Distinguishing a Majorana zero mode using spin-resolved measurements
One-dimensional topological superconductors host Majorana zero modes (MZMs), the nonlocal property of which could be exploited for quantum computing applications. We use spin-polarized scanning tunneling microscopy to show that MZMs realized in self-assembled Fe chains on the surface of Pb have a sp...
Saved in:
Published in | Science (American Association for the Advancement of Science) Vol. 358; no. 6364; pp. 772 - 776 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Association for the Advancement of Science
10.11.2017
The American Association for the Advancement of Science American Association for the Advancement of Science (AAAS) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | One-dimensional topological superconductors host Majorana zero modes (MZMs), the nonlocal property of which could be exploited for quantum computing applications. We use spin-polarized scanning tunneling microscopy to show that MZMs realized in self-assembled Fe chains on the surface of Pb have a spin polarization that exceeds that stemming from the magnetism of these chains. This feature, captured by our model calculations, is a direct consequence of the nonlocality of the Hilbert space of MZMs emerging from a topological band structure. Our study establishes spin-polarization measurements as a diagnostic tool to distinguish topological MZMs from trivial in-gap states of a superconductor. |
---|---|
AbstractList | One-dimensional topological superconductors host Majorana zero modes (MZMs), the nonlocal property of which could be exploited for quantum computing applications. We use spin-polarized scanning tunneling microscopy to show that MZMs realized in self-assembled Fe chains on the surface of Pb have a spin polarization that exceeds that stemming from the magnetism of these chains. This feature, captured by our model calculations, is a direct consequence of the nonlocality of the Hilbert space of MZMs emerging from a topological band structure. Our study establishes spin-polarization measurements as a diagnostic tool to distinguish topological MZMs from trivial in-gap states of a superconductor.One-dimensional topological superconductors host Majorana zero modes (MZMs), the nonlocal property of which could be exploited for quantum computing applications. We use spin-polarized scanning tunneling microscopy to show that MZMs realized in self-assembled Fe chains on the surface of Pb have a spin polarization that exceeds that stemming from the magnetism of these chains. This feature, captured by our model calculations, is a direct consequence of the nonlocality of the Hilbert space of MZMs emerging from a topological band structure. Our study establishes spin-polarization measurements as a diagnostic tool to distinguish topological MZMs from trivial in-gap states of a superconductor. One-dimensional topological superconductors host Majorana zero modes (MZMs), the nonlocal property of which could be exploited for quantum computing applications. We use spin-polarized scanning tunneling microscopy to show that MZMs realized in self-assembled Fe chains on the surface of Pb have a spin polarization that exceeds that stemming from the magnetism of these chains. This feature, captured by our model calculations, is a direct consequence of the nonlocality of the Hilbert space of MZMs emerging from a topological band structure. Our study establishes spin-polarization