Crop Improvement from Phenotyping Roots: Highlights Reveal Expanding Opportunities
Root systems determine the water and nutrients for photosynthesis and harvested products, underpinning agricultural productivity. We highlight 11 programs that integrated root traits into germplasm for breeding, relying on phenotyping. Progress was successful but slow. Today’s phenotyping technologi...
Saved in:
Published in | Trends in plant science Vol. 25; no. 1; pp. 105 - 118 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.01.2020
Elsevier BV |
Subjects | |
Online Access | Get full text |
ISSN | 1360-1385 1878-4372 1878-4372 |
DOI | 10.1016/j.tplants.2019.10.015 |
Cover
Loading…
Abstract | Root systems determine the water and nutrients for photosynthesis and harvested products, underpinning agricultural productivity. We highlight 11 programs that integrated root traits into germplasm for breeding, relying on phenotyping. Progress was successful but slow. Today’s phenotyping technologies will speed up root trait improvement. They combine multiple new alleles in germplasm for target environments, in parallel. Roots and shoots are detected simultaneously and nondestructively, seed to seed measures are automated, and field and laboratory technologies are increasingly linked. Available simulation models can aid all phenotyping decisions. This century will see a shift from single root traits to rhizosphere selections that can be managed dynamically on farms and a shift to phenotype-based improvement to accommodate the dynamic complexity of whole crop systems.
Root and rhizosphere traits have been selected and incorporated into germplasm since the 1970s, proving the value of roots and phenotyping in prebreeding programs.Past examples show how today’s noninvasive phenotyping technologies that measure roots, shoots, and seeds, can be strategically combined to speed up germplasm enhancement.Models are available to test and incorporate root phenotypes at different stages of selection programs.The root–soil rhizosphere can be phenotyped noninvasively in soils, revealing new combinatorial traits relevant to the reality of farming systems and to select for crop improvement. |
---|---|
AbstractList | Root systems determine the water and nutrients for photosynthesis and harvested products, underpinning agricultural productivity. We highlight 11 programs that integrated root traits into germplasm for breeding, relying on phenotyping. Progress was successful but slow. Today's phenotyping technologies will speed up root trait improvement. They combine multiple new alleles in germplasm for target environments, in parallel. Roots and shoots are detected simultaneously and nondestructively, seed to seed measures are automated, and field and laboratory technologies are increasingly linked. Available simulation models can aid all phenotyping decisions. This century will see a shift from single root traits to rhizosphere selections that can be managed dynamically on farms and a shift to phenotype-based improvement to accommodate the dynamic complexity of whole crop systems. Root systems determine the water and nutrients for photosynthesis and harvested products, underpinning agricultural productivity. We highlight 11 programs that integrated root traits into germplasm for breeding, relying on phenotyping. Progress was successful but slow. Today's phenotyping technologies will speed up root trait improvement. They combine multiple new alleles in germplasm for target environments, in parallel. Roots and shoots are detected simultaneously and nondestructively, seed to seed measures are automated, and field and laboratory technologies are increasingly linked. Available simulation models can aid all phenotyping decisions. This century will see a shift from single root traits to rhizosphere selections that can be managed dynamically on farms and a shift to phenotype-based improvement to accommodate the dynamic complexity of whole crop systems.Root systems determine the water and nutrients for photosynthesis and harvested products, underpinning agricultural productivity. We highlight 11 programs that integrated root traits into germplasm for breeding, relying on phenotyping. Progress was successful but slow. Today's phenotyping technologies will speed up root trait improvement. They combine multiple new alleles in germplasm for target environments, in parallel. Roots and shoots are detected simultaneously and nondestructively, seed to seed measures are automated, and field and laboratory technologies are increasingly linked. Available simulation models can aid all phenotyping decisions. This century will see a shift from single root traits to rhizosphere selections that can be managed dynamically on farms and a shift to phenotype-based improvement to accommodate the dynamic complexity of whole crop systems. Root systems determine the water and nutrients for photosynthesis and harvested products, underpinning agricultural productivity. We highlight 11 programs that integrated root traits into germplasm for breeding, relying on phenotyping. Progress was successful but slow. Today’s phenotyping technologies will speed up root trait improvement. They combine multiple new alleles in germplasm for target environments, in parallel. Roots and shoots are detected simultaneously and nondestructively, seed to seed measures are automated, and field and laboratory technologies are increasingly linked. Available simulation models can aid all phenotyping decisions. This century will see a shift from single root traits to rhizosphere selections that can be managed dynamically on farms and a shift to phenotype-based improvement to accommodate the dynamic complexity of whole crop systems. Root and rhizosphere traits have been selected and incorporated into germplasm since the 1970s, proving the value of roots and phenotyping in prebreeding programs.Past examples show how today’s noninvasive phenotyping technologies that measure roots, shoots, and seeds, can be strategically combined to speed up germplasm enhancement.Models are available to test and incorporate root phenotypes at different stages of selection programs.The root–soil rhizosphere can be phenotyped noninvasively in soils, revealing new combinatorial traits relevant to the reality of farming systems and to select for crop improvement. |
Author | Nagel, Kerstin A. Wasson, Anton Watt, Michelle Tracy, Saoirse R. Postma, Johannes A. Fassbender, Heike |
Author_xml | – sequence: 1 givenname: Saoirse R. surname: Tracy fullname: Tracy, Saoirse R. organization: School of Agriculture & Food Science, University College Dublin, Dublin, Ireland – sequence: 2 givenname: Kerstin A. surname: Nagel fullname: Nagel, Kerstin A. organization: Institute for Bio and Geosciences-2, Plant Sciences, Forschungszentrum Juelich GmbH, 52428 Juelich, Germany – sequence: 3 givenname: Johannes A. surname: Postma fullname: Postma, Johannes A. organization: Institute for Bio and Geosciences-2, Plant Sciences, Forschungszentrum Juelich GmbH, 52428 Juelich, Germany – sequence: 4 givenname: Heike surname: Fassbender fullname: Fassbender, Heike organization: Institute for Bio and Geosciences-2, Plant Sciences, Forschungszentrum Juelich GmbH, 52428 Juelich, Germany – sequence: 5 givenname: Anton surname: Wasson fullname: Wasson, Anton organization: CSIRO Agriculture and Food, Canberra, Australian Capital Territory, Australia – sequence: 6 givenname: Michelle surname: Watt fullname: Watt, Michelle email: m.watt@fz-juelich.de organization: Institute for Bio and Geosciences-2, Plant Sciences, Forschungszentrum Juelich GmbH, 52428 Juelich, Germany |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31806535$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1r3DAQhkVIyWd_Qouhl168GUm2JaeHUpZ8QSBlSc9CtseJFltyJHlp_n207OaSSw6DhuF5R8P7npJD6ywS8o3CggKtLtaLOA3axrBgQOs0WwAtD8gJlULmBRfsMPW8gpxyWR6T0xDWACCorI7IMacSqpKXJ2S19G7K7sbJuw2OaGPWezdmf5_Ruvg6GfuUrZyL4TK7NU_PQ6oYshVuUA_Z1f9J226LPEyT83G2JhoM5-RLr4eAX_fvGfl3ffW4vM3vH27uln_u87YoIOaiB9aDlNDUbVdDw4TgUHEmdUOLvtBFXzIBuukqqZEypAUred1UCa45oOBn5Odub7r9ZcYQ1WhCi0NyBd0cFOOMiRKglgn98QFdu9nbdF2iClHxZBRL1Pc9NTcjdmryZtT-Vb27lYBfO6D1LgSPvWpN1NE4G702g6Kgttmotdpno7bZbMcpm6QuP6jfP_hM93unw2TmxqBXoTVoW-yMxzaqzplPNrwBXTSrLw |
CitedBy_id | crossref_primary_10_1093_aobpla_plab056 crossref_primary_10_1016_j_xplc_2023_100716 crossref_primary_10_1007_s00122_021_03819_w crossref_primary_10_3390_ijms23147958 crossref_primary_10_1139_cjps_2023_0020 crossref_primary_10_3389_fpls_2022_853601 crossref_primary_10_3390_ijms23094781 crossref_primary_10_3390_plants11212927 crossref_primary_10_3390_plants12234015 crossref_primary_10_3390_plants11172300 crossref_primary_10_3390_agronomy11081534 crossref_primary_10_1111_ppl_13313 crossref_primary_10_1016_j_tplants_2022_11_008 crossref_primary_10_1111_pce_14035 crossref_primary_10_3389_fpls_2024_1366173 crossref_primary_10_1126_science_aaz5192 crossref_primary_10_1111_pbi_14244 crossref_primary_10_1002_vzj2_20382 crossref_primary_10_1007_s10681_024_03351_0 crossref_primary_10_34133_plantphenomics_0175 crossref_primary_10_3390_agronomy11122452 crossref_primary_10_1093_jxb_erab231 crossref_primary_10_1093_treephys_tpaa148 crossref_primary_10_3390_plants13233369 crossref_primary_10_34133_2020_3252703 crossref_primary_10_1186_s12870_024_05477_8 crossref_primary_10_1007_s11104_020_04736_5 crossref_primary_10_1186_s13007_022_00874_2 crossref_primary_10_7717_peerj_15587 crossref_primary_10_1007_s11032_021_01273_6 crossref_primary_10_1073_pnas_2022666118 crossref_primary_10_3390_agronomy12061329 crossref_primary_10_1016_j_agwat_2022_107781 crossref_primary_10_1016_j_scitotenv_2024_176738 crossref_primary_10_1016_j_compag_2022_107337 crossref_primary_10_1016_j_tplants_2022_01_010 crossref_primary_10_15302_J_FASE_2022449 crossref_primary_10_1016_j_envexpbot_2023_105414 crossref_primary_10_1007_s11104_024_06648_0 crossref_primary_10_1093_plphys_kiab352 crossref_primary_10_1007_s10722_024_02066_4 crossref_primary_10_1038_s41467_024_55324_5 crossref_primary_10_1038_s41477_020_00808_7 crossref_primary_10_1371_journal_pone_0252402 crossref_primary_10_3390_plants11223043 crossref_primary_10_3390_plants10112410 crossref_primary_10_1016_j_aquabot_2024_103804 crossref_primary_10_1016_j_apsoil_2022_104615 crossref_primary_10_1016_j_inpa_2021_02_006 crossref_primary_10_1111_pce_14259 crossref_primary_10_1017_S0021859622000521 crossref_primary_10_1111_pce_15462 crossref_primary_10_1146_annurev_arplant_042916_041124 crossref_primary_10_1002_aps3_11541 crossref_primary_10_1093_pcp_pcac108 crossref_primary_10_3389_fpls_2020_00544 crossref_primary_10_3389_fpls_2022_926535 crossref_primary_10_1016_j_plaphy_2025_109497 crossref_primary_10_1007_s00122_024_04797_5 crossref_primary_10_2478_gsr_2024_0013 crossref_primary_10_3389_fpls_2023_1120583 crossref_primary_10_1016_j_eja_2025_127535 crossref_primary_10_1186_s13007_021_00819_1 crossref_primary_10_3389_fpls_2022_1004904 crossref_primary_10_1186_s13007_020_00682_6 crossref_primary_10_3389_fpls_2024_1356078 crossref_primary_10_1016_j_tplants_2019_10_011 crossref_primary_10_1016_j_tplants_2020_07_006 