Highly accurate diagnosis of papillary thyroid carcinomas based on personalized pathways coupled with machine learning

Abstract Thyroid nodules are neoplasms commonly found among adults, with papillary thyroid carcinoma (PTC) being the most prevalent malignancy. However, current diagnostic methods often subject patients to unnecessary surgical burden. In this study, we developed and validated an automated, highly ac...

Full description

Saved in:
Bibliographic Details
Published inBriefings in bioinformatics Vol. 22; no. 4
Main Authors Park, Kyoung Sik, Kim, Seong Hoon, Oh, Jung Hun, Kim, Sung Young
Format Journal Article
LanguageEnglish
Published England Oxford University Press 01.07.2021
Oxford Publishing Limited (England)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Abstract Thyroid nodules are neoplasms commonly found among adults, with papillary thyroid carcinoma (PTC) being the most prevalent malignancy. However, current diagnostic methods often subject patients to unnecessary surgical burden. In this study, we developed and validated an automated, highly accurate multi-study-derived diagnostic model for PTCs using personalized biological pathways coupled with a sophisticated machine learning algorithm. Surprisingly, the algorithm achieved near-perfect performance in discriminating PTCs from non-tumoral thyroid samples with an overall cross-study-validated area under the receiver operating characteristic curve (AUROC) of 0.999 (95% confidence interval [CI]: 0.995–1) and a Brier score of 0.013 on three independent development cohorts. In addition, the algorithm showed excellent generalizability and transferability on two large-scale external blind PTC cohorts consisting of The Cancer Genome Atlas (TCGA), which is the largest genomic PTC cohort studied to date, and the post-Chernobyl cohort, which includes PTCs reported after exposure to radiation from the Chernobyl accident. When applied to the TCGA cohort, the model yielded an AUROC of 0.969 (95% CI: 0.950–0.987) and a Brier score of 0.109. On the post-Chernobyl cohort, it yielded an AUROC of 0.962 (95% CI: 0.918–1) and a Brier score of 0.073. This algorithm also is robust against other various types of clinical scenarios, discriminating malignant from benign lesions as well as clinically aggressive thyroid cancer with poor prognosis from indolent ones. Furthermore, we discovered novel pathway alterations and prognostic signatures for PTC, which can provide directions for follow-up studies.
AbstractList Thyroid nodules are neoplasms commonly found among adults, with papillary thyroid carcinoma (PTC) being the most prevalent malignancy. However, current diagnostic methods often subject patients to unnecessary surgical burden. In this study, we developed and validated an automated, highly accurate multi-study-derived diagnostic model for PTCs using personalized biological pathways coupled with a sophisticated machine learning algorithm. Surprisingly, the algorithm achieved near-perfect performance in discriminating PTCs from non-tumoral thyroid samples with an overall cross-study-validated area under the receiver operating characteristic curve (AUROC) of 0.999 (95% confidence interval [CI]: 0.995-1) and a Brier score of 0.013 on three independent development cohorts. In addition, the algorithm showed excellent generalizability and transferability on two large-scale external blind PTC cohorts consisting of The Cancer Genome Atlas (TCGA), which is the largest genomic PTC cohort studied to date, and the post-Chernobyl cohort, which includes PTCs reported after exposure to radiation from the Chernobyl accident. When applied to the TCGA cohort, the model yielded an AUROC of 0.969 (95% CI: 0.950-0.987) and a Brier score of 0.109. On the post-Chernobyl cohort, it yielded an AUROC of 0.962 (95% CI: 0.918-1) and a Brier score of 0.073. This algorithm also is robust against other various types of clinical scenarios, discriminating malignant from benign lesions as well as clinically aggressive thyroid cancer with poor prognosis from indolent ones. Furthermore, we discovered novel pathway alterations and prognostic signatures for PTC, which can provide directions for follow-up studies.