measurements as a diagnostic tool to distinguish topological MZMs from trivial in-gap states of a superconductor. Evidence for Majorana bound states (MBS), which are expected to provide a platform for topological quantum computing, has been found in several material systems. Typically, the experimental signature is a peak in the spectrum at zero energy, but mechanisms other than MBS need to be carefully ruled out. Using spin-polarized scanning tunneling spectroscopy, Jeon et al. studied chains of iron atoms deposited on superconducting lead and found a more distinctive signature of the topological states. Unlike trivial zero-energy states, MBS exhibited a characteristic spin-polarization signal. Science , this issue p. 772 Scanning tunneling spectroscopy measurements suggest that Majorana bound states have a distinctive spin-polarization signature. One-dimensional topological superconductors host Majorana zero modes (MZMs), the nonlocal property of which could be exploited for quantum computing applications. We use spin-polarized scanning tunneling microscopy to show that MZMs realized in self-assembled Fe chains on the surface of Pb have a spin polarization that exceeds that stemming from the magnetism of these chains. This feature, captured by our model calculations, is a direct consequence of the nonlocality of the Hilbert space of MZMs emerging from a topological band structure. Our study establishes spin-polarization measurements as a diagnostic tool to distinguish topological MZMs from trivial in-gap states of a superconductor. Topological or trivial?Evidence for Majorana bound states (MBS), which are expected to provide a platform for topological quantum computing, has been found in several material systems. Typically, the experimental signature is a peak in the spectrum at zero energy, but mechanisms other than MBS need to be carefully ruled out. Using spin-polarized scanning tunneling spectroscopy, Jeon et al. studied chains of iron atoms deposited on superconducting lead and found a more distinctive signature of the topological states. Unlike trivial zero-energy states, MBS exhibited a characteristic spin-polarization signal.Science, this issue p. 772One-dimensional topological superconductors host Majorana zero modes (MZMs), the nonlocal property of which could be exploited for quantum computing applications. We use spin-polarized scanning tunneling microscopy to show that MZMs realized in self-assembled Fe chains on the surface of Pb have a spin polarization that exceeds that stemming from the magnetism of these chains. This feature, captured by our model calculations, is a direct consequence of the nonlocality of the Hilbert space of MZMs emerging from a topological band structure. Our study establishes spin-polarization measurements as a diagnostic tool to distinguish topological MZMs from trivial in-gap states of a superconductor. |
Author | Xie, Yonglong Yazdani, Ali Bernevig, B. Andrei Jeon, Sangjun Li, Jian Wang, Zhijun |
Author_xml | – sequence: 1 givenname: Sangjun surname: Jeon fullname: Jeon, Sangjun – sequence: 2 givenname: Yonglong surname: Xie fullname: Xie, Yonglong – sequence: 3 givenname: Jian surname: Li fullname: Li, Jian – sequence: 4 givenname: Zhijun surname: Wang fullname: Wang, Zhijun – sequence: 5 givenname: B. Andrei surname: Bernevig fullname: Bernevig, B. Andrei – sequence: 6 givenname: Ali surname: Yazdani fullname: Yazdani, Ali |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29025997$$D View this record in MEDLINE/PubMed https://www.osti.gov/biblio/1436913$$D View this record in Osti.gov |