crossref_primary_10_1186_s13007_021_00834_2 crossref_primary_10_1007_s00122_022_04235_4 crossref_primary_10_1186_s13068_023_02403_2 crossref_primary_10_3390_ijms23169262 crossref_primary_10_1111_gcb_16278 crossref_primary_10_1007_s00122_021_03899_8 crossref_primary_10_3389_fpls_2023_1271539 crossref_primary_10_1111_lam_13827 crossref_primary_10_3390_su14063304 crossref_primary_10_34133_2021_9834746 crossref_primary_10_1007_s44279_024_00049_8 crossref_primary_10_1038_s41598_024_53798_3 crossref_primary_10_1080_23311932_2025_2454984 crossref_primary_10_1098_rsob_210353 crossref_primary_10_1111_ppl_14165 crossref_primary_10_1016_j_heliyon_2023_e12973 crossref_primary_10_1093_g3journal_jkac022 crossref_primary_10_1007_s10681_024_03330_5 crossref_primary_10_34133_plantphenomics_0132 crossref_primary_10_1093_jxb_erad179 crossref_primary_10_1007_s11104_022_05661_5 crossref_primary_10_1093_jxb_erab551 crossref_primary_10_1007_s11104_024_06949_4 crossref_primary_10_3389_fpls_2023_1111575 crossref_primary_10_3390_agronomy12030647 crossref_primary_10_3390_life15010121 crossref_primary_10_1111_pbr_13179 crossref_primary_10_1038_s43016_024_01057_z crossref_primary_10_1016_j_agsy_2021_103244 crossref_primary_10_1186_s12870_022_03937_7 crossref_primary_10_7717_peerj_13638 crossref_primary_10_1002_fes3_70030 crossref_primary_10_3389_fpls_2023_1233553 crossref_primary_10_1016_j_scitotenv_2021_152223 crossref_primary_10_3389_fpls_2023_1166511 crossref_primary_10_1002_ppj2_20041 crossref_primary_10_1007_s42994_023_00112_w crossref_primary_10_1093_aob_mcad016 crossref_primary_10_9787_KJBS_2024_56_2_113 crossref_primary_10_1016_j_chemosphere_2022_135958 crossref_primary_10_3389_fpls_2024_1397337 crossref_primary_10_3390_s22052031 crossref_primary_10_1111_jipb_13191 crossref_primary_10_3389_fpls_2023_1265994 crossref_primary_10_1016_j_eja_2024_127178 crossref_primary_10_3390_info14040214 crossref_primary_10_1002_ppj2_20034 crossref_primary_10_1007_s00122_023_04412_z crossref_primary_10_15252_embr_202255631 crossref_primary_10_3389_fpls_2022_926214 crossref_primary_10_34133_research_0059 crossref_primary_10_1186_s13007_021_00798_3 crossref_primary_10_1016_j_agwat_2021_107257 crossref_primary_10_1002_jsfa_12794 crossref_primary_10_1007_s10722_021_01181_w crossref_primary_10_3389_fpls_2022_883209 crossref_primary_10_1002_csc2_20635 crossref_primary_10_1016_j_pbi_2021_102151 crossref_primary_10_3390_genes14101929 crossref_primary_10_1093_gigascience_giab052 crossref_primary_10_3390_genes13020181 crossref_primary_10_1002_ppj2_20028 crossref_primary_10_1080_01904167_2022_2046080 crossref_primary_10_1016_j_snb_2022_131816 crossref_primary_10_1016_j_scienta_2022_111779 crossref_primary_10_1002_ppp3_10136 crossref_primary_10_1016_j_apsoil_2020_103781 crossref_primary_10_1016_j_compag_2022_107409 crossref_primary_10_1111_ejss_13219 crossref_primary_10_1111_pce_15391 crossref_primary_10_7717_peerj_12928 crossref_primary_10_1007_s00122_023_04442_7 |
Cites_doi | 10.1093/jxb/erv290 10.1111/nph.14243 10.1002/humu.22080 10.1186/s13007-015-0060-z 10.1007/s00122-015-2453-9 10.1007/s11104-016-3144-2 10.1007/s11104-016-3161-1 10.1104/pp.16.01122 10.1093/jxb/erw093 10.1016/j.fcr.2014.07.004 10.1071/FP03045 10.1071/AR01031 10.1146/annurev-arplant-050312-120137 10.1126/science.aad2776 10.1016/S0065-2113(08)60803-2 10.1093/jxb/erw035 10.1023/A:1004296707631 10.1093/jxb/erq429 10.1093/jxb/erw494 10.1038/nature11909 10.1016/0002-1571(74)90009-0 10.1071/FP09121 10.1071/FP09219 10.1093/jxb/erv289 10.1111/nph.15662 10.1071/FP13224 10.1071/AR05157 10.1093/aob/mcy092 10.3389/fpls.2013.00392 10.1093/jxb/eru250 10.4161/psb.1.5.3447 10.1007/s11104-010-0623-8 10.1093/jxb/ers111 10.1016/j.fcr.2009.10.004 10.1093/jxb/erw108 10.3389/fpls.2016.01419 10.1007/s11104-015-2379-7 10.1104/pp.114.250449 10.1093/jxb/erp386 10.3389/fpls.2016.00944 10.1038/s41598-017-14904-w 10.1093/jxb/ery034 10.1071/SR05142 10.1093/jxb/erw061 10.34133/2019/7507131 10.1007/s11104-011-0896-6 10.1007/s11104-007-9514-z 10.1093/aob/mct122 10.1071/FP16156 10.1038/nbt.2120 10.1093/jxb/ers044 10.1111/nph.15213 10.1093/jxb/erv570 10.1093/jxb/eru509 10.1186/s13007-017-0252-9 10.1093/jxb/erz232 10.1104/pp.109.1.7 10.1016/j.copbio.2018.06.002 10.1071/FP12044 10.1093/jxb/ert043 10.1093/jxb/erq245 10.1016/j.soilbio.2012.12.004 10.1038/ncomms13342 10.1016/j.fcr.2012.05.014 10.1111/j.1462-2920.2005.00973.x 10.1007/s11104-016-2822-4 10.1071/AR9890943 10.1104/pp.17.00648 10.1016/j.fcr.2004.07.014 10.2134/agronj15.0076 10.1111/nph.13312 10.1111/nph.15955 10.1104/pp.15.01388 10.2134/agronj1982.00021962007400030023x 10.1016/j.tplants.2015.12.005 10.1093/jxb/erv239 10.3390/agronomy8110241 10.1111/j.1365-3040.2005.01490.x 10.1071/FP09150 10.1146/annurev-genet-120215-035254 10.1038/srep03194 10.1111/pce.12983 10.1111/j.1469-8137.2007.02358.x 10.1111/nph.14641 10.1071/FP12023 10.1093/jxb/erv241 10.1111/2041-210X.12771 10.1016/j.fcr.2016.04.008 10.1111/j.1467-7652.2004.00116.x 10.1007/s11104-014-2191-9 10.3389/fpls.2017.00786 10.1104/pp.15.00095 10.1104/pp.113.233916 10.1105/tpc.19.00015 10.1016/j.tplants.2013.09.008 10.1093/jxb/erw055 10.1093/jxb/eru061 10.1016/j.compag.2016.08.021 10.1073/pnas.1400966111 10.1093/aob/mcv099 10.1071/FP15182 10.3389/fpls.2017.00282 10.1104/pp.114.243519 10.1093/jxb/erw039 10.1104/pp.18.00234 10.1590/1678-4499.0295 10.1007/s00122-015-2506-0 10.1071/SR07139 10.1111/j.1365-313X.2009.03888.x 10.1071/FP12180 10.1071/FP16128 10.1111/j.1469-8137.2012.04183.x 10.1111/ppl.12150 10.3389/fpls.2016.01155 |
ContentType | Journal Article |
Copyright | 2019 Crown Copyright © 2019. Published by Elsevier Ltd. All rights reserved. Copyright Elsevier BV Jan 2020 |
Copyright_xml | – notice: 2019 – notice: Crown Copyright © 2019. Published by Elsevier Ltd. All rights reserved. – notice: Copyright Elsevier BV Jan 2020 |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QL 7QO 7QR 7T7 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 |
DOI | 10.1016/j.tplants.2019.10.015 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Technology Research Database Nucleic Acids Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Genetics Abstracts Biotechnology Research Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) MEDLINE - Academic |
DatabaseTitleList | MEDLINE Virology and AIDS Abstracts MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Botany |
EISSN | 1878-4372 |
EndPage | 118 |
ExternalDocumentID | 31806535 10_1016_j_tplants_2019_10_015 S1360138519302845 |
Genre | Research Support, Non-U.S. Gov't Journal Article Review |
GroupedDBID | --- --K --M -DZ .~1 0R~ 123 186 1B1 1RT 1~. 1~5 29Q 4.4 457 4G. 53G 5VS 6I. 7-5 71M 8P~ AABNK AABVA AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO ABFNM ABFRF ABGRD ABGSF ABJNI ABMAC ABUDA ABXDB ABYKQ ACDAQ ACGFO ACGFS ACIWK ACPRK ACRLP ADBBV ADEZE ADMUD ADQTV ADUVX AEBSH AEFWE AEHWI AEKER AENEX AEQOU AFKWA AFRAH AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CBWCG CS3 DOVZS DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RCE RIG ROL RPZ SCC SDF SDG SDP SES SEW SPCBC SSA SSU SSZ T5K TWZ VQA XPP Y6R ZCA ~G- ~KM AAHBH AAMRU AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH CGR CUY CVF ECM EIF NPM 7QL 7QO 7QR 7T7 7TM 7U9 8FD C1K EFKBS FR3 H94 M7N P64 RC3 7X8 |
ID | FETCH-LOGICAL-c440t-7f02f0880b9cd90b277306328ab14f4a4f5270abd68ae12e142539b6cd9930e73 |
IEDL.DBID | .~1 |
ISSN | 1360-1385 1878-4372 |
IngestDate | Tue Aug 05 10:00:05 EDT 2025 Wed Aug 13 07:44:11 EDT 2025 Wed Feb 19 02:30:55 EST 2025 Thu Apr 24 23:02:27 EDT 2025 Tue Jul 01 00:57:56 EDT 2025 Fri Feb 23 02:49:31 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | root architecture combinatorial stresses simulation model soil climate agronomy water imaging rhizosphere breeding |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. Crown Copyright © 2019. Published by Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c440t-7f02f0880b9cd90b277306328ab14f4a4f5270abd68ae12e142539b6cd9930e73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1360138519302845 |
PMID | 31806535 |
PQID | 2347633602 |
PQPubID | 2045386 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_2322750098 proquest_journals_2347633602 pubmed_primary_31806535 crossref_citationtrail_10_1016_j_tplants_2019_10_015 crossref_primary_10_1016_j_tplants_2019_10_015 elsevier_sciencedirect_doi_10_1016_j_tplants_2019_10_015 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2020 2020-01-00 20200101 |
PublicationDateYYYYMMDD | 2020-01-01 |
PublicationDate_xml | – month: 01 year: 2020 text: January 2020 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Kidlington |
PublicationTitle | Trends in plant science |
PublicationTitleAlternate | Trends Plant Sci |
PublicationYear | 2020 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Marshall-Colon (bib82) 2017; 8 Zhao (bib89) 2017; 68 Hurd (bib7) 1974; 14 Mohanty (bib113) 2016; 7 Vamerali (bib75) 2011 Vandenkoornhuyse (bib116) 2015; 206 Foster (bib100) 1981; 89 Sasse (bib109) 2019; 222 Sun (bib63) 2018; 177 Hatfield, Walthall (bib93) 2015; 107 Pieruschka, Schurr (bib46) 2019; 2019 Wasson (bib61) 2017; 8 Hartmann (bib118) 2008; 312 O’Sullivan (bib111) 2016; 404 Lynch (bib119) 1995; 109 Faget (bib103) 2013; 4 Watt (bib96) 2006; 8 Jiang (bib73) 2019; 31 Al-Tamimi (bib35) 2016; 7 Bai (bib112) 2016; 128 Schroeder (bib17) 2013; 497 Colombi (bib67) 2015; 388 Lopes, Reynolds (bib55) 2010; 37 Rytter, Rytter (bib74) 2012; 350 Tracy (bib41) 2010; 61 Avramova (bib33) 2016; 67 Ryan (bib99) 2014; 151 Seethepalli (bib68) 2018 Postma (bib83) 2017; 215 Bucksch (bib66) 2014; 166 Gray (bib78) 2013; 40 Munns (bib15) 2012; 30 Ohashi (bib76) 2015; 74 Fiorani, Schurr (bib114) 2013; 64 Trachsel (bib59) 2011; 341 Jahnke (bib45) 2009; 59 Wasson (bib47) 2019; 25 Rabbi (bib108) 2018; 219 Hall, Richards (bib110) 2013; 143 Watt (bib53) 2013; 112 Burridge (bib65) 2016; 192 Nagel (bib27) 2015; 66 Giller (bib121) 2018 Nagel (bib22) 2012; 39 Poorter (bib52) 2016; 212 Robinson (bib117) 2012; 33 Huang (bib71) 2013; 3 Rebetzke (bib79) 2012; 40 Negin, Moshelion (bib6) 2017; 44 Quadrana, Colot (bib115) 2016; 50 Atkinson (bib38) 2019; 55 Maccaferri (bib54) 2016; 67 Barboza-Barquero (bib31) 2015; 116 Pfeifer (bib28) 2014; 41 Nakhforoosh (bib34) 2016; 7 Gregory (bib3) 2009; 36 Postma (bib88) 2014; 166 Watt (bib72) 2008; 178 van Dusschoten (bib44) 2016; 170 Hoogenboom (bib85) 2004; 90 Achim, Nagel (bib29) 2006; 1 York (bib94) 2016; 67 Lilley, Kirkegaard (bib90) 2016; 67 Xuan (bib95) 2016; 351 Rich, Watt (bib120) 2013; 64 Pinto, Reynolds (bib18) 2015; 128 Sasaki (bib14) 2005; 46 Kuijken (bib4) 2015; 66 Li (bib21) 2019; 70 O’Toole, Bland (bib1) 1987; 41 Chochois (bib5) 2012; 63 Wasson (bib9) 2014; 65 Jansen (bib23) 2014 Araus, Cairns (bib57) 2014; 19 Schefe (bib97) 2008; 46 Schurr (bib36) 2006; 29 Bao (bib105) 2014; 111 Smucker (bib69) 1982; 74 Caradus, Woodfield (bib11) 1998; 200 Chochois (bib26) 2015; 168 Chen (bib77) 2019; 69 Daly (bib87) 2017; 41 Gioia (bib32) 2016; 44 Jahnke (bib49) 2016; 172 Huang (bib122) 2015; 128 Richards (bib51) 2010; 37 Kirkegaard, Hunt (bib92) 2010; 61 Schneider (bib86) 2017; 174 Metzner (bib39) 2015; 11 Spohn (bib102) 2013; 58 Gioia (bib25) 2015; 66 Uga (bib8) 2011; 62 Watt (bib2) 2006; 44 Sadras, Richards (bib50) 2014; 65 Daly (bib106) 2015; 66 Wasaya (bib56) 2018; 8 Delory (bib70) 2017; 8 Pflugfelder (bib40) 2017; 13 Wasson (bib60) 2016; 67 Whalley (bib58) 2017; 415 Hammer (bib91) 2005; 56 Flavel (bib42) 2014; 385 Dietrich (bib43) 2018; 69 Pask (bib19) 2014; 168 Oburger, Schmidt (bib101) 2016; 21 Watt (bib123) 2003; 30 Wasson (bib24) 2012; 63 Rangarajan (bib84) 2018; 122 Rich (bib20) 2016; 43 Richards, Passioura (bib10) 1989; 40 York, Lynch (bib62) 2015; 66 Henry (bib12) 2010; 115 Slack (bib64) 2018 Arsova (bib37) 2019 Delhaize (bib48) 2012; 195 Chimungu (bib80) 2014; 166 Helliwell (bib107) 2017; 7 George (bib98) 2005; 3 Ogbonnaya (bib16) 2001; 52 Landl (bib104) 2017; 415 James (bib81) 2016; 67 Wissuwa (bib13) 2016; 67 Hecht (bib30) 2016; 7 Jahnke (10.1016/j.tplants.2019.10.015_bib49) 2016; 172 Slack (10.1016/j.tplants.2019.10.015_bib64) 2018 Wasaya (10.1016/j.tplants.2019.10.015_bib56) 2018; 8 Robinson (10.1016/j.tplants.2019.10.015_bib117) 2012; 33 Kuijken (10.1016/j.tplants.2019.10.015_bib4) 2015; 66 Lopes (10.1016/j.tplants.2019.10.015_bib55) 2010; 37 Fiorani (10.1016/j.tplants.2019.10.015_bib114) 2013; 64 Watt (10.1016/j.tplants.2019.10.015_bib2) 2006; 44 Burridge (10.1016/j.tplants.2019.10.015_bib65) 2016; 192 Poorter (10.1016/j.tplants.2019.10.015_bib52) 2016; 212 Wasson (10.1016/j.tplants.2019.10.015_bib61) 2017; 8 York (10.1016/j.tplants.2019.10.015_bib62) 2015; 66 Landl (10.1016/j.tplants.2019.10.015_bib104) 2017; 415 Barboza-Barquero (10.1016/j.tplants.2019.10.015_bib31) 2015; 116 Gioia (10.1016/j.tplants.2019.10.015_bib32) 2016; 44 Chimungu (10.1016/j.tplants.2019.10.015_bib80) 2014; 166 Hatfield (10.1016/j.tplants.2019.10.015_bib93) 2015; 107 Kirkegaard (10.1016/j.tplants.2019.10.015_bib92) 2010; 61 Schneider (10.1016/j.tplants.2019.10.015_bib86) 2017; 174 Nakhforoosh (10.1016/j.tplants.2019.10.015_bib34) 2016; 7 Wasson (10.1016/j.tplants.2019.10.015_bib60) 2016; 67 Pflugfelder (10.1016/j.tplants.2019.10.015_bib40) 2017; 13 Faget (10.1016/j.tplants.2019.10.015_bib103) 2013; 4 Zhao (10.1016/j.tplants.2019.10.015_bib89) 2017; 68 Watt (10.1016/j.tplants.2019.10.015_bib53) 2013; 112 Helliwell (10.1016/j.tplants.2019.10.015_bib107) 2017; 7 George (10.1016/j.tplants.2019.10.015_bib98) 2005; 3 James (10.1016/j.tplants.2019.10.015_bib81) 2016; 67 Rabbi (10.1016/j.tplants.2019.10.015_bib108) 2018; 219 York (10.1016/j.tplants.2019.10.015_bib94) 2016; 67 Gregory (10.1016/j.tplants.2019.10.015_bib3) 2009; 36 Schurr (10.1016/j.tplants.2019.10.015_bib36) 2006; 29 Wasson (10.1016/j.tplants.2019.10.015_bib47) 2019; 25 Hammer (10.1016/j.tplants.2019.10.015_bib91) 2005; 56 van Dusschoten (10.1016/j.tplants.2019.10.015_bib44) 2016; 170 Ohashi (10.1016/j.tplants.2019.10.015_bib76) 2015; 74 Munns (10.1016/j.tplants.2019.10.015_bib15) 2012; 30 Richards (10.1016/j.tplants.2019.10.015_bib10) 1989; 40 Atkinson (10.1016/j.tplants.2019.10.015_bib38) 2019; 55 Negin (10.1016/j.tplants.2019.10.015_bib6) 2017; 44 Tracy (10.1016/j.tplants.2019.10.015_bib41) 2010; 61 Dietrich (10.1016/j.tplants.2019.10.015_bib43) 2018; 69 Uga (10.1016/j.tplants.2019.10.015_bib8) 2011; 62 Henry (10.1016/j.tplants.2019.10.015_bib12) 2010; 115 Schefe (10.1016/j.tplants.2019.10.015_bib97) 2008; 46 Postma (10.1016/j.tplants.2019.10.015_bib83) 2017; 215 Postma (10.1016/j.tplants.2019.10.015_bib88) 2014; 166 Sun (10.1016/j.tplants.2019.10.015_bib63) 2018; 177 Richards (10.1016/j.tplants.2019.10.015_bib51) 2010; 37 Chochois (10.1016/j.tplants.2019.10.015_bib26) 2015; 168 Daly (10.1016/j.tplants.2019.10.015_bib87) 2017; 41 Li (10.1016/j.tplants.2019.10.015_bib21) 2019; 70 O’Sullivan (10.1016/j.tplants.2019.10.015_bib111) 2016; 404 Arsova (10.1016/j.tplants.2019.10.015_bib37) 2019 Pfeifer (10.1016/j.tplants.2019.10.015_bib28) 2014; 41 Marshall-Colon (10.1016/j.tplants.2019.10.015_bib82) 2017; 8 Huang (10.1016/j.tplants.2019.10.015_bib71) 2013; 3 Sasse (10.1016/j.tplants.2019.10.015_bib109) 2019; 222 Quadrana (10.1016/j.tplants.2019.10.015_bib115) 2016; 50 Smucker (10.1016/j.tplants.2019.10.015_bib69) 1982; 74 Lilley (10.1016/j.tplants.2019.10.015_bib90) 2016; 67 Pinto (10.1016/j.tplants.2019.10.015_bib18) 2015; 128 Hecht (10.1016/j.tplants.2019.10.015_bib30) 2016; 7 Colombi (10.1016/j.tplants.2019.10.015_bib67) 2015; 388 Xuan (10.1016/j.tplants.2019.10.015_bib95) 2016; 351 O’Toole (10.1016/j.tplants.2019.10.015_bib1) 1987; 41 Seethepalli (10.1016/j.tplants.2019.10.015_bib68) 2018 Hoogenboom (10.1016/j.tplants.2019.10.015_bib85) 2004; 90 Hurd (10.1016/j.tplants.2019.10.015_bib7) 1974; 14 Avramova (10.1016/j.tplants.2019.10.015_bib33) 2016; 67 Watt (10.1016/j.tplants.2019.10.015_bib72) 2008; 178 Rich (10.1016/j.tplants.2019.10.015_bib120) 2013; 64 Wasson (10.1016/j.tplants.2019.10.015_bib9) 2014; 65 Hartmann (10.1016/j.tplants.2019.10.015_bib118) 2008; 312 Delhaize (10.1016/j.tplants.2019.10.015_bib48) 2012; 195 Ogbonnaya (10.1016/j.tplants.2019.10.015_bib16) 2001; 52 Rich (10.1016/j.tplants.2019.10.015_bib20) 2016; 43 Sasaki (10.1016/j.tplants.2019.10.015_bib14) 2005; 46 Delory (10.1016/j.tplants.2019.10.015_bib70) 2017; 8 Oburger (10.1016/j.tplants.2019.10.015_bib101) 2016; 21 Maccaferri (10.1016/j.tplants.2019.10.015_bib54) 2016; 67 Ryan (10.1016/j.tplants.2019.10.015_bib99) 2014; 151 Flavel (10.1016/j.tplants.2019.10.015_bib42) 2014; 385 Spohn (10.1016/j.tplants.2019.10.015_bib102) 2013; 58 Al-Tamimi (10.1016/j.tplants.2019.10.015_bib35) 2016; 7 Jahnke (10.1016/j.tplants.2019.10.015_bib45) 2009; 59 Nagel (10.1016/j.tplants.2019.10.015_bib22) 2012; 39 Gioia (10.1016/j.tplants.2019.10.015_bib25) 2015; 66 Achim (10.1016/j.tplants.2019.10.015_bib29) 2006; 1 Pask (10.1016/j.tplants.2019.10.015_bib19) 2014; 168 Rytter (10.1016/j.tplants.2019.10.015_bib74) 2012; 350 Trachsel (10.1016/j.tplants.2019.10.015_bib59) 2011; 341 Pieruschka (10.1016/j.tplants.2019.10.015_bib46) 2019; 2019 Jansen (10.1016/j.tplants.2019.10.015_bib23) 2014 Wasson (10.1016/j.tplants.2019.10.015_bib24) 2012; 63 Hall (10.1016/j.tplants.2019.10.015_bib110) 2013; 143 Foster (10.1016/j.tplants.2019.10.015_bib100) 1981; 89 Vamerali (10.1016/j.tplants.2019.10.015_bib75) 2011 Chen (10.1016/j.tplants.2019.10.015_bib77) 2019; 69 Araus (10.1016/j.tplants.2019.10.015_bib57) 2014; 19 Schroeder (10.1016/j.tplants.2019.10.015_bib17) 2013; 497 Rebetzke (10.1016/j.tplants.2019.10.015_bib79) 2012; 40 Watt (10.1016/j.tplants.2019.10.015_bib123) 2003; 30 Daly (10.1016/j.tplants.2019.10.015_bib106) 2015; 66 Wissuwa (10.1016/j.tplants.2019.10.015_bib13) 2016; 67 Giller (10.1016/j.tplants.2019.10.015_bib121) 2018 Huang (10.1016/j.tplants.2019.10.015_bib122) 2015; 128 Metzner (10.1016/j.tplants.2019.10.015_bib39) 2015; 11 Vandenkoornhuyse (10.1016/j.tplants.2019.10.015_bib116) 2015; 206 Lynch (10.1016/j.tplants.2019.10.015_bib119) 1995; 109 Whalley (10.1016/j.tplants.2019.10.015_bib58) 2017; 415 Sadras (10.1016/j.tplants.2019.10.015_bib50) 2014; 65 Bai (10.1016/j.tplants.2019.10.015_bib112) 2016; 128 Chochois (10.1016/j.tplants.2019.10.015_bib5) 2012; 63 Caradus (10.1016/j.tplants.2019.10.015_bib11) 1998; 200 Rangarajan (10.1016/j.tplants.2019.10.015_bib84) 2018; 122 Watt (10.1016/j.tplants.2019.10.015_bib96) 2006; 8 Nagel (10.1016/j.tplants.2019.10.015_bib27) 2015; 66 Gray (10.1016/j.tplants.2019.10.015_bib78) 2013; 40 Bucksch (10.1016/j.tplants.2019.10.015_bib66) 2014; 166 Bao (10.1016/j.tplants.2019.10.015_bib105) 2014; 111 Mohanty (10.1016/j.tplants.2019.10.015_bib113) 2016; 7 Jiang (10.1016/j.tplants.2019.10.015_bib73) 2019; 31 |
References_xml | – volume: 43 start-page: 173 year: 2016 end-page: 188 ident: bib20 article-title: Wheats developed for high yield on stored soil moisture have deep vigorous root systems publication-title: Funct. Plant Biol. – volume: 415 start-page: 99 year: 2017 end-page: 116 ident: bib104 article-title: A new model for root growth in soil with macropores publication-title: Plant Soil – volume: 30 start-page: 360 year: 2012 end-page: 364 ident: bib15 article-title: Wheat grain yield on saline soils is improved by an ancestral Na(+) transporter gene publication-title: Nat. Biotechnol. – volume: 41 start-page: 121 year: 2017 end-page: 133 ident: bib87 article-title: Quantification of root water uptake in soil using X-ray computed tomography and image-based modelling publication-title: Plant Cell Environ. – volume: 39 start-page: 891 year: 2012 end-page: 904 ident: bib22 article-title: GROWSCREEN-Rhizo is a novel phenotyping robot enabling simultaneous measurements of root and shoot growth for plants grown in soil-filled rhizotrons publication-title: Funct. Plant Biol. – volume: 7 start-page: 14875 year: 2017 ident: bib107 article-title: The emergent rhizosphere: imaging the development of the porous architecture at the root-soil interface publication-title: Sci. Rep. – volume: 66 start-page: 2305 year: 2015 end-page: 2314 ident: bib106 article-title: Assessing the influence of the rhizosphere on soil hydraulic properties using X-ray computed tomography and numerical modelling publication-title: J. Exp. Bot. – volume: 109 start-page: 7 year: 1995 end-page: 13 ident: bib119 article-title: Root architecture and plant productivity publication-title: Plant Physiol. – volume: 2019 start-page: 6 year: 2019 ident: bib46 article-title: Plant phenotyping: past, present, and future publication-title: Plant Phenomics – volume: 67 start-page: 3709 year: 2016 end-page: 3718 ident: bib81 article-title: Rhizosheaths on wheat grown in acid soils: phosphorus acquisition efficiency and genetic control publication-title: J. Exp. Bot. – volume: 1 start-page: 225 year: 2006 end-page: 226 ident: bib29 article-title: Root growth reacts rapidly and more pronounced than shoot growth towards increasing light intensity in tobacco seedlings publication-title: Plant Signal. Behav. – volume: 166 start-page: 590 year: 2014 ident: bib88 article-title: The optimal lateral root branching density for maize depends on nitrogen and phosphorus availability publication-title: Plant Physiol. – volume: 212 start-page: 838 year: 2016 end-page: 855 ident: bib52 article-title: Pampered inside, pestered outside? Differences and similarities between plants growing in controlled conditions and in the field publication-title: New Phytol. – volume: 66 start-page: 5441 year: 2015 end-page: 5452 ident: bib27 article-title: Simultaneous effects of leaf irradiance and soil moisture on growth and root system architecture of novel wheat genotypes: implications for phenotyping publication-title: J. Exp. Bot. – volume: 52 start-page: 1367 year: 2001 end-page: 1374 ident: bib16 article-title: Diagnostic DNA markers for cereal cyst nematode resistance in bread wheat publication-title: Aust. J. Agr. Res. – volume: 8 start-page: 241 year: 2018 ident: bib56 article-title: Root phenotyping for drought tolerance: a review publication-title: Agronomy – volume: 65 start-page: 6231 year: 2014 end-page: 6249 ident: bib9 article-title: Soil coring at multiple field environments can directly quantify variation in deep root traits to select wheat genotypes for breeding publication-title: J. Exp. Bot. – volume: 67 start-page: 1033 year: 2016 end-page: 1043 ident: bib60 article-title: A portable fluorescence spectroscopy imaging system for automated root phenotyping in soil cores in the field publication-title: J. Exp. Bot. – volume: 351 start-page: 384 year: 2016 ident: bib95 article-title: Cyclic programmed cell death stimulates hormone signaling and root development in publication-title: Science – volume: 69 start-page: 2759 year: 2018 end-page: 2771 ident: bib43 article-title: Hydrotropism: how roots search for water publication-title: J. Exp. Bot. – volume: 107 start-page: 1215 year: 2015 end-page: 1226 ident: bib93 article-title: Meeting global food needs: realizing the potential via genetics × environment × management interactions publication-title: Agronomy J. – volume: 37 start-page: 85 year: 2010 end-page: 97 ident: bib51 article-title: Breeding for improved water productivity in temperate cereals: phenotyping, quantitative trait loci, markers and the selection environment publication-title: Funct. Plant Biol. – volume: 68 start-page: 965 year: 2017 end-page: 982 ident: bib89 article-title: Root architecture simulation improves the inference from seedling root phenotyping towards mature root systems publication-title: J. Exp. Bot. – volume: 4 start-page: 392 year: 2013 ident: bib103 article-title: Disentangling who is who during rhizosphere acidification in root interactions: combining fluorescence with optode techniques publication-title: Front. Plant Sci. – volume: 37 start-page: 147 year: 2010 end-page: 156 ident: bib55 article-title: Partitioning of assimilates to deeper roots is associated with cooler canopies and increased yield under drought in wheat publication-title: Funct. Plant Biol. – volume: 388 start-page: 1 year: 2015 end-page: 20 ident: bib67 article-title: Next generation shovelomics: set up a tent and REST publication-title: Plant Soil – volume: 21 start-page: 243 year: 2016 end-page: 255 ident: bib101 article-title: New methods to unravel rhizosphere processes publication-title: Trends Plant Sci. – volume: 67 start-page: 3665 year: 2016 end-page: 3681 ident: bib90 article-title: Farming system context drives the value of deep wheat roots in semi-arid environments publication-title: J. Exp. Bot. – volume: 222 start-page: 1149 year: 2019 end-page: 1160 ident: bib109 article-title: Multilab EcoFAB study shows highly reproducible physiology and depletion of soil metabolites by a model grass publication-title: New Phytol. – volume: 122 start-page: 485 year: 2018 end-page: 499 ident: bib84 article-title: Co-optimization of axial root phenotypes for nitrogen and phosphorus acquisition in common bean publication-title: Ann. Bot. – volume: 67 start-page: 1161 year: 2016 end-page: 1178 ident: bib54 article-title: Prioritizing quantitative trait loci for root system architecture in tetraploid wheat publication-title: J. Exp. Bot. – volume: 33 start-page: 777 year: 2012 end-page: 780 ident: bib117 article-title: Deep phenotyping for precision medicine publication-title: Hum. Mutat. – volume: 177 start-page: 90 year: 2018 ident: bib63 article-title: Large crown root number improves topsoil foraging and phosphorus acquisition publication-title: Plant Physiol. – volume: 112 start-page: 447 year: 2013 end-page: 455 ident: bib53 article-title: A rapid, controlled-environment seedling root screen for wheat correlates well with rooting depths at vegetative, but not reproductive, stages at two field sites publication-title: Ann. Bot. – volume: 66 start-page: 5389 year: 2015 end-page: 5401 ident: bib4 article-title: Root phenotyping: from component trait in the lab to breeding publication-title: J. Exp. Bot. – volume: 59 start-page: 634 year: 2009 end-page: 644 ident: bib45 article-title: Combined MRI-PET dissects dynamic changes in plant structures and functions publication-title: Plant J. – volume: 64 start-page: 267 year: 2013 end-page: 291 ident: bib114 article-title: Future scenarios for plant phenotyping publication-title: Annu. Rev. Plant Biol. – volume: 74 start-page: 131 year: 2015 end-page: 138 ident: bib76 article-title: Root growth and distribution in sugarcane cultivars fertigated by a subsurface drip system publication-title: Bragantia – volume: 44 start-page: 299 year: 2006 end-page: 317 ident: bib2 article-title: Rhizosphere biology and crop productivity - a review publication-title: Aust. J. Soil Res. – year: 2018 ident: bib64 article-title: Wheat shovelomics II: revealing relationships between root crown traits and crop growth publication-title: bioRxiv – volume: 415 start-page: 407 year: 2017 end-page: 422 ident: bib58 article-title: Methods to estimate changes in soil water for phenotyping root activity in the field publication-title: Plant Soil – volume: 29 start-page: 340 year: 2006 end-page: 352 ident: bib36 article-title: Functional dynamics of plant growth and photosynthesis – from steady-state to dynamics – from homogeneity to heterogeneity publication-title: Plant, Cell Environ. – volume: 8 start-page: 282 year: 2017 ident: bib61 article-title: Differentiating wheat genotypes by Bayesian hierarchical nonlinear mixed modeling of wheat root density publication-title: Front. Plant Sci. – start-page: 173 year: 2014 end-page: 206 ident: bib23 article-title: Non-invasive phenotyping methodologies enable the accurate characterization of growth and performance of shoots and roots publication-title: Genomics of Plant Genetic Resources – volume: 67 start-page: 3629 year: 2016 end-page: 3643 ident: bib94 article-title: The holistic rhizosphere: integrating zones, processes, and semantics in the soil influenced by roots publication-title: J. Exp. Bot. – volume: 8 start-page: 871 year: 2006 end-page: 884 ident: bib96 article-title: Numbers and locations of native bacteria on field-grown wheat roots quantified by fluorescence in situ hybridization (FISH) publication-title: Environ. Microbiol. – volume: 58 start-page: 275 year: 2013 end-page: 280 ident: bib102 article-title: Soil zymography – a novel in situ method for mapping distribution of enzyme activity in soil publication-title: Soil Biol. Biochem. – volume: 168 start-page: 953 year: 2015 ident: bib26 article-title: Variation in adult plant phenotypes and partitioning among seed and stem-borne roots across publication-title: Plant Physiol. – volume: 63 start-page: 3467 year: 2012 end-page: 3474 ident: bib5 article-title: Application of publication-title: J. Exp. Bot. – volume: 3 start-page: 129 year: 2005 end-page: 140 ident: bib98 article-title: Expression of a fungal phytase gene in publication-title: Plant Biotechnol. J. – volume: 89 start-page: 263 year: 1981 end-page: 273 ident: bib100 article-title: The ultrastructure and histochemistry of the rhizosphere publication-title: New Phytol. – volume: 151 start-page: 230 year: 2014 end-page: 242 ident: bib99 article-title: Can citrate efflux from roots improve phosphorus uptake by plants? Testing the hypothesis with near-isogenic lines of wheat publication-title: Physiol. Plant. – volume: 41 start-page: 91 year: 1987 end-page: 145 ident: bib1 article-title: Genotypic variation in crop plant root systems publication-title: Adv. Agron. – volume: 7 start-page: 13342 year: 2016 ident: bib35 article-title: Salinity tolerance loci revealed in rice using high-throughput non-invasive phenotyping publication-title: Nat. Commun. – volume: 219 start-page: 542 year: 2018 end-page: 550 ident: bib108 article-title: Plant roots redesign the rhizosphere to alter the three-dimensional physical architecture and water dynamics publication-title: New Phytol. – volume: 69 start-page: 62 year: 2019 end-page: 74 ident: bib77 article-title: Evaluation of deep root phenotyping techniques in tube rhizotrons publication-title: Acta Agric. Scand. B Plant Sci. – volume: 206 start-page: 1196 year: 2015 end-page: 1206 ident: bib116 article-title: The importance of the microbiome of the plant holobiont publication-title: New Phytol. – volume: 166 start-page: 2166 year: 2014 ident: bib80 article-title: Large root cortical cell size improves drought tolerance in maize publication-title: Plant Physiol. – year: 2018 ident: bib121 article-title: Developing Global Priorities for Plant Research – volume: 8 start-page: 1594 year: 2017 end-page: 1606 ident: bib70 article-title: Accuracy and bias of methods used for root length measurements in functional root research publication-title: Methods in Ecology and Evolution – volume: 8 start-page: 786 year: 2017 ident: bib82 article-title: Crops in silico: generating virtual crops using an integrative and multi-scale modeling platform publication-title: Front. Plant Sci. – volume: 111 start-page: 9319 year: 2014 ident: bib105 article-title: Plant roots use a patterning mechanism to position lateral root branches toward available water publication-title: Proc. Natl. Acad. Sci. U. S. A – volume: 41 start-page: 581 year: 2014 end-page: 597 ident: bib28 article-title: Spring barley shows dynamic compensatory root and shoot growth responses when exposed to localised soil compaction and fertilisation publication-title: Funct. Plant Biol. – volume: 44 start-page: 76 year: 2016 end-page: 93 ident: bib32 article-title: GrowScreen-PaGe, a non-invasive, high-throughput phenotyping system based on germination paper to quantify crop phenotypic diversity and plasticity of root traits under varying nutrient supply publication-title: Funct. Plant Biol. – volume: 195 start-page: 609 year: 2012 end-page: 619 ident: bib48 article-title: Aluminium tolerance of root hairs underlies genotypic differences in rhizosheath size of wheat ( publication-title: New Phytol. – volume: 44 start-page: 107 year: 2017 end-page: 118 ident: bib6 article-title: The advantages of functional phenotyping in pre-field screening for drought-tolerant crops publication-title: Funct. Plant Biol. – volume: 40 start-page: 1 year: 2012 end-page: 13 ident: bib79 article-title: A multisite managed environment facility for targeted trait and germplasm phenotyping publication-title: Funct. Plant Biol. – volume: 7 start-page: 1419 year: 2016 ident: bib113 article-title: Using deep learning for image-based plant disease detection publication-title: Front. Plant Sci. – volume: 166 start-page: 470 year: 2014 ident: bib66 article-title: Image-based high-throughput field phenotyping of crop roots publication-title: Plant Physiol. – volume: 36 start-page: 922 year: 2009 end-page: 929 ident: bib3 article-title: Root phenomics of crops: opportunities and challenges publication-title: Funct. Plant Biol. – volume: 341 start-page: 75 year: 2011 end-page: 87 ident: bib59 article-title: Shovelomics: high throughput phenotyping of maize ( publication-title: Plant Soil – volume: 312 start-page: 7 year: 2008 end-page: 14 ident: bib118 article-title: Lorenz Hiltner, a pioneer in rhizosphere microbial ecology and soil bacteriology research publication-title: Plant Soil – volume: 67 start-page: 3605 year: 2016 end-page: 3615 ident: bib13 article-title: From promise to application: root traits for enhanced nutrient capture in rice breeding publication-title: J. Exp. Bot. – volume: 31 start-page: 1708 year: 2019 end-page: 1722 ident: bib73 article-title: High-resolution 4D spatiotemporal analysis reveals the contributions of local growth dynamics to contrasting maize root architectures publication-title: Plant Cell – volume: 200 start-page: 63 year: 1998 end-page: 69 ident: bib11 article-title: Genetic control of adaptive root characteristics in white clover publication-title: Plant Soil – volume: 13 start-page: 102 year: 2017 ident: bib40 article-title: Non-invasive imaging of plant roots in different soils using magnetic resonance imaging (MRI) publication-title: Plant Methods – year: 2018 ident: bib68 article-title: A novel multi-perspective imaging platform (M-PIP) for phenotyping soybean root crowns in the field increases throughput and separation ability of genotype root properties publication-title: bioRxiv – volume: 215 start-page: 1274 year: 2017 end-page: 1286 ident: bib83 article-title: OpenSimRoot: widening the scope and application of root architectural models publication-title: New Phytol. – volume: 30 start-page: 483 year: 2003 end-page: 491 ident: bib123 article-title: Soil strength and rate of root elongation alter the accumulation of publication-title: Funct. Plant Biol. – start-page: 341 year: 2011 end-page: 361 ident: bib75 article-title: Minirhizotrons in modern root studies publication-title: Measuring Roots – volume: 40 start-page: 137 year: 2013 end-page: 147 ident: bib78 article-title: Minirhizotron imaging reveals that nodulation of field-grown soybean is enhanced by free-air CO2 enrichment only when combined with drought stress publication-title: Funct. Plant Biol. – volume: 497 start-page: 60 year: 2013 end-page: 66 ident: bib17 article-title: Using membrane transporters to improve crops for sustainable food production publication-title: Nature – volume: 25 year: 2019 ident: bib47 article-title: Beyond digging: non-invasive root and rhizosphere phenotyping publication-title: Trends Plant Sci. – volume: 56 start-page: 947 year: 2005 end-page: 960 ident: bib91 article-title: Trait physiology and crop modelling as a framework to link phenotypic complexity to underlying genetic systems publication-title: Aust. J. Agric. Res. – volume: 64 start-page: 1193 year: 2013 end-page: 1208 ident: bib120 article-title: Soil conditions and cereal root system architecture: review and considerations for linking Darwin and Weaver publication-title: J. Exp. Bot. – volume: 172 start-page: 1358 year: 2016 ident: bib49 article-title: PhenoSeeder - a robot system for automated handling and phenotyping of individual seeds publication-title: Plant Physiol. – volume: 61 start-page: 4129 year: 2010 end-page: 4143 ident: bib92 article-title: Increasing productivity by matching farming system management and genotype in water-limited environments publication-title: J. Exp. Bot. – volume: 63 start-page: 3485 year: 2012 end-page: 3498 ident: bib24 article-title: Traits and selection strategies to improve root systems and water uptake in water-limited wheat crops publication-title: J. Exp. Bot. – volume: 46 start-page: S158 year: 2005 ident: bib14 article-title: Overexpression of wheat ALMT1 gene confers aluminum tolerance in plants publication-title: Plant Cell Physiol. – volume: 170 start-page: 1176 year: 2016 end-page: 1188 ident: bib44 article-title: Quantitative 3D analysis of plant roots growing in soil using magnetic resonance imaging publication-title: Plant Physiol. – volume: 55 start-page: 1 year: 2019 end-page: 8 ident: bib38 article-title: Uncovering the hidden half of plants using new advances in root phenotyping publication-title: Curr. Opin. Biotechnol. – volume: 192 start-page: 21 year: 2016 end-page: 32 ident: bib65 article-title: Legume shovelomics: high-throughput phenotyping of common bean ( publication-title: Field Crops Res. – volume: 3 start-page: 3194 year: 2013 ident: bib71 article-title: A DNA-based method for studying root responses to drought in field-grown wheat genotypes publication-title: Sci. Rep. – year: 2019 ident: bib37 article-title: Dynamics in plant roots and shoots minimise stress, save energy and maintain water and nutrient uptake publication-title: New Phytol. – volume: 7 start-page: 944 year: 2016 ident: bib30 article-title: Sowing density: a neglected factor fundamentally affecting root distribution and biomass allocation of field grown spring barley ( publication-title: Front. Plant Sci. – volume: 168 start-page: 156 year: 2014 end-page: 167 ident: bib19 article-title: A wheat phenotyping network to incorporate physiological traits for climate change in South Asia publication-title: Field Crop Res. – volume: 11 start-page: 17 year: 2015 ident: bib39 article-title: Direct comparison of MRI and X-ray CT technologies for 3D imaging of root systems in soil: potential and challenges for root trait quantification publication-title: Plant Methods – volume: 90 start-page: 145 year: 2004 end-page: 163 ident: bib85 article-title: From genome to crop: integration through simulation modeling publication-title: Field Crops Res. – volume: 128 start-page: 181 year: 2016 end-page: 192 ident: bib112 article-title: A multi-sensor system for high throughput field phenotyping in soybean and wheat breeding publication-title: Comput. Electron. Agr. – volume: 46 start-page: 257 year: 2008 end-page: 264 ident: bib97 article-title: Organic anions in the rhizosphere of Al-tolerant and Al-sensitive wheat lines grown in an acid soil in controlled and field environments publication-title: Aust. J. Soil Res. – volume: 7 start-page: 1155 year: 2016 ident: bib34 article-title: Identification of water use strategies at early growth stages in durum wheat from shoot phenotyping and physiological measurements publication-title: Front. Plant Sci. – volume: 50 start-page: 467 year: 2016 end-page: 491 ident: bib115 article-title: Plant transgenerational epigenetics publication-title: Annu. Rev. Genet. – volume: 14 start-page: 39 year: 1974 end-page: 55 ident: bib7 article-title: Phenotype and drought tolerance in wheat publication-title: Agr. Meteorol. – volume: 66 start-page: 5493 year: 2015 end-page: 5505 ident: bib62 article-title: Intensive field phenotyping of maize ( publication-title: J. Exp. Bot. – volume: 40 start-page: 943 year: 1989 end-page: 950 ident: bib10 article-title: A breeding program to reduce the diameter of the major xylem vessel in the seminal roots of wheat and its effect on grain-yield in rain-fed environments publication-title: Aust. J. Agr. Res. – volume: 67 start-page: 2453 year: 2016 end-page: 2466 ident: bib33 article-title: Screening for drought tolerance of maize hybrids by multi-scale analysis of root and shoot traits at the seedling stage publication-title: J. Exp. Bot. – volume: 128 start-page: 999 year: 2015 end-page: 1017 ident: bib122 article-title: MAGIC populations in crops: current status and future prospects publication-title: Theor. Appl. Genet. – volume: 404 start-page: 61 year: 2016 end-page: 74 ident: bib111 article-title: Identification of several wheat landraces with biological nitrification inhibition capacity publication-title: Plant Soil – volume: 74 start-page: 500 year: 1982 end-page: 503 ident: bib69 article-title: Quantitative separation of roots from compacted soil profiles by the hydropneumatic elutriation system publication-title: Agronomy J. – volume: 385 start-page: 303 year: 2014 end-page: 310 ident: bib42 article-title: Quantifying the response of wheat ( publication-title: Plant Soil – volume: 174 start-page: 2333 year: 2017 ident: bib86 article-title: Root cortical senescence improves growth under suboptimal availability of N, P, and K publication-title: Plant Physiol. – volume: 62 start-page: 2485 year: 2011 end-page: 2494 ident: bib8 article-title: Dro1, a major QTL involved in deep rooting of rice under upland field conditions publication-title: J. Exp. Bot. – volume: 128 start-page: 575 year: 2015 end-page: 585 ident: bib18 article-title: Common genetic basis for canopy temperature depression under heat and drought stress associated with optimized root distribution in bread wheat publication-title: Theor. Appl. Genet. – volume: 70 start-page: 4963 year: 2019 end-page: 4974 ident: bib21 article-title: Deeper roots associated with cooler canopies, higher normalized difference vegetation index, and greater yield in three wheat populations grown on stored soil water publication-title: J. Exp. Bot. – volume: 61 start-page: 311 year: 2010 end-page: 313 ident: bib41 article-title: The X-factor: visualizing undisturbed root architecture in soils using X-ray computed tomography publication-title: J. Exp. Bot. – volume: 65 start-page: 1981 year: 2014 end-page: 1995 ident: bib50 article-title: Improvement of crop yield in dry environments: benchmarks, levels of organisation and the role of nitrogen publication-title: J. Exp. Bot. – volume: 143 start-page: 18 year: 2013 end-page: 33 ident: bib110 article-title: Prognosis for genetic improvement of yield potential and water-limited yield of major grain crops publication-title: Field Crops Res. – volume: 178 start-page: 690 year: 2008 ident: bib72 article-title: Types, structure and potential for axial water flow in the deepest roots of field-grown cereals publication-title: New Phytol. – volume: 350 start-page: 205 year: 2012 end-page: 220 ident: bib74 article-title: Quantitative estimates of root densities at minirhizotrons differ from those in the bulk soil publication-title: Plant Soil – volume: 115 start-page: 67 year: 2010 end-page: 78 ident: bib12 article-title: Will nutrient-efficient genotypes mine the soil? Effects of genetic differences in root architecture in common bean ( publication-title: Field Crop Res. – volume: 19 start-page: 52 year: 2014 end-page: 61 ident: bib57 article-title: Field high-throughput phenotyping: the new crop breeding frontier publication-title: Trends Plant Sci. – volume: 66 start-page: 5519 year: 2015 end-page: 5530 ident: bib25 article-title: Impact of domestication on the phenotypic architecture of durum wheat under contrasting nitrogen fertilization publication-title: J. Exp. Bot. – volume: 116 start-page: 321 year: 2015 end-page: 331 ident: bib31 article-title: Phenotype of publication-title: Ann. Bot. – volume: 66 start-page: 5441 year: 2015 ident: 10.1016/j.tplants.2019.10.015_bib27 article-title: Simultaneous effects of leaf irradiance and soil moisture on growth and root system architecture of novel wheat genotypes: implications for phenotyping publication-title: J. Exp. Bot. doi: 10.1093/jxb/erv290 – volume: 212 start-page: 838 year: 2016 ident: 10.1016/j.tplants.2019.10.015_bib52 article-title: Pampered inside, pestered outside? Differences and similarities between plants growing in controlled conditions and in the field publication-title: New Phytol. doi: 10.1111/nph.14243 – start-page: 173 year: 2014 ident: 10.1016/j.tplants.2019.10.015_bib23 article-title: Non-invasive phenotyping methodologies enable the accurate characterization of growth and performance of shoots and roots – volume: 33 start-page: 777 year: 2012 ident: 10.1016/j.tplants.2019.10.015_bib117 article-title: Deep phenotyping for precision medicine publication-title: Hum. Mutat. doi: 10.1002/humu.22080 – volume: 11 start-page: 17 year: 2015 ident: 10.1016/j.tplants.2019.10.015_bib39 article-title: Direct comparison of MRI and X-ray CT technologies for 3D imaging of root systems in soil: potential and challenges for root trait quantification publication-title: Plant Methods doi: 10.1186/s13007-015-0060-z – volume: 128 start-page: 575 year: 2015 ident: 10.1016/j.tplants.2019.10.015_bib18 article-title: Common genetic basis for canopy temperature depression under heat and drought stress associated with optimized root distribution in bread wheat publication-title: Theor. Appl. Genet. doi: 10.1007/s00122-015-2453-9 – volume: 415 start-page: 99 year: 2017 ident: 10.1016/j.tplants.2019.10.015_bib104 article-title: A new model for root growth in soil with macropores publication-title: Plant Soil doi: 10.1007/s11104-016-3144-2 – volume: 415 start-page: 407 year: 2017 ident: 10.1016/j.tplants.2019.10.015_bib58 article-title: Methods to estimate changes in soil water for phenotyping root activity in the field publication-title: Plant Soil doi: 10.1007/s11104-016-3161-1 – volume: 25 year: 2019 ident: 10.1016/j.tplants.2019.10.015_bib47 article-title: Beyond digging: non-invasive root and rhizosphere phenotyping publication-title: Trends Plant Sci. – volume: 172 start-page: 1358 year: 2016 ident: 10.1016/j.tplants.2019.10.015_bib49 article-title: PhenoSeeder - a robot system for automated handling and phenotyping of individual seeds publication-title: Plant Physiol. doi: 10.1104/pp.16.01122 – year: 2018 ident: 10.1016/j.tplants.2019.10.015_bib64 article-title: Wheat shovelomics II: revealing relationships between root crown traits and crop growth publication-title: bioRxiv – volume: 67 start-page: 3665 year: 2016 ident: 10.1016/j.tplants.2019.10.015_bib90 article-title: Farming system context drives the value of deep wheat roots in semi-arid environments publication-title: J. Exp. Bot. doi: 10.1093/jxb/erw093 – volume: 168 start-page: 156 year: 2014 ident: 10.1016/j.tplants.2019.10.015_bib19 article-title: A wheat phenotyping network to incorporate physiological traits for climate change in South Asia publication-title: Field Crop Res. doi: 10.1016/j.fcr.2014.07.004 – volume: 30 start-page: 483 year: 2003 ident: 10.1016/j.tplants.2019.10.015_bib123 article-title: Soil strength and rate of root elongation alter the accumulation of Pseudomonas spp. and other bacteria in the rhizosphere of wheat publication-title: Funct. Plant Biol. doi: 10.1071/FP03045 – volume: 52 start-page: 1367 year: 2001 ident: 10.1016/j.tplants.2019.10.015_bib16 article-title: Diagnostic DNA markers for cereal cyst nematode resistance in bread wheat publication-title: Aust. J. Agr. Res. doi: 10.1071/AR01031 – volume: 64 start-page: 267 year: 2013 ident: 10.1016/j.tplants.2019.10.015_bib114 article-title: Future scenarios for plant phenotyping publication-title: Annu. Rev. Plant Biol. doi: 10.1146/annurev-arplant-050312-120137 – volume: 351 start-page: 384 year: 2016 ident: 10.1016/j.tplants.2019.10.015_bib95 article-title: Cyclic programmed cell death stimulates hormone signaling and root development in Arabidopsis publication-title: Science doi: 10.1126/science.aad2776 – volume: 41 start-page: 91 year: 1987 ident: 10.1016/j.tplants.2019.10.015_bib1 article-title: Genotypic variation in crop plant root systems publication-title: Adv. Agron. doi: 10.1016/S0065-2113(08)60803-2 – volume: 67 start-page: 3709 year: 2016 ident: 10.1016/j.tplants.2019.10.015_bib81 article-title: Rhizosheaths on wheat grown in acid soils: phosphorus acquisition efficiency and genetic control publication-title: J. Exp. Bot. doi: 10.1093/jxb/erw035 – volume: 200 start-page: 63 year: 1998 ident: 10.1016/j.tplants.2019.10.015_bib11 article-title: Genetic control of adaptive root characteristics in white clover publication-title: Plant Soil doi: 10.1023/A:1004296707631 – volume: 62 start-page: 2485 year: 2011 ident: 10.1016/j.tplants.2019.10.015_bib8 article-title: Dro1, a major QTL involved in deep rooting of rice under upland field conditions publication-title: J. Exp. Bot. doi: 10.1093/jxb/erq429 – volume: 68 start-page: 965 year: 2017 ident: 10.1016/j.tplants.2019.10.015_bib89 article-title: Root architecture simulation improves the inference from seedling root phenotyping towards mature root systems publication-title: J. Exp. Bot. doi: 10.1093/jxb/erw494 – volume: 497 start-page: 60 year: 2013 ident: 10.1016/j.tplants.2019.10.015_bib17 article-title: Using membrane transporters to improve crops for sustainable food production publication-title: Nature doi: 10.1038/nature11909 – year: 2018 ident: 10.1016/j.tplants.2019.10.015_bib68 article-title: A novel multi-perspective imaging platform (M-PIP) for phenotyping soybean root crowns in the field increases throughput and separation ability of genotype root properties publication-title: bioRxiv – volume: 14 start-page: 39 year: 1974 ident: 10.1016/j.tplants.2019.10.015_bib7 article-title: Phenotype and drought tolerance in wheat publication-title: Agr. Meteorol. doi: 10.1016/0002-1571(74)90009-0 – volume: 37 start-page: 147 year: 2010 ident: 10.1016/j.tplants.2019.10.015_bib55 article-title: Partitioning of assimilates to deeper roots is associated with cooler canopies and increased yield under drought in wheat publication-title: Funct. Plant Biol. doi: 10.1071/FP09121 – volume: 37 start-page: 85 year: 2010 ident: 10.1016/j.tplants.2019.10.015_bib51 article-title: Breeding for improved water productivity in temperate cereals: phenotyping, quantitative trait loci, markers and the selection environment publication-title: Funct. Plant Biol. doi: 10.1071/FP09219 – volume: 66 start-page: 5519 year: 2015 ident: 10.1016/j.tplants.2019.10.015_bib25 article-title: Impact of domestication on the phenotypic architecture of durum wheat under contrasting nitrogen fertilization publication-title: J. Exp. Bot. doi: 10.1093/jxb/erv289 – volume: 222 start-page: 1149 year: 2019 ident: 10.1016/j.tplants.2019.10.015_bib109 article-title: Multilab EcoFAB study shows highly reproducible physiology and depletion of soil metabolites by a model grass publication-title: New Phytol. doi: 10.1111/nph.15662 – volume: 41 start-page: 581 year: 2014 ident: 10.1016/j.tplants.2019.10.015_bib28 article-title: Spring barley shows dynamic compensatory root and shoot growth responses when exposed to localised soil compaction and fertilisation publication-title: Funct. Plant Biol. doi: 10.1071/FP13224 – volume: 56 start-page: 947 year: 2005 ident: 10.1016/j.tplants.2019.10.015_bib91 article-title: Trait physiology and crop modelling as a framework to link phenotypic complexity to underlying genetic systems publication-title: Aust. J. Agric. Res. doi: 10.1071/AR05157 – volume: 122 start-page: 485 year: 2018 ident: 10.1016/j.tplants.2019.10.015_bib84 article-title: Co-optimization of axial root phenotypes for nitrogen and phosphorus acquisition in common bean publication-title: Ann. Bot. doi: 10.1093/aob/mcy092 – volume: 4 start-page: 392 year: 2013 ident: 10.1016/j.tplants.2019.10.015_bib103 article-title: Disentangling who is who during rhizosphere acidification in root interactions: combining fluorescence with optode techniques publication-title: Front. Plant Sci. doi: 10.3389/fpls.2013.00392 – volume: 65 start-page: 6231 year: 2014 ident: 10.1016/j.tplants.2019.10.015_bib9 article-title: Soil coring at multiple field environments can directly quantify variation in deep root traits to select wheat genotypes for breeding publication-title: J. Exp. Bot. doi: 10.1093/jxb/eru250 – volume: 1 start-page: 225 year: 2006 ident: 10.1016/j.tplants.2019.10.015_bib29 article-title: Root growth reacts rapidly and more pronounced than shoot growth towards increasing light intensity in tobacco seedlings publication-title: Plant Signal. Behav. doi: 10.4161/psb.1.5.3447 – volume: 341 start-page: 75 year: 2011 ident: 10.1016/j.tplants.2019.10.015_bib59 article-title: Shovelomics: high throughput phenotyping of maize (Zea mays L.) root architecture in the field publication-title: Plant Soil doi: 10.1007/s11104-010-0623-8 – volume: 63 start-page: 3485 year: 2012 ident: 10.1016/j.tplants.2019.10.015_bib24 article-title: Traits and selection strategies to improve root systems and water uptake in water-limited wheat crops publication-title: J. Exp. Bot. doi: 10.1093/jxb/ers111 – volume: 115 start-page: 67 year: 2010 ident: 10.1016/j.tplants.2019.10.015_bib12 article-title: Will nutrient-efficient genotypes mine the soil? Effects of genetic differences in root architecture in common bean (Phaseolus vulgaris L.) on soil phosphorus depletion in a low-input agro-ecosystem in Central America publication-title: Field Crop Res. doi: 10.1016/j.fcr.2009.10.004 – volume: 67 start-page: 3629 year: 2016 ident: 10.1016/j.tplants.2019.10.015_bib94 article-title: The holistic rhizosphere: integrating zones, processes, and semantics in the soil influenced by roots publication-title: J. Exp. Bot. doi: 10.1093/jxb/erw108 – volume: 7 start-page: 1419 year: 2016 ident: 10.1016/j.tplants.2019.10.015_bib113 article-title: Using deep learning for image-based plant disease detection publication-title: Front. Plant Sci. doi: 10.3389/fpls.2016.01419 – volume: 388 start-page: 1 year: 2015 ident: 10.1016/j.tplants.2019.10.015_bib67 article-title: Next generation shovelomics: set up a tent and REST publication-title: Plant Soil doi: 10.1007/s11104-015-2379-7 – volume: 166 start-page: 2166 year: 2014 ident: 10.1016/j.tplants.2019.10.015_bib80 article-title: Large root cortical cell size improves drought tolerance in maize publication-title: Plant Physiol. doi: 10.1104/pp.114.250449 – volume: 61 start-page: 311 year: 2010 ident: 10.1016/j.tplants.2019.10.015_bib41 article-title: The X-factor: visualizing undisturbed root architecture in soils using X-ray computed tomography publication-title: J. Exp. Bot. doi: 10.1093/jxb/erp386 – volume: 7 start-page: 944 year: 2016 ident: 10.1016/j.tplants.2019.10.015_bib30 article-title: Sowing density: a neglected factor fundamentally affecting root distribution and biomass allocation of field grown spring barley (Hordeum vulgare L.) publication-title: Front. Plant Sci. doi: 10.3389/fpls.2016.00944 – volume: 7 start-page: 14875 year: 2017 ident: 10.1016/j.tplants.2019.10.015_bib107 article-title: The emergent rhizosphere: imaging the development of the porous architecture at the root-soil interface publication-title: Sci. Rep. doi: 10.1038/s41598-017-14904-w – volume: 69 start-page: 2759 year: 2018 ident: 10.1016/j.tplants.2019.10.015_bib43 article-title: Hydrotropism: how roots search for water publication-title: J. Exp. Bot. doi: 10.1093/jxb/ery034 – volume: 44 start-page: 299 year: 2006 ident: 10.1016/j.tplants.2019.10.015_bib2 article-title: Rhizosphere biology and crop productivity - a review publication-title: Aust. J. Soil Res. doi: 10.1071/SR05142 – volume: 67 start-page: 3605 year: 2016 ident: 10.1016/j.tplants.2019.10.015_bib13 article-title: From promise to application: root traits for enhanced nutrient capture in rice breeding publication-title: J. Exp. Bot. doi: 10.1093/jxb/erw061 – volume: 2019 start-page: 6 year: 2019 ident: 10.1016/j.tplants.2019.10.015_bib46 article-title: Plant phenotyping: past, present, and future publication-title: Plant Phenomics doi: 10.34133/2019/7507131 – volume: 350 start-page: 205 year: 2012 ident: 10.1016/j.tplants.2019.10.015_bib74 article-title: Quantitative estimates of root densities at minirhizotrons differ from those in the bulk soil publication-title: Plant Soil doi: 10.1007/s11104-011-0896-6 – volume: 312 start-page: 7 year: 2008 ident: 10.1016/j.tplants.2019.10.015_bib118 article-title: Lorenz Hiltner, a pioneer in rhizosphere microbial ecology and soil bacteriology research publication-title: Plant Soil doi: 10.1007/s11104-007-9514-z – volume: 112 start-page: 447 year: 2013 ident: 10.1016/j.tplants.2019.10.015_bib53 article-title: A rapid, controlled-environment seedling root screen for wheat correlates well with rooting depths at vegetative, but not reproductive, stages at two field sites publication-title: Ann. Bot. doi: 10.1093/aob/mct122 – volume: 44 start-page: 107 year: 2017 ident: 10.1016/j.tplants.2019.10.015_bib6 article-title: The advantages of functional phenotyping in pre-field screening for drought-tolerant crops publication-title: Funct. Plant Biol. doi: 10.1071/FP16156 – volume: 30 start-page: 360 year: 2012 ident: 10.1016/j.tplants.2019.10.015_bib15 article-title: Wheat grain yield on saline soils is improved by an ancestral Na(+) transporter gene publication-title: Nat. Biotechnol. doi: 10.1038/nbt.2120 – volume: 63 start-page: 3467 year: 2012 ident: 10.1016/j.tplants.2019.10.015_bib5 article-title: Application of Brachypodium to the genetic improvement of wheat roots publication-title: J. Exp. Bot. doi: 10.1093/jxb/ers044 – volume: 219 start-page: 542 year: 2018 ident: 10.1016/j.tplants.2019.10.015_bib108 article-title: Plant roots redesign the rhizosphere to alter the three-dimensional physical architecture and water dynamics publication-title: New Phytol. doi: 10.1111/nph.15213 – volume: 67 start-page: 1033 year: 2016 ident: 10.1016/j.tplants.2019.10.015_bib60 article-title: A portable fluorescence spectroscopy imaging system for automated root phenotyping in soil cores in the field publication-title: J. Exp. Bot. doi: 10.1093/jxb/erv570 – volume: 66 start-page: 2305 year: 2015 ident: 10.1016/j.tplants.2019.10.015_bib106 article-title: Assessing the influence of the rhizosphere on soil hydraulic properties using X-ray computed tomography and numerical modelling publication-title: J. Exp. Bot. doi: 10.1093/jxb/eru509 – volume: 13 start-page: 102 year: 2017 ident: 10.1016/j.tplants.2019.10.015_bib40 article-title: Non-invasive imaging of plant roots in different soils using magnetic resonance imaging (MRI) publication-title: Plant Methods doi: 10.1186/s13007-017-0252-9 – volume: 70 start-page: 4963 year: 2019 ident: 10.1016/j.tplants.2019.10.015_bib21 article-title: Deeper roots associated with cooler canopies, higher normalized difference vegetation index, and greater yield in three wheat populations grown on stored soil water publication-title: J. Exp. Bot. doi: 10.1093/jxb/erz232 – volume: 109 start-page: 7 year: 1995 ident: 10.1016/j.tplants.2019.10.015_bib119 article-title: Root architecture and plant productivity publication-title: Plant Physiol. doi: 10.1104/pp.109.1.7 – volume: 55 start-page: 1 year: 2019 ident: 10.1016/j.tplants.2019.10.015_bib38 article-title: Uncovering the hidden half of plants using new advances in root phenotyping publication-title: Curr. Opin. Biotechnol. doi: 10.1016/j.copbio.2018.06.002 – volume: 40 start-page: 137 year: 2013 ident: 10.1016/j.tplants.2019.10.015_bib78 article-title: Minirhizotron imaging reveals that nodulation of field-grown soybean is enhanced by free-air CO2 enrichment only when combined with drought stress publication-title: Funct. Plant Biol. doi: 10.1071/FP12044 – volume: 64 start-page: 1193 year: 2013 ident: 10.1016/j.tplants.2019.10.015_bib120 article-title: Soil conditions and cereal root system architecture: review and considerations for linking Darwin and Weaver publication-title: J. Exp. Bot. doi: 10.1093/jxb/ert043 – volume: 61 start-page: 4129 year: 2010 ident: 10.1016/j.tplants.2019.10.015_bib92 article-title: Increasing productivity by matching farming system management and genotype in water-limited environments publication-title: J. Exp. Bot. doi: 10.1093/jxb/erq245 – volume: 58 start-page: 275 year: 2013 ident: 10.1016/j.tplants.2019.10.015_bib102 article-title: Soil zymography – a novel in situ method for mapping distribution of enzyme activity in soil publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2012.12.004 – volume: 7 start-page: 13342 year: 2016 ident: 10.1016/j.tplants.2019.10.015_bib35 article-title: Salinity tolerance loci revealed in rice using high-throughput non-invasive phenotyping publication-title: Nat. Commun. doi: 10.1038/ncomms13342 – volume: 143 start-page: 18 year: 2013 ident: 10.1016/j.tplants.2019.10.015_bib110 article-title: Prognosis for genetic improvement of yield potential and water-limited yield of major grain crops publication-title: Field Crops Res. doi: 10.1016/j.fcr.2012.05.014 – volume: 46 start-page: S158 year: 2005 ident: 10.1016/j.tplants.2019.10.015_bib14 article-title: Overexpression of wheat ALMT1 gene confers aluminum tolerance in plants publication-title: Plant Cell Physiol. – volume: 8 start-page: 871 year: 2006 ident: 10.1016/j.tplants.2019.10.015_bib96 article-title: Numbers and locations of native bacteria on field-grown wheat roots quantified by fluorescence in situ hybridization (FISH) publication-title: Environ. Microbiol. doi: 10.1111/j.1462-2920.2005.00973.x – volume: 404 start-page: 61 year: 2016 ident: 10.1016/j.tplants.2019.10.015_bib111 article-title: Identification of several wheat landraces with biological nitrification inhibition capacity publication-title: Plant Soil doi: 10.1007/s11104-016-2822-4 – volume: 40 start-page: 943 year: 1989 ident: 10.1016/j.tplants.2019.10.015_bib10 article-title: A breeding program to reduce the diameter of the major xylem vessel in the seminal roots of wheat and its effect on grain-yield in rain-fed environments publication-title: Aust. J. Agr. Res. doi: 10.1071/AR9890943 – volume: 174 start-page: 2333 year: 2017 ident: 10.1016/j.tplants.2019.10.015_bib86 article-title: Root cortical senescence improves growth under suboptimal availability of N, P, and K publication-title: Plant Physiol. doi: 10.1104/pp.17.00648 – volume: 90 start-page: 145 year: 2004 ident: 10.1016/j.tplants.2019.10.015_bib85 article-title: From genome to crop: integration through simulation modeling publication-title: Field Crops Res. doi: 10.1016/j.fcr.2004.07.014 – volume: 107 start-page: 1215 year: 2015 ident: 10.1016/j.tplants.2019.10.015_bib93 article-title: Meeting global food needs: realizing the potential via genetics × environment × management interactions publication-title: Agronomy J. doi: 10.2134/agronj15.0076 – volume: 206 start-page: 1196 year: 2015 ident: 10.1016/j.tplants.2019.10.015_bib116 article-title: The importance of the microbiome of the plant holobiont publication-title: New Phytol. doi: 10.1111/nph.13312 – year: 2019 ident: 10.1016/j.tplants.2019.10.015_bib37 article-title: Dynamics in plant roots and shoots minimise stress, save energy and maintain water and nutrient uptake publication-title: New Phytol. doi: 10.1111/nph.15955 – volume: 69 start-page: 62 year: 2019 ident: 10.1016/j.tplants.2019.10.015_bib77 article-title: Evaluation of deep root phenotyping techniques in tube rhizotrons publication-title: Acta Agric. Scand. B Plant Sci. – volume: 170 start-page: 1176 year: 2016 ident: 10.1016/j.tplants.2019.10.015_bib44 article-title: Quantitative 3D analysis of plant roots growing in soil using magnetic resonance imaging publication-title: Plant Physiol. doi: 10.1104/pp.15.01388 – volume: 74 start-page: 500 year: 1982 ident: 10.1016/j.tplants.2019.10.015_bib69 article-title: Quantitative separation of roots from compacted soil profiles by the hydropneumatic elutriation system publication-title: Agronomy J. doi: 10.2134/agronj1982.00021962007400030023x – volume: 21 start-page: 243 year: 2016 ident: 10.1016/j.tplants.2019.10.015_bib101 article-title: New methods to unravel rhizosphere processes publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2015.12.005 – volume: 66 start-page: 5389 year: 2015 ident: 10.1016/j.tplants.2019.10.015_bib4 article-title: Root phenotyping: from component trait in the lab to breeding publication-title: J. Exp. Bot. doi: 10.1093/jxb/erv239 – volume: 8 start-page: 241 year: 2018 ident: 10.1016/j.tplants.2019.10.015_bib56 article-title: Root phenotyping for drought tolerance: a review publication-title: Agronomy doi: 10.3390/agronomy8110241 – volume: 29 start-page: 340 year: 2006 ident: 10.1016/j.tplants.2019.10.015_bib36 article-title: Functional dynamics of plant growth and photosynthesis – from steady-state to dynamics – from homogeneity to heterogeneity publication-title: Plant, Cell Environ. doi: 10.1111/j.1365-3040.2005.01490.x – volume: 36 start-page: 922 year: 2009 ident: 10.1016/j.tplants.2019.10.015_bib3 article-title: Root phenomics of crops: opportunities and challenges publication-title: Funct. Plant Biol. doi: 10.1071/FP09150 – volume: 50 start-page: 467 year: 2016 ident: 10.1016/j.tplants.2019.10.015_bib115 article-title: Plant transgenerational epigenetics publication-title: Annu. Rev. Genet. doi: 10.1146/annurev-genet-120215-035254 – volume: 3 start-page: 3194 year: 2013 ident: 10.1016/j.tplants.2019.10.015_bib71 article-title: A DNA-based method for studying root responses to drought in field-grown wheat genotypes publication-title: Sci. Rep. doi: 10.1038/srep03194 – volume: 41 start-page: 121 year: 2017 ident: 10.1016/j.tplants.2019.10.015_bib87 article-title: Quantification of root water uptake in soil using X-ray computed tomography and image-based modelling publication-title: Plant Cell Environ. doi: 10.1111/pce.12983 – volume: 178 start-page: 690 year: 2008 ident: 10.1016/j.tplants.2019.10.015_bib72 article-title: Types, structure and potential for axial water flow in the deepest roots of field-grown cereals publication-title: New Phytol. doi: 10.1111/j.1469-8137.2007.02358.x – volume: 215 start-page: 1274 year: 2017 ident: 10.1016/j.tplants.2019.10.015_bib83 article-title: OpenSimRoot: widening the scope and application of root architectural models publication-title: New Phytol. doi: 10.1111/nph.14641 – volume: 39 start-page: 891 year: 2012 ident: 10.1016/j.tplants.2019.10.015_bib22 article-title: GROWSCREEN-Rhizo is a novel phenotyping robot enabling simultaneous measurements of root and shoot growth for plants grown in soil-filled rhizotrons publication-title: Funct. Plant Biol. doi: 10.1071/FP12023 – volume: 66 start-page: 5493 year: 2015 ident: 10.1016/j.tplants.2019.10.015_bib62 article-title: Intensive field phenotyping of maize (Zea mays L.) root crowns identifies phenes and phene integration associated with plant growth and nitrogen acquisition publication-title: J. Exp. Bot. doi: 10.1093/jxb/erv241 – volume: 8 start-page: 1594 year: 2017 ident: 10.1016/j.tplants.2019.10.015_bib70 article-title: Accuracy and bias of methods used for root length measurements in functional root research publication-title: Methods in Ecology and Evolution doi: 10.1111/2041-210X.12771 – volume: 192 start-page: 21 year: 2016 ident: 10.1016/j.tplants.2019.10.015_bib65 article-title: Legume shovelomics: high-throughput phenotyping of common bean (Phaseolus vulgaris L.) and cowpea (Vigna unguiculata subsp, unguiculata) root architecture in the field publication-title: Field Crops Res. doi: 10.1016/j.fcr.2016.04.008 – volume: 3 start-page: 129 year: 2005 ident: 10.1016/j.tplants.2019.10.015_bib98 article-title: Expression of a fungal phytase gene in Nicotiana tabacum improves phosphorus nutrition of plants grown in amended soils publication-title: Plant Biotechnol. J. doi: 10.1111/j.1467-7652.2004.00116.x – volume: 385 start-page: 303 year: 2014 ident: 10.1016/j.tplants.2019.10.015_bib42 article-title: Quantifying the response of wheat (Triticum aestivum L) root system architecture to phosphorus in an Oxisol publication-title: Plant Soil doi: 10.1007/s11104-014-2191-9 – volume: 8 start-page: 786 year: 2017 ident: 10.1016/j.tplants.2019.10.015_bib82 article-title: Crops in silico: generating virtual crops using an integrative and multi-scale modeling platform publication-title: Front. Plant Sci. doi: 10.3389/fpls.2017.00786 – volume: 168 start-page: 953 year: 2015 ident: 10.1016/j.tplants.2019.10.015_bib26 article-title: Variation in adult plant phenotypes and partitioning among seed and stem-borne roots across Brachypodium distachyon accessions to exploit in breeding cereals for well-watered and drought environments publication-title: Plant Physiol. doi: 10.1104/pp.15.00095 – volume: 166 start-page: 590 year: 2014 ident: 10.1016/j.tplants.2019.10.015_bib88 article-title: The optimal lateral root branching density for maize depends on nitrogen and phosphorus availability publication-title: Plant Physiol. doi: 10.1104/pp.113.233916 – volume: 31 start-page: 1708 year: 2019 ident: 10.1016/j.tplants.2019.10.015_bib73 article-title: High-resolution 4D spatiotemporal analysis reveals the contributions of local growth dynamics to contrasting maize root architectures publication-title: Plant Cell doi: 10.1105/tpc.19.00015 – volume: 89 start-page: 263 year: 1981 ident: 10.1016/j.tplants.2019.10.015_bib100 article-title: The ultrastructure and histochemistry of the rhizosphere publication-title: New Phytol. – volume: 19 start-page: 52 year: 2014 ident: 10.1016/j.tplants.2019.10.015_bib57 article-title: Field high-throughput phenotyping: the new crop breeding frontier publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2013.09.008 – volume: 67 start-page: 2453 year: 2016 ident: 10.1016/j.tplants.2019.10.015_bib33 article-title: Screening for drought tolerance of maize hybrids by multi-scale analysis of root and shoot traits at the seedling stage publication-title: J. Exp. Bot. doi: 10.1093/jxb/erw055 – volume: 65 start-page: 1981 year: 2014 ident: 10.1016/j.tplants.2019.10.015_bib50 article-title: Improvement of crop yield in dry environments: benchmarks, levels of organisation and the role of nitrogen publication-title: J. Exp. Bot. doi: 10.1093/jxb/eru061 – volume: 128 start-page: 181 year: 2016 ident: 10.1016/j.tplants.2019.10.015_bib112 article-title: A multi-sensor system for high throughput field phenotyping in soybean and wheat breeding publication-title: Comput. Electron. Agr. doi: 10.1016/j.compag.2016.08.021 – volume: 111 start-page: 9319 year: 2014 ident: 10.1016/j.tplants.2019.10.015_bib105 article-title: Plant roots use a patterning mechanism to position lateral root branches toward available water publication-title: Proc. Natl. Acad. Sci. U. S. A doi: 10.1073/pnas.1400966111 – volume: 116 start-page: 321 year: 2015 ident: 10.1016/j.tplants.2019.10.015_bib31 article-title: Phenotype of Arabidopsis thaliana semi-dwarfs with deep roots and high growth rates under water-limiting conditions is independent of the GA5 loss-of-function alleles publication-title: Ann. Bot. doi: 10.1093/aob/mcv099 – volume: 43 start-page: 173 year: 2016 ident: 10.1016/j.tplants.2019.10.015_bib20 article-title: Wheats developed for high yield on stored soil moisture have deep vigorous root systems publication-title: Funct. Plant Biol. doi: 10.1071/FP15182 – volume: 8 start-page: 282 year: 2017 ident: 10.1016/j.tplants.2019.10.015_bib61 article-title: Differentiating wheat genotypes by Bayesian hierarchical nonlinear mixed modeling of wheat root density publication-title: Front. Plant Sci. doi: 10.3389/fpls.2017.00282 – volume: 166 start-page: 470 year: 2014 ident: 10.1016/j.tplants.2019.10.015_bib66 article-title: Image-based high-throughput field phenotyping of crop roots publication-title: Plant Physiol. doi: 10.1104/pp.114.243519 – volume: 67 start-page: 1161 year: 2016 ident: 10.1016/j.tplants.2019.10.015_bib54 article-title: Prioritizing quantitative trait loci for root system architecture in tetraploid wheat publication-title: J. Exp. Bot. doi: 10.1093/jxb/erw039 – volume: 177 start-page: 90 year: 2018 ident: 10.1016/j.tplants.2019.10.015_bib63 article-title: Large crown root number improves topsoil foraging and phosphorus acquisition publication-title: Plant Physiol. doi: 10.1104/pp.18.00234 – volume: 74 start-page: 131 year: 2015 ident: 10.1016/j.tplants.2019.10.015_bib76 article-title: Root growth and distribution in sugarcane cultivars fertigated by a subsurface drip system publication-title: Bragantia doi: 10.1590/1678-4499.0295 – volume: 128 start-page: 999 year: 2015 ident: 10.1016/j.tplants.2019.10.015_bib122 article-title: MAGIC populations in crops: current status and future prospects publication-title: Theor. Appl. Genet. doi: 10.1007/s00122-015-2506-0 – start-page: 341 year: 2011 ident: 10.1016/j.tplants.2019.10.015_bib75 article-title: Minirhizotrons in modern root studies – volume: 46 start-page: 257 year: 2008 ident: 10.1016/j.tplants.2019.10.015_bib97 article-title: Organic anions in the rhizosphere of Al-tolerant and Al-sensitive wheat lines grown in an acid soil in controlled and field environments publication-title: Aust. J. Soil Res. doi: 10.1071/SR07139 – volume: 59 start-page: 634 year: 2009 ident: 10.1016/j.tplants.2019.10.015_bib45 article-title: Combined MRI-PET dissects dynamic changes in plant structures and functions publication-title: Plant J. doi: 10.1111/j.1365-313X.2009.03888.x – volume: 40 start-page: 1 year: 2012 ident: 10.1016/j.tplants.2019.10.015_bib79 article-title: A multisite managed environment facility for targeted trait and germplasm phenotyping publication-title: Funct. Plant Biol. doi: 10.1071/FP12180 – volume: 44 start-page: 76 year: 2016 ident: 10.1016/j.tplants.2019.10.015_bib32 article-title: GrowScreen-PaGe, a non-invasive, high-throughput phenotyping system based on germination paper to quantify crop phenotypic diversity and plasticity of root traits under varying nutrient supply publication-title: Funct. Plant Biol. doi: 10.1071/FP16128 – year: 2018 ident: 10.1016/j.tplants.2019.10.015_bib121 – volume: 195 start-page: 609 year: 2012 ident: 10.1016/j.tplants.2019.10.015_bib48 article-title: Aluminium tolerance of root hairs underlies genotypic differences in rhizosheath size of wheat (Triticum aestivum) grown on acid soil publication-title: New Phytol. doi: 10.1111/j.1469-8137.2012.04183.x – volume: 151 start-page: 230 year: 2014 ident: 10.1016/j.tplants.2019.10.015_bib99 article-title: Can citrate efflux from roots improve phosphorus uptake by plants? Testing the hypothesis with near-isogenic lines of wheat publication-title: Physiol. Plant. doi: 10.1111/ppl.12150 – volume: 7 start-page: 1155 year: 2016 ident: 10.1016/j.tplants.2019.10.015_bib34 article-title: Identification of water use strategies at early growth stages in durum wheat from shoot phenotyping and physiological measurements publication-title: Front. Plant Sci. doi: 10.3389/fpls.2016.01155 |
SSID | ssj0007186 |
Score | 2.631961 |
SecondaryResourceType | review_article |
Snippet | Root systems determine the water and nutrients for photosynthesis and harvested products, underpinning agricultural productivity. We highlight 11 programs that... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 105 |
SubjectTerms | Agricultural production agronomy Breeding climate combinatorial stresses Computer simulation Crop improvement Farms Germplasm imaging Nutrients Phenotype Phenotypes Phenotyping Photosynthesis Plant Roots Rhizosphere root architecture Roots Seeds Shoots simulation model soil water |
Title | Crop Improvement from Phenotyping Roots: Highlights Reveal Expanding Opportunities |
URI | https://dx.doi.org/10.1016/j.tplants.2019.10.015 https://www.ncbi.nlm.nih.gov/pubmed/31806535 https://www.proquest.com/docview/2347633602 https://www.proquest.com/docview/2322750098 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5EPehBfButZQWvafPYphtvtViqYpWq4C1kkw1WShJsKvbib3cmj6qgFLzuA5aZ2W9md2e-BTgV9LIoHKmHkQx07pqRLrmQui9sn0do1W7O030zcPqP_Oqp9bQE3aoWhtIqS-wvMD1H67KlWUqzmY5GzXvTduiZjUIQdJKcCs2JvQ5tuvHxleaB2OsUtVcG8e21vqp4mi-NLB1TtglleLkNSvKi33F_909_xZ-5H-ptwkYZQLJOscYtWFLxNqyeJxjkzbZh_Ru_4A4Mu69Jyop7g_wakFE1Cbt7VnGSzahSig2TJJucMUr3GNM5fcKG6g2DR3bxnhYVL-w2pRh9Gufcq7vw2Lt46Pb18hMFPeDcyPR2ZFgRQokh3SB0DWm1cU87tiV8afKIo0JaVtvwZegIX5mWMnET2650cDDKVbXtPViOk1gdAENQpeNh6KI2OYpS2iIMAkm1rr6PrlADXonOC0qGcfroYuxVqWQvXilxjyROzShxDRrzaWlBsbFogqj04v2wFQ_dwKKptUqPXrlZsd_miLJoIJYGJ_Nu3Gb0duLHKpnSGIuY8A1XaLBf6H--WIRFYvhtHf5_XUewZtFBPr_bqcFy9jpVxxjtZLKem3MdVjqX1_3BJyPI_bY |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZS8QwEB50FdQH8XY9I_ja3R5pN_VNF2W9VlkVfCtNm6KytEW7ov_emTZdFRTB1xwQZibfTJKZLwD7gl4WhSeNOJGRwX0rMSQX0giFE_IErdovebov-17vjp_du_cT0K1rYSitUmN_heklWuuWtpZmO398bN9YjkfPbBSCoJPk7iRMETsVb8DU4el5rz8GZIRfryq_Molyz_0s5Gk_tYp8SAknlOTltyjPiz7I_dlF_RaClq7oZAHmdQzJDqtlLsKESpdg-ijDOO99Cea-UAwuw6D7nOWsujoobwIZFZSw6weVZsU7FUuxQZYVLweMMj6GdFR_YQP1ivEjO37Lq6IXdpVTmD5KS_rVFbg7Ob7t9gz9j4IRcW4WRicx7QTRxJR-FPumtDu4rT3HFqG0eMJRJ67dMUMZeyJUlq0s3MeOLz0cjKJVHWcVGmmWqnVgiKt0Qox9VChHUUpHxFEkqdw1DNEbNoHXogsiTTJOf10Mgzqb7CnQEg9I4tSMEm9Cazwtr1g2_pogar0E38wlQE_w19StWo-B3q_Y73AEWjQQuwl7427cafR8EqYqG9EYm8jwTV80Ya3S_3ixiIxE8utu_H9duzDTu728CC5O--ebMGvTub686tmCRvE8UtsY_BRyRxv3B9QKAHY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Crop+Improvement+from+Phenotyping+Roots%3A+Highlights+Reveal+Expanding+Opportunities&rft.jtitle=Trends+in+plant+science&rft.au=Tracy%2C+Saoirse+R&rft.au=Nagel%2C+Kerstin+A&rft.au=Postma%2C+Johannes+A&rft.au=Fassbender%2C+Heike&rft.date=2020-01-01&rft.pub=Elsevier+BV&rft.issn=1360-1385&rft.eissn=1878-4372&rft.volume=25&rft.issue=1&rft.spage=105&rft_id=info:doi/10.1016%2Fj.tplants.2019.10.015&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1360-1385&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1360-1385&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1360-1385&client=summon |