Thyroid nodules are neoplasms commonly found among adults, with papillary thyroid carcinoma (PTC) being the most prevalent malignancy. However, current diagnostic methods often subject patients to unnecessary surgical burden. In this study, we developed and validated an automated, highly accurate multi-study-derived diagnostic model for PTCs using personalized biological pathways coupled with a sophisticated machine learning algorithm. Surprisingly, the algorithm achieved near-perfect performance in discriminating PTCs from non-tumoral thyroid samples with an overall cross-study-validated area under the receiver operating characteristic curve (AUROC) of 0.999 (95% confidence interval [CI]: 0.995-1) and a Brier score of 0.013 on three independent development cohorts. In addition, the algorithm showed excellent generalizability and transferability on two large-scale external blind PTC cohorts consisting of The Cancer Genome Atlas (TCGA), which is the largest genomic PTC cohort studied to date, and the post-Chernobyl cohort, which includes PTCs reported after exposure to radiation from the Chernobyl accident. When applied to the TCGA cohort, the model yielded an AUROC of 0.969 (95% CI: 0.950-0.987) and a Brier score of 0.109. On the post-Chernobyl cohort, it yielded an AUROC of 0.962 (95% CI: 0.918-1) and a Brier score of 0.073. This algorithm also is robust against other various types of clinical scenarios, discriminating malignant from benign lesions as well as clinically aggressive thyroid cancer with poor prognosis from indolent ones. Furthermore, we discovered novel pathway alterations and prognostic signatures for PTC, which can provide directions for follow-up studies.Thyroid nodules are neoplasms commonly found among adults, with papillary thyroid carcinoma (PTC) being the most prevalent malignancy. However, current diagnostic methods often subject patients to unnecessary surgical burden. In this study, we developed and validated an automated, highly accurate multi-study-derived diagnostic model for PTCs using personalized biological pathways coupled with a sophisticated machine learning algorithm. Surprisingly, the algorithm achieved near-perfect performance in discriminating PTCs from non-tumoral thyroid samples with an overall cross-study-validated area under the receiver operating characteristic curve (AUROC) of 0.999 (95% confidence interval [CI]: 0.995-1) and a Brier score of 0.013 on three independent development cohorts. In addition, the algorithm showed excellent generalizability and transferability on two large-scale external blind PTC cohorts consisting of The Cancer Genome Atlas (TCGA), which is the largest genomic PTC cohort studied to date, and the post-Chernobyl cohort, which includes PTCs reported after exposure to radiation from the Chernobyl accident. When applied to the TCGA cohort, the model yielded an AUROC of 0.969 (95% CI: 0.950-0.987) and a Brier score of 0.109. On the post-Chernobyl cohort, it yielded an AUROC of 0.962 (95% CI: 0.918-1) and a Brier score of 0.073. This algorithm also is robust against other various types of clinical scenarios, discriminating malignant from benign lesions as well as clinically aggressive thyroid cancer with poor prognosis from indolent ones. Furthermore, we discovered novel pathway alterations and prognostic signatures for PTC, which can provide directions for follow-up studies.
Abstract Thyroid nodules are neoplasms commonly found among adults, with papillary thyroid carcinoma (PTC) being the most prevalent malignancy. However, current diagnostic methods often subject patients to unnecessary surgical burden. In this study, we developed and validated an automated, highly accurate multi-study-derived diagnostic model for PTCs using personalized biological pathways coupled with a sophisticated machine learning algorithm. Surprisingly, the algorithm achieved near-perfect performance in discriminating PTCs from non-tumoral thyroid samples with an overall cross-study-validated area under the receiver operating characteristic curve (AUROC) of 0.999 (95% confidence interval [CI]: 0.995–1) and a Brier score of 0.013 on three independent development cohorts. In addition, the algorithm showed excellent generalizability and transferability on two large-scale external blind PTC cohorts consisting of The Cancer Genome Atlas (TCGA), which is the largest genomic PTC cohort studied to date, and the post-Chernobyl cohort, which includes PTCs reported after exposure to radiation from the Chernobyl accident. When applied to the TCGA cohort, the model yielded an AUROC of 0.969 (95% CI: 0.950–0.987) and a Brier score of 0.109. On the post-Chernobyl cohort, it yielded an AUROC of 0.962 (95% CI: 0.918–1) and a Brier score of 0.073. This algorithm also is robust against other various types of clinical scenarios, discriminating malignant from benign lesions as well as clinically aggressive thyroid cancer with poor prognosis from indolent ones. Furthermore, we discovered novel pathway alterations and prognostic signatures for PTC, which can provide directions for follow-up studies.