BookMark | eNp9kb1PHDEQxS1EFA6Smgq0Ck2aBXu9_ioRkA-JKE1SWz7fLPi0ax8eb6Tkr49PdwGJItUU83sz8-Ydk8OYIhByyuglY528Qh8gerh0LnKp6AFZMGpEazrKD8mCUi5bTZU4IseIa0prz_C35KgztBPGqAW5vQ1YQnyYAz7W0rjmm1un7KJr_kBOzZRW0My4beEmxDYDpvEXrJoJHM4ZJogF35E3gxsR3u_rCfn56e7HzZf2_vvnrzfX963ve1paNWgDIIXn0kvpwXk58N6o5ZJ5aZjoJXjvlq73Q8dBwapnne7Aaa0Z1x3nJ-TDbm6qN9vqvYB_9ClG8MWyntchW-jjDtrk9DQDFjsF9DCOLkKa0TIjmBBKCl3Ri1foOs05VguVUoLSul9W6nxPzcsJVnaTw-Tyb_vviRW42gE-J8QMwzPCqN3GZPcx2X1MVSFeKaoXV0KKJbsw_kd3ttOtsaT8consKVWa878s8KLA |
CitedBy_id | crossref_primary_10_1038_s41598_017_16323_3 crossref_primary_10_1103_PhysRevLett_120_156803 crossref_primary_10_1007_s11433_024_2418_2 crossref_primary_10_1016_j_ppnp_2019_04_004 crossref_primary_10_1103_PhysRevB_105_195106 crossref_primary_10_1103_PhysRevB_107_115421 crossref_primary_10_1103_PhysRevB_105_205115 crossref_primary_10_1103_PhysRevB_109_L041103 crossref_primary_10_1103_PhysRevB_107_195109 crossref_primary_10_1016_j_physe_2020_114389 crossref_primary_10_1103_PhysRevB_110_134518 crossref_primary_10_1016_j_physrep_2024_10_005 crossref_primary_10_1103_PhysRevB_103_125110 crossref_primary_10_1103_PhysRevB_104_085416 crossref_primary_10_1103_PhysRevB_96_195430 crossref_primary_10_1021_acs_chemmater_3c00713 crossref_primary_10_1103_PhysRevB_102_085411 crossref_primary_10_1016_j_physleta_2022_128475 crossref_primary_10_1103_RevModPhys_91_041001 crossref_primary_10_1103_PhysRevMaterials_3_094801 crossref_primary_10_1103_PhysRevB_99_035127 crossref_primary_10_1103_PhysRevLett_126_076802 crossref_primary_10_1088_1361_648X_aab134 crossref_primary_10_21468_SciPostPhys_14_4_075 crossref_primary_10_1088_1361_648X_ab052a crossref_primary_10_1103_PhysRevResearch_4_L032010 crossref_primary_10_1088_2515_7639_ad31b5 crossref_primary_10_1016_j_cap_2024_08_011 crossref_primary_10_1038_s41467_021_22261_6 crossref_primary_10_1103_PhysRevB_101_014504 crossref_primary_10_1103_PhysRevB_108_184505 crossref_primary_10_3788_LOP212849 crossref_primary_10_35848_1347_4065_ac7afa crossref_primary_10_1016_j_jmmm_2021_168935 crossref_primary_10_1038_s41598_023_44739_7 crossref_primary_10_1103_PhysRevResearch_2_033215 crossref_primary_10_1103_PhysRevB_107_104516 crossref_primary_10_1063_1_5129467 crossref_primary_10_1016_j_jmmm_2023_171564 crossref_primary_10_1103_PhysRevB_104_245415 crossref_primary_10_1088_1361_6668_ac0325 crossref_primary_10_1038_s41535_019_0179_7 crossref_primary_10_1103_PhysRevB_103_235437 crossref_primary_10_1007_s11128_020_02659_9 crossref_primary_10_7498_aps_69_20200812 crossref_primary_10_1088_1361_648X_ad3093 crossref_primary_10_1038_s41467_020_18540_3 crossref_primary_10_1103_PhysRevB_102_045303 crossref_primary_10_1038_s41598_018_33529_1 crossref_primary_10_1103_PhysRevB_103_214514 crossref_primary_10_1103_PhysRevResearch_2_033229 crossref_primary_10_1007_s00339_022_05644_4 crossref_primary_10_1126_science_aao1797 crossref_primary_10_1002_adma_202008029 crossref_primary_10_1103_PhysRevB_103_224504 crossref_primary_10_1103_PhysRevB_98_085414 crossref_primary_10_1021_acs_nanolett_9b04187 crossref_primary_10_1103_PhysRevB_102_075128 crossref_primary_10_1103_PhysRevResearch_2_023197 crossref_primary_10_1088_1361_648X_aba38a crossref_primary_10_1088_1367_2630_acc1ff crossref_primary_10_1103_PhysRevB_97_045404 crossref_primary_10_1103_PhysRevResearch_6_033154 crossref_primary_10_1103_PhysRevB_111_035132 crossref_primary_10_1103_PhysRevB_99_100504 crossref_primary_10_1103_PhysRevB_107_235125 crossref_primary_10_1038_s41598_024_58344_9 crossref_primary_10_1088_1367_2630_ac2711 crossref_primary_10_1088_2053_1583_ab6ff7 crossref_primary_10_1016_j_scib_2019_07_019 crossref_primary_10_1103_PhysRevB_110_115413 crossref_primary_10_1103_PhysRevB_104_184511 crossref_primary_10_1002_advs_202200186 crossref_primary_10_1016_j_scib_2019_07_011 crossref_primary_10_3389_fphy_2020_631031 crossref_primary_10_1002_qute_202400053 crossref_primary_10_3390_mi12121435 crossref_primary_10_1103_PhysRevB_100_155138 crossref_primary_10_1103_PhysRevB_103_205424 crossref_primary_10_1088_1361_648X_aba154 crossref_primary_10_1038_s41567_019_0630_5 crossref_primary_10_1103_PhysRevB_104_L121406 crossref_primary_10_1103_PhysRevB_105_144503 crossref_primary_10_1103_PhysRevB_102_104501 crossref_primary_10_1021_acsnanoscienceau_1c00054 crossref_primary_10_1038_s42254_021_00328_z crossref_primary_10_1103_PhysRevB_104_155304 crossref_primary_10_3390_sym16081078 crossref_primary_10_1103_PhysRevB_104_174502 crossref_primary_10_1007_s11467_020_0965_5 crossref_primary_10_1088_1674_1056_ac229a crossref_primary_10_1088_1361_648X_aad659 crossref_primary_10_1088_1361_6528_ac0dd8 crossref_primary_10_1103_PhysRevB_106_245418 crossref_primary_10_1103_PhysRevB_102_165312 crossref_primary_10_1007_s44214_022_00014_w crossref_primary_10_1103_PhysRevB_109_064503 crossref_primary_10_3390_sym16081066 crossref_primary_10_1103_PhysRevB_104_134518 crossref_primary_10_1088_1361_6668_ad883c crossref_primary_10_1103_PhysRevB_100_205112 crossref_primary_10_1103_PhysRevResearch_6_033022 crossref_primary_10_1103_PhysRevLett_129_277001 crossref_primary_10_1103_PhysRevLett_128_036801 crossref_primary_10_1038_s41598_021_96415_3 crossref_primary_10_1103_PhysRevB_109_104105 crossref_primary_10_1088_0256_307X_39_5_057301 crossref_primary_10_1088_1367_2630_ad96da crossref_primary_10_1103_PhysRevB_99_024505 crossref_primary_10_1103_PhysRevB_100_214504 crossref_primary_10_1038_s42005_023_01351_5 crossref_primary_10_1038_s41467_024_54525_2 crossref_primary_10_1103_PhysRevResearch_4_013225 crossref_primary_10_1038_s41467_024_52066_2 crossref_primary_10_1103_PhysRevB_97_205446 crossref_primary_10_1140_epjst_e2019_900150_7 crossref_primary_10_1038_s42005_018_0100_x crossref_primary_10_1088_1361_648X_ac1d6d crossref_primary_10_1038_s41567_020_0972_z crossref_primary_10_1103_PhysRevB_109_165426 crossref_primary_10_1063_5_0043694 crossref_primary_10_1103_PhysRevB_111_094522 crossref_primary_10_1088_1361_648X_ac4f1e crossref_primary_10_1038_s41467_023_38175_4 crossref_primary_10_1038_s42005_019_0250_5 crossref_primary_10_1038_s41598_019_49227_5 crossref_primary_10_1103_PhysRevB_101_085402 crossref_primary_10_1126_sciadv_abd7302 crossref_primary_10_1103_PhysRevResearch_2_023171 crossref_primary_10_1103_PhysRevB_103_L041401 crossref_primary_10_1038_s41535_022_00530_x crossref_primary_10_1021_acs_nanolett_4c02497 crossref_primary_10_1063_5_0102999 crossref_primary_10_1103_PhysRevB_100_075420 crossref_primary_10_1007_s11433_022_2063_7 crossref_primary_10_1021_acs_nanolett_4c01848 crossref_primary_10_1126_science_aax1444 crossref_primary_10_1103_PhysRevB_100_104519 crossref_primary_10_1103_PhysRevLett_128_106804 crossref_primary_10_1038_s41567_021_01234_y crossref_primary_10_1103_PhysRevB_99_235430 crossref_primary_10_1002_aelm_202000461 crossref_primary_10_1103_PhysRevB_99_165307 crossref_primary_10_1021_acs_nanolett_2c03952 crossref_primary_10_1038_s41578_021_00336_6 crossref_primary_10_1073_pnas_2024837118 crossref_primary_10_1063_1_5020045 crossref_primary_10_21468_SciPostPhysCore_5_2_021 crossref_primary_10_1103_PhysRevResearch_2_023146 crossref_primary_10_1103_PhysRevB_100_144510 crossref_primary_10_1038_s41567_019_0671_9 crossref_primary_10_1103_PhysRevB_104_245133 crossref_primary_10_1103_PhysRevA_109_053705 crossref_primary_10_21468_SciPostPhysCore_8_1_031 crossref_primary_10_1038_s41586_024_07857_4 crossref_primary_10_1002_adfm_202418259 crossref_primary_10_1088_1361_648X_ab46d9 crossref_primary_10_1103_PhysRevB_107_014202 crossref_primary_10_1002_andp_202400068 crossref_primary_10_1038_s41467_018_05701_8 crossref_primary_10_1103_PhysRevB_97_125119 crossref_primary_10_1126_sciadv_aar5251 crossref_primary_10_1103_PhysRevB_108_L121407 crossref_primary_10_1103_PhysRevB_102_224508 crossref_primary_10_1103_RevModPhys_95_011002 crossref_primary_10_1088_1361_648X_ab03bf crossref_primary_10_1016_j_physe_2020_114459 crossref_primary_10_1103_PhysRevB_100_205302 crossref_primary_10_1002_pssb_201800492 crossref_primary_10_1088_1674_1056_abd762 crossref_primary_10_1007_s11433_021_1737_4 crossref_primary_10_1016_j_cpc_2021_108135 crossref_primary_10_1103_PhysRevB_101_205143 crossref_primary_10_1103_PhysRevB_98_134507 crossref_primary_10_1103_PhysRevB_99_220506 crossref_primary_10_1088_1361_6528_ab8763 crossref_primary_10_1103_PhysRevB_110_224519 crossref_primary_10_1103_PhysRevB_98_085143 crossref_primary_10_1088_1674_1056_ac3221 crossref_primary_10_1103_PhysRevB_107_075410 crossref_primary_10_1007_s40766_024_00060_1 crossref_primary_10_1103_PhysRevB_102_174427 crossref_primary_10_1007_s11128_021_03107_y crossref_primary_10_1088_1361_6633_ad0c5c crossref_primary_10_7498_aps_69_20200717 crossref_primary_10_1103_PhysRevB_100_235110 crossref_primary_10_1103_PhysRevB_108_035401 crossref_primary_10_1021_acs_nanolett_1c00387 crossref_primary_10_1038_s41467_023_42026_7 crossref_primary_10_1073_pnas_1919753117 crossref_primary_10_7498_aps_69_20200831 crossref_primary_10_1103_PhysRevB_106_104503 crossref_primary_10_7498_aps_69_20191627 crossref_primary_10_1126_science_ade0850 crossref_primary_10_7498_aps_69_20191868 crossref_primary_10_1103_PhysRevLett_132_036602 crossref_primary_10_3390_sym14020371 crossref_primary_10_7498_aps_73_20232022 crossref_primary_10_1103_PhysRevB_101_165420 crossref_primary_10_1103_PhysRevB_107_155144 crossref_primary_10_1016_j_jmmm_2021_168861 crossref_primary_10_1103_PhysRevResearch_4_033182 crossref_primary_10_1088_1674_1056_ab8889 crossref_primary_10_1103_PhysRevB_100_155417 crossref_primary_10_1038_s41598_018_35680_1 crossref_primary_10_1093_ptep_ptae107 crossref_primary_10_1103_PhysRevB_99_155159 crossref_primary_10_1103_PhysRevMaterials_6_024801 crossref_primary_10_1088_1674_1056_abf10b crossref_primary_10_3762_bjnano_9_129 crossref_primary_10_1038_s41598_024_66478_z crossref_primary_10_1063_5_0055997 crossref_primary_10_1103_PhysRevB_103_184510 crossref_primary_10_7498_aps_70_20201673 crossref_primary_10_1103_PhysRevB_108_134512 crossref_primary_10_1103_PhysRevB_108_134513 crossref_primary_10_1088_1361_648X_abb546 crossref_primary_10_1038_s41467_023_42902_2 crossref_primary_10_1103_PhysRevLett_123_126802 crossref_primary_10_1103_PhysRevMaterials_6_046002 |
Cites_doi | 10.1103/PhysRevLett.114.166406 10.1038/nphys3947 10.1103/PhysRevB.97.125119 10.1038/npjqi.2016.35 10.1103/PhysRevB.96.085418 10.1103/PhysRevLett.105.177002 10.1103/PhysRevLett.116.257003 10.1126/science.275.5307.1767 10.1038/nature17162 10.1103/PhysRevLett.108.096802 10.1103/RevModPhys.81.1495 10.1103/RevModPhys.78.373 10.1016/j.physe.2015.08.032 10.1126/science.aaf3961 10.1103/PhysRevB.91.045441 10.1103/PhysRevX.6.031016 10.1070/1063-7869/44/10S/S29 10.1126/science.1222360 10.1038/nnano.2013.267 10.1126/science.1259327 10.1103/PhysRevB.90.235433 10.1103/PhysRevB.92.214501 10.1103/PhysRevLett.100.096407 10.1103/PhysRevLett.107.210502 10.1103/RevModPhys.80.1083 10.1103/PhysRevLett.105.077001 10.1103/PhysRevLett.112.037001 10.1021/acs.nanolett.7b01728 10.1103/PhysRevB.94.045316 10.1103/PhysRevB.96.041401 10.1103/PhysRevB.88.020407 10.1103/PhysRevLett.115.197204 10.1146/annurev-conmatphys-030212-184337 10.1103/PhysRevB.77.174516 |
ContentType | Journal Article |
Copyright | Copyright © 2017 by the American Association for the Advancement of Science Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works |
Copyright_xml | – notice: Copyright © 2017 by the American Association for the Advancement of Science – notice: Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. – notice: Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works |
DBID | AAYXX CITATION NPM 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 OTOTI |
DOI | 10.1126/science.aan3670 |
DatabaseName | CrossRef PubMed Aluminium Industry Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Entomology Abstracts (Full archive) Industrial and Applied Microbiology Abstracts (Microbiology A) Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Solid State and Superconductivity Abstracts Virology and AIDS Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library AIDS and Cancer Research Abstracts Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic OSTI.GOV |
DatabaseTitle | CrossRef PubMed Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Genetics Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Virology and AIDS Abstracts Electronics & Communications Abstracts Ceramic Abstracts Ecology Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Entomology Abstracts Animal Behavior Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed CrossRef Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Biology |
EISSN | 1095-9203 |
EndPage | 776 |
ExternalDocumentID | 1436913 29025997 10_1126_science_aan3670 26400783 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --Z -DZ -ET -~X .-4 ..I .55 .DC 08G 0R~ 0WA 123 18M 2FS 2KS 2WC 2XV 34G 36B 39C 3R3 53G 5RE 66. 6OB 6TJ 7X2 7~K 85S 8F7 AABCJ AACGO AADHG AAIKC AAMNW AANCE AAWTO ABBHK ABDBF ABDEX ABDQB ABEFU ABIVO ABJNI ABOCM ABPLY ABPPZ ABQIJ ABTLG ABWJO ABXSQ ABZEH ACBEA ACBEC ACGFO ACGFS ACGOD ACHIC ACIWK ACMJI ACNCT ACPRK ACQOY ACUHS ADDRP ADMHC ADQXQ ADUKH ADXHL AEGBM AENEX AETEA AEUPB AEXZC AFBNE AFFDN AFFNX AFHKK AFQFN AFRAH AGFXO AGNAY AGSOS AHMBA AIDAL AIDUJ AJGZS ALIPV ALMA_UNASSIGNED_HOLDINGS ALSLI AQVQM ASPBG AVWKF BKF BLC C45 C51 CS3 DB2 DCCCD DU5 EBS EJD EMOBN F5P FA8 FEDTE HZ~ I.T IAO IEA IGS IH2 IHR INH INR IOF IOV IPO IPSME IPY ISE JAAYA JBMMH JCF JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KCC L7B LSO LU7 M0P MQT MVM N9A NEJ NHB O9- OCB OFXIZ OGEVE OMK OVD P-O P2P PQQKQ PZZ QS- RHI RXW SA0 SC5 SJN TAE TEORI TN5 TWZ UBW UCV UHB UKR UMD UNMZH UQL USG VVN WH7 WI4 X7M XJF XZL Y6R YK4 YKV YNT YOJ YR2 YR5 YRY YSQ YV5 YWH YYP YYQ YZZ ZCA ZE2 ~02 ~G0 ~KM ~ZZ AAYXX ABCQX CITATION K-O 0B8 ESX GX1 IGG NPM OK1 PKN RHF UIG VQA YCJ YIF YIN 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 63O 6XO AAUGY ABPTK ABQIS AFUVZ AGCDD ANJGP B-7 OTOTI PK8 PQEST UMP XFK ZA5 |
ID | FETCH-LOGICAL-c440t-7f89ee65c36c66ceac6f3497bb1c691546eccaba4cf23e7ed41282ea888138233 |
ISSN | 0036-8075 1095-9203 |
IngestDate | Fri May 19 01:10:12 EDT 2023 Fri Jul 11 03:19:49 EDT 2025 Fri Jul 25 10:43:08 EDT 2025 Wed Feb 19 02:42:54 EST 2025 Thu Apr 24 23:04:05 EDT 2025 Tue Jul 01 00:37:33 EDT 2025 Thu Jul 03 22:08:15 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6364 |
Language | English |
License | Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c440t-7f89ee65c36c66ceac6f3497bb1c691546eccaba4cf23e7ed41282ea888138233 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 award309283; de-sc0016239 USDOE |
ORCID | 0000-0001-6337-4024 0000-0003-4996-8904 0000-0002-3134-7838 0000000163374024 0000000349968904 0000000231347838 |
PMID | 29025997 |
PQID | 1975001286 |
PQPubID | 1256 |
PageCount | 5 |
ParticipantIDs | osti_scitechconnect_1436913 proquest_miscellaneous_1951557658 proquest_journals_1975001286 pubmed_primary_29025997 crossref_primary_10_1126_science_aan3670 crossref_citationtrail_10_1126_science_aan3670 jstor_primary_26400783 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-11-10 |
PublicationDateYYYYMMDD | 2017-11-10 |
PublicationDate_xml | – month: 11 year: 2017 text: 2017-11-10 day: 10 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Science (American Association for the Advancement of Science) |
PublicationTitleAlternate | Science |
PublicationYear | 2017 |
Publisher | American Association for the Advancement of Science The American Association for the Advancement of Science American Association for the Advancement of Science (AAAS) |
Publisher_xml | – name: American Association for the Advancement of Science – name: The American Association for the Advancement of Science – name: American Association for the Advancement of Science (AAAS) |
References | e_1_3_4_3_2 e_1_3_4_2_2 e_1_3_4_9_2 e_1_3_4_8_2 e_1_3_4_7_2 e_1_3_4_6_2 e_1_3_4_5_2 e_1_3_4_4_2 e_1_3_4_22_2 e_1_3_4_23_2 e_1_3_4_20_2 e_1_3_4_21_2 e_1_3_4_26_2 e_1_3_4_27_2 e_1_3_4_24_2 e_1_3_4_25_2 e_1_3_4_30_2 e_1_3_4_11_2 e_1_3_4_34_2 e_1_3_4_12_2 e_1_3_4_33_2 e_1_3_4_32_2 e_1_3_4_10_2 e_1_3_4_31_2 e_1_3_4_15_2 e_1_3_4_16_2 e_1_3_4_37_2 e_1_3_4_13_2 e_1_3_4_36_2 e_1_3_4_14_2 e_1_3_4_35_2 e_1_3_4_19_2 e_1_3_4_17_2 e_1_3_4_18_2 |
References_xml | – ident: e_1_3_4_18_2 doi: 10.1103/PhysRevLett.114.166406 – ident: e_1_3_4_26_2 doi: 10.1038/nphys3947 – ident: e_1_3_4_33_2 doi: 10.1103/PhysRevB.97.125119 – ident: e_1_3_4_25_2 doi: 10.1038/npjqi.2016.35 – ident: e_1_3_4_34_2 doi: 10.1103/PhysRevB.96.085418 – ident: e_1_3_4_6_2 doi: 10.1103/PhysRevLett.105.177002 – ident: e_1_3_4_21_2 doi: 10.1103/PhysRevLett.116.257003 – ident: e_1_3_4_30_2 doi: 10.1126/science.275.5307.1767 – ident: e_1_3_4_11_2 doi: 10.1038/nature17162 – ident: e_1_3_4_16_2 doi: 10.1103/PhysRevLett.108.096802 – ident: e_1_3_4_27_2 doi: 10.1103/RevModPhys.81.1495 – ident: e_1_3_4_31_2 doi: 10.1103/RevModPhys.78.373 – ident: e_1_3_4_20_2 doi: 10.1016/j.physe.2015.08.032 – ident: e_1_3_4_14_2 doi: 10.1126/science.aaf3961 – ident: e_1_3_4_13_2 doi: 10.1103/PhysRevB.91.045441 – ident: e_1_3_4_15_2 doi: 10.1103/PhysRevX.6.031016 – ident: e_1_3_4_2_2 doi: 10.1070/1063-7869/44/10S/S29 – ident: e_1_3_4_9_2 doi: 10.1126/science.1222360 – ident: e_1_3_4_12_2 doi: 10.1038/nnano.2013.267 – ident: e_1_3_4_10_2 doi: 10.1126/science.1259327 – ident: e_1_3_4_23_2 doi: 10.1103/PhysRevB.90.235433 – ident: e_1_3_4_19_2 doi: 10.1103/PhysRevB.92.214501 – ident: e_1_3_4_5_2 doi: 10.1103/PhysRevLett.100.096407 – ident: e_1_3_4_36_2 doi: 10.1103/PhysRevLett.107.210502 – ident: e_1_3_4_3_2 doi: 10.1103/RevModPhys.80.1083 – ident: e_1_3_4_7_2 doi: 10.1103/PhysRevLett.105.077001 – ident: e_1_3_4_17_2 doi: 10.1103/PhysRevLett.112.037001 – ident: e_1_3_4_37_2 doi: 10.1021/acs.nanolett.7b01728 – ident: e_1_3_4_35_2 doi: 10.1103/PhysRevB.94.045316 – ident: e_1_3_4_22_2 doi: 10.1103/PhysRevB.96.041401 – ident: e_1_3_4_8_2 doi: 10.1103/PhysRevB.88.020407 – ident: e_1_3_4_24_2 doi: 10.1103/PhysRevLett.115.197204 – ident: e_1_3_4_4_2 doi: 10.1146/annurev-conmatphys-030212-184337 – ident: e_1_3_4_32_2 doi: 10.1103/PhysRevB.77.174516 |
SSID | ssj0009593 |
Score | 2.6583054 |
Snippet | One-dimensional topological superconductors host Majorana zero modes (MZMs), the nonlocal property of which could be exploited for quantum computing... Evidence for Majorana bound states (MBS), which are expected to provide a platform for topological quantum computing, has been found in several material... Topological or trivial?Evidence for Majorana bound states (MBS), which are expected to provide a platform for topological quantum computing, has been found in... |
SourceID | osti proquest pubmed crossref jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 772 |
SubjectTerms | Band structure of solids Chains Computation Diagnostic software Diagnostic systems Hilbert space Iron Lead Magnetism Polarization Quantum computing Quantum theory Scanning tunneling microscopy Self-assembly Spectroscopy Superconductivity Topological superconductors |
Title | Distinguishing a Majorana zero mode using spin-resolved measurements |
URI | https://www.jstor.org/stable/26400783 https://www.ncbi.nlm.nih.gov/pubmed/29025997 https://www.proquest.com/docview/1975001286 https://www.proquest.com/docview/1951557658 https://www.osti.gov/biblio/1436913 |
Volume | 358 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9MwELfKJiRe0DYYdBsoSDwMVana2HHix45SlcImJDpReIkc1ymdSjKtDRL7TnxH7hIndQVFjJeoSmwn9f18_3y-I-SlHwdTEYbMncqOclnoUTeWnnCFBukjhK-mDE8jn1_w4SUbTfxJo_HTilrKV3Fb3f7xXMn_UBXuAV3xlOwdKFsPCjfgN9AXrkBhuP4Tjfu4QNNZbvxIsnUur4CkqWzd6pusqHLTygtnwPJ6nrpgWWeL76Bhfls7Bpe2dlotdNA6650ci351SGKvDByo4ghMN8upMNLIhmQ6u8pr8E3muvU5S2eLzAhLDAMqYglGFkQ_Gf_1l6_zqq_xSYCcK-LiahSN14di7vKZNp82aZJLKVWy5g5WlfQ61Obd1A8tkHLKmcWMg7IokJHrQVln5neRYRW51G0pU0xpt5aOVUTAsPcx-tAfRO_fXry7R3Y9GBzY6m7vrH822Jrl2eSSsk5pVS_YUIPKSFhQCjJAzXZTp1B5xnvkobFVnF4JvH3S0OkBuV9WL_1xQPbNhC6dU5O8_NUj0t_EpCOdCpMOYtJBTDoFJp0NTDo2Jh-Ty8Gb8euhayp1uIqxzsoNklBozX1FueJcgTDnCWUiiOOu4gK0dI6cIpZMJR7VgZ4yUIs8LcMwxByYlB6SnTRL9VPidLnvyyD2eZIw5vtUesBAgJkIT3f9JO40SbuauEiZNPZYTWURFeasxyMz05GZ6SY5rTtclxlctjc9LChRtwNrAXVo2iTHSBpsj6mVFcagqRWYzRT-HTw9qSgWGe6wjLoCdHHU_niTvKgfA-_GDTmZ6izHNlhgKQAjoEmelJRevxr3_4UIjv4--DF5sF6AJ2RndZPrZ6Amr-LnBpy_AMP3wm8 |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distinguishing+a+Majorana+zero+mode+using+spin-resolved+measurements&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Jeon+Sangjun&rft.au=Xie+Yonglong&rft.au=Li%2C+Jian&rft.au=Wang%2C+Zhijun&rft.date=2017-11-10&rft.pub=The+American+Association+for+the+Advancement+of+Science&rft.issn=0036-8075&rft.eissn=1095-9203&rft.volume=358&rft.issue=6364&rft.spage=772&rft.epage=776&rft_id=info:doi/10.1126%2Fscience.aan3670&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon |