Distinguishing a Majorana zero mode using spin-resolved measurements

One-dimensional topological superconductors host Majorana zero modes (MZMs), the nonlocal property of which could be exploited for quantum computing applications. We use spin-polarized scanning tunneling microscopy to show that MZMs realized in self-assembled Fe chains on the surface of Pb have a sp...

Full description

Saved in:
Bibliographic Details
Published inScience (American Association for the Advancement of Science) Vol. 358; no. 6364; pp. 772 - 776
Main Authors Jeon, Sangjun, Xie, Yonglong, Li, Jian, Wang, Zhijun, Bernevig, B. Andrei, Yazdani, Ali
Format Journal Article
LanguageEnglish
Published United States American Association for the Advancement of Science 10.11.2017
The American Association for the Advancement of Science
American Association for the Advancement of Science (AAAS)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract One-dimensional topological superconductors host Majorana zero modes (MZMs), the nonlocal property of which could be exploited for quantum computing applications. We use spin-polarized scanning tunneling microscopy to show that MZMs realized in self-assembled Fe chains on the surface of Pb have a spin polarization that exceeds that stemming from the magnetism of these chains. This feature, captured by our model calculations, is a direct consequence of the nonlocality of the Hilbert space of MZMs emerging from a topological band structure. Our study establishes spin-polarization measurements as a diagnostic tool to distinguish topological MZMs from trivial in-gap states of a superconductor.
AbstractList One-dimensional topological superconductors host Majorana zero modes (MZMs), the nonlocal property of which could be exploited for quantum computing applications. We use spin-polarized scanning tunneling microscopy to show that MZMs realized in self-assembled Fe chains on the surface of Pb have a spin polarization that exceeds that stemming from the magnetism of these chains. This feature, captured by our model calculations, is a direct consequence of the nonlocality of the Hilbert space of MZMs emerging from a topological band structure. Our study establishes spin-polarization measurements as a diagnostic tool to distinguish topological MZMs from trivial in-gap states of a superconductor.One-dimensional topological superconductors host Majorana zero modes (MZMs), the nonlocal property of which could be exploited for quantum computing applications. We use spin-polarized scanning tunneling microscopy to show that MZMs realized in self-assembled Fe chains on the surface of Pb have a spin polarization that exceeds that stemming from the magnetism of these chains. This feature, captured by our model calculations, is a direct consequence of the nonlocality of the Hilbert space of MZMs emerging from a topological band structure. Our study establishes spin-polarization measurements as a diagnostic tool to distinguish topological MZMs from trivial in-gap states of a superconductor.
One-dimensional topological superconductors host Majorana zero modes (MZMs), the nonlocal property of which could be exploited for quantum computing applications. We use spin-polarized scanning tunneling microscopy to show that MZMs realized in self-assembled Fe chains on the surface of Pb have a spin polarization that exceeds that stemming from the magnetism of these chains. This feature, captured by our model calculations, is a direct consequence of the nonlocality of the Hilbert space of MZMs emerging from a topological band structure. Our study establishes spin-polarization measurements as a diagnostic tool to distinguish topological MZMs from trivial in-gap states of a superconductor.
Evidence for Majorana bound states (MBS), which are expected to provide a platform for topological quantum computing, has been found in several material systems. Typically, the experimental signature is a peak in the spectrum at zero energy, but mechanisms other than MBS need to be carefully ruled out. Using spin-polarized scanning tunneling spectroscopy, Jeon et al. studied chains of iron atoms deposited on superconducting lead and found a more distinctive signature of the topological states. Unlike trivial zero-energy states, MBS exhibited a characteristic spin-polarization signal. Science , this issue p. 772 Scanning tunneling spectroscopy measurements suggest that Majorana bound states have a distinctive spin-polarization signature. One-dimensional topological superconductors host Majorana zero modes (MZMs), the nonlocal property of which could be exploited for quantum computing applications. We use spin-polarized scanning tunneling microscopy to show that MZMs realized in self-assembled Fe chains on the surface of Pb have a spin polarization that exceeds that stemming from the magnetism of these chains. This feature, captured by our model calculations, is a direct consequence of the nonlocality of the Hilbert space of MZMs emerging from a topological band structure. Our study establishes spin-polarization measurements as a diagnostic tool to distinguish topological MZMs from trivial in-gap states of a superconductor.
Topological or trivial?Evidence for Majorana bound states (MBS), which are expected to provide a platform for topological quantum computing, has been found in several material systems. Typically, the experimental signature is a peak in the spectrum at zero energy, but mechanisms other than MBS need to be carefully ruled out. Using spin-polarized scanning tunneling spectroscopy, Jeon et al. studied chains of iron atoms deposited on superconducting lead and found a more distinctive signature of the topological states. Unlike trivial zero-energy states, MBS exhibited a characteristic spin-polarization signal.Science, this issue p. 772One-dimensional topological superconductors host Majorana zero modes (MZMs), the nonlocal property of which could be exploited for quantum computing applications. We use spin-polarized scanning tunneling microscopy to show that MZMs realized in self-assembled Fe chains on the surface of Pb have a spin polarization that exceeds that stemming from the magnetism of these chains. This feature, captured by our model calculations, is a direct consequence of the nonlocality of the Hilbert space of MZMs emerging from a topological band structure. Our study establishes spin-polarization measurements as a diagnostic tool to distinguish topological MZMs from trivial in-gap states of a superconductor.
Author Xie, Yonglong
Yazdani, Ali
Bernevig, B. Andrei
Jeon, Sangjun
Li, Jian
Wang, Zhijun
Author_xml – sequence: 1
  givenname: Sangjun
  surname: Jeon
  fullname: Jeon, Sangjun
– sequence: 2
  givenname: Yonglong
  surname: Xie
  fullname: Xie, Yonglong
– sequence: 3
  givenname: Jian
  surname: Li
  fullname: Li, Jian
– sequence: 4
  givenname: Zhijun
  surname: Wang
  fullname: Wang, Zhijun
– sequence: 5
  givenname: B. Andrei
  surname: Bernevig
  fullname: Bernevig, B. Andrei
– sequence: 6
  givenname: Ali
  surname: Yazdani
  fullname: Yazdani, Ali
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29025997$$D View this record in MEDLINE/PubMed
https://www.osti.gov/biblio/1436913$$D View this record in Osti.gov
BookMark eNp9kb1PHDEQxS1EFA6Smgq0Ck2aBXu9_ioRkA-JKE1SWz7fLPi0ax8eb6Tkr49PdwGJItUU83sz8-Ydk8OYIhByyuglY528Qh8gerh0LnKp6AFZMGpEazrKD8mCUi5bTZU4IseIa0prz_C35KgztBPGqAW5vQ1YQnyYAz7W0rjmm1un7KJr_kBOzZRW0My4beEmxDYDpvEXrJoJHM4ZJogF35E3gxsR3u_rCfn56e7HzZf2_vvnrzfX963ve1paNWgDIIXn0kvpwXk58N6o5ZJ5aZjoJXjvlq73Q8dBwapnne7Aaa0Z1x3nJ-TDbm6qN9vqvYB_9ClG8MWyntchW-jjDtrk9DQDFjsF9DCOLkKa0TIjmBBKCl3Ri1foOs05VguVUoLSul9W6nxPzcsJVnaTw-Tyb_vviRW42gE-J8QMwzPCqN3GZPcx2X1MVSFeKaoXV0KKJbsw_kd3ttOtsaT8consKVWa878s8KLA
CitedBy_id crossref_primary_10_1038_s41598_017_16323_3
crossref_primary_10_1103_PhysRevLett_120_156803
crossref_primary_10_1007_s11433_024_2418_2
crossref_primary_10_1016_j_ppnp_2019_04_004
crossref_primary_10_1103_PhysRevB_105_195106
crossref_primary_10_1103_PhysRevB_107_115421
crossref_primary_10_1103_PhysRevB_105_205115
crossref_primary_10_1103_PhysRevB_109_L041103
crossref_primary_10_1103_PhysRevB_107_195109
crossref_primary_10_1016_j_physe_2020_114389
crossref_primary_10_1103_PhysRevB_110_134518
crossref_primary_10_1016_j_physrep_2024_10_005
crossref_primary_10_1103_PhysRevB_103_125110
crossref_primary_10_1103_PhysRevB_104_085416
crossref_primary_10_1103_PhysRevB_96_195430
crossref_primary_10_1021_acs_chemmater_3c00713
crossref_primary_10_1103_PhysRevB_102_085411
crossref_primary_10_1016_j_physleta_2022_128475
crossref_primary_10_1103_RevModPhys_91_041001
crossref_primary_10_1103_PhysRevMaterials_3_094801
crossref_primary_10_1103_PhysRevB_99_035127
crossref_primary_10_1103_PhysRevLett_126_076802
crossref_primary_10_1088_1361_648X_aab134
crossref_primary_10_21468_SciPostPhys_14_4_075