Author Kim, Sung Young
Oh, Jung Hun
Kim, Seong Hoon
Park, Kyoung Sik
Author_xml – sequence: 1
  givenname: Kyoung Sik
  surname: Park
  fullname: Park, Kyoung Sik
  email: 20090117@kuh.ac.kr
– sequence: 2
  givenname: Seong Hoon
  surname: Kim
  fullname: Kim, Seong Hoon
  email: 20170038@kuh.ac.kr
– sequence: 3
  givenname: Jung Hun
  surname: Oh
  fullname: Oh, Jung Hun
  email: OhJ@mskcc.org
– sequence: 4
  givenname: Sung Young
  surname: Kim
  fullname: Kim, Sung Young
  email: palelamp@kku.ac.kr
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33341874$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1r3DAQhkVJaT7aU-9FUAiB4kayvuxLIYS0KQRyyV2MZO1awZZcyU7Y_vpqu9vQBprTaEbPvMzMe4wOQgwOofeUfKakZefGm3NjABiTr9AR5UpVnAh-sH1LVQku2SE6zvmekJqohr5Bh4wxThvFj9DDtV_3wwaDtUuC2eHOwzrE7DOOKzzB5IcB0gbP_SZF32ELyfoQR8jYQHYdjgFPLuUYYPA_Sz7B3D_CJmMbl2kohUc_93gE2_vg8OAgBR_Wb9HrFQzZvdvHE3T39eru8rq6uf32_fLiprKck7lqKKGdJK3qpKxdLRtqulYANUo6aUEo1oKqwXFKBFkZThSAsq6RojEdMewEfdnJTosZXWddmBMMekp-LEvpCF7_-xN8r9fxQTeibetWFIGzvUCKPxaXZz36bF25SXBxybrmigom5G_04zP0Pi6pnKVQoiWEi0Y1hfrw90RPo_xxpACfdoBNMefkVk8IJXrrty5-673fhabPaOtnmH3cruOH__Sc7nqKQS-K_wJt4b8G
CitedBy_id crossref_primary_10_1093_bib_bbad382
crossref_primary_10_1210_clinem_dgae277
crossref_primary_10_1093_bib_bbae344
crossref_primary_10_1186_s12859_022_04805_9
crossref_primary_10_3389_fpubh_2022_960740
crossref_primary_10_1016_j_compbiomed_2022_106164
crossref_primary_10_1038_s41440_024_01753_0
crossref_primary_10_3389_fcell_2021_688370
crossref_primary_10_1186_s12877_022_03430_8
Cites_doi 10.1093/bib/bbx149
10.1111/j.1467-9868.2005.00503.x
10.1111/j.2517-6161.1972.tb00899.x
10.1093/bib/bbz046
10.1089/thy.2019.0060
10.1093/nar/gkn653
10.18632/oncotarget.8215
10.1097/MD.0b013e31826a9c71
10.1634/theoncologist.2013-0072
10.1186/s12885-017-3104-0
10.1073/pnas.1219651110
10.1093/bib/bbv030
10.1093/bioinformatics/btq182
10.1186/gb-2011-12-4-r41
10.1186/s12859-019-3224-4
10.5858/arpa.2015-0154-SA
10.1093/bib/bbv044
10.2307/2344317
10.1155/2013/965212
10.1016/j.otohns.2004.09.028
10.1111/j.1365-2559.2009.03441.x
10.1245/s10434-015-4762-2
10.1038/nrc2294
10.1080/01621459.1958.10501452
10.1080/01621459.1989.10478797
10.1175/1520-0493(1950)078<0001:VOFEIT>2.0.CO;2
10.1371/journal.pone.0118432
10.1016/j.cell.2014.09.050
10.3322/caac.21388
10.1089/thy.2009.0352
10.1016/j.ebiom.2019.05.010
10.18637/jss.v062.i05
10.1111/cyt.12248
10.1210/jc.2015-2917
10.1093/bioinformatics/btu449
10.3390/ijms20184413
10.1093/biomet/69.1.239
10.1093/nar/28.1.27
10.1038/bjc.2012.302
10.1016/j.molonc.2015.04.006
10.5858/2008-132-1241-TTHOCA
10.1186/s13059-017-1349-1
10.18637/jss.v033.i01
10.1186/s13073-016-0289-9
10.1093/biostatistics/kxj037
10.1007/s00259-015-3303-3
10.1038/nmeth.4014
ContentType Journal Article
Copyright The Author(s) 2020. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2020
The Author(s) 2020. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
The Author(s) 2020. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Copyright_xml – notice: The Author(s) 2020. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2020
– notice: The Author(s) 2020. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
– notice: The Author(s) 2020. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com
DBID AAYXX
CITATION
NPM
7QO
7SC
8FD
FR3
JQ2
K9.
L7M
L~C
L~D
P64
RC3
7X8
5PM
DOI 10.1093/bib/bbaa336
DatabaseName CrossRef
PubMed
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Advanced Technologies Database with Aerospace
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic
Genetics Abstracts


CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1477-4054
ExternalDocumentID PMC8599295
33341874
10_1093_bib_bbaa336
10.1093/bib/bbaa336
Genre Journal Article
Report
GrantInformation_xml – fundername: ;
– fundername: ;
  grantid: NRF-2019R1F1A1062023; NRF-2020M3A9D8038014
– fundername: ;
  grantid: P30 CA008748; R21 CA234752
GroupedDBID ---
-E4
.2P
.I3
0R~
1TH
23N
2WC
36B
4.4
48X
53G
5GY
5VS
6J9
70D
8VB
AAHBH
AAIJN
AAIMJ
AAJKP
AAJQQ
AAMDB
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AASNB
AAUQX
AAVAP
AAVLN
ABDBF
ABEUO
ABIXL
ABJNI
ABNKS
ABPTD
ABQLI
ABQTQ
ABWST
ABXVV
ABZBJ
ACGFO
ACGFS
ACGOD
ACIWK
ACPRK
ACUFI
ACYTK
ADBBV
ADEYI
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADOCK
ADPDF
ADQBN
ADRDM
ADRIX
ADRTK
ADVEK
ADYVW
ADZTZ
ADZXQ
AECKG
AEGPL
AEGXH
AEJOX
AEKKA
AEKSI
AELWJ
AEMDU
AEMOZ
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AFXEN
AGINJ
AGKEF
AGQXC
AGSYK
AHMBA
AHXPO
AIAGR
AIJHB
AJEEA
AJEUX
AKHUL
AKVCP
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
APIBT
APWMN
ARIXL
AXUDD
AYOIW
AZVOD
BAWUL
BAYMD
BCRHZ
BEYMZ
BHONS
BQDIO
BQUQU
BSWAC
BTQHN
C1A
C45
CAG
CDBKE
COF
CS3
CZ4
DAKXR
DIK
DILTD
DU5
D~K
E3Z
EAD
EAP
EAS
EBA
EBC
EBD
EBR
EBS
EBU
EE~
EJD
EMB
EMK
EMOBN
EST
ESX
F5P
F9B
FHSFR
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GX1
H13
H5~
HAR
HW0
HZ~
IOX
J21
K1G
KBUDW
KOP
KSI
KSN
M-Z
M49
MK~
ML0
N9A
NGC
NLBLG
NMDNZ
NOMLY
NU-
O0~
O9-
OAWHX
ODMLO
OJQWA
OK1
OVD
OVEED
P2P
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
QWB
RD5
ROX
RPM
RUSNO
RW1
RXO
SV3
TEORI
TH9
TJP
TLC
TOX
TR2
TUS
W8F
WOQ
X7H
YAYTL
YKOAZ
YXANX
ZKX
ZL0
~91
AAYXX
ABEJV
ABGNP
ABPQP
ABXZS
ACUHS
ACUXJ
AHGBF
AHQJS
ALXQX
AMNDL
ANAKG
CITATION
JXSIZ
GROUPED_DOAJ
NPM
7QO
7SC
8FD
FR3
JQ2
K9.
L7M
L~C
L~D
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c440t-8101d6097d662e2681bd95a1b76e6ca5739a72ae41050fb407aa7ce8658bd0b3
IEDL.DBID TOX
ISSN 1467-5463
1477-4054
IngestDate Thu Aug 21 14:14:18 EDT 2025
Fri Jul 11 15:11:38 EDT 2025
Mon Jun 30 08:44:03 EDT 2025
Thu Apr 03 06:57:59 EDT 2025
Tue Jul 01 03:39:32 EDT 2025
Thu Apr 24 23:09:06 EDT 2025
Wed Aug 28 03:20:04 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords papillary thyroid carcinomas
machine learning
tall cell variants
molecular diagnosis
Language English
License This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)
https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
The Author(s) 2020. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c440t-8101d6097d662e2681bd95a1b76e6ca5739a72ae41050fb407aa7ce8658bd0b3
Notes SourceType-Scholarly Journals-1
content type line 14
ObjectType-Report-1
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ObjectType-Undefined-3
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/8599295
PMID 33341874
PQID 2590045878
PQPubID 26846
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8599295
proquest_miscellaneous_2471535695
proquest_journals_2590045878
pubmed_primary_33341874
crossref_primary_10_1093_bib_bbaa336
crossref_citationtrail_10_1093_bib_bbaa336
oup_primary_10_1093_bib_bbaa336
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-07-01
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle Briefings in bioinformatics
PublicationTitleAlternate Brief Bioinform
PublicationYear 2021
Publisher Oxford University Press
Oxford Publishing Limited (England)
Publisher_xml – name: Oxford University Press
– name: Oxford Publishing Limited (England)
References Zou (2021111804322890400_ref11) 2005; 67
Howell (2021111804322890400_ref7) 2013; 18
Vitali (2021111804322890400_ref23) 2019; 20
Boronat (2021111804322890400_ref36) 2013; 2013
Saito (2021111804322890400_ref45) 2015; 10
Dom (2021111804322890400_ref48) 2012; 107
Mermel (2021111804322890400_ref37) 2011; 12
Montone (2021111804322890400_ref34) 2008; 132
Cancer Genome Atlas Research Network (2021111804322890400_ref49) 2014; 159
Ahn (2021111804322890400_ref17) 2014; 30
Peto (2021111804322890400_ref52) 1972; 135
Ulfenborg (2021111804322890400_ref13) 2019; 20
Morris (2021111804322890400_ref32) 2010; 20
Aran (2021111804322890400_ref44) 2017; 18
Wei (2021111804322890400_ref12) 2020
Drier (2021111804322890400_ref15) 2013; 110
Pellegriti (2021111804322890400_ref1) 2013; 2013
Tufano (2021111804322890400_ref5) 2012; 91
Wang (2021111804322890400_ref16) 2016; 17
Huang (2021111804322890400_ref21) 2016; 8
Ho (2021111804322890400_ref39) 2019; 29
Glaab (2021111804322890400_ref14) 2016; 17
Handkiewicz-Junak (2021111804322890400_ref47) 2016; 43
Sill (2021111804322890400_ref29) 2014; 62
Tsybrovskyy (2021111804322890400_ref35) 2009; 55
NCCN Clinical Practice Guidelines in Oncology (2021111804322890400_ref40) 2017
Vaske (2021111804322890400_ref19) 2010; 26
Johnson (2021111804322890400_ref24) 2007; 8
Galdiero (2021111804322890400_ref43) 2016; 5
Chang (2021111804322890400_ref6) 2016; 27
Hastie (2021111804322890400_ref25) 1989; 84
Kaplan (2021111804322890400_ref51) 1958; 53
Schoenfeld (2021111804322890400_ref54) 1982; 69
Shi (2021111804322890400_ref33) 2016; 101
Fa (2021111804322890400_ref20) 2019; 44
Nishimura (2021111804322890400_ref28) 2001
Amin (2021111804322890400_ref41) 2017; 67
Lever (2021111804322890400_ref9) 2016; 13
Kanehisa (2021111804322890400_ref26) 2000; 28
Schaefer (2021111804322890400_ref27) 2009; 37
Li (2021111804322890400_ref30) 2020; 21
Krauss (2021111804322890400_ref3) 2016; 140
Wang (2021111804322890400_ref31) 2016; 7
Nixon (2021111804322890400_ref38) 2016; 23
Brier (2021111804322890400_ref50) 1950; 78
Ferrari (2021111804322890400_ref42) 2019; 20
Gonçalves Filho (2021111804322890400_ref4) 2005; 132
Cho (2021111804322890400_ref2) 2017; 17
Friedman (2021111804322890400_ref10) 2010; 33
Song (2021111804322890400_ref18) 2017; 7
Clarke (2021111804322890400_ref8) 2008; 8
Livshits (2021111804322890400_ref22) 2015; 9
Cox (2021111804322890400_ref53) 1972; 34
Boltze (2021111804322890400_ref46) 2009; 22
References_xml – volume: 20
  start-page: 789
  year: 2019
  ident: 2021111804322890400_ref23
  article-title: Developing a “personalome” for precision medicine: emerging methods that compute interpretable effect sizes from single-subject transcriptomes
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbx149
– volume: 67
  start-page: 301
  year: 2005
  ident: 2021111804322890400_ref11
  article-title: Regularization and variable selection via the elastic net
  publication-title: J Royal Statistical Soc B
  doi: 10.1111/j.1467-9868.2005.00503.x
– volume: 34
  start-page: 187
  year: 1972
  ident: 2021111804322890400_ref53
  article-title: Regression models and life-tables
  publication-title: J R Stat Soc B Methodol
  doi: 10.1111/j.2517-6161.1972.tb00899.x
– start-page: 117
  volume-title: BioCarta. Biotech Software & Internet Report 2
  year: 2001
  ident: 2021111804322890400_ref28
– volume: 21
  start-page: 957
  year: 2020
  ident: 2021111804322890400_ref30
  article-title: A comprehensive overview of oncogenic pathways in human cancer
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbz046
– volume: 7
  year: 2017
  ident: 2021111804322890400_ref18
  article-title: A novel unsupervised algorithm for biological process-based analysis on cancer
  publication-title: Sci Rep
– volume: 29
  start-page: 1409
  year: 2019
  ident: 2021111804322890400_ref39
  article-title: Mortality risk of nonoperative papillary thyroid carcinoma: a corollary for active surveillance
  publication-title: Thyroid
  doi: 10.1089/thy.2019.0060
– volume: 37
  start-page: D674
  year: 2009
  ident: 2021111804322890400_ref27
  article-title: PID: the pathway interaction database
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkn653
– volume: 7
  start-page: 40792
  year: 2016
  ident: 2021111804322890400_ref31
  article-title: Tall cell variant of papillary thyroid carcinoma: current evidence on clinicopathologic features and molecular biology
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.8215
– volume: 91
  start-page: 274
  year: 2012
  ident: 2021111804322890400_ref5
  article-title: BRAF mutation in papillary thyroid cancer and its value in tailoring initial treatment: a systematic review and meta-analysis
  publication-title: Medicine (Baltimore)
  doi: 10.1097/MD.0b013e31826a9c71
– volume: 18
  start-page: 926
  year: 2013
  ident: 2021111804322890400_ref7
  article-title: RAS mutations in thyroid cancer
  publication-title: Oncologist
  doi: 10.1634/theoncologist.2013-0072
– volume: 17
  year: 2017
  ident: 2021111804322890400_ref2
  article-title: Thyroid fine-needle aspiration biopsy positively correlates with increased diagnosis of thyroid cancer in South Korean patients
  publication-title: BMC Cancer
  doi: 10.1186/s12885-017-3104-0
– year: 2020
  ident: 2021111804322890400_ref12
  article-title: Survey and comparative assessments of computational multi-omics integrative methods with multiple regulatory networks identifying distinct tumor compositions across pan-cancer data sets
  publication-title: Brief Bioinform
– volume: 110
  start-page: 6388
  year: 2013
  ident: 2021111804322890400_ref15
  article-title: Pathway-based personalized analysis of cancer
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1219651110
– volume: 17
  start-page: 78
  year: 2016
  ident: 2021111804322890400_ref16
  article-title: Individualized identification of disease-associated pathways with disrupted coordination of gene expression
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbv030
– volume: 22
  start-page: 459
  year: 2009
  ident: 2021111804322890400_ref46
  article-title: Sporadic and radiation-associated papillary thyroid cancers can be distinguished using routine immunohistochemistry
  publication-title: Oncol Rep
– volume: 26
  start-page: i237
  year: 2010
  ident: 2021111804322890400_ref19
  article-title: Inference of patient-specific pathway activities from multi-dimensional cancer genomics data using PARADIGM
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq182
– volume: 12
  year: 2011
  ident: 2021111804322890400_ref37
  article-title: GISTIC2.0 facilitates sensitive and confident localization of the targets of focal somatic copy-number alteration in human cancers
  publication-title: Genome Biol
  doi: 10.1186/gb-2011-12-4-r41
– volume: 20
  start-page: 649
  year: 2019
  ident: 2021111804322890400_ref13
  article-title: Vertical and horizontal integration of multi-omics data with miodin
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-019-3224-4
– volume: 140
  start-page: 1121
  year: 2016
  ident: 2021111804322890400_ref3
  article-title: Application of the Bethesda classification for thyroid fine-needle aspiration: institutional experience and meta-analysis
  publication-title: Arch Pathol Lab Med
  doi: 10.5858/arpa.2015-0154-SA
– volume: 17
  start-page: 440
  year: 2016
  ident: 2021111804322890400_ref14
  article-title: Using prior knowledge from cellular pathways and molecular networks for diagnostic specimen classification
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbv044
– volume: 135
  start-page: 185
  year: 1972
  ident: 2021111804322890400_ref52
  article-title: Asymptotically efficient rank invariant test procedures -nuffield department of population health
  publication-title: J Roy Stat Soc Ser A
  doi: 10.2307/2344317
– volume: 2013
  year: 2013
  ident: 2021111804322890400_ref1
  article-title: Worldwide increasing incidence of thyroid cancer: update on epidemiology and risk factors
  publication-title: J Cancer Epidemiol
  doi: 10.1155/2013/965212
– volume: 132
  start-page: 490
  year: 2005
  ident: 2021111804322890400_ref4
  article-title: Surgical complications after thyroid surgery performed in a cancer hospital
  publication-title: Otolaryngol Head Neck Surg
  doi: 10.1016/j.otohns.2004.09.028
– volume: 55
  start-page: 665
  year: 2009
  ident: 2021111804322890400_ref35
  article-title: Oncocytic versus mitochondrion-rich follicular thyroid tumours: should we make a difference?
  publication-title: Histopathology
  doi: 10.1111/j.1365-2559.2009.03441.x
– volume: 23
  start-page: 410
  year: 2016
  ident: 2021111804322890400_ref38
  article-title: Defining a valid age cutoff in staging of well-differentiated thyroid cancer
  publication-title: Ann Surg Oncol
  doi: 10.1245/s10434-015-4762-2
– volume: 8
  start-page: 37
  year: 2008
  ident: 2021111804322890400_ref8
  article-title: The properties of high-dimensional data spaces: implications for exploring gene and protein expression data
  publication-title: Nat Rev Cancer
  doi: 10.1038/nrc2294
– volume: 53
  start-page: 457
  year: 1958
  ident: 2021111804322890400_ref51
  article-title: Nonparametric estimation from incomplete observations
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.1958.10501452
– volume: 84
  start-page: 502
  year: 1989
  ident: 2021111804322890400_ref25
  article-title: Principal curves
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.1989.10478797
– volume: 78
  start-page: 1
  year: 1950
  ident: 2021111804322890400_ref50
  article-title: Verification of forecasts expressed in terms of probability
  publication-title: Mon Weather Rev
  doi: 10.1175/1520-0493(1950)078<0001:VOFEIT>2.0.CO;2
– volume: 10
  year: 2015
  ident: 2021111804322890400_ref45
  article-title: The precision-recall plot is more informative than the ROC plot when evaluating binary classifiers on imbalanced datasets
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0118432
– volume: 159
  start-page: 676
  year: 2014
  ident: 2021111804322890400_ref49
  article-title: Integrated genomic characterization of papillary thyroid carcinoma
  publication-title: Cell
  doi: 10.1016/j.cell.2014.09.050
– volume: 67
  start-page: 93
  year: 2017
  ident: 2021111804322890400_ref41
  article-title: The eighth edition AJCC cancer staging manual: continuing to build a bridge from a population-based to a more “personalized” approach to cancer staging
  publication-title: CA Cancer J Clin
  doi: 10.3322/caac.21388
– volume: 20
  start-page: 153
  year: 2010
  ident: 2021111804322890400_ref32
  article-title: Tall-cell variant of papillary thyroid carcinoma: a matched-pair analysis of survival
  publication-title: Thyroid
  doi: 10.1089/thy.2009.0352
– volume: 44
  start-page: 250
  year: 2019
  ident: 2021111804322890400_ref20
  article-title: Pathway-based biomarker identification with crosstalk analysis for robust prognosis prediction in hepatocellular carcinoma
  publication-title: EBioMedicine
  doi: 10.1016/j.ebiom.2019.05.010
– volume: 62
  start-page: 1
  year: 2014
  ident: 2021111804322890400_ref29
  article-title: c060: extended inference with lasso and elastic-net regularized cox and generalized linear models
  publication-title: J Stat Softw
  doi: 10.18637/jss.v062.i05
– volume: 27
  start-page: 122
  year: 2016
  ident: 2021111804322890400_ref6
  article-title: DNA methylation analysis for the diagnosis of thyroid nodules - a pilot study with reference to BRAF(V) (600E) mutation and cytopathology results
  publication-title: Cytopathology
  doi: 10.1111/cyt.12248
– volume: 101
  start-page: 264
  year: 2016
  ident: 2021111804322890400_ref33
  article-title: Differential clinicopathological risk and prognosis of major papillary thyroid cancer variants
  publication-title: J Clin Endocrinol Metab
  doi: 10.1210/jc.2015-2917
– volume: 30
  start-page: i422
  year: 2014
  ident: 2021111804322890400_ref17
  article-title: Personalized identification of altered pathways in cancer using accumulated normal tissue data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu449
– year: 2017
  ident: 2021111804322890400_ref40
  article-title: Thyroid carcinoma. National Comprehensive Cancer network. Version
– volume: 20
  start-page: 4413
  year: 2019
  ident: 2021111804322890400_ref42
  article-title: Immune and inflammatory cells in thyroid cancer microenvironment
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms20184413
– volume: 69
  start-page: 239
  year: 1982
  ident: 2021111804322890400_ref54
  article-title: Partial residuals for the proportional hazards regression model
  publication-title: Biometrika
  doi: 10.1093/biomet/69.1.239
– volume: 28
  start-page: 27
  year: 2000
  ident: 2021111804322890400_ref26
  article-title: Kyoto encyclopedia of genes and genomes
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/28.1.27
– volume: 2013
  year: 2013
  ident: 2021111804322890400_ref36
  article-title: Late bone metastasis from an apparently benign oncocytic follicular thyroid tumor
  publication-title: Endocrinol Diabetes Metab Case Rep
– volume: 107
  start-page: 994
  year: 2012
  ident: 2021111804322890400_ref48
  article-title: A gene expression signature distinguishes normal tissues of sporadic and radiation-induced papillary thyroid carcinomas
  publication-title: Br J Cancer
  doi: 10.1038/bjc.2012.302
– volume: 9
  start-page: 1471
  year: 2015
  ident: 2021111804322890400_ref22
  article-title: Pathway-based personalized analysis of breast cancer expression data
  publication-title: Mol Oncol
  doi: 10.1016/j.molonc.2015.04.006
– volume: 132
  start-page: 1241
  year: 2008
  ident: 2021111804322890400_ref34
  article-title: The thyroid Hürthle (oncocytic) cell and its associated pathologic conditions: a surgical pathology and cytopathology review
  publication-title: Arch Pathol Lab Med
  doi: 10.5858/2008-132-1241-TTHOCA
– volume: 18
  start-page: 220
  year: 2017
  ident: 2021111804322890400_ref44
  article-title: xCell: digitally portraying the tissue cellular heterogeneity landscape
  publication-title: Genome Biol
  doi: 10.1186/s13059-017-1349-1
– volume: 33
  start-page: 1
  year: 2010
  ident: 2021111804322890400_ref10
  article-title: Regularization paths for generalized linear models via coordinate descent
  publication-title: J Stat Softw
  doi: 10.18637/jss.v033.i01
– volume: 8
  year: 2016
  ident: 2021111804322890400_ref21
  article-title: Novel personalized pathway-based metabolomics models reveal key metabolic pathways for breast cancer diagnosis
  publication-title: Genome Med
  doi: 10.1186/s13073-016-0289-9
– volume: 8
  start-page: 118
  year: 2007
  ident: 2021111804322890400_ref24
  article-title: Adjusting batch effects in microarray expression data using empirical Bayes methods
  publication-title: Biostatistics
  doi: 10.1093/biostatistics/kxj037
– volume: 5
  year: 2016
  ident: 2021111804322890400_ref43
  article-title: The immune network in thyroid cancer
  publication-title: Onco Targets Ther
– volume: 43
  start-page: 1267
  year: 2016
  ident: 2021111804322890400_ref47
  article-title: Gene signature of the post-Chernobyl papillary thyroid cancer
  publication-title: Eur J Nucl Med Mol Imaging
  doi: 10.1007/s00259-015-3303-3
– volume: 13
  start-page: 803
  year: 2016
  ident: 2021111804322890400_ref9
  article-title: Points of significance: regularization
  publication-title: Nat Methods
  doi: 10.1038/nmeth.4014
SSID ssj0020781
Score 2.3639128
Snippet Abstract Thyroid nodules are neoplasms commonly found among adults, with papillary thyroid carcinoma (PTC) being the most prevalent malignancy. However,...
Thyroid nodules are neoplasms commonly found among adults, with papillary thyroid carcinoma (PTC) being the most prevalent malignancy. However, current...
SourceID pubmedcentral
proquest
pubmed
crossref
oup
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
SubjectTerms Algorithms
Cancer
Case Study
Confidence intervals
Customization
Diagnostic systems
Learning algorithms
Machine learning
Malignancy
Neoplasms
Nodules
Nuclear accidents
Nuclear power plants
Papillary thyroid carcinoma
Radiation effects
Radioactive fallout
Thyroid
Thyroid cancer
Title Highly accurate diagnosis of papillary thyroid carcinomas based on personalized pathways coupled with machine learning
URI https://www.ncbi.nlm.nih.gov/pubmed/33341874
https://www.proquest.com/docview/2590045878
https://www.proquest.com/docview/2471535695
https://pubmed.ncbi.nlm.nih.gov/PMC8599295
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LS8NAEF6kIHgR31arrtCTEJpmd7PJUcRSBPVSobewr2ihJqUPpf56Z5o0tKXoMckk2c3sMrOZb7-PkGagrK818z1ptPN4Gggv5sL3NJNcs8C22wYrus8vYfeNP_VFvwTITraU8GPW0gPd0lopxpBZG8IvUuT3XvvVugr5aopNRNJDdvdyG97GvWuBZ20z20pOuQmNXIk1nQOyXyaJ9L7w6iHZcdkR2S1kI-fH5AvBGcM5VcbMkOmB2gIvN5jQPKUjNUIlofGcgg_G-cBSg3pBGQKBKAYtS_OMjpZJ-A8coyzxt5pPqIEGD-EE_p2lnwucpaOlsMT7Cel1HnsPXa_UT_AM5_7UQ-4uG_qxtGEYuCCEDNXGQrW1DF1olJAsVjJQDpGefqphaaeUNC6CpESDB9kpqWV55s4JRVKgVERSR85xeGSkIuZbA2tDZ7lkvE7ult82MSW3OEpcDJOixs0ScERSOqJOmpXxqKDU2G52A33-26KxdGBSzrxJEqAMKoe2RnVyW12GOYOFEJW5fAY2EJEFE2Es6uSs8Hf1HsYgrkcSuiTXRkJlgHzc61eywceClzsSMSSb4uLfhl-SvQChMQvUb4PUpuOZu4LcZqqvFyP7F9lB-jk
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Highly+accurate+diagnosis+of+papillary+thyroid+carcinomas+based+on+personalized+pathways+coupled+with+machine+learning&rft.jtitle=Briefings+in+bioinformatics&rft.au=Park%2C+Kyoung+Sik&rft.au=Kim%2C+Seong+Hoon&rft.au=Oh%2C+Jung+Hun&rft.au=Kim%2C+Sung+Young&rft.date=2021-07-01&rft.eissn=1477-4054&rft_id=info:doi/10.1093%2Fbib%2Fbbaa336&rft_id=info%3Apmid%2F33341874&rft.externalDocID=33341874
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1467-5463&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1467-5463&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1467-5463&client=summon