cichocki, Clerc, Congedo, Rakotomamonjy (bib0810) 2018; 15
Jin, Mosweu (bib0025) 2017; 35
Bestelmeyer, Phillips, Crombie, Benson, Clair (bib0360) 2009; 169
Kriegeskorte (bib0725) 2015; 1
Klonowski (bib0800) 2009; 3
Schmidhuber (bib0695) 2015; 61
Lipton (bib0770) 2018; 16
Zhu, Goldberg (bib0480) 2009; 3
Alimardani, Cho, Boostani, Hwang (bib0645) 2018; 6
Zhang, Zhang, Wang, Habetler (bib0685) 2019
Montavon, Samek, Müller (bib0775) 2018; 73
Hasey, Kiang (bib0535) 2013; 15
van Os, Linscott, Myin-Germeys, Delespaul, Krabbendam (bib0090) 2009; 39
Buettner, Hirschmiller, Schlosser, Rossle, Fernandes, Timm (bib0610) 2019
Alom, Taha, Yakopcic, Westberg, Sidike, Nasrin (bib0680) 2019; 8
Moher, Liberati, Tetzlaff, Altman (bib0150) 2009; 6
Zhao, Zhu, Liu, Pu, Lai, Chen (bib0225) 2018; 83
Goodfellow, Bengio, Courville (bib0465) 2016
Darkhovsky, Pyriatinska (bib0660) 2013
Earls, Curran, Mittal (bib0350) 2016; 42
Mathalon, Ford, Rosenbloom, Pfefferbaum (bib0380) 2000; 47
Taylor, Matthews, Michie, Rosa, Garrido (bib0565) 2017; 15
Oh, Vicnesh, Ciaccio, Yuvaraj, Acharya (bib0740) 2019; 9
Roach, Mathalon (bib0650) 2008; 34
Green, Horan, Lee (bib0030) 2015; 16
Weickert, Weickert, Pillai, Buckley (bib0305) 2013; 35
Light, Swerdlow (bib0315) 2015; 1344
Lippé, Kovacevic, McIntosh (bib0665) 2009; 3
Luck (bib0795) 2014
Calhas, Romero, Henriques (bib0750) 2019
Parciauskaite, Voicikas, Jurkuvenas, Tarailis, Kraulaidis, Pipinis (bib0445) 2019; 14
Perkovic, Erjavec, Strac, Uzun, Kozumplik, Pivac (bib0310) 2017; 18
Taylor, McCarley, Salisbury (bib0415) 2013
Piryatinska, Darkhovsky, Kaplan (bib0595) 2017; 152
Bromet, Fennig (bib0010) 1999; 46
Verdoux, van Os (bib0075) 2002; 54
Joshi, Light (bib0035) 2018; 9
Lho, Kim, Lee, Bin Kwak, Kwon (bib0370) 2019; 130
Shim, Hwang, Kim, Lee, Im (bib0555) 2016; 176
Sabeti, Boostani (bib0600) 2018; 1
James, Witten, Hastie, Tibshirani (bib0765) 2013
Saha, Chant, Welham, McGrath (bib0005) 2005; 2
Laton, Van Schependom, Gielen, Decoster, Moons, De Keyser (bib0540) 2014
Dwyer, Falkai, Koutsouleris (bib0785) 2018; 14
Roach, Ford, Hoffman, Mathalon (bib0440) 2013
Rosburg (bib0400) 2018; 129
Chaiyakunapruk, Chong, Teoh, Wu, Kotirum, Chiou (bib0020) 2016; 12
Ye, Liu, Zhang, Pan, Yang, Wang (bib0620) 2017
Linscott, Van Os (bib0070) 2013; 43
Tandon, Tandon (bib0780) 2019; 214
Toh, Thomas, Rossell (bib0060) 2015; 184
Rodrigues-Amorim, Rivera-Baltanás, López, Spuch, Olivares, Agís-Balboa (bib0290) 2017; 93
Wallace, Isenberg, York, Shinde, Barron, Franchino-Elder (bib0100) 2020; 215
Faust, Hagiwara, Hong, Lih, Acharya (bib0715) 2018; 161
Chapelle, Schlkopf, Zien (bib0485) 2010
Rosburg, Boutros, Ford (bib0395) 2008; 161
LeCun, Bengio (bib0735) 1995; 3361
Newman, Moffitt, Caspi, Silva (bib0825) 1998; 107
Schirrmeister, Gemein, Eggensperger, Hutter, Ball (bib0705) 2017
Potter, Summerfelt, Gold, Buchanan (bib0385) 2005; 32
Kim, Sangjun, Kim, Lee (bib0730) 2016; 88
Turetsky, Bilker, Siegel, Kohler, Gur (bib0230) 2009; 165
Bramon, McDonald, Croft, Landau, Filbey, Gruzelier (bib0375) 2005; 27
A.P. Association (bib0165) 2013
Erickson, Kappenman, Luck (bib0285) 2018; 3
Cong, Ristaniemi, Lyytinen (bib0345) 2015
Niedermeyer, da Silva (bib0805) 2005
Lawrie, Hall, McIntosh, Owens, Johnstone (bib0085) 2010; 197
Javitt (bib0260) 2009; 5
Beauchaine (bib0295) 2009; 3
Ioakeimidis, Haenschel, Yarrow, Kyriakopoulos, Dima (bib0210) 2020; 1
Lavoie, Polari, Goldstone, Nelson, McGorry (bib0325) 2019; 13
Jablensky (bib0155) 2010; 12
Shung, Smith, Tsui (bib0205) 2012
Hall, Taylor, Sham, Schulze, Rijsdijk, Picchioni (bib0420) 2011; 37
Green, Bearden, Cannon, Fiske, Hellemann, Horan (bib0050) 2012; 38
Santos-Mayo, San-Jose-Revuelta, Arribas (bib0560) 2017; 64
Alpaydin (bib0475) 2009
Green, Harvey (bib0245) 2014; 1
Hiesh, Lam Andy, Shen, Chen, Lin, Sung (bib0530) 2013
Thuné, Recasens, Uhlhaas (bib0430) 2016; 73
Walsh-Messinger, Jiang, Lee, Rothman, Ahn, Malaspina (bib0195) 2019; 278
Larson, Walker, Compton (bib0110) 2010; 10
Näätänen, Shiga, Asano, Yabe (bib0335) 2015; 95
Hyman (bib0175) 2007; 8
Johannesen, Bi, Jiang, Kenney, Chen (bib0550) 2016; 2
Gur, Gur (bib0265) 2010; 12
Bodatsch, Brockhaus-Dumke, Klosterkötter, Ruhrmann (bib0330) 2015; 77
Kahn, Sommer, Murray, Meyer-Lindenberg, Weinberger, Cannon (bib0015) 2015; 1
Gaebel, Riesbeck, Larach, Falkai, Zielasek (bib0160) 2019
Cohen (bib0135) 2014
Bzdok, Meyer-Lindenberg (bib0145) 2018; 3
LeCun, Bengio, Hinton (bib0675) 2015; 521
Owens, Bachman, Glahn, Bearden (bib0410) 2016; 24
Elliott, Joyce, Shorvon (bib0065) 2009; 85
Randeniya, Oestreich, Garrido (bib0080) 2018; 191
Goff, Romero, Paul, Mercedes Perez-Rodriguez, Crandall, Potkin (bib0450) 2016; 26
Sabeti, Katebi, Boostani (bib0515) 2009; 47
Bishop (bib0470) 2006
Näätänen, Todd, Schall (bib0340) 2016; 116
Jahmunah, Lih Oh, Rajinikanth, Ciaccio, Hao Cheong, Arunkumar (bib0605) 2019; 100
Insel (bib0105) 2010; 468
Schretlen, Cascella, Meyer, Kingery, Testa, Munro (bib0670) 2007; 62
Cho, Yim, Choi, Ko, Lee (bib0505) 2019; 16
Fujimoto, Okumura, Takeuchi, Kodabashi, Otsubo, Nakamura (bib0425) 2013; 7
Taghavi, Boostani, Sabeti, Taghavi (bib0520) 2011; 5
Javitt, Daniel, Keefe, Walling, Ereshefsky (bib0455) 2019
Liu, Zhang, Ye, Pan, Yang, Wang (bib0625) 2017
Koukkou, Koenig, Bänninger, Rieger, Diaz Hernandez, Higuchi (bib0300) 2019
World Health Organization (bib0170) 1992
Shatte, Hutchinson, Teague (bib0495) 2019; 49
Moher (10.1016/j.artmed.2021.102039_bib0150) 2009; 6
Shatte (10.1016/j.artmed.2021.102039_bib0495) 2019; 49
Naira (10.1016/j.artmed.2021.102039_bib0755) 2019; 10
Faust (10.1016/j.artmed.2021.102039_bib0715) 2018; 161
Potter (10.1016/j.artmed.2021.102039_bib0385) 2005; 32
Larson (10.1016/j.artmed.2021.102039_bib0110) 2010; 10
James (10.1016/j.artmed.2021.102039_bib0765) 2013
Zhu (10.1016/j.artmed.2021.102039_bib0480) 2009; 3
Goshvarpour (10.1016/j.artmed.2021.102039_bib0615) 2020; 43
Calhas (10.1016/j.artmed.2021.102039_bib0750) 2019
Verdoux (10.1016/j.artmed.2021.102039_bib0075) 2002; 54
Starke (10.1016/j.artmed.2021.102039_bib0500) 2020
Zhang (10.1016/j.artmed.2021.102039_bib0575) 2019
Robert (10.1016/j.artmed.2021.102039_bib0460) 2014; 27
Sabeti (10.1016/j.artmed.2021.102039_bib0515) 2009; 47
Buettner (10.1016/j.artmed.2021.102039_bib0610) 2019
Joshi (10.1016/j.artmed.2021.102039_bib0035) 2018; 9
Fujimoto (10.1016/j.artmed.2021.102039_bib0425) 2013; 7
Neuhaus (10.1016/j.artmed.2021.102039_bib0545) 2014; 40
Karlsgodt (10.1016/j.artmed.2021.102039_bib0215) 2010; 19
Alústiza (10.1016/j.artmed.2021.102039_bib0270) 2017; 188
Kahn (10.1016/j.artmed.2021.102039_bib0015) 2015; 1
van der Stelt (10.1016/j.artmed.2021.102039_bib0125) 2007; 33
Weickert (10.1016/j.artmed.2021.102039_bib0305) 2013; 35
Zhao (10.1016/j.artmed.2021.102039_bib0225) 2018; 83
Insel (10.1016/j.artmed.2021.102039_bib0105) 2010; 468
Darkhovsky (10.1016/j.artmed.2021.102039_bib0660) 2013
Wallace (10.1016/j.artmed.2021.102039_bib0100) 2020; 215
Luo (10.1016/j.artmed.2021.102039_bib0630) 2019; 19
Shim (10.1016/j.artmed.2021.102039_bib0555) 2016; 176
Varoquaux (10.1016/j.artmed.2021.102039_bib0790) 2018; 180
Light (10.1016/j.artmed.2021.102039_bib0315) 2015; 1344
O’Donnell (10.1016/j.artmed.2021.102039_bib0435) 2013
Jirsaraie (10.1016/j.artmed.2021.102039_bib0040) 2018; 201
Javitt (10.1016/j.artmed.2021.102039_bib0455) 2019
Bishop (10.1016/j.artmed.2021.102039_bib0470) 2006
Phang (10.1016/j.artmed.2021.102039_bib0745) 2019
Santos-Mayo (10.1016/j.artmed.2021.102039_bib0560) 2017; 64
Tsai (10.1016/j.artmed.2021.102039_bib0835) 2013; 210
Cohen (10.1016/j.artmed.2021.102039_bib0135) 2014
Green (10.1016/j.artmed.2021.102039_bib0050) 2012; 38
Lipton (10.1016/j.artmed.2021.102039_bib0770) 2018; 16
Hao Hsieh (10.1016/j.artmed.2021.102039_bib0570) 2018; 08
A.P. Association (10.1016/j.artmed.2021.102039_bib0165) 2013
Liu (10.1016/j.artmed.2021.102039_bib0625) 2017
Saha (10.1016/j.artmed.2021.102039_bib0005) 2005; 2
Zhang (10.1016/j.artmed.2021.102039_bib0685) 2019
Thuné (10.1016/j.artmed.2021.102039_bib0430) 2016; 73
Buckley (10.1016/j.artmed.2021.102039_bib0830) 2009; 35
Lee (10.1016/j.artmed.2021.102039_bib0700) 2017; 92
Gold (10.1016/j.artmed.2021.102039_bib0235) 1993; 16
Bowie (10.1016/j.artmed.2021.102039_bib0240) 2006; 2
Mwansisya (10.1016/j.artmed.2021.102039_bib0275) 2017; 189
Green (10.1016/j.artmed.2021.102039_bib0030) 2015; 16
Lippé (10.1016/j.artmed.2021.102039_bib0665) 2009; 3
Sabeti (10.1016/j.artmed.2021.102039_bib0510) 2007
Nusslock (10.1016/j.artmed.2021.102039_bib0200) 2015
Dewey (10.1016/j.artmed.2021.102039_bib0820) 2018; 5
Walsh-Messinger (10.1016/j.artmed.2021.102039_bib0195) 2019; 278
Newman (10.1016/j.artmed.2021.102039_bib0825) 1998; 107
Roach (10.1016/j.artmed.2021.102039_bib0440) 2013
Devia (10.1016/j.artmed.2021.102039_bib0580) 2019; 27
Hof (10.1016/j.artmed.2021.102039_bib0690) 2013
Earls (10.1016/j.artmed.2021.102039_bib0350) 2016; 42
Pantlin (10.1016/j.artmed.2021.102039_bib0045) 2016; 2016
Ochsner (10.1016/j.artmed.2021.102039_bib0320) 2013; Vol. 1
Johannesen (10.1016/j.artmed.2021.102039_bib0550) 2016; 2
Bzdok (10.1016/j.artmed.2021.102039_bib0145) 2018; 3
Seidman (10.1016/j.artmed.2021.102039_bib0355) 2015; 163
Tandon (10.1016/j.artmed.2021.102039_bib0780) 2019; 214
Niedermeyer (10.1016/j.artmed.2021.102039_bib0805) 2005
Kriegeskorte (10.1016/j.artmed.2021.102039_bib0725) 2015; 1
Lavoie (10.1016/j.artmed.2021.102039_bib0325) 2019; 13
Chaiyakunapruk (10.1016/j.artmed.2021.102039_bib0020) 2016; 12
Ye (10.1016/j.artmed.2021.102039_bib0620) 2017
Gur (10.1016/j.artmed.2021.102039_bib0265) 2010; 12
Hall (10.1016/j.artmed.2021.102039_bib0420) 2011; 37
Piryatinska (10.1016/j.artmed.2021.102039_bib0595) 2017; 152
Näätänen (10.1016/j.artmed.2021.102039_bib0335) 2015; 95
van Os (10.1016/j.artmed.2021.102039_bib0090) 2009; 39
Ioakeimidis (10.1016/j.artmed.2021.102039_bib0210) 2020; 1
Schirrmeister (10.1016/j.artmed.2021.102039_bib0705) 2017
Kaur (10.1016/j.artmed.2021.102039_bib0490) 2019; 43
Goff (10.1016/j.artmed.2021.102039_bib0450) 2016; 26
Lotte (10.1016/j.artmed.2021.102039_bib0810) 2018; 15
Luck (10.1016/j.artmed.2021.102039_bib0140) 2014
Unterrassner (10.1016/j.artmed.2021.102039_bib0055) 2017; 8
Jahmunah (10.1016/j.artmed.2021.102039_bib0605) 2019; 100
Ahmedt Aristizabal (10.1016/j.artmed.2021.102039_bib0640) 2020
Mathalon (10.1016/j.artmed.2021.102039_bib0120) 2012; 6
Chu (10.1016/j.artmed.2021.102039_bib0760) 2017
Insel (10.1016/j.artmed.2021.102039_bib0185) 2010; 167
Jin (10.1016/j.artmed.2021.102039_bib0025) 2017; 35
Foxe (10.1016/j.artmed.2021.102039_bib0390) 2011; 261
van Os (10.1016/j.artmed.2021.102039_bib0095) 2012; 38
Cong (10.1016/j.artmed.2021.102039_bib0345) 2015
Randeniya (10.1016/j.artmed.2021.102039_bib0080) 2018; 191
Taghavi (10.1016/j.artmed.2021.102039_bib0520) 2011; 5
LeCun (10.1016/j.artmed.2021.102039_bib0675) 2015; 521
Vinogradov (10.1016/j.artmed.2021.102039_bib0255) 2017; 74
Goodfellow (10.1016/j.artmed.2021.102039_bib0465) 2016
Toh (10.1016/j.artmed.2021.102039_bib0060) 2015; 184
Lho (10.1016/j.artmed.2021.102039_bib0370) 2019; 130
Bestelmeyer (10.1016/j.artmed.2021.102039_bib0360) 2009; 169
Sabeti (10.1016/j.artmed.2021.102039_bib0600) 2018; 1
Parciauskaite (10.1016/j.artmed.2021.102039_bib0445) 2019; 14
Xu (10.1016/j.artmed.2021.102039_bib0525) 2013; 44
Cuthbert (10.1016/j.artmed.2021.102039_bib0190) 2013; 11
Luck (10.1016/j.artmed.2021.102039_bib0795) 2014
Perkovic (10.1016/j.artmed.2021.102039_bib0310) 2017; 18
Rosburg (10.1016/j.artmed.2021.102039_bib0395) 2008; 161
Linscott (10.1016/j.artmed.2021.102039_bib0070) 2013; 43
Elliott (10.1016/j.artmed.2021.102039_bib0065) 2009; 85
Craik (10.1016/j.artmed.2021.102039_bib0720) 2019; 16
Rodrigues-Amorim (10.1016/j.artmed.2021.102039_bib0290) 2017; 93
Li (10.1016/j.artmed.2021.102039_bib0590) 2019; 27
Luck (10.1016/j.artmed.2021.102039_bib0365) 2011; 70
Zheng (10.1016/j.artmed.2021.102039_bib0815) 2020
Alpaydin (10.1016/j.artmed.2021.102039_bib0475) 2009
Näätänen (10.1016/j.artmed.2021.102039_bib0340) 2016; 116
Bodatsch (10.1016/j.artmed.2021.102039_bib0330) 2015; 77
Roach (10.1016/j.artmed.2021.102039_bib0650) 2008; 34
Beauchaine (10.1016/j.artmed.2021.102039_bib0295) 2009; 3
Cho (10.1016/j.artmed.2021.102039_bib0505) 2019; 16
World Health Organization (10.1016/j.artmed.2021.102039_bib0170) 1992
Hiesh (10.1016/j.artmed.2021.102039_bib0530) 2013
Hyman (10.1016/j.artmed.2021.102039_bib0175) 2007; 8
Onitsuka (10.1016/j.artmed.2021.102039_bib0130) 2013; 67
Schirrmeister (10.1016/j.artmed.2021.102039_bib0710) 2017; 38
Laton (10.1016/j.artmed.2021.102039_bib0540) 2014
Jablensky (10.1016/j.artmed.2021.102039_bib0155) 2010; 12
Alimardani (10.1016/j.artmed.2021.102039_bib0645) 2018; 6
Uhlhaas (10.1016/j.artmed.2021.102039_bib0655) 2010; 11
Hasey (10.1016/j.artmed.2021.102039_bib0535) 2013; 15
Kim (10.1016/j.artmed.2021.102039_bib0730) 2016; 88
Bromet (10.1016/j.artmed.2021.102039_bib0010) 1999; 46
Shung (10.1016/j.artmed.2021.102039_bib0205) 2012
Taylor (10.1016/j.artmed.2021.102039_bib0415) 2013
Thilakvathi (10.1016/j.artmed.2021.102039_bib0585) 2017; 28
Turetsky (10.1016/j.artmed.2021.102039_bib0230) 2009; 165
Owens (10.1016/j.artmed.2021.102039_bib0410) 2016; 24
Turetsky (10.1016/j.artmed.2021.102039_bib0405) 2008; 64
Chapelle (10.1016/j.artmed.2021.102039_bib0485) 2010
Lawrie (10.1016/j.artmed.2021.102039_bib0085) 2010; 197
Kas (10.1016/j.artmed.2021.102039_bib0180) 2019; 97
Gaebel (10.1016/j.artmed.2021.102039_bib0160) 2019
Erickson (10.1016/j.artmed.2021.102039_bib0285) 2018; 3
Dwyer (10.1016/j.artmed.2021.102039_bib0785) 2018; 14
Schmidhuber (10.1016/j.artmed.2021.102039_bib0695) 2015; 61
Kraguljac (10.1016/j.artmed.2021.102039_bib0280) 2013; 3
Montavon (10.1016/j.artmed.2021.102039_bib0775) 2018; 73
Green (10.1016/j.artmed.2021.102039_bib0245) 2014; 1
Oh (10.1016/j.artmed.2021.102039_bib0740) 2019; 9
Shenton (10.1016/j.artmed.2021.102039_bib0220) 2001; 49
Kahn (10.1016/j.artmed.2021.102039_bib0250) 2013; 70
Mathalon (10.1016/j.artmed.2021.102039_bib0380) 2000; 47
Alom (10.1016/j.artmed.2021.102039_bib0680) 2019; 8
Schretlen (10.1016/j.artmed.2021.102039_bib0670) 2007; 62
Chang (10.1016/j.artmed.2021.102039_bib0635) 2019; 13
Schnack (10.1016/j.artmed.2021.102039_bib0115) 2019; 214
Klonowski (10.1016/j.artmed.2021.102039_bib0800) 2009; 3
Rosburg (10.1016/j.artmed.2021.102039_bib0400) 2018; 129
Taylor (10.1016/j.artmed.2021.102039_bib0565) 2017; 15
LeCun (10.1016/j.artmed.2021.102039_bib0735) 1995; 3361
Bramon (10.1016/j.artmed.2021.102039_bib0375) 2005; 27
Javitt (10.1016/j.artmed.2021.102039_bib0260) 2009; 5
Koukkou (10.1016/j.artmed.2021.102039_bib0300) 2019
References_xml – volume: 278
  start-page: 27
  year: 2019
  end-page: 34
  ident: bib0195
  article-title: Relative importance of symptoms, cognition, and other multilevel variables for psychiatric disease classifications by machine learning
  publication-title: Psychiatry Res
– volume: 16
  year: 2019
  ident: bib0720
  article-title: Deep learning for electroencephalogram (EEG) classification tasks: a review
  publication-title: J Neural Eng
– volume: 18
  start-page: 733
  year: 2017
  ident: bib0310
  article-title: Theranostic biomarkers for schizophrenia
  publication-title: Int J Mol Sci
– volume: 3
  start-page: 1
  year: 2009
  end-page: 130
  ident: bib0480
  article-title: Introduction to semi-supervised learning
  publication-title: Synth Lect Artif Intell Mach Learn
– volume: 64
  start-page: 1051
  year: 2008
  end-page: 1059
  ident: bib0405
  article-title: Abnormal auditory N100 amplitude: a heritable endophenotype in first-degree relatives of schizophrenia probands
  publication-title: Biol Psychiatry
– volume: 67
  start-page: 461
  year: 2013
  end-page: 470
  ident: bib0130
  article-title: Review of neurophysiological findings in patients with schizophrenia
  publication-title: Psychiatry Clin Neurosci
– year: 2015
  ident: bib0345
  article-title: Advanced Signal processing on brain event-related potentials
  publication-title: World Sci
– volume: 16
  start-page: 295
  year: 1993
  end-page: 312
  ident: bib0235
  article-title: Cognitive deficits in schizophrenia
  publication-title: Psychiatr Clin
– volume: 3
  start-page: 1
  year: 2009
  end-page: 3
  ident: bib0295
  article-title: Role of biomarkers and endophenotypes in prevention and treatment of psychopathological disorders
  publication-title: Biomark Med
– year: 2017
  ident: bib0625
  article-title: A data driven approach for resting-state EEG signal classification of schizophrenia with control participants using random matrix theory
– volume: 6
  start-page: 40379
  year: 2018
  end-page: 40388
  ident: bib0645
  article-title: Classification of bipolar disorder and schizophrenia using steady-State visual evoked potential based features
  publication-title: IEEE Access
– volume: 88
  start-page: 145
  year: 2016
  end-page: 154
  ident: bib0730
  article-title: Convolutional neural network with biologically inspired retinal structure
  publication-title: Procedia Comput Sci
– volume: 35
  start-page: 25
  year: 2017
  end-page: 42
  ident: bib0025
  article-title: The societal cost of schizophrenia: a systematic review
  publication-title: Pharmacoeconomics.
– volume: 176
  start-page: 314
  year: 2016
  end-page: 319
  ident: bib0555
  article-title: Machine-learning-based diagnosis of schizophrenia using combined sensor-level and source-level EEG features
  publication-title: Schizophr Res
– volume: 184
  start-page: 18
  year: 2015
  end-page: 28
  ident: bib0060
  article-title: Auditory verbal hallucinations in bipolar disorder (BD) and major depressive disorder (MDD): a systematic review
  publication-title: J Affect Disord
– start-page: 433
  year: 2019
  end-page: 459
  ident: bib0300
  article-title: Neurobiology of schizophrenia: electrophysiological indices
  publication-title: Adv. Psychiatry
– volume: 28
  year: 2017
  ident: bib0585
  article-title: EEG signal complexity analysis for schizophrenia during rest and mental activity
  publication-title: Biomed Res
– volume: 49
  start-page: 1
  year: 2001
  end-page: 52
  ident: bib0220
  article-title: A review of MRI findings in schizophrenia
  publication-title: Schizophr Res
– year: 2019
  ident: bib0685
  article-title: Machine learning and deep learning algorithms for bearing fault diagnostics -- a comprehensive review
– volume: 201
  start-page: 237
  year: 2018
  end-page: 242
  ident: bib0040
  article-title: Neural correlates of global and specific cognitive deficits in schizophrenia
  publication-title: Schizophr Res
– volume: 70
  start-page: 1107
  year: 2013
  end-page: 1112
  ident: bib0250
  article-title: Schizophrenia is a cognitive illness: time for a change in focus
  publication-title: JAMA Psychiatry
– volume: 73
  start-page: 1
  year: 2018
  end-page: 15
  ident: bib0775
  article-title: Methods for interpreting and understanding deep neural networks
  publication-title: Digit Signal Process
– volume: 43
  start-page: 1133
  year: 2013
  end-page: 1149
  ident: bib0070
  article-title: An updated and conservative systematic review and meta-analysis of epidemiological evidence on psychotic experiences in children and adults: on the pathway from proneness to persistence to dimensional expression across mental disorders
  publication-title: Psychol Med
– volume: 2
  year: 2005
  ident: bib0005
  article-title: A systematic review of the prevalence of schizophrenia
  publication-title: PLoS Med
– volume: 107
  start-page: 305
  year: 1998
  ident: bib0825
  article-title: Comorbid mental disorders: implications for treatment and sample selection
  publication-title: J Abnorm Psychol
– volume: 191
  start-page: 109
  year: 2018
  end-page: 122
  ident: bib0080
  article-title: Sensory prediction errors in the continuum of psychosis
  publication-title: Schizophr Res
– year: 2009
  ident: bib0475
  article-title: Introduction to machine learning
– volume: 47
  start-page: 263
  year: 2009
  end-page: 274
  ident: bib0515
  article-title: Entropy and complexity measures for EEG signal classification of schizophrenic and control participants
  publication-title: Artif Intell Med
– year: 2006
  ident: bib0470
  article-title: Pattern recognition and machine learning
– volume: 214
  start-page: 70
  year: 2019
  end-page: 75
  ident: bib0780
  article-title: Using machine learning to explain the heterogeneity of schizophrenia. Realizing the promise and avoiding the hype
  publication-title: Schizophr Res
– volume: 13
  start-page: 1319
  year: 2019
  end-page: 1328
  ident: bib0325
  article-title: Staging model in psychiatry: review of the evolution of electroencephalography abnormalities in major psychiatric disorders
  publication-title: Early Interv Psychiatry
– volume: 37
  start-page: 778
  year: 2011
  end-page: 787
  ident: bib0420
  article-title: The early auditory gamma-band response Is heritable and a putative endophenotype of schizophrenia
  publication-title: Schizophr Bull
– volume: 8
  start-page: 292
  year: 2019
  ident: bib0680
  article-title: A State-of-the-art survey on deep learning theory and architectures
  publication-title: Electronics
– volume: 6
  year: 2012
  ident: bib0120
  article-title: Neurobiology of schizophrenia: search for the elusive correlation with symptoms
  publication-title: Front Hum Neurosci
– volume: 12
  start-page: 357
  year: 2016
  ident: bib0020
  article-title: Global economic burden of schizophrenia: a systematic review
  publication-title: Neuropsychiatr Dis Treat
– volume: 1
  start-page: 1
  year: 2018
  ident: bib0600
  article-title: Optimizing brain map for the diagnosis of schizophrenia
  publication-title: Int J Biomed Eng Technol
– volume: 92
  start-page: 1
  year: 2017
  end-page: 2
  ident: bib0700
  article-title: Advances in cognitive engineering using neural networks
  publication-title: Neural Networks.
– volume: 38
  start-page: 227
  year: 2012
  end-page: 230
  ident: bib0095
  article-title: Introduction: the extended psychosis phenotype--relationship with schizophrenia and with ultrahigh risk Status for psychosis
  publication-title: Schizophr Bull
– volume: 214
  start-page: 34
  year: 2019
  end-page: 42
  ident: bib0115
  article-title: Improving individual predictions: machine learning approaches for detecting and attacking heterogeneity in schizophrenia (and other psychiatric diseases)
  publication-title: Schizophr Res
– volume: 16
  start-page: 620
  year: 2015
  end-page: 631
  ident: bib0030
  article-title: Social cognition in schizophrenia
  publication-title: Nat Rev Neurosci
– volume: 19
  start-page: 459
  year: 2019
  end-page: 470
  ident: bib0630
  article-title: Discriminating schizophrenia disease progression using a P50 sensory gating task with dense-array EEG, clinical assessments, and cognitive tests
  publication-title: Expert Rev Neurother
– volume: 3
  start-page: 1
  year: 2009
  end-page: 5
  ident: bib0800
  article-title: Everything you wanted to ask about EEG but were afraid to get the right answer
  publication-title: Nonlinear Biomed Phys
– volume: 1
  start-page: 417
  year: 2015
  end-page: 446
  ident: bib0725
  article-title: Deep neural networks: a New framework for modeling biological vision and brain information processing
  publication-title: Annu Rev Vis Sci
– start-page: 1
  year: 2015
  end-page: 9
  ident: bib0200
  article-title: Neurophysiological and neuroimaging techniques
  publication-title: Encycl. Clin. Psychol
– volume: 13
  start-page: 379
  year: 2019
  ident: bib0635
  article-title: EEG-based brain functional connectivity in first-episode schizophrenia patients, ultra-High-risk individuals, and healthy controls during P50 suppression
  publication-title: Front Hum Neurosci
– start-page: 1
  year: 2014
  end-page: 4
  ident: bib0540
  article-title: In search of biomarkers for schizophrenia using electroencephalography
  publication-title: 2014 Int. Work. Pattern Recognit. Neuroimaging
– volume: 1344
  start-page: 105
  year: 2015
  end-page: 119
  ident: bib0315
  article-title: Future clinical uses of neurophysiological biomarkers to predict and monitor treatment response for schizophrenia
  publication-title: Ann N Y Acad Sci
– volume: 54
  start-page: 59
  year: 2002
  end-page: 65
  ident: bib0075
  article-title: Psychotic symptoms in non-clinical populations and the continuum of psychosis
  publication-title: Schizophr Res
– volume: Vol. 1
  year: 2013
  ident: bib0320
  publication-title: The Oxford handbook of cognitive neuroscience
– volume: 61
  start-page: 85
  year: 2015
  end-page: 117
  ident: bib0695
  article-title: Deep learning in neural networks: an overview
  publication-title: Neural Networks.
– volume: 27
  start-page: 960
  year: 2005
  end-page: 968
  ident: bib0375
  article-title: Is the P300 wave an endophenotype for schizophrenia? A meta-analysis and a family study
  publication-title: Neuroimage.
– volume: 26
  start-page: 923
  year: 2016
  end-page: 937
  ident: bib0450
  article-title: Biomarkers for drug development in early psychosis: current issues and promising directions
  publication-title: Eur Neuropsychopharmacol
– year: 2020
  ident: bib0815
  article-title: EEG classification across sessions and across subjects through transfer learning in motor imagery-based brain-machine interface system
  publication-title: Med Biol Eng Comput
– volume: 3
  start-page: 223
  year: 2018
  end-page: 230
  ident: bib0145
  article-title: Machine learning for precision psychiatry: opportunities and challenges
  publication-title: Biol Psychiatry Cogn Neurosci Neuroimaging
– volume: 1
  year: 2015
  ident: bib0015
  article-title: Schizophrenia
  publication-title: Nat Rev Dis Prim
– volume: 197
  start-page: 423
  year: 2010
  end-page: 425
  ident: bib0085
  article-title: The ‘continuum of psychosis’: scientifically unproven and clinically impractical
  publication-title: Br J Psychiatry
– volume: 6
  year: 2009
  ident: bib0150
  article-title: Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement
  publication-title: PLoS Med.
– volume: 116
  start-page: 36
  year: 2016
  end-page: 40
  ident: bib0340
  article-title: Mismatch negativity (MMN) as biomarker predicting psychosis in clinically at-risk individuals
  publication-title: Biol Psychol
– volume: 24
  start-page: 129
  year: 2016
  end-page: 147
  ident: bib0410
  article-title: Electrophysiological endophenotypes for schizophrenia
  publication-title: Harv Rev Psychiatry
– volume: 40
  start-page: 1062
  year: 2014
  end-page: 1071
  ident: bib0545
  article-title: Critical evaluation of auditory event-related potential deficits in schizophrenia: evidence from large-scale single-subject pattern classification
  publication-title: Schizophr Bull
– start-page: 163
  year: 2013
  end-page: 180
  ident: bib0440
  article-title: Converging evidence for gamma synchrony deficits in schizophrenia
  publication-title: Suppl. Clin. Neurophysiol.
– volume: 27
  start-page: 594
  year: 2019
  end-page: 602
  ident: bib0590
  article-title: Differentiation of schizophrenia by combining the spatial EEG brain network patterns of rest and task P300, IEEE trans
  publication-title: Neural Syst Rehabil Eng
– volume: 3361
  year: 1995
  ident: bib0735
  article-title: Convolutional networks for images, speech, and time series
  publication-title: Handb Brain Theory Neural Networks
– volume: 9
  year: 2018
  ident: bib0035
  article-title: Using EEG-guided basket and umbrella trials in psychiatry: a precision medicine approach for cognitive impairment in schizophrenia
  publication-title: Front Psychiatry
– volume: 1
  start-page: e1
  year: 2014
  end-page: e9
  ident: bib0245
  article-title: Cognition in schizophrenia: past, present, and future
  publication-title: Schizophr Res Cogn
– volume: 3
  start-page: 330
  year: 2013
  end-page: 347
  ident: bib0280
  article-title: Memory deficits in schizophrenia: a selective review of functional magnetic resonance imaging (FMRI) studies
  publication-title: Behav Sci (Basel)
– volume: 27
  start-page: 62
  year: 2014
  end-page: 63
  ident: bib0460
  article-title: Machine learning, a probabilistic perspective
  publication-title: Chance
– year: 2010
  ident: bib0485
  article-title: Semi-supervised learning
– year: 2013
  ident: bib0765
  article-title: An introduction to statistical learning
– volume: 8
  year: 2017
  ident: bib0055
  article-title: Psychotic-like experiences at the healthy End of the psychosis continuum
  publication-title: Front Psychol
– volume: 130
  start-page: 46
  year: 2019
  end-page: 54
  ident: bib0370
  article-title: Predicting prognosis in patients with first-episode psychosis using auditory P300: a 1-year follow-up study
  publication-title: Clin Neurophysiol
– volume: 167
  start-page: 748
  year: 2010
  end-page: 751
  ident: bib0185
  article-title: research domain criteria (RDoC): toward a New classification framework for research on mental disorders
  publication-title: Am J Psychiatry
– volume: 210
  start-page: 16
  year: 2013
  end-page: 20
  ident: bib0835
  article-title: Psychiatric comorbidity among adults with schizophrenia: a latent class analysis
  publication-title: Psychiatry Res
– volume: 2016
  start-page: 1
  year: 2016
  end-page: 5
  ident: bib0045
  article-title: Neurophysiology for detection of High risk for psychosis
  publication-title: Schizophr Res Treatment
– volume: 152
  start-page: 131
  year: 2017
  end-page: 139
  ident: bib0595
  article-title: Binary classification of multichannel-EEG records based on the ε-complexity of continuous vector functions
  publication-title: Comput Methods Programs Biomed
– volume: 15
  start-page: 31005
  year: 2018
  ident: bib0810
  article-title: A review of classification algorithms for EEG-based brain--computer interfaces: a 10 year update
  publication-title: J Neural Eng
– volume: 163
  start-page: 73
  year: 2015
  end-page: 79
  ident: bib0355
  article-title: Factor structure and heritability of endophenotypes in schizophrenia: findings from the consortium on the genetics of schizophrenia (COGS-1)
  publication-title: Schizophr Res
– volume: 188
  start-page: 21
  year: 2017
  end-page: 32
  ident: bib0270
  article-title: Meta-analysis of functional magnetic resonance imaging studies of timing and cognitive control in schizophrenia and bipolar disorder: evidence of a primary time deficit
  publication-title: Schizophr Res
– volume: 42
  start-page: 1504
  year: 2016
  end-page: 1516
  ident: bib0350
  article-title: A meta-analytic review of auditory event-related potential components as endophenotypes for schizophrenia: perspectives from first-degree relatives
  publication-title: Schizophr Bull
– volume: 11
  start-page: 100
  year: 2010
  end-page: 113
  ident: bib0655
  article-title: Abnormal neural oscillations and synchrony in schizophrenia
  publication-title: Nat Rev Neurosci
– year: 2013
  ident: bib0660
  article-title: Epsilon-complexity of continuous functions
– start-page: 131
  year: 2013
  end-page: 145
  ident: bib0415
  article-title: Early auditory gamma band response abnormalities in first hospitalized schizophrenia
  publication-title: Appl. brain oscil. Neuropsychiatr. dis.
– start-page: 1
  year: 2017
  end-page: 7
  ident: bib0705
  article-title: Deep learning with convolutional neural networks for decoding and visualization of EEG pathology
  publication-title: 2017 IEEE Signal Process. Med. Biol. Symp.
– volume: 77
  start-page: 951
  year: 2015
  end-page: 958
  ident: bib0330
  article-title: Forecasting psychosis by event-related potentials—systematic review and specific meta-analysis
  publication-title: Biol Psychiatry
– start-page: 1
  year: 2019
  end-page: 6
  ident: bib0610
  article-title: High-performance exclusion of schizophrenia using a novel machine learning method on EEG data
  publication-title: 2019 IEEE Int. Conf. E-Health Networking, Appl. Serv.
– year: 2017
  ident: bib0620
  article-title: Improvement of resting-state EEG analysis process with spectrum weight-voting based on LES
– volume: 129
  start-page: 2099
  year: 2018
  end-page: 2111
  ident: bib0400
  article-title: Auditory N100 gating in patients with schizophrenia: a systematic meta-analysis
  publication-title: Clin Neurophysiol
– volume: 83
  start-page: 27
  year: 2018
  end-page: 32
  ident: bib0225
  article-title: Structural and functional brain abnormalities in schizophrenia: a cross-sectional study at different stages of the disease
  publication-title: Prog Neuro-Psychopharmacol Biol Psychiatry
– volume: 74
  start-page: 17
  year: 2017
  end-page: 18
  ident: bib0255
  article-title: Association of sensory processing with higher-order cognition and functioning in schizophrenia: mapping the world
  publication-title: JAMA Psychiatry
– volume: 39
  start-page: 179
  year: 2009
  end-page: 195
  ident: bib0090
  article-title: A systematic review and meta-analysis of the psychosis continuum: evidence for a psychosis proneness–persistence–impairment model of psychotic disorder
  publication-title: Psychol Med
– volume: 12
  start-page: 271
  year: 2010
  end-page: 287
  ident: bib0155
  article-title: The diagnostic concept of schizophrenia: its history, evolution, and future prospects
  publication-title: Dialogues Clin Neurosci
– volume: 34
  start-page: 907
  year: 2008
  end-page: 926
  ident: bib0650
  article-title: Event-related EEG time-frequency analysis: an overview of measures and an analysis of early gamma band phase locking in schizophrenia
  publication-title: Schizophr Bull
– year: 2013
  ident: bib0165
  article-title: Diagnostic and statistical manual of mental disorders (DSM-5®)
– volume: 5
  start-page: 235
  year: 2018
  end-page: 242
  ident: bib0820
  article-title: What is comorbidity and why does it matter in neurodevelopmental disorders?
  publication-title: Curr Dev Disord Reports
– volume: 14
  start-page: 91
  year: 2018
  end-page: 118
  ident: bib0785
  article-title: Machine learning approaches for clinical psychology and psychiatry
  publication-title: Annu Rev Clin Psychol
– volume: 8
  start-page: 725
  year: 2007
  end-page: 732
  ident: bib0175
  article-title: Can neuroscience be integrated into the DSM-v?
  publication-title: Nat Rev Neurosci
– volume: 19
  start-page: 226
  year: 2010
  end-page: 231
  ident: bib0215
  article-title: Structural and functional brain abnormalities in schizophrenia
  publication-title: Curr Dir Psychol Sci
– volume: 93
  start-page: 37
  year: 2017
  end-page: 49
  ident: bib0290
  article-title: Schizophrenia: a review of potential biomarkers
  publication-title: J Psychiatr Res
– volume: 14
  year: 2019
  ident: bib0445
  article-title: 40-Hz auditory steady-state responses and the complex information processing: an exploratory study in healthy young males
  publication-title: PLoS One.
– start-page: 101
  year: 2013
  end-page: 112
  ident: bib0435
  article-title: The auditory steady-state response (ASSR)
  publication-title: Suppl. Clin. Neurophysiol.
– volume: 2
  start-page: 3
  year: 2016
  ident: bib0550
  article-title: Machine learning identification of EEG features predicting working memory performance in schizophrenia and healthy adults
  publication-title: Neuropsychiatr Electrophysiol
– volume: 27
  start-page: 1193
  year: 2019
  end-page: 1199
  ident: bib0580
  article-title: EEG classification during scene Free-viewing for schizophrenia detection
  publication-title: IEEE Trans Neural Syst Rehabil Eng.
– year: 2019
  ident: bib0750
  article-title: On the use of pairwise distance learning for brain Signal classification with limited observations
  publication-title: ArXiv Prepr
– volume: 3
  start-page: 4
  year: 2018
  end-page: 6
  ident: bib0285
  article-title: High temporal resolution measurement of cognitive and affective processes in psychopathology: what electroencephalography and magnetoencephalography can tell us about mental illness
  publication-title: Biol Psychiatry Cogn Neurosci Neuroimaging
– volume: 215
  start-page: 392
  year: 2020
  end-page: 398
  ident: bib0100
  article-title: Detecting schizophrenia early: prediagnosis healthcare utilization characteristics of patients with schizophrenia may aid early detection
  publication-title: Schizophr Res
– volume: 64
  start-page: 395
  year: 2017
  end-page: 407
  ident: bib0560
  article-title: A computer-aided diagnosis system with EEG based on the P3b wave during an auditory odd-ball task in schizophrenia, IEEE trans
  publication-title: Biomed Eng
– volume: 180
  start-page: 68
  year: 2018
  end-page: 77
  ident: bib0790
  article-title: Cross-validation failure: small sample sizes lead to large error bars
  publication-title: Neuroimage
– volume: 49
  start-page: 1426
  year: 2019
  end-page: 1448
  ident: bib0495
  article-title: Machine learning in mental health: a scoping review of methods and applications
  publication-title: Psychol Med
– volume: 15
  start-page: 388
  year: 2013
  ident: bib0535
  article-title: A review of recent literature employing electroencephalographic techniques to study the pathophysiology, phenomenology, and treatment response of schizophrenia
  publication-title: Curr Psychiatry Rep
– volume: 33
  start-page: 955
  year: 2007
  end-page: 970
  ident: bib0125
  article-title: Application of electroencephalography to the study of cognitive and brain functions in schizophrenia
  publication-title: Schizophr Bull
– year: 1992
  ident: bib0170
  article-title: The ICD-10 classification of mental and behavioural disorders: clinical descriptions and diagnostic guidelines
– volume: 35
  start-page: 3
  year: 2013
  end-page: 9
  ident: bib0305
  article-title: Biomarkers in schizophrenia: a brief conceptual consideration
  publication-title: Dis Markers
– volume: 11
  start-page: 126
  year: 2013
  ident: bib0190
  article-title: Toward the future of psychiatric diagnosis: the seven pillars of RDoC
  publication-title: BMC Med.
– volume: 2
  start-page: 531
  year: 2006
  ident: bib0240
  article-title: Cognitive deficits and functional outcome in schizophrenia
  publication-title: Neuropsychiatr Dis Treat
– start-page: 1
  year: 2020
  end-page: 7
  ident: bib0500
  article-title: Computing schizophrenia: ethical challenges for machine learning in psychiatry
  publication-title: Psychol Med
– volume: 10
  start-page: 511
  year: 2019
  end-page: 516
  ident: bib0755
  article-title: Classification of people who suffer schizophrenia and healthy people by EEG signals using deep learning
  publication-title: Int J Adv Comput Sci Appl
– year: 2012
  ident: bib0205
  article-title: Principles of medical imaging
– start-page: 6047
  year: 2013
  end-page: 6050
  ident: bib0530
  article-title: Classification of schizophrenia using genetic algorithm-support vector machine (GA-SVM)
  publication-title: 2013 35th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc.
– volume: 165
  start-page: 27
  year: 2009
  end-page: 37
  ident: bib0230
  article-title: Profile of auditory information-processing deficits in schizophrenia
  publication-title: Psychiatry Res
– volume: 43
  start-page: 204
  year: 2019
  ident: bib0490
  article-title: Diagnosis of human psychological disorders using supervised learning and nature-inspired computing techniques: a meta-analysis
  publication-title: J Med Syst
– year: 2014
  ident: bib0135
  article-title: Analyzing neural time series data: theory and practice
– volume: 43
  start-page: 227
  year: 2020
  end-page: 238
  ident: bib0615
  article-title: Schizophrenia diagnosis using innovative EEG feature-level fusion schemes
  publication-title: Phys Eng Sci Med
– volume: 12
  start-page: 333
  year: 2010
  ident: bib0265
  article-title: Functional magnetic resonance imaging in schizophrenia, dialogues
  publication-title: Clin Neurosci
– volume: 16
  start-page: 31
  year: 2018
  end-page: 57
  ident: bib0770
  article-title: The mythos of model interpretability
  publication-title: Queue
– start-page: 523
  year: 2014
  end-page: 546
  ident: bib0140
  article-title: Event-related potentials
  publication-title: APA Handb. Res. Methods psychol. Vol 1 found. Planning, Meas. Psychom
– volume: 5
  start-page: 249
  year: 2009
  end-page: 275
  ident: bib0260
  article-title: When doors of perception close: bottom-up models of disrupted cognition in schizophrenia
  publication-title: Annu Rev Clin Psychol
– volume: 73
  start-page: 1145
  year: 2016
  ident: bib0430
  article-title: The 40-Hz auditory steady-State response in patients with schizophrenia
  publication-title: JAMA Psychiatry
– volume: 1
  year: 2020
  ident: bib0210
  article-title: A meta-analysis of structural and functional brain abnormalities in early-onset schizophrenia
  publication-title: Schizophr Bull Open
– volume: 10
  start-page: 1347
  year: 2010
  end-page: 1359
  ident: bib0110
  article-title: Early signs, diagnosis and therapeutics of the prodromal phase of schizophrenia and related psychotic disorders
  publication-title: Expert Rev Neurother
– volume: 468
  start-page: 187
  year: 2010
  end-page: 193
  ident: bib0105
  article-title: Rethinking schizophrenia
  publication-title: Nature
– volume: 38
  start-page: 854
  year: 2012
  end-page: 864
  ident: bib0050
  article-title: Social cognition in schizophrenia, part 1: performance across phase of illness
  publication-title: Schizophr Bull
– volume: 189
  start-page: 9
  year: 2017
  end-page: 18
  ident: bib0275
  article-title: Task and resting-state fMRI studies in first-episode schizophrenia: a systematic review
  publication-title: Schizophr Res
– start-page: 4521
  year: 2019
  end-page: 4524
  ident: bib0575
  article-title: EEG signals classification using machine learning for the identification and diagnosis of schizophrenia
  publication-title: 2019 41st Annu. Int. Conf. IEEE Eng. Med. Biol. Soc.
– volume: 3
  start-page: 48
  year: 2009
  ident: bib0665
  article-title: Differential maturation of brain signal complexity in the human auditory and visual system
  publication-title: Front Hum Neurosci
– volume: 44
  start-page: 135
  year: 2013
  end-page: 143
  ident: bib0525
  article-title: Multidimensional analysis of the abnormal neural oscillations associated with lexical processing in schizophrenia
  publication-title: Clin EEG Neurosci
– volume: 100
  start-page: 101698
  year: 2019
  ident: bib0605
  article-title: Automated detection of schizophrenia using nonlinear signal processing methods
  publication-title: Artif Intell Med
– volume: 5
  start-page: 62
  year: 2011
  end-page: 70
  ident: bib0520
  article-title: Usefulness of approximate entropy in the diagnosis of schizophrenia, Iran
  publication-title: J Psychiatry Behav Sci
– volume: 161
  start-page: 1
  year: 2018
  end-page: 13
  ident: bib0715
  article-title: Deep learning for healthcare applications based on physiological signals: a review
  publication-title: Comput Methods Programs Biomed
– volume: 7
  start-page: 15
  year: 2013
  end-page: 26
  ident: bib0425
  article-title: Dysfunctional cortical connectivity during the auditory oddball task in patients with schizophrenia
  publication-title: Open Neuroimag J
– volume: 46
  start-page: 871
  year: 1999
  end-page: 881
  ident: bib0010
  article-title: Epidemiology and natural history of schizophrenia
  publication-title: Biol Psychiatry
– start-page: 123
  year: 2007
  end-page: 126
  ident: bib0510
  article-title: A New approach to classify the schizophrenic and Normal subjects by finding the Best channels and frequency bands
  publication-title: 2007 15th Int. Conf. Digit. Signal Process
– volume: 15
  start-page: 264
  year: 2017
  end-page: 273
  ident: bib0565
  article-title: Auditory prediction errors as individual biomarkers of schizophrenia
  publication-title: NeuroImage Clin.
– year: 2020
  ident: bib0640
  article-title: Identification of children at risk of schizophrenia via deep learning and EEG responses
  publication-title: IEEE J Biomed Heal Informatics
– volume: 161
  start-page: 259
  year: 2008
  end-page: 274
  ident: bib0395
  article-title: Reduced auditory evoked potential component N100 in schizophrenia — a critical review
  publication-title: Psychiatry Res
– volume: 169
  start-page: 212
  year: 2009
  end-page: 219
  ident: bib0360
  article-title: The P300 as a possible endophenotype for schizophrenia and bipolar disorder: evidence from twin and patient studies
  publication-title: Psychiatry Res
– volume: 47
  start-page: 413
  year: 2000
  end-page: 427
  ident: bib0380
  article-title: P300 reduction and prolongation with illness duration in schizophrenia
  publication-title: Biol Psychiatry
– year: 2005
  ident: bib0805
  article-title: Electroencephalography: basic principles, clinical applications, and related fields
– year: 2017
  ident: bib0760
  article-title: Individual recognition in schizophrenia using deep learning methods with random Forest and voting classifiers: insights from resting State EEG streams
  publication-title: ArXiv Prepr
– volume: 95
  start-page: 338
  year: 2015
  end-page: 344
  ident: bib0335
  article-title: Mismatch negativity (MMN) deficiency: a break-through biomarker in predicting psychosis onset
  publication-title: Int J Psychophysiol
– volume: 16
  start-page: 262
  year: 2019
  end-page: 269
  ident: bib0505
  article-title: Review of machine learning algorithms for diagnosing mental illness
  publication-title: Psychiatry Investig
– start-page: 603
  year: 2019
  end-page: 619
  ident: bib0160
  article-title: Trends in schizophrenia diagnosis and treatment
  publication-title: Adv. Psychiatry
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  ident: bib0675
  article-title: Deep learning
  publication-title: Nature
– volume: 85
  start-page: 162
  year: 2009
  end-page: 171
  ident: bib0065
  article-title: Delusions, illusions and hallucinations in epilepsy: 1. Elementary phenomena
  publication-title: Epilepsy Res.
– volume: 9
  start-page: 2870
  year: 2019
  ident: bib0740
  article-title: Deep convolutional neural network model for automated diagnosis of schizophrenia using EEG signals
  publication-title: Appl Sci
– volume: 08
  year: 2018
  ident: bib0570
  article-title: Identification of schizophrenic patients and healthy controls based on musical perception using AEP analysis
  publication-title: Neuropsychiatry (London).
– volume: 97
  start-page: 3
  year: 2019
  end-page: 9
  ident: bib0180
  article-title: A quantitative approach to neuropsychiatry: the why and the how
  publication-title: Neurosci Biobehav Rev
– volume: 62
  start-page: 179
  year: 2007
  end-page: 186
  ident: bib0670
  article-title: Neuropsychological functioning in bipolar disorder and schizophrenia
  publication-title: Biol Psychiatry
– year: 2013
  ident: bib0690
  article-title: Deep learning
  publication-title: MIT Technol Rev 10 Breakthr Technol
– volume: 32
  start-page: 692
  year: 2005
  end-page: 700
  ident: bib0385
  article-title: Review of clinical correlates of P50 sensory gating abnormalities in patients with schizophrenia
  publication-title: Schizophr Bull
– year: 2016
  ident: bib0465
  article-title: Deep learning
– volume: 38
  start-page: 5391
  year: 2017
  end-page: 5420
  ident: bib0710
  article-title: Deep learning with convolutional neural networks for EEG decoding and visualization
  publication-title: Hum Brain Mapp
– year: 2014
  ident: bib0795
  article-title: An introduction to the event-related potential technique
– volume: 261
  start-page: 331
  year: 2011
  end-page: 339
  ident: bib0390
  article-title: The N1 auditory evoked potential component as an endophenotype for schizophrenia: high-density electrical mapping in clinically unaffected first-degree relatives, first-episode, and chronic schizophrenia patients
  publication-title: Eur Arch Psychiatry Clin Neurosci
– year: 2019
  ident: bib0745
  article-title: A multi-domain connectome convolutional neural network for identifying schizophrenia from EEG connectivity patterns
  publication-title: IEEE J Biomed Heal Informatics
– volume: 35
  start-page: 383
  year: 2009
  end-page: 402
  ident: bib0830
  article-title: Psychiatric comorbidities and schizophrenia
  publication-title: Schizophr Bull
– volume: 70
  start-page: 28
  year: 2011
  end-page: 34
  ident: bib0365
  article-title: A roadmap for the development and validation of event-related potential biomarkers in schizophrenia research
  publication-title: Biol Psychiatry
– year: 2019
  ident: bib0455
  article-title: Biomarker qualification consortium
– volume: 42
  start-page: 1504
  year: 2016
  ident: 10.1016/j.artmed.2021.102039_bib0350
  article-title: A meta-analytic review of auditory event-related potential components as endophenotypes for schizophrenia: perspectives from first-degree relatives
  publication-title: Schizophr Bull
  doi: 10.1093/schbul/sbw047
– volume: 32
  start-page: 692
  year: 2005
  ident: 10.1016/j.artmed.2021.102039_bib0385
  article-title: Review of clinical correlates of P50 sensory gating abnormalities in patients with schizophrenia
  publication-title: Schizophr Bull
  doi: 10.1093/schbul/sbj050
– volume: 38
  start-page: 5391
  year: 2017
  ident: 10.1016/j.artmed.2021.102039_bib0710
  article-title: Deep learning with convolutional neural networks for EEG decoding and visualization
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.23730
– volume: 54
  start-page: 59
  year: 2002
  ident: 10.1016/j.artmed.2021.102039_bib0075
  article-title: Psychotic symptoms in non-clinical populations and the continuum of psychosis
  publication-title: Schizophr Res
  doi: 10.1016/S0920-9964(01)00352-8
– volume: 130
  start-page: 46
  year: 2019
  ident: 10.1016/j.artmed.2021.102039_bib0370
  article-title: Predicting prognosis in patients with first-episode psychosis using auditory P300: a 1-year follow-up study
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2018.10.011
– volume: 15
  start-page: 264
  year: 2017
  ident: 10.1016/j.artmed.2021.102039_bib0565
  article-title: Auditory prediction errors as individual biomarkers of schizophrenia
  publication-title: NeuroImage Clin.
  doi: 10.1016/j.nicl.2017.04.027
– volume: 16
  start-page: 295
  year: 1993
  ident: 10.1016/j.artmed.2021.102039_bib0235
  article-title: Cognitive deficits in schizophrenia
  publication-title: Psychiatr Clin
– year: 2017
  ident: 10.1016/j.artmed.2021.102039_bib0625
– year: 2013
  ident: 10.1016/j.artmed.2021.102039_bib0765
– volume: 14
  year: 2019
  ident: 10.1016/j.artmed.2021.102039_bib0445
  article-title: 40-Hz auditory steady-state responses and the complex information processing: an exploratory study in healthy young males
  publication-title: PLoS One.
  doi: 10.1371/journal.pone.0223127
– volume: 73
  start-page: 1
  year: 2018
  ident: 10.1016/j.artmed.2021.102039_bib0775
  article-title: Methods for interpreting and understanding deep neural networks
  publication-title: Digit Signal Process
  doi: 10.1016/j.dsp.2017.10.011
– year: 2014
  ident: 10.1016/j.artmed.2021.102039_bib0795
– volume: 95
  start-page: 338
  year: 2015
  ident: 10.1016/j.artmed.2021.102039_bib0335
  article-title: Mismatch negativity (MMN) deficiency: a break-through biomarker in predicting psychosis onset
  publication-title: Int J Psychophysiol
  doi: 10.1016/j.ijpsycho.2014.12.012
– volume: 169
  start-page: 212
  year: 2009
  ident: 10.1016/j.artmed.2021.102039_bib0360
  article-title: The P300 as a possible endophenotype for schizophrenia and bipolar disorder: evidence from twin and patient studies
  publication-title: Psychiatry Res
  doi: 10.1016/j.psychres.2008.06.035
– volume: 46
  start-page: 871
  year: 1999
  ident: 10.1016/j.artmed.2021.102039_bib0010
  article-title: Epidemiology and natural history of schizophrenia
  publication-title: Biol Psychiatry
  doi: 10.1016/S0006-3223(99)00153-5
– volume: 33
  start-page: 955
  year: 2007
  ident: 10.1016/j.artmed.2021.102039_bib0125
  article-title: Application of electroencephalography to the study of cognitive and brain functions in schizophrenia
  publication-title: Schizophr Bull
  doi: 10.1093/schbul/sbm016
– volume: 88
  start-page: 145
  year: 2016
  ident: 10.1016/j.artmed.2021.102039_bib0730
  article-title: Convolutional neural network with biologically inspired retinal structure
  publication-title: Procedia Comput Sci
  doi: 10.1016/j.procs.2016.07.418
– volume: 1
  start-page: 417
  year: 2015
  ident: 10.1016/j.artmed.2021.102039_bib0725
  article-title: Deep neural networks: a New framework for modeling biological vision and brain information processing
  publication-title: Annu Rev Vis Sci
  doi: 10.1146/annurev-vision-082114-035447
– volume: 34
  start-page: 907
  year: 2008
  ident: 10.1016/j.artmed.2021.102039_bib0650
  article-title: Event-related EEG time-frequency analysis: an overview of measures and an analysis of early gamma band phase locking in schizophrenia
  publication-title: Schizophr Bull
  doi: 10.1093/schbul/sbn093
– year: 2013
  ident: 10.1016/j.artmed.2021.102039_bib0660
– volume: 83
  start-page: 27
  year: 2018
  ident: 10.1016/j.artmed.2021.102039_bib0225
  article-title: Structural and functional brain abnormalities in schizophrenia: a cross-sectional study at different stages of the disease
  publication-title: Prog Neuro-Psychopharmacol Biol Psychiatry
  doi: 10.1016/j.pnpbp.2017.12.017
– volume: 214
  start-page: 34
  year: 2019
  ident: 10.1016/j.artmed.2021.102039_bib0115
  article-title: Improving individual predictions: machine learning approaches for detecting and attacking heterogeneity in schizophrenia (and other psychiatric diseases)
  publication-title: Schizophr Res
  doi: 10.1016/j.schres.2017.10.023
– volume: 12
  start-page: 271
  year: 2010
  ident: 10.1016/j.artmed.2021.102039_bib0155
  article-title: The diagnostic concept of schizophrenia: its history, evolution, and future prospects
  publication-title: Dialogues Clin Neurosci
  doi: 10.31887/DCNS.2010.12.3/ajablensky
– year: 2019
  ident: 10.1016/j.artmed.2021.102039_bib0455
– volume: 6
  year: 2009
  ident: 10.1016/j.artmed.2021.102039_bib0150
  article-title: Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement
  publication-title: PLoS Med.
  doi: 10.1371/journal.pmed.1000097
– volume: 1
  year: 2015
  ident: 10.1016/j.artmed.2021.102039_bib0015
  article-title: Schizophrenia
  publication-title: Nat Rev Dis Prim
– volume: 197
  start-page: 423
  year: 2010
  ident: 10.1016/j.artmed.2021.102039_bib0085
  article-title: The ‘continuum of psychosis’: scientifically unproven and clinically impractical
  publication-title: Br J Psychiatry
  doi: 10.1192/bjp.bp.109.072827
– start-page: 163
  year: 2013
  ident: 10.1016/j.artmed.2021.102039_bib0440
  article-title: Converging evidence for gamma synchrony deficits in schizophrenia
  doi: 10.1016/B978-0-7020-5307-8.00011-9
– volume: 16
  start-page: 620
  year: 2015
  ident: 10.1016/j.artmed.2021.102039_bib0030
  article-title: Social cognition in schizophrenia
  publication-title: Nat Rev Neurosci
  doi: 10.1038/nrn4005
– year: 2006
  ident: 10.1016/j.artmed.2021.102039_bib0470
– volume: 180
  start-page: 68
  year: 2018
  ident: 10.1016/j.artmed.2021.102039_bib0790
  article-title: Cross-validation failure: small sample sizes lead to large error bars
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2017.06.061
– volume: 261
  start-page: 331
  year: 2011
  ident: 10.1016/j.artmed.2021.102039_bib0390
  article-title: The N1 auditory evoked potential component as an endophenotype for schizophrenia: high-density electrical mapping in clinically unaffected first-degree relatives, first-episode, and chronic schizophrenia patients
  publication-title: Eur Arch Psychiatry Clin Neurosci
  doi: 10.1007/s00406-010-0176-0
– volume: 62
  start-page: 179
  year: 2007
  ident: 10.1016/j.artmed.2021.102039_bib0670
  article-title: Neuropsychological functioning in bipolar disorder and schizophrenia
  publication-title: Biol Psychiatry
  doi: 10.1016/j.biopsych.2006.09.025
– volume: 214
  start-page: 70
  year: 2019
  ident: 10.1016/j.artmed.2021.102039_bib0780
  article-title: Using machine learning to explain the heterogeneity of schizophrenia. Realizing the promise and avoiding the hype
  publication-title: Schizophr Res
  doi: 10.1016/j.schres.2019.08.032
– volume: Vol. 1
  year: 2013
  ident: 10.1016/j.artmed.2021.102039_bib0320
– volume: 3
  start-page: 1
  year: 2009
  ident: 10.1016/j.artmed.2021.102039_bib0800
  article-title: Everything you wanted to ask about EEG but were afraid to get the right answer
  publication-title: Nonlinear Biomed Phys
  doi: 10.1186/1753-4631-3-2
– volume: 163
  start-page: 73
  year: 2015
  ident: 10.1016/j.artmed.2021.102039_bib0355
  article-title: Factor structure and heritability of endophenotypes in schizophrenia: findings from the consortium on the genetics of schizophrenia (COGS-1)
  publication-title: Schizophr Res
  doi: 10.1016/j.schres.2015.01.027
– volume: 92
  start-page: 1
  year: 2017
  ident: 10.1016/j.artmed.2021.102039_bib0700
  article-title: Advances in cognitive engineering using neural networks
  publication-title: Neural Networks.
  doi: 10.1016/j.neunet.2017.05.012
– volume: 64
  start-page: 1051
  year: 2008
  ident: 10.1016/j.artmed.2021.102039_bib0405
  article-title: Abnormal auditory N100 amplitude: a heritable endophenotype in first-degree relatives of schizophrenia probands
  publication-title: Biol Psychiatry
  doi: 10.1016/j.biopsych.2008.06.018
– volume: 13
  start-page: 379
  year: 2019
  ident: 10.1016/j.artmed.2021.102039_bib0635
  article-title: EEG-based brain functional connectivity in first-episode schizophrenia patients, ultra-High-risk individuals, and healthy controls during P50 suppression
  publication-title: Front Hum Neurosci
  doi: 10.3389/fnhum.2019.00379
– volume: 3
  start-page: 330
  year: 2013
  ident: 10.1016/j.artmed.2021.102039_bib0280
  article-title: Memory deficits in schizophrenia: a selective review of functional magnetic resonance imaging (FMRI) studies
  publication-title: Behav Sci (Basel)
  doi: 10.3390/bs3030330
– volume: 15
  start-page: 388
  year: 2013
  ident: 10.1016/j.artmed.2021.102039_bib0535
  article-title: A review of recent literature employing electroencephalographic techniques to study the pathophysiology, phenomenology, and treatment response of schizophrenia
  publication-title: Curr Psychiatry Rep
  doi: 10.1007/s11920-013-0388-x
– volume: 40
  start-page: 1062
  year: 2014
  ident: 10.1016/j.artmed.2021.102039_bib0545
  article-title: Critical evaluation of auditory event-related potential deficits in schizophrenia: evidence from large-scale single-subject pattern classification
  publication-title: Schizophr Bull
  doi: 10.1093/schbul/sbt151
– start-page: 1
  year: 2019
  ident: 10.1016/j.artmed.2021.102039_bib0610
  article-title: High-performance exclusion of schizophrenia using a novel machine learning method on EEG data
– volume: 9
  start-page: 2870
  year: 2019
  ident: 10.1016/j.artmed.2021.102039_bib0740
  article-title: Deep convolutional neural network model for automated diagnosis of schizophrenia using EEG signals
  publication-title: Appl Sci
  doi: 10.3390/app9142870
– volume: 38
  start-page: 854
  year: 2012
  ident: 10.1016/j.artmed.2021.102039_bib0050
  article-title: Social cognition in schizophrenia, part 1: performance across phase of illness
  publication-title: Schizophr Bull
  doi: 10.1093/schbul/sbq171
– volume: 14
  start-page: 91
  year: 2018
  ident: 10.1016/j.artmed.2021.102039_bib0785
  article-title: Machine learning approaches for clinical psychology and psychiatry
  publication-title: Annu Rev Clin Psychol
  doi: 10.1146/annurev-clinpsy-032816-045037
– volume: 9
  year: 2018
  ident: 10.1016/j.artmed.2021.102039_bib0035
  article-title: Using EEG-guided basket and umbrella trials in psychiatry: a precision medicine approach for cognitive impairment in schizophrenia
  publication-title: Front Psychiatry
  doi: 10.3389/fpsyt.2018.00554
– volume: 35
  start-page: 3
  year: 2013
  ident: 10.1016/j.artmed.2021.102039_bib0305
  article-title: Biomarkers in schizophrenia: a brief conceptual consideration
  publication-title: Dis Markers
  doi: 10.1155/2013/510402
– volume: 2
  start-page: 3
  year: 2016
  ident: 10.1016/j.artmed.2021.102039_bib0550
  article-title: Machine learning identification of EEG features predicting working memory performance in schizophrenia and healthy adults
  publication-title: Neuropsychiatr Electrophysiol
  doi: 10.1186/s40810-016-0017-0
– volume: 161
  start-page: 259
  year: 2008
  ident: 10.1016/j.artmed.2021.102039_bib0395
  article-title: Reduced auditory evoked potential component N100 in schizophrenia — a critical review
  publication-title: Psychiatry Res
  doi: 10.1016/j.psychres.2008.03.017
– year: 2009
  ident: 10.1016/j.artmed.2021.102039_bib0475
– year: 2019
  ident: 10.1016/j.artmed.2021.102039_bib0745
  article-title: A multi-domain connectome convolutional neural network for identifying schizophrenia from EEG connectivity patterns
  publication-title: IEEE J Biomed Heal Informatics
– volume: 167
  start-page: 748
  year: 2010
  ident: 10.1016/j.artmed.2021.102039_bib0185
  article-title: research domain criteria (RDoC): toward a New classification framework for research on mental disorders
  publication-title: Am J Psychiatry
  doi: 10.1176/appi.ajp.2010.09091379
– volume: 70
  start-page: 1107
  year: 2013
  ident: 10.1016/j.artmed.2021.102039_bib0250
  article-title: Schizophrenia is a cognitive illness: time for a change in focus
  publication-title: JAMA Psychiatry
  doi: 10.1001/jamapsychiatry.2013.155
– volume: 5
  start-page: 249
  year: 2009
  ident: 10.1016/j.artmed.2021.102039_bib0260
  article-title: When doors of perception close: bottom-up models of disrupted cognition in schizophrenia
  publication-title: Annu Rev Clin Psychol
  doi: 10.1146/annurev.clinpsy.032408.153502
– volume: 10
  start-page: 511
  year: 2019
  ident: 10.1016/j.artmed.2021.102039_bib0755
  article-title: Classification of people who suffer schizophrenia and healthy people by EEG signals using deep learning
  publication-title: Int J Adv Comput Sci Appl
– volume: 10
  start-page: 1347
  year: 2010
  ident: 10.1016/j.artmed.2021.102039_bib0110
  article-title: Early signs, diagnosis and therapeutics of the prodromal phase of schizophrenia and related psychotic disorders
  publication-title: Expert Rev Neurother
  doi: 10.1586/ern.10.93
– volume: 215
  start-page: 392
  year: 2020
  ident: 10.1016/j.artmed.2021.102039_bib0100
  article-title: Detecting schizophrenia early: prediagnosis healthcare utilization characteristics of patients with schizophrenia may aid early detection
  publication-title: Schizophr Res
  doi: 10.1016/j.schres.2019.08.011
– year: 2005
  ident: 10.1016/j.artmed.2021.102039_bib0805
– year: 2013
  ident: 10.1016/j.artmed.2021.102039_bib0165
– volume: 7
  start-page: 15
  year: 2013
  ident: 10.1016/j.artmed.2021.102039_bib0425
  article-title: Dysfunctional cortical connectivity during the auditory oddball task in patients with schizophrenia
  publication-title: Open Neuroimag J
  doi: 10.2174/1874440001307010015
– volume: 184
  start-page: 18
  year: 2015
  ident: 10.1016/j.artmed.2021.102039_bib0060
  article-title: Auditory verbal hallucinations in bipolar disorder (BD) and major depressive disorder (MDD): a systematic review
  publication-title: J Affect Disord
  doi: 10.1016/j.jad.2015.05.040
– volume: 93
  start-page: 37
  year: 2017
  ident: 10.1016/j.artmed.2021.102039_bib0290
  article-title: Schizophrenia: a review of potential biomarkers
  publication-title: J Psychiatr Res
  doi: 10.1016/j.jpsychires.2017.05.009
– volume: 107
  start-page: 305
  year: 1998
  ident: 10.1016/j.artmed.2021.102039_bib0825
  article-title: Comorbid mental disorders: implications for treatment and sample selection
  publication-title: J Abnorm Psychol
  doi: 10.1037/0021-843X.107.2.305
– start-page: 433
  year: 2019
  ident: 10.1016/j.artmed.2021.102039_bib0300
  article-title: Neurobiology of schizophrenia: electrophysiological indices
– volume: 3
  start-page: 1
  year: 2009
  ident: 10.1016/j.artmed.2021.102039_bib0480
  article-title: Introduction to semi-supervised learning
  publication-title: Synth Lect Artif Intell Mach Learn
– volume: 49
  start-page: 1
  year: 2001
  ident: 10.1016/j.artmed.2021.102039_bib0220
  article-title: A review of MRI findings in schizophrenia
  publication-title: Schizophr Res
  doi: 10.1016/S0920-9964(01)00163-3
– volume: 26
  start-page: 923
  year: 2016
  ident: 10.1016/j.artmed.2021.102039_bib0450
  article-title: Biomarkers for drug development in early psychosis: current issues and promising directions
  publication-title: Eur Neuropsychopharmacol
  doi: 10.1016/j.euroneuro.2016.01.009
– year: 2010
  ident: 10.1016/j.artmed.2021.102039_bib0485
– volume: 165
  start-page: 27
  year: 2009
  ident: 10.1016/j.artmed.2021.102039_bib0230
  article-title: Profile of auditory information-processing deficits in schizophrenia
  publication-title: Psychiatry Res
  doi: 10.1016/j.psychres.2008.04.013
– volume: 27
  start-page: 1193
  year: 2019
  ident: 10.1016/j.artmed.2021.102039_bib0580
  article-title: EEG classification during scene Free-viewing for schizophrenia detection
  publication-title: IEEE Trans Neural Syst Rehabil Eng.
  doi: 10.1109/TNSRE.2019.2913799
– volume: 5
  start-page: 235
  year: 2018
  ident: 10.1016/j.artmed.2021.102039_bib0820
  article-title: What is comorbidity and why does it matter in neurodevelopmental disorders?
  publication-title: Curr Dev Disord Reports
  doi: 10.1007/s40474-018-0152-3
– volume: 2
  start-page: 531
  year: 2006
  ident: 10.1016/j.artmed.2021.102039_bib0240
  article-title: Cognitive deficits and functional outcome in schizophrenia
  publication-title: Neuropsychiatr Dis Treat
  doi: 10.2147/nedt.2006.2.4.531
– volume: 43
  start-page: 204
  year: 2019
  ident: 10.1016/j.artmed.2021.102039_bib0490
  article-title: Diagnosis of human psychological disorders using supervised learning and nature-inspired computing techniques: a meta-analysis
  publication-title: J Med Syst
  doi: 10.1007/s10916-019-1341-2
– volume: 278
  start-page: 27
  year: 2019
  ident: 10.1016/j.artmed.2021.102039_bib0195
  article-title: Relative importance of symptoms, cognition, and other multilevel variables for psychiatric disease classifications by machine learning
  publication-title: Psychiatry Res
  doi: 10.1016/j.psychres.2019.03.048
– volume: 521
  start-page: 436
  year: 2015
  ident: 10.1016/j.artmed.2021.102039_bib0675
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– start-page: 6047
  year: 2013
  ident: 10.1016/j.artmed.2021.102039_bib0530
  article-title: Classification of schizophrenia using genetic algorithm-support vector machine (GA-SVM)
– volume: 188
  start-page: 21
  year: 2017
  ident: 10.1016/j.artmed.2021.102039_bib0270
  article-title: Meta-analysis of functional magnetic resonance imaging studies of timing and cognitive control in schizophrenia and bipolar disorder: evidence of a primary time deficit
  publication-title: Schizophr Res
  doi: 10.1016/j.schres.2017.01.039
– volume: 27
  start-page: 62
  year: 2014
  ident: 10.1016/j.artmed.2021.102039_bib0460
  article-title: Machine learning, a probabilistic perspective
  publication-title: Chance
  doi: 10.1080/09332480.2014.914768
– year: 2012
  ident: 10.1016/j.artmed.2021.102039_bib0205
– volume: 1
  start-page: 1
  year: 2018
  ident: 10.1016/j.artmed.2021.102039_bib0600
  article-title: Optimizing brain map for the diagnosis of schizophrenia
  publication-title: Int J Biomed Eng Technol
  doi: 10.1504/IJBET.2018.094728
– volume: 189
  start-page: 9
  year: 2017
  ident: 10.1016/j.artmed.2021.102039_bib0275
  article-title: Task and resting-state fMRI studies in first-episode schizophrenia: a systematic review
  publication-title: Schizophr Res
  doi: 10.1016/j.schres.2017.02.026
– volume: 27
  start-page: 594
  year: 2019
  ident: 10.1016/j.artmed.2021.102039_bib0590
  article-title: Differentiation of schizophrenia by combining the spatial EEG brain network patterns of rest and task P300, IEEE trans
  publication-title: Neural Syst Rehabil Eng
  doi: 10.1109/TNSRE.2019.2900725
– year: 2014
  ident: 10.1016/j.artmed.2021.102039_bib0135
– start-page: 603
  year: 2019
  ident: 10.1016/j.artmed.2021.102039_bib0160
  article-title: Trends in schizophrenia diagnosis and treatment
– year: 2019
  ident: 10.1016/j.artmed.2021.102039_bib0685
– volume: 11
  start-page: 126
  year: 2013
  ident: 10.1016/j.artmed.2021.102039_bib0190
  article-title: Toward the future of psychiatric diagnosis: the seven pillars of RDoC
  publication-title: BMC Med.
  doi: 10.1186/1741-7015-11-126
– volume: 24
  start-page: 129
  year: 2016
  ident: 10.1016/j.artmed.2021.102039_bib0410
  article-title: Electrophysiological endophenotypes for schizophrenia
  publication-title: Harv Rev Psychiatry
  doi: 10.1097/HRP.0000000000000110
– volume: 176
  start-page: 314
  year: 2016
  ident: 10.1016/j.artmed.2021.102039_bib0555
  article-title: Machine-learning-based diagnosis of schizophrenia using combined sensor-level and source-level EEG features
  publication-title: Schizophr Res
  doi: 10.1016/j.schres.2016.05.007
– start-page: 131
  year: 2013
  ident: 10.1016/j.artmed.2021.102039_bib0415
  article-title: Early auditory gamma band response abnormalities in first hospitalized schizophrenia
– volume: 201
  start-page: 237
  year: 2018
  ident: 10.1016/j.artmed.2021.102039_bib0040
  article-title: Neural correlates of global and specific cognitive deficits in schizophrenia
  publication-title: Schizophr Res
  doi: 10.1016/j.schres.2018.06.017
– volume: 18
  start-page: 733
  year: 2017
  ident: 10.1016/j.artmed.2021.102039_bib0310
  article-title: Theranostic biomarkers for schizophrenia
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms18040733
– volume: 85
  start-page: 162
  year: 2009
  ident: 10.1016/j.artmed.2021.102039_bib0065
  article-title: Delusions, illusions and hallucinations in epilepsy: 1. Elementary phenomena
  publication-title: Epilepsy Res.
  doi: 10.1016/j.eplepsyres.2009.03.018
– volume: 5
  start-page: 62
  year: 2011
  ident: 10.1016/j.artmed.2021.102039_bib0520
  article-title: Usefulness of approximate entropy in the diagnosis of schizophrenia, Iran
  publication-title: J Psychiatry Behav Sci
– start-page: 123
  year: 2007
  ident: 10.1016/j.artmed.2021.102039_bib0510
  article-title: A New approach to classify the schizophrenic and Normal subjects by finding the Best channels and frequency bands
– year: 2020
  ident: 10.1016/j.artmed.2021.102039_bib0640
  article-title: Identification of children at risk of schizophrenia via deep learning and EEG responses
  publication-title: IEEE J Biomed Heal Informatics
– start-page: 523
  year: 2014
  ident: 10.1016/j.artmed.2021.102039_bib0140
  article-title: Event-related potentials
– volume: 3
  start-page: 4
  year: 2018
  ident: 10.1016/j.artmed.2021.102039_bib0285
  article-title: High temporal resolution measurement of cognitive and affective processes in psychopathology: what electroencephalography and magnetoencephalography can tell us about mental illness
  publication-title: Biol Psychiatry Cogn Neurosci Neuroimaging
– volume: 47
  start-page: 263
  year: 2009
  ident: 10.1016/j.artmed.2021.102039_bib0515
  article-title: Entropy and complexity measures for EEG signal classification of schizophrenic and control participants
  publication-title: Artif Intell Med
  doi: 10.1016/j.artmed.2009.03.003
– volume: 152
  start-page: 131
  year: 2017
  ident: 10.1016/j.artmed.2021.102039_bib0595
  article-title: Binary classification of multichannel-EEG records based on the ε-complexity of continuous vector functions
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2017.09.001
– volume: 13
  start-page: 1319
  year: 2019
  ident: 10.1016/j.artmed.2021.102039_bib0325
  article-title: Staging model in psychiatry: review of the evolution of electroencephalography abnormalities in major psychiatric disorders
  publication-title: Early Interv Psychiatry
  doi: 10.1111/eip.12792
– start-page: 4521
  year: 2019
  ident: 10.1016/j.artmed.2021.102039_bib0575
  article-title: EEG signals classification using machine learning for the identification and diagnosis of schizophrenia
– volume: 8
  start-page: 725
  year: 2007
  ident: 10.1016/j.artmed.2021.102039_bib0175
  article-title: Can neuroscience be integrated into the DSM-v?
  publication-title: Nat Rev Neurosci
  doi: 10.1038/nrn2218
– volume: 19
  start-page: 459
  year: 2019
  ident: 10.1016/j.artmed.2021.102039_bib0630
  article-title: Discriminating schizophrenia disease progression using a P50 sensory gating task with dense-array EEG, clinical assessments, and cognitive tests
  publication-title: Expert Rev Neurother
  doi: 10.1080/14737175.2019.1601558
– volume: 16
  start-page: 262
  year: 2019
  ident: 10.1016/j.artmed.2021.102039_bib0505
  article-title: Review of machine learning algorithms for diagnosing mental illness
  publication-title: Psychiatry Investig
  doi: 10.30773/pi.2018.12.21.2
– start-page: 1
  year: 2014
  ident: 10.1016/j.artmed.2021.102039_bib0540
  article-title: In search of biomarkers for schizophrenia using electroencephalography
– volume: 08
  year: 2018
  ident: 10.1016/j.artmed.2021.102039_bib0570
  article-title: Identification of schizophrenic patients and healthy controls based on musical perception using AEP analysis
  publication-title: Neuropsychiatry (London).
– volume: 11
  start-page: 100
  year: 2010
  ident: 10.1016/j.artmed.2021.102039_bib0655
  article-title: Abnormal neural oscillations and synchrony in schizophrenia
  publication-title: Nat Rev Neurosci
  doi: 10.1038/nrn2774
– year: 2020
  ident: 10.1016/j.artmed.2021.102039_bib0815
  article-title: EEG classification across sessions and across subjects through transfer learning in motor imagery-based brain-machine interface system
  publication-title: Med Biol Eng Comput
  doi: 10.1007/s11517-020-02176-y
– volume: 191
  start-page: 109
  year: 2018
  ident: 10.1016/j.artmed.2021.102039_bib0080
  article-title: Sensory prediction errors in the continuum of psychosis
  publication-title: Schizophr Res
  doi: 10.1016/j.schres.2017.04.019
– volume: 1344
  start-page: 105
  year: 2015
  ident: 10.1016/j.artmed.2021.102039_bib0315
  article-title: Future clinical uses of neurophysiological biomarkers to predict and monitor treatment response for schizophrenia
  publication-title: Ann N Y Acad Sci
  doi: 10.1111/nyas.12730
– volume: 64
  start-page: 395
  year: 2017
  ident: 10.1016/j.artmed.2021.102039_bib0560
  article-title: A computer-aided diagnosis system with EEG based on the P3b wave during an auditory odd-ball task in schizophrenia, IEEE trans
  publication-title: Biomed Eng
– year: 2016
  ident: 10.1016/j.artmed.2021.102039_bib0465
– volume: 161
  start-page: 1
  year: 2018
  ident: 10.1016/j.artmed.2021.102039_bib0715
  article-title: Deep learning for healthcare applications based on physiological signals: a review
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2018.04.005
– volume: 47
  start-page: 413
  year: 2000
  ident: 10.1016/j.artmed.2021.102039_bib0380
  article-title: P300 reduction and prolongation with illness duration in schizophrenia
  publication-title: Biol Psychiatry
  doi: 10.1016/S0006-3223(99)00151-1
– volume: 3
  start-page: 1
  year: 2009
  ident: 10.1016/j.artmed.2021.102039_bib0295
  article-title: Role of biomarkers and endophenotypes in prevention and treatment of psychopathological disorders
  publication-title: Biomark Med
  doi: 10.2217/17520363.3.1.1
– volume: 12
  start-page: 333
  year: 2010
  ident: 10.1016/j.artmed.2021.102039_bib0265
  article-title: Functional magnetic resonance imaging in schizophrenia, dialogues
  publication-title: Clin Neurosci
– volume: 61
  start-page: 85
  year: 2015
  ident: 10.1016/j.artmed.2021.102039_bib0695
  article-title: Deep learning in neural networks: an overview
  publication-title: Neural Networks.
  doi: 10.1016/j.neunet.2014.09.003
– volume: 49
  start-page: 1426
  year: 2019
  ident: 10.1016/j.artmed.2021.102039_bib0495
  article-title: Machine learning in mental health: a scoping review of methods and applications
  publication-title: Psychol Med
  doi: 10.1017/S0033291719000151
– volume: 468
  start-page: 187
  year: 2010
  ident: 10.1016/j.artmed.2021.102039_bib0105
  article-title: Rethinking schizophrenia
  publication-title: Nature
  doi: 10.1038/nature09552
– volume: 27
  start-page: 960
  year: 2005
  ident: 10.1016/j.artmed.2021.102039_bib0375
  article-title: Is the P300 wave an endophenotype for schizophrenia? A meta-analysis and a family study
  publication-title: Neuroimage.
  doi: 10.1016/j.neuroimage.2005.05.022
– volume: 16
  start-page: 31
  year: 2018
  ident: 10.1016/j.artmed.2021.102039_bib0770
  article-title: The mythos of model interpretability
  publication-title: Queue
  doi: 10.1145/3236386.3241340
– volume: 210
  start-page: 16
  year: 2013
  ident: 10.1016/j.artmed.2021.102039_bib0835
  article-title: Psychiatric comorbidity among adults with schizophrenia: a latent class analysis
  publication-title: Psychiatry Res
  doi: 10.1016/j.psychres.2013.05.013
– start-page: 1
  year: 2017
  ident: 10.1016/j.artmed.2021.102039_bib0705
  article-title: Deep learning with convolutional neural networks for decoding and visualization of EEG pathology
– volume: 44
  start-page: 135
  year: 2013
  ident: 10.1016/j.artmed.2021.102039_bib0525
  article-title: Multidimensional analysis of the abnormal neural oscillations associated with lexical processing in schizophrenia
  publication-title: Clin EEG Neurosci
  doi: 10.1177/1550059412465078
– volume: 19
  start-page: 226
  year: 2010
  ident: 10.1016/j.artmed.2021.102039_bib0215
  article-title: Structural and functional brain abnormalities in schizophrenia
  publication-title: Curr Dir Psychol Sci
  doi: 10.1177/0963721410377601
– volume: 6
  start-page: 40379
  year: 2018
  ident: 10.1016/j.artmed.2021.102039_bib0645
  article-title: Classification of bipolar disorder and schizophrenia using steady-State visual evoked potential based features
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2854555
– volume: 77
  start-page: 951
  year: 2015
  ident: 10.1016/j.artmed.2021.102039_bib0330
  article-title: Forecasting psychosis by event-related potentials—systematic review and specific meta-analysis
  publication-title: Biol Psychiatry
  doi: 10.1016/j.biopsych.2014.09.025
– volume: 8
  year: 2017
  ident: 10.1016/j.artmed.2021.102039_bib0055
  article-title: Psychotic-like experiences at the healthy End of the psychosis continuum
  publication-title: Front Psychol
  doi: 10.3389/fpsyg.2017.00775
– volume: 16
  year: 2019
  ident: 10.1016/j.artmed.2021.102039_bib0720
  article-title: Deep learning for electroencephalogram (EEG) classification tasks: a review
  publication-title: J Neural Eng
  doi: 10.1088/1741-2552/ab0ab5
– volume: 74
  start-page: 17
  year: 2017
  ident: 10.1016/j.artmed.2021.102039_bib0255
  article-title: Association of sensory processing with higher-order cognition and functioning in schizophrenia: mapping the world
  publication-title: JAMA Psychiatry
  doi: 10.1001/jamapsychiatry.2016.2992
– volume: 70
  start-page: 28
  year: 2011
  ident: 10.1016/j.artmed.2021.102039_bib0365
  article-title: A roadmap for the development and validation of event-related potential biomarkers in schizophrenia research
  publication-title: Biol Psychiatry
  doi: 10.1016/j.biopsych.2010.09.021
– volume: 1
  start-page: e1
  year: 2014
  ident: 10.1016/j.artmed.2021.102039_bib0245
  article-title: Cognition in schizophrenia: past, present, and future
  publication-title: Schizophr Res Cogn
  doi: 10.1016/j.scog.2014.02.001
– volume: 35
  start-page: 25
  year: 2017
  ident: 10.1016/j.artmed.2021.102039_bib0025
  article-title: The societal cost of schizophrenia: a systematic review
  publication-title: Pharmacoeconomics.
  doi: 10.1007/s40273-016-0444-6
– volume: 43
  start-page: 1133
  year: 2013
  ident: 10.1016/j.artmed.2021.102039_bib0070
  article-title: An updated and conservative systematic review and meta-analysis of epidemiological evidence on psychotic experiences in children and adults: on the pathway from proneness to persistence to dimensional expression across mental disorders
  publication-title: Psychol Med
  doi: 10.1017/S0033291712001626
– volume: 12
  start-page: 357
  year: 2016
  ident: 10.1016/j.artmed.2021.102039_bib0020
  article-title: Global economic burden of schizophrenia: a systematic review
  publication-title: Neuropsychiatr Dis Treat
  doi: 10.2147/NDT.S96649
– start-page: 101
  year: 2013
  ident: 10.1016/j.artmed.2021.102039_bib0435
  article-title: The auditory steady-state response (ASSR)
  doi: 10.1016/B978-0-7020-5307-8.00006-5
– volume: 129
  start-page: 2099
  year: 2018
  ident: 10.1016/j.artmed.2021.102039_bib0400
  article-title: Auditory N100 gating in patients with schizophrenia: a systematic meta-analysis
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2018.07.012
– volume: 38
  start-page: 227
  year: 2012
  ident: 10.1016/j.artmed.2021.102039_bib0095
  article-title: Introduction: the extended psychosis phenotype--relationship with schizophrenia and with ultrahigh risk Status for psychosis
  publication-title: Schizophr Bull
  doi: 10.1093/schbul/sbr188
– volume: 116
  start-page: 36
  year: 2016
  ident: 10.1016/j.artmed.2021.102039_bib0340
  article-title: Mismatch negativity (MMN) as biomarker predicting psychosis in clinically at-risk individuals
  publication-title: Biol Psychol
  doi: 10.1016/j.biopsycho.2015.10.010
– volume: 2016
  start-page: 1
  year: 2016
  ident: 10.1016/j.artmed.2021.102039_bib0045
  article-title: Neurophysiology for detection of High risk for psychosis
  publication-title: Schizophr Res Treatment
  doi: 10.1155/2016/2697971
– volume: 3361
  year: 1995
  ident: 10.1016/j.artmed.2021.102039_bib0735
  article-title: Convolutional networks for images, speech, and time series
  publication-title: Handb Brain Theory Neural Networks
– volume: 35
  start-page: 383
  year: 2009
  ident: 10.1016/j.artmed.2021.102039_bib0830
  article-title: Psychiatric comorbidities and schizophrenia
  publication-title: Schizophr Bull
  doi: 10.1093/schbul/sbn135
– year: 1992
  ident: 10.1016/j.artmed.2021.102039_bib0170
– volume: 37
  start-page: 778
  year: 2011
  ident: 10.1016/j.artmed.2021.102039_bib0420
  article-title: The early auditory gamma-band response Is heritable and a putative endophenotype of schizophrenia
  publication-title: Schizophr Bull
  doi: 10.1093/schbul/sbp134
– volume: 2
  year: 2005
  ident: 10.1016/j.artmed.2021.102039_bib0005
  article-title: A systematic review of the prevalence of schizophrenia
  publication-title: PLoS Med
  doi: 10.1371/journal.pmed.0020141
– volume: 15
  start-page: 31005
  year: 2018
  ident: 10.1016/j.artmed.2021.102039_bib0810
  article-title: A review of classification algorithms for EEG-based brain--computer interfaces: a 10 year update
  publication-title: J Neural Eng
  doi: 10.1088/1741-2552/aab2f2
– start-page: 1
  year: 2020
  ident: 10.1016/j.artmed.2021.102039_bib0500
  article-title: Computing schizophrenia: ethical challenges for machine learning in psychiatry
  publication-title: Psychol Med
– volume: 3
  start-page: 48
  year: 2009
  ident: 10.1016/j.artmed.2021.102039_bib0665
  article-title: Differential maturation of brain signal complexity in the human auditory and visual system
  publication-title: Front Hum Neurosci
  doi: 10.3389/neuro.09.048.2009
– year: 2017
  ident: 10.1016/j.artmed.2021.102039_bib0620
– volume: 8
  start-page: 292
  year: 2019
  ident: 10.1016/j.artmed.2021.102039_bib0680
  article-title: A State-of-the-art survey on deep learning theory and architectures
  publication-title: Electronics
  doi: 10.3390/electronics8030292
– volume: 39
  start-page: 179
  year: 2009
  ident: 10.1016/j.artmed.2021.102039_bib0090
  article-title: A systematic review and meta-analysis of the psychosis continuum: evidence for a psychosis proneness–persistence–impairment model of psychotic disorder
  publication-title: Psychol Med
  doi: 10.1017/S0033291708003814
– volume: 67
  start-page: 461
  year: 2013
  ident: 10.1016/j.artmed.2021.102039_bib0130
  article-title: Review of neurophysiological findings in patients with schizophrenia
  publication-title: Psychiatry Clin Neurosci
  doi: 10.1111/pcn.12090
– year: 2019
  ident: 10.1016/j.artmed.2021.102039_bib0750
  article-title: On the use of pairwise distance learning for brain Signal classification with limited observations
  publication-title: ArXiv Prepr
– volume: 3
  start-page: 223
  year: 2018
  ident: 10.1016/j.artmed.2021.102039_bib0145
  article-title: Machine learning for precision psychiatry: opportunities and challenges
  publication-title: Biol Psychiatry Cogn Neurosci Neuroimaging
– year: 2017
  ident: 10.1016/j.artmed.2021.102039_bib0760
  article-title: Individual recognition in schizophrenia using deep learning methods with random Forest and voting classifiers: insights from resting State EEG streams
  publication-title: ArXiv Prepr
– volume: 6
  year: 2012
  ident: 10.1016/j.artmed.2021.102039_bib0120
  article-title: Neurobiology of schizophrenia: search for the elusive correlation with symptoms
  publication-title: Front Hum Neurosci
  doi: 10.3389/fnhum.2012.00136
– volume: 28
  year: 2017
  ident: 10.1016/j.artmed.2021.102039_bib0585
  article-title: EEG signal complexity analysis for schizophrenia during rest and mental activity
  publication-title: Biomed Res
– volume: 43
  start-page: 227
  year: 2020
  ident: 10.1016/j.artmed.2021.102039_bib0615
  article-title: Schizophrenia diagnosis using innovative EEG feature-level fusion schemes
  publication-title: Phys Eng Sci Med
  doi: 10.1007/s13246-019-00839-1
– start-page: 1
  year: 2015
  ident: 10.1016/j.artmed.2021.102039_bib0200
  article-title: Neurophysiological and neuroimaging techniques
– volume: 97
  start-page: 3
  year: 2019
  ident: 10.1016/j.artmed.2021.102039_bib0180
  article-title: A quantitative approach to neuropsychiatry: the why and the how
  publication-title: Neurosci Biobehav Rev
  doi: 10.1016/j.neubiorev.2017.12.008
– year: 2015
  ident: 10.1016/j.artmed.2021.102039_bib0345
  article-title: Advanced Signal processing on brain event-related potentials
  publication-title: World Sci
– volume: 1
  year: 2020
  ident: 10.1016/j.artmed.2021.102039_bib0210
  article-title: A meta-analysis of structural and functional brain abnormalities in early-onset schizophrenia
  publication-title: Schizophr Bull Open
  doi: 10.1093/schizbullopen/sgaa016
– volume: 73
  start-page: 1145
  year: 2016
  ident: 10.1016/j.artmed.2021.102039_bib0430
  article-title: The 40-Hz auditory steady-State response in patients with schizophrenia
  publication-title: JAMA Psychiatry
  doi: 10.1001/jamapsychiatry.2016.2619
– volume: 100
  start-page: 101698
  year: 2019
  ident: 10.1016/j.artmed.2021.102039_bib0605
  article-title: Automated detection of schizophrenia using nonlinear signal processing methods
  publication-title: Artif Intell Med
  doi: 10.1016/j.artmed.2019.07.006
– year: 2013
  ident: 10.1016/j.artmed.2021.102039_bib0690
  article-title: Deep learning
  publication-title: MIT Technol Rev 10 Breakthr Technol
SSID ssj0007416
Score 2.5297532
SecondaryResourceType review_article
Snippet •Machine learning shows promise in SZ onset prediction, detection of psychosis risk, and discrimination from other disorders.•We review EEG-based machine...
The complexity and heterogeneity of schizophrenia symptoms challenge an objective diagnosis, which is typically based on behavioral and clinical...
SourceID proquest
pubmed
crossref
rcaap
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1
SubjectTerms Biomarkers
Brain
Classification
Deep learning
Diagnosis
EEG
Electroencephalography
Endophenotypes
Humans
Machine learning
Prediction
Prognosis
Psychosis
Psychotic Disorders
Quality of Life
Schizophrenia
Science & Technology
Title Advanced EEG-based learning approaches to predict schizophrenia: Promises and pitfalls
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0933365721000324
https://dx.doi.org/10.1016/j.artmed.2021.102039
http://hdl.handle.net/1822/89881
https://www.ncbi.nlm.nih.gov/pubmed/33875158
https://www.proquest.com/docview/2515683860
Volume 114
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwED5Nm4R4YTB-LDAmI_Ea2vh3eaumjgLahARDe7Mc20FFVRo12St_O-fEKUMgDfHYyte6vovv--rzdwCvJSI2pAEsV54iQaGyzK32LGeel7zyztFeYuPiUi6v-Idrcb0HZ-NdmFhWmfb-YU_vd-v0ziSt5qRZrSafIxdnUuB3RWBPoyYo5yrq57_58avMIyKOXm-P4QRw9Hh9rq_xws_DnIMskRZRw2AaW4b_PT39CT8RzW6dtc2tdHT-EB4kHEnmw1QfwV6oj-Bw7NFA0iN7BPcu0uH5Y_g6T-f9ZLF4l8f05UlqGvGNjNrioSXdhjTbaNWR9nZJ3lvyabvBsMAhtvakWXWVXa_bJ3B1vvhytsxTW4XccT7t4p9-VaV5YUvmmRNIyBzCKFdaqnUlnCrttLTBz7hyfMZ9UUkayqjiYinzSin2FPbrTR2OgSDZYALdWWnteXBciyALGaiVrph5oTJg42oalzTHY-uLtRmLy76bwQcm-sAMPsgg31k1g-bGHePF6Cgz3ifFHdBgUrjDTu3sfou5f7B8NcaDwXWPZyy2Dpub1iBcFFIzLacZPBsCZfcbGENyWAidQdZHjomF3MgBWoMkjxo907p4_t9zegH346uhqugE9rvtTXiJgKkrT_sn4hQO5u8_Li9_ArqXEaw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwED6NIQEvGwwGYQOMxGto419xeZumjgLrhMSG9mY5toOKqjRqslf-9p0TpwwxaYjXxJc4vrPv--LzHcA7iYgNaQBLc0eRoFBZpEY5ljLHC146a2mXYmN-JmcX_POluNyC4-EsTAirjGt_v6Z3q3W8MoqjOaoXi9G3wMWZFPiuAOwpvwf3uWB5MO33v37HeQTI0SXcY9gDbD6cn-uCvPCB6HSQJtIsJDEYh5rht_unv_Enwtm1Naa-4Y9OHsNOBJLkqO_rE9jy1R7sDkUaSJyze_BgHnfPn8L3o7jhT6bTj2nwX47EqhE_yJBc3DekXZF6HaRa0tyMyftAvq5XaBfYxFSO1Iu2NMtl8wwuTqbnx7M01lVILefjNvz1K0vFM1Mwx6xARmYRR9nCUKVKYfPCjAvj3YTnlk-4y0pJfRHSuBjKXJ7nbB-2q1XlXwBBtsEE6rNUynFvuRJeZtJTI202cSJPgA2jqW1MOh5qXyz1EF32U_c60EEHutdBAulGqu6TbtzRXgyK0sOBUlwCNXqFO-TyjdwfRvcPkm8He9A47mGTxVR-ddVoxItCKqbkOIHnvaFsvoExZIeZUAkkneXoEMmNJKDRyPKoVhOlspf_3ac38HB2Pj_Vp5_OvhzAo3CnDzE6hO12feVfIXpqi9fd7LgG8OkTQg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Advanced+EEG-based+learning+approaches+to+predict+schizophrenia%3A+Promises+and+pitfalls&rft.jtitle=Artificial+intelligence+in+medicine&rft.au=Barros%2C+Carla&rft.au=Silva%2C+Carlos+A&rft.au=Pinheiro%2C+Ana+P&rft.date=2021-04-01&rft.issn=1873-2860&rft.eissn=1873-2860&rft.volume=114&rft.spage=102039&rft_id=info:doi/10.1016%2Fj.artmed.2021.102039&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0933-3657&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0933-3657&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0933-3657&client=summon