crossref_primary_10_1088_1361_648X_ab052a
crossref_primary_10_1103_PhysRevResearch_4_L032010
crossref_primary_10_1088_2515_7639_ad31b5
crossref_primary_10_1016_j_cap_2024_08_011
crossref_primary_10_1038_s41467_021_22261_6
crossref_primary_10_1103_PhysRevB_101_014504
crossref_primary_10_1103_PhysRevB_108_184505
crossref_primary_10_3788_LOP212849
crossref_primary_10_35848_1347_4065_ac7afa
crossref_primary_10_1016_j_jmmm_2021_168935
crossref_primary_10_1038_s41598_023_44739_7
crossref_primary_10_1103_PhysRevResearch_2_033215
crossref_primary_10_1103_PhysRevB_107_104516
crossref_primary_10_1063_1_5129467
crossref_primary_10_1016_j_jmmm_2023_171564
crossref_primary_10_1103_PhysRevB_104_245415
crossref_primary_10_1088_1361_6668_ac0325
crossref_primary_10_1038_s41535_019_0179_7
crossref_primary_10_1103_PhysRevB_103_235437
crossref_primary_10_1007_s11128_020_02659_9
crossref_primary_10_7498_aps_69_20200812
crossref_primary_10_1088_1361_648X_ad3093
crossref_primary_10_1038_s41467_020_18540_3
crossref_primary_10_1103_PhysRevB_102_045303
crossref_primary_10_1038_s41598_018_33529_1
crossref_primary_10_1103_PhysRevB_103_214514
crossref_primary_10_1103_PhysRevResearch_2_033229
crossref_primary_10_1007_s00339_022_05644_4
crossref_primary_10_1126_science_aao1797
crossref_primary_10_1002_adma_202008029
crossref_primary_10_1103_PhysRevB_103_224504
crossref_primary_10_1103_PhysRevB_98_085414
crossref_primary_10_1021_acs_nanolett_9b04187
crossref_primary_10_1103_PhysRevB_102_075128
crossref_primary_10_1103_PhysRevResearch_2_023197
crossref_primary_10_1088_1361_648X_aba38a
crossref_primary_10_1088_1367_2630_acc1ff
crossref_primary_10_1103_PhysRevB_97_045404
crossref_primary_10_1103_PhysRevResearch_6_033154
crossref_primary_10_1103_PhysRevB_111_035132
crossref_primary_10_1103_PhysRevB_99_100504
crossref_primary_10_1103_PhysRevB_107_235125
crossref_primary_10_1038_s41598_024_58344_9
crossref_primary_10_1088_1367_2630_ac2711
crossref_primary_10_1088_2053_1583_ab6ff7
crossref_primary_10_1016_j_scib_2019_07_019
crossref_primary_10_1103_PhysRevB_110_115413
crossref_primary_10_1103_PhysRevB_104_184511
crossref_primary_10_1002_advs_202200186
crossref_primary_10_1016_j_scib_2019_07_011
crossref_primary_10_3389_fphy_2020_631031
crossref_primary_10_1002_qute_202400053
crossref_primary_10_3390_mi12121435
crossref_primary_10_1103_PhysRevB_100_155138
crossref_primary_10_1103_PhysRevB_103_205424
crossref_primary_10_1088_1361_648X_aba154
crossref_primary_10_1038_s41567_019_0630_5
crossref_primary_10_1103_PhysRevB_104_L121406
crossref_primary_10_1103_PhysRevB_105_144503
crossref_primary_10_1103_PhysRevB_102_104501
crossref_primary_10_1021_acsnanoscienceau_1c00054
crossref_primary_10_1038_s42254_021_00328_z
crossref_primary_10_1103_PhysRevB_104_155304
crossref_primary_10_3390_sym16081078
crossref_primary_10_1103_PhysRevB_104_174502
crossref_primary_10_1007_s11467_020_0965_5
crossref_primary_10_1088_1674_1056_ac229a
crossref_primary_10_1088_1361_648X_aad659
crossref_primary_10_1088_1361_6528_ac0dd8
crossref_primary_10_1103_PhysRevB_106_245418
crossref_primary_10_1103_PhysRevB_102_165312
crossref_primary_10_1007_s44214_022_00014_w
crossref_primary_10_1103_PhysRevB_109_064503
crossref_primary_10_3390_sym16081066
crossref_primary_10_1103_PhysRevB_104_134518
crossref_primary_10_1088_1361_6668_ad883c
crossref_primary_10_1103_PhysRevB_100_205112
crossref_primary_10_1103_PhysRevResearch_6_033022
crossref_primary_10_1103_PhysRevLett_129_277001
crossref_primary_10_1103_PhysRevLett_128_036801
crossref_primary_10_1038_s41598_021_96415_3
crossref_primary_10_1103_PhysRevB_109_104105
crossref_primary_10_1088_0256_307X_39_5_057301
crossref_primary_10_1088_1367_2630_ad96da
crossref_primary_10_1103_PhysRevB_99_024505
crossref_primary_10_1103_PhysRevB_100_214504
crossref_primary_10_1038_s42005_023_01351_5
crossref_primary_10_1038_s41467_024_54525_2
crossref_primary_10_1103_PhysRevResearch_4_013225
crossref_primary_10_1038_s41467_024_52066_2
crossref_primary_10_1103_PhysRevB_97_205446
crossref_primary_10_1140_epjst_e2019_900150_7
crossref_primary_10_1038_s42005_018_0100_x
crossref_primary_10_1088_1361_648X_ac1d6d
crossref_primary_10_1038_s41567_020_0972_z
crossref_primary_10_1103_PhysRevB_109_165426
crossref_primary_10_1063_5_0043694
crossref_primary_10_1103_PhysRevB_111_094522
crossref_primary_10_1088_1361_648X_ac4f1e
crossref_primary_10_1038_s41467_023_38175_4
crossref_primary_10_1038_s42005_019_0250_5
crossref_primary_10_1038_s41598_019_49227_5
crossref_primary_10_1103_PhysRevB_101_085402
crossref_primary_10_1126_sciadv_abd7302
crossref_primary_10_1103_PhysRevResearch_2_023171
crossref_primary_10_1103_PhysRevB_103_L041401
crossref_primary_10_1038_s41535_022_00530_x
crossref_primary_10_1021_acs_nanolett_4c02497
crossref_primary_10_1063_5_0102999
crossref_primary_10_1103_PhysRevB_100_075420
crossref_primary_10_1007_s11433_022_2063_7
crossref_primary_10_1021_acs_nanolett_4c01848
crossref_primary_10_1126_science_aax1444
crossref_primary_10_1103_PhysRevB_100_104519
crossref_primary_10_1103_PhysRevLett_128_106804
crossref_primary_10_1038_s41567_021_01234_y
crossref_primary_10_1103_PhysRevB_99_235430
crossref_primary_10_1002_aelm_202000461
crossref_primary_10_1103_PhysRevB_99_165307
crossref_primary_10_1021_acs_nanolett_2c03952
crossref_primary_10_1038_s41578_021_00336_6
crossref_primary_10_1073_pnas_2024837118
crossref_primary_10_1063_1_5020045
crossref_primary_10_21468_SciPostPhysCore_5_2_021
crossref_primary_10_1103_PhysRevResearch_2_023146
crossref_primary_10_1103_PhysRevB_100_144510
crossref_primary_10_1038_s41567_019_0671_9
crossref_primary_10_1103_PhysRevB_104_245133
crossref_primary_10_1103_PhysRevA_109_053705
crossref_primary_10_21468_SciPostPhysCore_8_1_031
crossref_primary_10_1038_s41586_024_07857_4
crossref_primary_10_1002_adfm_202418259
crossref_primary_10_1088_1361_648X_ab46d9
crossref_primary_10_1103_PhysRevB_107_014202
crossref_primary_10_1002_andp_202400068
crossref_primary_10_1038_s41467_018_05701_8
crossref_primary_10_1103_PhysRevB_97_125119
crossref_primary_10_1126_sciadv_aar5251
crossref_primary_10_1103_PhysRevB_108_L121407
crossref_primary_10_1103_PhysRevB_102_224508
crossref_primary_10_1103_RevModPhys_95_011002
crossref_primary_10_1088_1361_648X_ab03bf
crossref_primary_10_1016_j_physe_2020_114459
crossref_primary_10_1103_PhysRevB_100_205302
crossref_primary_10_1002_pssb_201800492
crossref_primary_10_1088_1674_1056_abd762
crossref_primary_10_1007_s11433_021_1737_4
crossref_primary_10_1016_j_cpc_2021_108135
crossref_primary_10_1103_PhysRevB_101_205143
crossref_primary_10_1103_PhysRevB_98_134507
crossref_primary_10_1103_PhysRevB_99_220506
crossref_primary_10_1088_1361_6528_ab8763
crossref_primary_10_1103_PhysRevB_110_224519
crossref_primary_10_1103_PhysRevB_98_085143
crossref_primary_10_1088_1674_1056_ac3221
crossref_primary_10_1103_PhysRevB_107_075410
crossref_primary_10_1007_s40766_024_00060_1
crossref_primary_10_1103_PhysRevB_102_174427
crossref_primary_10_1007_s11128_021_03107_y
crossref_primary_10_1088_1361_6633_ad0c5c
crossref_primary_10_7498_aps_69_20200717
crossref_primary_10_1103_PhysRevB_100_235110
crossref_primary_10_1103_PhysRevB_108_035401
crossref_primary_10_1021_acs_nanolett_1c00387
crossref_primary_10_1038_s41467_023_42026_7
crossref_primary_10_1073_pnas_1919753117
crossref_primary_10_7498_aps_69_20200831
crossref_primary_10_1103_PhysRevB_106_104503
crossref_primary_10_7498_aps_69_20191627
crossref_primary_10_1126_science_ade0850
crossref_primary_10_7498_aps_69_20191868
crossref_primary_10_1103_PhysRevLett_132_036602
crossref_primary_10_3390_sym14020371
crossref_primary_10_7498_aps_73_20232022
crossref_primary_10_1103_PhysRevB_101_165420
crossref_primary_10_1103_PhysRevB_107_155144
crossref_primary_10_1016_j_jmmm_2021_168861
crossref_primary_10_1103_PhysRevResearch_4_033182
crossref_primary_10_1088_1674_1056_ab8889
crossref_primary_10_1103_PhysRevB_100_155417
crossref_primary_10_1038_s41598_018_35680_1
crossref_primary_10_1093_ptep_ptae107
crossref_primary_10_1103_PhysRevB_99_155159
crossref_primary_10_1103_PhysRevMaterials_6_024801
crossref_primary_10_1088_1674_1056_abf10b
crossref_primary_10_3762_bjnano_9_129
crossref_primary_10_1038_s41598_024_66478_z
crossref_primary_10_1063_5_0055997
crossref_primary_10_1103_PhysRevB_103_184510
crossref_primary_10_7498_aps_70_20201673
crossref_primary_10_1103_PhysRevB_108_134512
crossref_primary_10_1103_PhysRevB_108_134513
crossref_primary_10_1088_1361_648X_abb546
crossref_primary_10_1038_s41467_023_42902_2
crossref_primary_10_1103_PhysRevLett_123_126802
crossref_primary_10_1103_PhysRevMaterials_6_046002
Cites_doi 10.1103/PhysRevLett.114.166406
10.1038/nphys3947
10.1103/PhysRevB.97.125119
10.1038/npjqi.2016.35
10.1103/PhysRevB.96.085418
10.1103/PhysRevLett.105.177002
10.1103/PhysRevLett.116.257003
10.1126/science.275.5307.1767
10.1038/nature17162
10.1103/PhysRevLett.108.096802
10.1103/RevModPhys.81.1495
10.1103/RevModPhys.78.373
10.1016/j.physe.2015.08.032
10.1126/science.aaf3961
10.1103/PhysRevB.91.045441
10.1103/PhysRevX.6.031016
10.1070/1063-7869/44/10S/S29
10.1126/science.1222360
10.1038/nnano.2013.267
10.1126/science.1259327
10.1103/PhysRevB.90.235433
10.1103/PhysRevB.92.214501
10.1103/PhysRevLett.100.096407
10.1103/PhysRevLett.107.210502
10.1103/RevModPhys.80.1083
10.1103/PhysRevLett.105.077001
10.1103/PhysRevLett.112.037001
10.1021/acs.nanolett.7b01728
10.1103/PhysRevB.94.045316
10.1103/PhysRevB.96.041401
10.1103/PhysRevB.88.020407
10.1103/PhysRevLett.115.197204
10.1146/annurev-conmatphys-030212-184337
10.1103/PhysRevB.77.174516
ContentType Journal Article
Copyright Copyright © 2017 by the American Association for the Advancement of Science
Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works
Copyright_xml – notice: Copyright © 2017 by the American Association for the Advancement of Science
– notice: Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
– notice: Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works
DBID AAYXX
CITATION
NPM
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
OTOTI
DOI 10.1126/science.aan3670
DatabaseName CrossRef
PubMed
Aluminium Industry Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Entomology Abstracts (Full archive)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Solid State and Superconductivity Abstracts
Virology and AIDS Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
OSTI.GOV
DatabaseTitle CrossRef
PubMed
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Genetics Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Virology and AIDS Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Ecology Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Entomology Abstracts
Animal Behavior Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed
CrossRef
Materials Research Database


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Biology
EISSN 1095-9203
EndPage 776
ExternalDocumentID 1436913
29025997
10_1126_science_aan3670
26400783
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--Z
-DZ
-ET
-~X
.-4
..I
.55
.DC
08G
0R~
0WA
123
18M
2FS
2KS
2WC
2XV
34G
36B
39C
3R3
53G
5RE
66.
