Highly accurate diagnosis of papillary thyroid carcinomas based on personalized pathways coupled with machine learning
Abstract Thyroid nodules are neoplasms commonly found among adults, with papillary thyroid carcinoma (PTC) being the most prevalent malignancy. However, current diagnostic methods often subject patients to unnecessary surgical burden. In this study, we developed and validated an automated, highly ac...
Saved in:
Published in | Briefings in bioinformatics Vol. 22; no. 4 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
01.07.2021
Oxford Publishing Limited (England) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Abstract
Thyroid nodules are neoplasms commonly found among adults, with papillary thyroid carcinoma (PTC) being the most prevalent malignancy. However, current diagnostic methods often subject patients to unnecessary surgical burden. In this study, we developed and validated an automated, highly accurate multi-study-derived diagnostic model for PTCs using personalized biological pathways coupled with a sophisticated machine learning algorithm. Surprisingly, the algorithm achieved near-perfect performance in discriminating PTCs from non-tumoral thyroid samples with an overall cross-study-validated area under the receiver operating characteristic curve (AUROC) of 0.999 (95% confidence interval [CI]: 0.995–1) and a Brier score of 0.013 on three independent development cohorts. In addition, the algorithm showed excellent generalizability and transferability on two large-scale external blind PTC cohorts consisting of The Cancer Genome Atlas (TCGA), which is the largest genomic PTC cohort studied to date, and the post-Chernobyl cohort, which includes PTCs reported after exposure to radiation from the Chernobyl accident. When applied to the TCGA cohort, the model yielded an AUROC of 0.969 (95% CI: 0.950–0.987) and a Brier score of 0.109. On the post-Chernobyl cohort, it yielded an AUROC of 0.962 (95% CI: 0.918–1) and a Brier score of 0.073. This algorithm also is robust against other various types of clinical scenarios, discriminating malignant from benign lesions as well as clinically aggressive thyroid cancer with poor prognosis from indolent ones. Furthermore, we discovered novel pathway alterations and prognostic signatures for PTC, which can provide directions for follow-up studies. |
---|---|
AbstractList | Thyroid nodules are neoplasms commonly found among adults, with papillary thyroid carcinoma (PTC) being the most prevalent malignancy. However, current diagnostic methods often subject patients to unnecessary surgical burden. In this study, we developed and validated an automated, highly accurate multi-study-derived diagnostic model for PTCs using personalized biological pathways coupled with a sophisticated machine learning algorithm. Surprisingly, the algorithm achieved near-perfect performance in discriminating PTCs from non-tumoral thyroid samples with an overall cross-study-validated area under the receiver operating characteristic curve (AUROC) of 0.999 (95% confidence interval [CI]: 0.995-1) and a Brier score of 0.013 on three independent development cohorts. In addition, the algorithm showed excellent generalizability and transferability on two large-scale external blind PTC cohorts consisting of The Cancer Genome Atlas (TCGA), which is the largest genomic PTC cohort studied to date, and the post-Chernobyl cohort, which includes PTCs reported after exposure to radiation from the Chernobyl accident. When applied to the TCGA cohort, the model yielded an AUROC of 0.969 (95% CI: 0.950-0.987) and a Brier score of 0.109. On the post-Chernobyl cohort, it yielded an AUROC of 0.962 (95% CI: 0.918-1) and a Brier score of 0.073. This algorithm also is robust against other various types of clinical scenarios, discriminating malignant from benign lesions as well as clinically aggressive thyroid cancer with poor prognosis from indolent ones. Furthermore, we discovered novel pathway alterations and prognostic signatures for PTC, which can provide directions for follow-up studies. Thyroid nodules are neoplasms commonly found among adults, with papillary thyroid carcinoma (PTC) being the most prevalent malignancy. However, current diagnostic methods often subject patients to unnecessary surgical burden. In this study, we developed and validated an automated, highly accurate multi-study-derived diagnostic model for PTCs using personalized biological pathways coupled with a sophisticated machine learning algorithm. Surprisingly, the algorithm achieved near-perfect performance in discriminating PTCs from non-tumoral thyroid samples with an overall cross-study-validated area under the receiver operating characteristic curve (AUROC) of 0.999 (95% confidence interval [CI]: 0.995-1) and a Brier score of 0.013 on three independent development cohorts. In addition, the algorithm showed excellent generalizability and transferability on two large-scale external blind PTC cohorts consisting of The Cancer Genome Atlas (TCGA), which is the largest genomic PTC cohort studied to date, and the post-Chernobyl cohort, which includes PTCs reported after exposure to radiation from the Chernobyl accident. When applied to the TCGA cohort, the model yielded an AUROC of 0.969 (95% CI: 0.950-0.987) and a Brier score of 0.109. On the post-Chernobyl cohort, it yielded an AUROC of 0.962 (95% CI: 0.918-1) and a Brier score of 0.073. This algorithm also is robust against other various types of clinical scenarios, discriminating malignant from benign lesions as well as clinically aggressive thyroid cancer with poor prognosis from indolent ones. Furthermore, we discovered novel pathway alterations and prognostic signatures for PTC, which can provide directions for follow-up studies.Thyroid nodules are neoplasms commonly found among adults, with papillary thyroid carcinoma (PTC) being the most prevalent malignancy. However, current diagnostic methods often subject patients to unnecessary surgical burden. In this study, we developed and validated an automated, highly accurate multi-study-derived diagnostic model for PTCs using personalized biological pathways coupled with a sophisticated machine learning algorithm. Surprisingly, the algorithm achieved near-perfect performance in discriminating PTCs from non-tumoral thyroid samples with an overall cross-study-validated area under the receiver operating characteristic curve (AUROC) of 0.999 (95% confidence interval [CI]: 0.995-1) and a Brier score of 0.013 on three independent development cohorts. In addition, the algorithm showed excellent generalizability and transferability on two large-scale external blind PTC cohorts consisting of The Cancer Genome Atlas (TCGA), which is the largest genomic PTC cohort studied to date, and the post-Chernobyl cohort, which includes PTCs reported after exposure to radiation from the Chernobyl accident. When applied to the TCGA cohort, the model yielded an AUROC of 0.969 (95% CI: 0.950-0.987) and a Brier score of 0.109. On the post-Chernobyl cohort, it yielded an AUROC of 0.962 (95% CI: 0.918-1) and a Brier score of 0.073. This algorithm also is robust against other various types of clinical scenarios, discriminating malignant from benign lesions as well as clinically aggressive thyroid cancer with poor prognosis from indolent ones. Furthermore, we discovered novel pathway alterations and prognostic signatures for PTC, which can provide directions for follow-up studies. Abstract Thyroid nodules are neoplasms commonly found among adults, with papillary thyroid carcinoma (PTC) being the most prevalent malignancy. However, current diagnostic methods often subject patients to unnecessary surgical burden. In this study, we developed and validated an automated, highly accurate multi-study-derived diagnostic model for PTCs using personalized biological pathways coupled with a sophisticated machine learning algorithm. Surprisingly, the algorithm achieved near-perfect performance in discriminating PTCs from non-tumoral thyroid samples with an overall cross-study-validated area under the receiver operating characteristic curve (AUROC) of 0.999 (95% confidence interval [CI]: 0.995–1) and a Brier score of 0.013 on three independent development cohorts. In addition, the algorithm showed excellent generalizability and transferability on two large-scale external blind PTC cohorts consisting of The Cancer Genome Atlas (TCGA), which is the largest genomic PTC cohort studied to date, and the post-Chernobyl cohort, which includes PTCs reported after exposure to radiation from the Chernobyl accident. When applied to the TCGA cohort, the model yielded an AUROC of 0.969 (95% CI: 0.950–0.987) and a Brier score of 0.109. On the post-Chernobyl cohort, it yielded an AUROC of 0.962 (95% CI: 0.918–1) and a Brier score of 0.073. This algorithm also is robust against other various types of clinical scenarios, discriminating malignant from benign lesions as well as clinically aggressive thyroid cancer with poor prognosis from indolent ones. Furthermore, we discovered novel pathway alterations and prognostic signatures for PTC, which can provide directions for follow-up studies. |
Author | Kim, Sung Young Oh, Jung Hun Kim, Seong Hoon Park, Kyoung Sik |
Author_xml | – sequence: 1 givenname: Kyoung Sik surname: Park fullname: Park, Kyoung Sik email: 20090117@kuh.ac.kr – sequence: 2 givenname: Seong Hoon surname: Kim fullname: Kim, Seong Hoon email: 20170038@kuh.ac.kr – sequence: 3 givenname: Jung Hun surname: Oh fullname: Oh, Jung Hun email: OhJ@mskcc.org – sequence: 4 givenname: Sung Young surname: Kim fullname: Kim, Sung Young email: palelamp@kku.ac.kr |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33341874$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU1r3DAQhkVJaT7aU-9FUAiB4kayvuxLIYS0KQRyyV2MZO1awZZcyU7Y_vpqu9vQBprTaEbPvMzMe4wOQgwOofeUfKakZefGm3NjABiTr9AR5UpVnAh-sH1LVQku2SE6zvmekJqohr5Bh4wxThvFj9DDtV_3wwaDtUuC2eHOwzrE7DOOKzzB5IcB0gbP_SZF32ELyfoQR8jYQHYdjgFPLuUYYPA_Sz7B3D_CJmMbl2kohUc_93gE2_vg8OAgBR_Wb9HrFQzZvdvHE3T39eru8rq6uf32_fLiprKck7lqKKGdJK3qpKxdLRtqulYANUo6aUEo1oKqwXFKBFkZThSAsq6RojEdMewEfdnJTosZXWddmBMMekp-LEvpCF7_-xN8r9fxQTeibetWFIGzvUCKPxaXZz36bF25SXBxybrmigom5G_04zP0Pi6pnKVQoiWEi0Y1hfrw90RPo_xxpACfdoBNMefkVk8IJXrrty5-673fhabPaOtnmH3cruOH__Sc7nqKQS-K_wJt4b8G |
CitedBy_id | crossref_primary_10_1093_bib_bbad382 crossref_primary_10_1210_clinem_dgae277 crossref_primary_10_1093_bib_bbae344 crossref_primary_10_1186_s12859_022_04805_9 crossref_primary_10_3389_fpubh_2022_960740 crossref_primary_10_1016_j_compbiomed_2022_106164 crossref_primary_10_1038_s41440_024_01753_0 crossref_primary_10_3389_fcell_2021_688370 crossref_primary_10_1186_s12877_022_03430_8 |
Cites_doi | 10.1093/bib/bbx149 10.1111/j.1467-9868.2005.00503.x 10.1111/j.2517-6161.1972.tb00899.x 10.1093/bib/bbz046 10.1089/thy.2019.0060 10.1093/nar/gkn653 10.18632/oncotarget.8215 10.1097/MD.0b013e31826a9c71 10.1634/theoncologist.2013-0072 10.1186/s12885-017-3104-0 10.1073/pnas.1219651110 10.1093/bib/bbv030 10.1093/bioinformatics/btq182 10.1186/gb-2011-12-4-r41 10.1186/s12859-019-3224-4 10.5858/arpa.2015-0154-SA 10.1093/bib/bbv044 10.2307/2344317 10.1155/2013/965212 10.1016/j.otohns.2004.09.028 10.1111/j.1365-2559.2009.03441.x 10.1245/s10434-015-4762-2 10.1038/nrc2294 10.1080/01621459.1958.10501452 10.1080/01621459.1989.10478797 10.1175/1520-0493(1950)078<0001:VOFEIT>2.0.CO;2 10.1371/journal.pone.0118432 10.1016/j.cell.2014.09.050 10.3322/caac.21388 10.1089/thy.2009.0352 10.1016/j.ebiom.2019.05.010 10.18637/jss.v062.i05 10.1111/cyt.12248 10.1210/jc.2015-2917 10.1093/bioinformatics/btu449 10.3390/ijms20184413 10.1093/biomet/69.1.239 10.1093/nar/28.1.27 10.1038/bjc.2012.302 10.1016/j.molonc.2015.04.006 10.5858/2008-132-1241-TTHOCA 10.1186/s13059-017-1349-1 10.18637/jss.v033.i01 10.1186/s13073-016-0289-9 10.1093/biostatistics/kxj037 10.1007/s00259-015-3303-3 10.1038/nmeth.4014 |
ContentType | Journal Article |
Copyright | The Author(s) 2020. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2020 The Author(s) 2020. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com. The Author(s) 2020. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com |
Copyright_xml | – notice: The Author(s) 2020. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2020 – notice: The Author(s) 2020. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com. – notice: The Author(s) 2020. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com |
DBID | AAYXX CITATION NPM 7QO 7SC 8FD FR3 JQ2 K9. L7M L~C L~D P64 RC3 7X8 5PM |
DOI | 10.1093/bib/bbaa336 |
DatabaseName | CrossRef PubMed Biotechnology Research Abstracts Computer and Information Systems Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Genetics Abstracts Biotechnology Research Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Engineering Research Database Advanced Technologies Database with Aerospace Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic Genetics Abstracts CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1477-4054 |
ExternalDocumentID | PMC8599295 33341874 10_1093_bib_bbaa336 10.1093/bib/bbaa336 |
Genre | Journal Article Report |
GrantInformation_xml | – fundername: ; – fundername: ; grantid: NRF-2019R1F1A1062023; NRF-2020M3A9D8038014 – fundername: ; grantid: P30 CA008748; R21 CA234752 |
GroupedDBID | --- -E4 .2P .I3 0R~ 1TH 23N 2WC 36B 4.4 48X 53G 5GY 5VS 6J9 70D 8VB AAHBH AAIJN AAIMJ AAJKP AAJQQ AAMDB AAMVS AAOGV AAPQZ AAPXW AARHZ AASNB AAUQX AAVAP AAVLN ABDBF ABEUO ABIXL ABJNI ABNKS ABPTD ABQLI ABQTQ ABWST ABXVV ABZBJ ACGFO ACGFS ACGOD ACIWK ACPRK ACUFI ACYTK ADBBV ADEYI ADFTL ADGKP ADGZP ADHKW ADHZD ADOCK ADPDF ADQBN ADRDM ADRIX ADRTK ADVEK ADYVW ADZTZ ADZXQ AECKG AEGPL AEGXH AEJOX AEKKA AEKSI AELWJ AEMDU AEMOZ AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFGWE AFIYH AFOFC AFRAH AFXEN AGINJ AGKEF AGQXC AGSYK AHMBA AHXPO AIAGR AIJHB AJEEA AJEUX AKHUL AKVCP AKWXX ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC APIBT APWMN ARIXL AXUDD AYOIW AZVOD BAWUL BAYMD BCRHZ BEYMZ BHONS BQDIO BQUQU BSWAC BTQHN C1A C45 CAG CDBKE COF CS3 CZ4 DAKXR DIK DILTD DU5 D~K E3Z EAD EAP EAS EBA EBC EBD EBR EBS EBU EE~ EJD EMB EMK EMOBN EST ESX F5P F9B FHSFR FLIZI FLUFQ FOEOM FQBLK GAUVT GJXCC GX1 H13 H5~ HAR HW0 HZ~ IOX J21 K1G KBUDW KOP KSI KSN M-Z M49 MK~ ML0 N9A NGC NLBLG NMDNZ NOMLY NU- O0~ O9- OAWHX ODMLO OJQWA OK1 OVD OVEED P2P PAFKI PEELM PQQKQ Q1. Q5Y QWB RD5 ROX RPM RUSNO RW1 RXO SV3 TEORI TH9 TJP TLC TOX TR2 TUS W8F WOQ X7H YAYTL YKOAZ YXANX ZKX ZL0 ~91 AAYXX ABEJV ABGNP ABPQP ABXZS ACUHS ACUXJ AHGBF AHQJS ALXQX AMNDL ANAKG CITATION JXSIZ GROUPED_DOAJ NPM 7QO 7SC 8FD FR3 JQ2 K9. L7M L~C L~D P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c440t-8101d6097d662e2681bd95a1b76e6ca5739a72ae41050fb407aa7ce8658bd0b3 |
IEDL.DBID | TOX |
ISSN | 1467-5463 1477-4054 |
IngestDate | Thu Aug 21 14:14:18 EDT 2025 Fri Jul 11 15:11:38 EDT 2025 Mon Jun 30 08:44:03 EDT 2025 Thu Apr 03 06:57:59 EDT 2025 Tue Jul 01 03:39:32 EDT 2025 Thu Apr 24 23:09:06 EDT 2025 Wed Aug 28 03:20:04 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | papillary thyroid carcinomas machine learning tall cell variants molecular diagnosis |
Language | English |
License | This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model) https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model The Author(s) 2020. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c440t-8101d6097d662e2681bd95a1b76e6ca5739a72ae41050fb407aa7ce8658bd0b3 |
Notes | SourceType-Scholarly Journals-1 content type line 14 ObjectType-Report-1 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 ObjectType-Undefined-3 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/8599295 |
PMID | 33341874 |
PQID | 2590045878 |
PQPubID | 26846 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8599295 proquest_miscellaneous_2471535695 proquest_journals_2590045878 pubmed_primary_33341874 crossref_primary_10_1093_bib_bbaa336 crossref_citationtrail_10_1093_bib_bbaa336 oup_primary_10_1093_bib_bbaa336 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-07-01 |
PublicationDateYYYYMMDD | 2021-07-01 |
PublicationDate_xml | – month: 07 year: 2021 text: 2021-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Oxford |
PublicationTitle | Briefings in bioinformatics |
PublicationTitleAlternate | Brief Bioinform |
PublicationYear | 2021 |
Publisher | Oxford University Press Oxford Publishing Limited (England) |
Publisher_xml | – name: Oxford University Press – name: Oxford Publishing Limited (England) |
References | Zou (2021111804322890400_ref11) 2005; 67 Howell (2021111804322890400_ref7) 2013; 18 Vitali (2021111804322890400_ref23) 2019; 20 Boronat (2021111804322890400_ref36) 2013; 2013 Saito (2021111804322890400_ref45) 2015; 10 Dom (2021111804322890400_ref48) 2012; 107 Mermel (2021111804322890400_ref37) 2011; 12 Montone (2021111804322890400_ref34) 2008; 132 Cancer Genome Atlas Research Network (2021111804322890400_ref49) 2014; 159 Ahn (2021111804322890400_ref17) 2014; 30 Peto (2021111804322890400_ref52) 1972; 135 Ulfenborg (2021111804322890400_ref13) 2019; 20 Morris (2021111804322890400_ref32) 2010; 20 Aran (2021111804322890400_ref44) 2017; 18 Wei (2021111804322890400_ref12) 2020 Drier (2021111804322890400_ref15) 2013; 110 Pellegriti (2021111804322890400_ref1) 2013; 2013 Tufano (2021111804322890400_ref5) 2012; 91 Wang (2021111804322890400_ref16) 2016; 17 Huang (2021111804322890400_ref21) 2016; 8 Ho (2021111804322890400_ref39) 2019; 29 Glaab (2021111804322890400_ref14) 2016; 17 Handkiewicz-Junak (2021111804322890400_ref47) 2016; 43 Sill (2021111804322890400_ref29) 2014; 62 Tsybrovskyy (2021111804322890400_ref35) 2009; 55 NCCN Clinical Practice Guidelines in Oncology (2021111804322890400_ref40) 2017 Vaske (2021111804322890400_ref19) 2010; 26 Johnson (2021111804322890400_ref24) 2007; 8 Galdiero (2021111804322890400_ref43) 2016; 5 Chang (2021111804322890400_ref6) 2016; 27 Hastie (2021111804322890400_ref25) 1989; 84 Kaplan (2021111804322890400_ref51) 1958; 53 Schoenfeld (2021111804322890400_ref54) 1982; 69 Shi (2021111804322890400_ref33) 2016; 101 Fa (2021111804322890400_ref20) 2019; 44 Nishimura (2021111804322890400_ref28) 2001 Amin (2021111804322890400_ref41) 2017; 67 Lever (2021111804322890400_ref9) 2016; 13 Kanehisa (2021111804322890400_ref26) 2000; 28 Schaefer (2021111804322890400_ref27) 2009; 37 Li (2021111804322890400_ref30) 2020; 21 Krauss (2021111804322890400_ref3) 2016; 140 Wang (2021111804322890400_ref31) 2016; 7 Nixon (2021111804322890400_ref38) 2016; 23 Brier (2021111804322890400_ref50) 1950; 78 Ferrari (2021111804322890400_ref42) 2019; 20 Gonçalves Filho (2021111804322890400_ref4) 2005; 132 Cho (2021111804322890400_ref2) 2017; 17 Friedman (2021111804322890400_ref10) 2010; 33 Song (2021111804322890400_ref18) 2017; 7 Clarke (2021111804322890400_ref8) 2008; 8 Livshits (2021111804322890400_ref22) 2015; 9 Cox (2021111804322890400_ref53) 1972; 34 Boltze (2021111804322890400_ref46) 2009; 22 |
References_xml | – volume: 20 start-page: 789 year: 2019 ident: 2021111804322890400_ref23 article-title: Developing a “personalome” for precision medicine: emerging methods that compute interpretable effect sizes from single-subject transcriptomes publication-title: Brief Bioinform doi: 10.1093/bib/bbx149 – volume: 67 start-page: 301 year: 2005 ident: 2021111804322890400_ref11 article-title: Regularization and variable selection via the elastic net publication-title: J Royal Statistical Soc B doi: 10.1111/j.1467-9868.2005.00503.x – volume: 34 start-page: 187 year: 1972 ident: 2021111804322890400_ref53 article-title: Regression models and life-tables publication-title: J R Stat Soc B Methodol doi: 10.1111/j.2517-6161.1972.tb00899.x – start-page: 117 volume-title: BioCarta. Biotech Software & Internet Report 2 year: 2001 ident: 2021111804322890400_ref28 – volume: 21 start-page: 957 year: 2020 ident: 2021111804322890400_ref30 article-title: A comprehensive overview of oncogenic pathways in human cancer publication-title: Brief Bioinform doi: 10.1093/bib/bbz046 – volume: 7 year: 2017 ident: 2021111804322890400_ref18 article-title: A novel unsupervised algorithm for biological process-based analysis on cancer publication-title: Sci Rep – volume: 29 start-page: 1409 year: 2019 ident: 2021111804322890400_ref39 article-title: Mortality risk of nonoperative papillary thyroid carcinoma: a corollary for active surveillance publication-title: Thyroid doi: 10.1089/thy.2019.0060 – volume: 37 start-page: D674 year: 2009 ident: 2021111804322890400_ref27 article-title: PID: the pathway interaction database publication-title: Nucleic Acids Res doi: 10.1093/nar/gkn653 – volume: 7 start-page: 40792 year: 2016 ident: 2021111804322890400_ref31 article-title: Tall cell variant of papillary thyroid carcinoma: current evidence on clinicopathologic features and molecular biology publication-title: Oncotarget doi: 10.18632/oncotarget.8215 – volume: 91 start-page: 274 year: 2012 ident: 2021111804322890400_ref5 article-title: BRAF mutation in papillary thyroid cancer and its value in tailoring initial treatment: a systematic review and meta-analysis publication-title: Medicine (Baltimore) doi: 10.1097/MD.0b013e31826a9c71 – volume: 18 start-page: 926 year: 2013 ident: 2021111804322890400_ref7 article-title: RAS mutations in thyroid cancer publication-title: Oncologist doi: 10.1634/theoncologist.2013-0072 – volume: 17 year: 2017 ident: 2021111804322890400_ref2 article-title: Thyroid fine-needle aspiration biopsy positively correlates with increased diagnosis of thyroid cancer in South Korean patients publication-title: BMC Cancer doi: 10.1186/s12885-017-3104-0 – year: 2020 ident: 2021111804322890400_ref12 article-title: Survey and comparative assessments of computational multi-omics integrative methods with multiple regulatory networks identifying distinct tumor compositions across pan-cancer data sets publication-title: Brief Bioinform – volume: 110 start-page: 6388 year: 2013 ident: 2021111804322890400_ref15 article-title: Pathway-based personalized analysis of cancer publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1219651110 – volume: 17 start-page: 78 year: 2016 ident: 2021111804322890400_ref16 article-title: Individualized identification of disease-associated pathways with disrupted coordination of gene expression publication-title: Brief Bioinform doi: 10.1093/bib/bbv030 – volume: 22 start-page: 459 year: 2009 ident: 2021111804322890400_ref46 article-title: Sporadic and radiation-associated papillary thyroid cancers can be distinguished using routine immunohistochemistry publication-title: Oncol Rep – volume: 26 start-page: i237 year: 2010 ident: 2021111804322890400_ref19 article-title: Inference of patient-specific pathway activities from multi-dimensional cancer genomics data using PARADIGM publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq182 – volume: 12 year: 2011 ident: 2021111804322890400_ref37 article-title: GISTIC2.0 facilitates sensitive and confident localization of the targets of focal somatic copy-number alteration in human cancers publication-title: Genome Biol doi: 10.1186/gb-2011-12-4-r41 – volume: 20 start-page: 649 year: 2019 ident: 2021111804322890400_ref13 article-title: Vertical and horizontal integration of multi-omics data with miodin publication-title: BMC Bioinformatics doi: 10.1186/s12859-019-3224-4 – volume: 140 start-page: 1121 year: 2016 ident: 2021111804322890400_ref3 article-title: Application of the Bethesda classification for thyroid fine-needle aspiration: institutional experience and meta-analysis publication-title: Arch Pathol Lab Med doi: 10.5858/arpa.2015-0154-SA – volume: 17 start-page: 440 year: 2016 ident: 2021111804322890400_ref14 article-title: Using prior knowledge from cellular pathways and molecular networks for diagnostic specimen classification publication-title: Brief Bioinform doi: 10.1093/bib/bbv044 – volume: 135 start-page: 185 year: 1972 ident: 2021111804322890400_ref52 article-title: Asymptotically efficient rank invariant test procedures -nuffield department of population health publication-title: J Roy Stat Soc Ser A doi: 10.2307/2344317 – volume: 2013 year: 2013 ident: 2021111804322890400_ref1 article-title: Worldwide increasing incidence of thyroid cancer: update on epidemiology and risk factors publication-title: J Cancer Epidemiol doi: 10.1155/2013/965212 – volume: 132 start-page: 490 year: 2005 ident: 2021111804322890400_ref4 article-title: Surgical complications after thyroid surgery performed in a cancer hospital publication-title: Otolaryngol Head Neck Surg doi: 10.1016/j.otohns.2004.09.028 – volume: 55 start-page: 665 year: 2009 ident: 2021111804322890400_ref35 article-title: Oncocytic versus mitochondrion-rich follicular thyroid tumours: should we make a difference? publication-title: Histopathology doi: 10.1111/j.1365-2559.2009.03441.x – volume: 23 start-page: 410 year: 2016 ident: 2021111804322890400_ref38 article-title: Defining a valid age cutoff in staging of well-differentiated thyroid cancer publication-title: Ann Surg Oncol doi: 10.1245/s10434-015-4762-2 – volume: 8 start-page: 37 year: 2008 ident: 2021111804322890400_ref8 article-title: The properties of high-dimensional data spaces: implications for exploring gene and protein expression data publication-title: Nat Rev Cancer doi: 10.1038/nrc2294 – volume: 53 start-page: 457 year: 1958 ident: 2021111804322890400_ref51 article-title: Nonparametric estimation from incomplete observations publication-title: J Am Stat Assoc doi: 10.1080/01621459.1958.10501452 – volume: 84 start-page: 502 year: 1989 ident: 2021111804322890400_ref25 article-title: Principal curves publication-title: J Am Stat Assoc doi: 10.1080/01621459.1989.10478797 – volume: 78 start-page: 1 year: 1950 ident: 2021111804322890400_ref50 article-title: Verification of forecasts expressed in terms of probability publication-title: Mon Weather Rev doi: 10.1175/1520-0493(1950)078<0001:VOFEIT>2.0.CO;2 – volume: 10 year: 2015 ident: 2021111804322890400_ref45 article-title: The precision-recall plot is more informative than the ROC plot when evaluating binary classifiers on imbalanced datasets publication-title: PLoS One doi: 10.1371/journal.pone.0118432 – volume: 159 start-page: 676 year: 2014 ident: 2021111804322890400_ref49 article-title: Integrated genomic characterization of papillary thyroid carcinoma publication-title: Cell doi: 10.1016/j.cell.2014.09.050 – volume: 67 start-page: 93 year: 2017 ident: 2021111804322890400_ref41 article-title: The eighth edition AJCC cancer staging manual: continuing to build a bridge from a population-based to a more “personalized” approach to cancer staging publication-title: CA Cancer J Clin doi: 10.3322/caac.21388 – volume: 20 start-page: 153 year: 2010 ident: 2021111804322890400_ref32 article-title: Tall-cell variant of papillary thyroid carcinoma: a matched-pair analysis of survival publication-title: Thyroid doi: 10.1089/thy.2009.0352 – volume: 44 start-page: 250 year: 2019 ident: 2021111804322890400_ref20 article-title: Pathway-based biomarker identification with crosstalk analysis for robust prognosis prediction in hepatocellular carcinoma publication-title: EBioMedicine doi: 10.1016/j.ebiom.2019.05.010 – volume: 62 start-page: 1 year: 2014 ident: 2021111804322890400_ref29 article-title: c060: extended inference with lasso and elastic-net regularized cox and generalized linear models publication-title: J Stat Softw doi: 10.18637/jss.v062.i05 – volume: 27 start-page: 122 year: 2016 ident: 2021111804322890400_ref6 article-title: DNA methylation analysis for the diagnosis of thyroid nodules - a pilot study with reference to BRAF(V) (600E) mutation and cytopathology results publication-title: Cytopathology doi: 10.1111/cyt.12248 – volume: 101 start-page: 264 year: 2016 ident: 2021111804322890400_ref33 article-title: Differential clinicopathological risk and prognosis of major papillary thyroid cancer variants publication-title: J Clin Endocrinol Metab doi: 10.1210/jc.2015-2917 – volume: 30 start-page: i422 year: 2014 ident: 2021111804322890400_ref17 article-title: Personalized identification of altered pathways in cancer using accumulated normal tissue data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu449 – year: 2017 ident: 2021111804322890400_ref40 article-title: Thyroid carcinoma. National Comprehensive Cancer network. Version – volume: 20 start-page: 4413 year: 2019 ident: 2021111804322890400_ref42 article-title: Immune and inflammatory cells in thyroid cancer microenvironment publication-title: Int J Mol Sci doi: 10.3390/ijms20184413 – volume: 69 start-page: 239 year: 1982 ident: 2021111804322890400_ref54 article-title: Partial residuals for the proportional hazards regression model publication-title: Biometrika doi: 10.1093/biomet/69.1.239 – volume: 28 start-page: 27 year: 2000 ident: 2021111804322890400_ref26 article-title: Kyoto encyclopedia of genes and genomes publication-title: Nucleic Acids Res doi: 10.1093/nar/28.1.27 – volume: 2013 year: 2013 ident: 2021111804322890400_ref36 article-title: Late bone metastasis from an apparently benign oncocytic follicular thyroid tumor publication-title: Endocrinol Diabetes Metab Case Rep – volume: 107 start-page: 994 year: 2012 ident: 2021111804322890400_ref48 article-title: A gene expression signature distinguishes normal tissues of sporadic and radiation-induced papillary thyroid carcinomas publication-title: Br J Cancer doi: 10.1038/bjc.2012.302 – volume: 9 start-page: 1471 year: 2015 ident: 2021111804322890400_ref22 article-title: Pathway-based personalized analysis of breast cancer expression data publication-title: Mol Oncol doi: 10.1016/j.molonc.2015.04.006 – volume: 132 start-page: 1241 year: 2008 ident: 2021111804322890400_ref34 article-title: The thyroid Hürthle (oncocytic) cell and its associated pathologic conditions: a surgical pathology and cytopathology review publication-title: Arch Pathol Lab Med doi: 10.5858/2008-132-1241-TTHOCA – volume: 18 start-page: 220 year: 2017 ident: 2021111804322890400_ref44 article-title: xCell: digitally portraying the tissue cellular heterogeneity landscape publication-title: Genome Biol doi: 10.1186/s13059-017-1349-1 – volume: 33 start-page: 1 year: 2010 ident: 2021111804322890400_ref10 article-title: Regularization paths for generalized linear models via coordinate descent publication-title: J Stat Softw doi: 10.18637/jss.v033.i01 – volume: 8 year: 2016 ident: 2021111804322890400_ref21 article-title: Novel personalized pathway-based metabolomics models reveal key metabolic pathways for breast cancer diagnosis publication-title: Genome Med doi: 10.1186/s13073-016-0289-9 – volume: 8 start-page: 118 year: 2007 ident: 2021111804322890400_ref24 article-title: Adjusting batch effects in microarray expression data using empirical Bayes methods publication-title: Biostatistics doi: 10.1093/biostatistics/kxj037 – volume: 5 year: 2016 ident: 2021111804322890400_ref43 article-title: The immune network in thyroid cancer publication-title: Onco Targets Ther – volume: 43 start-page: 1267 year: 2016 ident: 2021111804322890400_ref47 article-title: Gene signature of the post-Chernobyl papillary thyroid cancer publication-title: Eur J Nucl Med Mol Imaging doi: 10.1007/s00259-015-3303-3 – volume: 13 start-page: 803 year: 2016 ident: 2021111804322890400_ref9 article-title: Points of significance: regularization publication-title: Nat Methods doi: 10.1038/nmeth.4014 |
SSID | ssj0020781 |
Score | 2.3639128 |
Snippet | Abstract
Thyroid nodules are neoplasms commonly found among adults, with papillary thyroid carcinoma (PTC) being the most prevalent malignancy. However,... Thyroid nodules are neoplasms commonly found among adults, with papillary thyroid carcinoma (PTC) being the most prevalent malignancy. However, current... |
SourceID | pubmedcentral proquest pubmed crossref oup |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
SubjectTerms | Algorithms Cancer Case Study Confidence intervals Customization Diagnostic systems Learning algorithms Machine learning Malignancy Neoplasms Nodules Nuclear accidents Nuclear power plants Papillary thyroid carcinoma Radiation effects Radioactive fallout Thyroid Thyroid cancer |
Title | Highly accurate diagnosis of papillary thyroid carcinomas based on personalized pathways coupled with machine learning |
URI | https://www.ncbi.nlm.nih.gov/pubmed/33341874 https://www.proquest.com/docview/2590045878 https://www.proquest.com/docview/2471535695 https://pubmed.ncbi.nlm.nih.gov/PMC8599295 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LS8NAEF6kIHgR31arrtCTEJpmd7PJUcRSBPVSobewr2ihJqUPpf56Z5o0tKXoMckk2c3sMrOZb7-PkGagrK818z1ptPN4Gggv5sL3NJNcs8C22wYrus8vYfeNP_VFvwTITraU8GPW0gPd0lopxpBZG8IvUuT3XvvVugr5aopNRNJDdvdyG97GvWuBZ20z20pOuQmNXIk1nQOyXyaJ9L7w6iHZcdkR2S1kI-fH5AvBGcM5VcbMkOmB2gIvN5jQPKUjNUIlofGcgg_G-cBSg3pBGQKBKAYtS_OMjpZJ-A8coyzxt5pPqIEGD-EE_p2lnwucpaOlsMT7Cel1HnsPXa_UT_AM5_7UQ-4uG_qxtGEYuCCEDNXGQrW1DF1olJAsVjJQDpGefqphaaeUNC6CpESDB9kpqWV55s4JRVKgVERSR85xeGSkIuZbA2tDZ7lkvE7ult82MSW3OEpcDJOixs0ScERSOqJOmpXxqKDU2G52A33-26KxdGBSzrxJEqAMKoe2RnVyW12GOYOFEJW5fAY2EJEFE2Es6uSs8Hf1HsYgrkcSuiTXRkJlgHzc61eywceClzsSMSSb4uLfhl-SvQChMQvUb4PUpuOZu4LcZqqvFyP7F9lB-jk |
linkProvider | Oxford University Press |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Highly+accurate+diagnosis+of+papillary+thyroid+carcinomas+based+on+personalized+pathways+coupled+with+machine+learning&rft.jtitle=Briefings+in+bioinformatics&rft.au=Park%2C+Kyoung+Sik&rft.au=Kim%2C+Seong+Hoon&rft.au=Oh%2C+Jung+Hun&rft.au=Kim%2C+Sung+Young&rft.date=2021-07-01&rft.eissn=1477-4054&rft_id=info:doi/10.1093%2Fbib%2Fbbaa336&rft_id=info%3Apmid%2F33341874&rft.externalDocID=33341874 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1467-5463&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1467-5463&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1467-5463&client=summon |