6OB
6TJ
7X2
7~K
85S
8F7
AABCJ
AACGO
AADHG
AAIKC
AAMNW
AANCE
AAWTO
ABBHK
ABDBF
ABDEX
ABDQB
ABEFU
ABIVO
ABJNI
ABOCM
ABPLY
ABPPZ
ABQIJ
ABTLG
ABWJO
ABXSQ
ABZEH
ACBEA
ACBEC
ACGFO
ACGFS
ACGOD
ACHIC
ACIWK
ACMJI
ACNCT
ACPRK
ACQOY
ACUHS
ADDRP
ADMHC
ADQXQ
ADUKH
ADXHL
AEGBM
AENEX
AETEA
AEUPB
AEXZC
AFBNE
AFFDN
AFFNX
AFHKK
AFQFN
AFRAH
AGFXO
AGNAY
AGSOS
AHMBA
AIDAL
AIDUJ
AJGZS
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALSLI
AQVQM
ASPBG
AVWKF
BKF
BLC
C45
C51
CS3
DB2
DCCCD
DU5
EBS
EJD
EMOBN
F5P
FA8
FEDTE
HZ~
I.T
IAO
IEA
IGS
IH2
IHR
INH
INR
IOF
IOV
IPO
IPSME
IPY
ISE
JAAYA
JBMMH
JCF
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KCC
L7B
LSO
LU7
M0P
MQT
MVM
N9A
NEJ
NHB
O9-
OCB
OFXIZ
OGEVE
OMK
OVD
P-O
P2P
PQQKQ
PZZ
QS-
RHI
RXW
SA0
SC5
SJN
TAE
TEORI
TN5
TWZ
UBW
UCV
UHB
UKR
UMD
UNMZH
UQL
USG
VVN
WH7
WI4
X7M
XJF
XZL
Y6R
YK4
YKV
YNT
YOJ
YR2
YR5
YRY
YSQ
YV5
YWH
YYP
YYQ
YZZ
ZCA
ZE2
~02
~G0
~KM
~ZZ
AAYXX
ABCQX
CITATION
K-O
0B8
ESX
GX1
IGG
NPM
OK1
PKN
RHF
UIG
VQA
YCJ
YIF
YIN
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
63O
6XO
AAUGY
ABPTK
ABQIS
AFUVZ
AGCDD
ANJGP
B-7
OTOTI
PK8
PQEST
UMP
XFK
ZA5
ID FETCH-LOGICAL-c440t-7f89ee65c36c66ceac6f3497bb1c691546eccaba4cf23e7ed41282ea888138233
ISSN 0036-8075
1095-9203
IngestDate Fri May 19 01:10:12 EDT 2023
Fri Jul 11 03:19:49 EDT 2025
Fri Jul 25 10:43:08 EDT 2025
Wed Feb 19 02:42:54 EST 2025
Thu Apr 24 23:04:05 EDT 2025
Tue Jul 01 00:37:33 EDT 2025
Thu Jul 03 22:08:15 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6364
Language English
License Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c440t-7f89ee65c36c66ceac6f3497bb1c691546eccaba4cf23e7ed41282ea888138233
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
award309283; de-sc0016239
USDOE
ORCID 0000-0001-6337-4024
0000-0003-4996-8904
0000-0002-3134-7838
0000000163374024
0000000349968904
0000000231347838
PMID 29025997
PQID 1975001286
PQPubID 1256
PageCount 5
ParticipantIDs osti_scitechconnect_1436913
proquest_miscellaneous_1951557658
proquest_journals_1975001286
pubmed_primary_29025997
crossref_primary_10_1126_science_aan3670
crossref_citationtrail_10_1126_science_aan3670
jstor_primary_26400783
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-11-10
PublicationDateYYYYMMDD 2017-11-10
PublicationDate_xml – month: 11
  year: 2017
  text: 2017-11-10
  day: 10
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Science (American Association for the Advancement of Science)
PublicationTitleAlternate Science
PublicationYear 2017
Publisher American Association for the Advancement of Science
The American Association for the Advancement of Science
American Association for the Advancement of Science (AAAS)
Publisher_xml – name: American Association for the Advancement of Science
– name: The American Association for the Advancement of Science
– name: American Association for the Advancement of Science (AAAS)
References e_1_3_4_3_2
e_1_3_4_2_2
e_1_3_4_9_2
e_1_3_4_8_2
e_1_3_4_7_2
e_1_3_4_6_2
e_1_3_4_5_2
e_1_3_4_4_2
e_1_3_4_22_2
e_1_3_4_23_2
e_1_3_4_20_2
e_1_3_4_21_2
e_1_3_4_26_2
e_1_3_4_27_2
e_1_3_4_24_2
e_1_3_4_25_2
e_1_3_4_30_2
e_1_3_4_11_2
e_1_3_4_34_2
e_1_3_4_12_2
e_1_3_4_33_2
e_1_3_4_32_2
e_1_3_4_10_2
e_1_3_4_31_2
e_1_3_4_15_2
e_1_3_4_16_2
e_1_3_4_37_2
e_1_3_4_13_2
e_1_3_4_36_2
e_1_3_4_14_2
e_1_3_4_35_2
e_1_3_4_19_2
e_1_3_4_17_2
e_1_3_4_18_2
References_xml – ident: e_1_3_4_18_2
  doi: 10.1103/PhysRevLett.114.166406
– ident: e_1_3_4_26_2
  doi: 10.1038/nphys3947
– ident: e_1_3_4_33_2
  doi: 10.1103/PhysRevB.97.125119
– ident: e_1_3_4_25_2
  doi: 10.1038/npjqi.2016.35
– ident: e_1_3_4_34_2
  doi: 10.1103/PhysRevB.96.085418
– ident: e_1_3_4_6_2
  doi: 10.1103/PhysRevLett.105.177002
– ident: e_1_3_4_21_2
  doi: 10.1103/PhysRevLett.116.257003
– ident: e_1_3_4_30_2
  doi: 10.1126/science.275.5307.1767
– ident: e_1_3_4_11_2
  doi: 10.1038/nature17162
– ident: e_1_3_4_16_2
  doi: 10.1103/PhysRevLett.108.096802
– ident: e_1_3_4_27_2
  doi: 10.1103/RevModPhys.81.1495
– ident: e_1_3_4_31_2
  doi: 10.1103/RevModPhys.78.373
– ident: e_1_3_4_20_2
  doi: 10.1016/j.physe.2015.08.032
– ident: e_1_3_4_14_2
  doi: 10.1126/science.aaf3961
– ident: e_1_3_4_13_2
  doi: 10.1103/PhysRevB.91.045441
– ident: e_1_3_4_15_2
  doi: 10.1103/PhysRevX.6.031016
– ident: e_1_3_4_2_2
  doi: 10.1070/1063-7869/44/10S/S29
– ident: e_1_3_4_9_2
  doi: 10.1126/science.1222360
– ident: e_1_3_4_12_2
  doi: 10.1038/nnano.2013.267
– ident: e_1_3_4_10_2
  doi: 10.1126/science.1259327
– ident: e_1_3_4_23_2
  doi: 10.1103/PhysRevB.90.235433
– ident: e_1_3_4_19_2
  doi: 10.1103/PhysRevB.92.214501
– ident: e_1_3_4_5_2
  doi: 10.1103/PhysRevLett.100.096407
– ident: e_1_3_4_36_2
  doi: 10.1103/PhysRevLett.107.210502
– ident: e_1_3_4_3_2
  doi: 10.1103/RevModPhys.80.1083
– ident: e_1_3_4_7_2
  doi: 10.1103/PhysRevLett.105.077001
– ident: e_1_3_4_17_2
  doi: 10.1103/PhysRevLett.112.037001
– ident: e_1_3_4_37_2
  doi: 10.1021/acs.nanolett.7b01728
– ident: e_1_3_4_35_2
  doi: 10.1103/PhysRevB.94.045316
– ident: e_1_3_4_22_2
  doi: 10.1103/PhysRevB.96.041401
– ident: e_1_3_4_8_2
  doi: 10.1103/PhysRevB.88.020407
– ident: e_1_3_4_24_2
  doi: 10.1103/PhysRevLett.115.197204
– ident: e_1_3_4_4_2
  doi: 10.1146/annurev-conmatphys-030212-184337
– ident: e_1_3_4_32_2
  doi: 10.1103/PhysRevB.77.174516
SSID ssj0009593
Score 2.6583054
Snippet One-dimensional topological superconductors host Majorana zero modes (MZMs), the nonlocal property of which could be exploited for quantum computing...
Evidence for Majorana bound states (MBS), which are expected to provide a platform for topological quantum computing, has been found in several material...
Topological or trivial?Evidence for Majorana bound states (MBS), which are expected to provide a platform for topological quantum computing, has been found in...
SourceID osti
proquest
pubmed
crossref
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 772
SubjectTerms Band structure of solids
Chains
Computation
Diagnostic software
Diagnostic systems
Hilbert space
Iron
Lead
Magnetism
Polarization
Quantum computing
Quantum theory
Scanning tunneling microscopy
Self-assembly
Spectroscopy
Superconductivity
Topological superconductors
Title Distinguishing a Majorana zero mode using spin-resolved measurements
URI https://www.jstor.org/stable/26400783
https://www.ncbi.nlm.nih.gov/pubmed/29025997
https://www.proquest.com/docview/1975001286
https://www.proquest.com/docview/1951557658
https://www.osti.gov/biblio/1436913
Volume 358
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9MwELfKJiRe0DYYdBsoSDwMVana2HHix45SlcImJDpReIkc1ymdSjKtDRL7TnxH7hIndQVFjJeoSmwn9f18_3y-I-SlHwdTEYbMncqOclnoUTeWnnCFBukjhK-mDE8jn1_w4SUbTfxJo_HTilrKV3Fb3f7xXMn_UBXuAV3xlOwdKFsPCjfgN9AXrkBhuP4Tjfu4QNNZbvxIsnUur4CkqWzd6pusqHLTygtnwPJ6nrpgWWeL76Bhfls7Bpe2dlotdNA6650ci351SGKvDByo4ghMN8upMNLIhmQ6u8pr8E3muvU5S2eLzAhLDAMqYglGFkQ_Gf_1l6_zqq_xSYCcK-LiahSN14di7vKZNp82aZJLKVWy5g5WlfQ61Obd1A8tkHLKmcWMg7IokJHrQVln5neRYRW51G0pU0xpt5aOVUTAsPcx-tAfRO_fXry7R3Y9GBzY6m7vrH822Jrl2eSSsk5pVS_YUIPKSFhQCjJAzXZTp1B5xnvkobFVnF4JvH3S0OkBuV9WL_1xQPbNhC6dU5O8_NUj0t_EpCOdCpMOYtJBTDoFJp0NTDo2Jh-Ty8Gb8euhayp1uIqxzsoNklBozX1FueJcgTDnCWUiiOOu4gK0dI6cIpZMJR7VgZ4yUIs8LcMwxByYlB6SnTRL9VPidLnvyyD2eZIw5vtUesBAgJkIT3f9JO40SbuauEiZNPZYTWURFeasxyMz05GZ6SY5rTtclxlctjc9LChRtwNrAXVo2iTHSBpsj6mVFcagqRWYzRT-HTw9qSgWGe6wjLoCdHHU_niTvKgfA-_GDTmZ6izHNlhgKQAjoEmelJRevxr3_4UIjv4--DF5sF6AJ2RndZPrZ6Amr-LnBpy_AMP3wm8
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distinguishing+a+Majorana+zero+mode+using+spin-resolved+measurements&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Jeon+Sangjun&rft.au=Xie+Yonglong&rft.au=Li%2C+Jian&rft.au=Wang%2C+Zhijun&rft.date=2017-11-10&rft.pub=The+American+Association+for+the+Advancement+of+Science&rft.issn=0036-8075&rft.eissn=1095-9203&rft.volume=358&rft.issue=6364&rft.spage=772&rft.epage=776&rft_id=info:doi/10.1126%2Fscience.aan3670&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon