Crop Improvement from Phenotyping Roots: Highlights Reveal Expanding Opportunities

Root systems determine the water and nutrients for photosynthesis and harvested products, underpinning agricultural productivity. We highlight 11 programs that integrated root traits into germplasm for breeding, relying on phenotyping. Progress was successful but slow. Today’s phenotyping technologi...

Full description

Saved in:
Bibliographic Details
Published inTrends in plant science Vol. 25; no. 1; pp. 105 - 118
Main Authors Tracy, Saoirse R., Nagel, Kerstin A., Postma, Johannes A., Fassbender, Heike, Wasson, Anton, Watt, Michelle
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.01.2020
Elsevier BV
Subjects
Online AccessGet full text
ISSN1360-1385
1878-4372
1878-4372
DOI10.1016/j.tplants.2019.10.015

Cover

Loading…
Abstract Root systems determine the water and nutrients for photosynthesis and harvested products, underpinning agricultural productivity. We highlight 11 programs that integrated root traits into germplasm for breeding, relying on phenotyping. Progress was successful but slow. Today’s phenotyping technologies will speed up root trait improvement. They combine multiple new alleles in germplasm for target environments, in parallel. Roots and shoots are detected simultaneously and nondestructively, seed to seed measures are automated, and field and laboratory technologies are increasingly linked. Available simulation models can aid all phenotyping decisions. This century will see a shift from single root traits to rhizosphere selections that can be managed dynamically on farms and a shift to phenotype-based improvement to accommodate the dynamic complexity of whole crop systems. Root and rhizosphere traits have been selected and incorporated into germplasm since the 1970s, proving the value of roots and phenotyping in prebreeding programs.Past examples show how today’s noninvasive phenotyping technologies that measure roots, shoots, and seeds, can be strategically combined to speed up germplasm enhancement.Models are available to test and incorporate root phenotypes at different stages of selection programs.The root–soil rhizosphere can be phenotyped noninvasively in soils, revealing new combinatorial traits relevant to the reality of farming systems and to select for crop improvement.
AbstractList Root systems determine the water and nutrients for photosynthesis and harvested products, underpinning agricultural productivity. We highlight 11 programs that integrated root traits into germplasm for breeding, relying on phenotyping. Progress was successful but slow. Today's phenotyping technologies will speed up root trait improvement. They combine multiple new alleles in germplasm for target environments, in parallel. Roots and shoots are detected simultaneously and nondestructively, seed to seed measures are automated, and field and laboratory technologies are increasingly linked. Available simulation models can aid all phenotyping decisions. This century will see a shift from single root traits to rhizosphere selections that can be managed dynamically on farms and a shift to phenotype-based improvement to accommodate the dynamic complexity of whole crop systems.
Root systems determine the water and nutrients for photosynthesis and harvested products, underpinning agricultural productivity. We highlight 11 programs that integrated root traits into germplasm for breeding, relying on phenotyping. Progress was successful but slow. Today's phenotyping technologies will speed up root trait improvement. They combine multiple new alleles in germplasm for target environments, in parallel. Roots and shoots are detected simultaneously and nondestructively, seed to seed measures are automated, and field and laboratory technologies are increasingly linked. Available simulation models can aid all phenotyping decisions. This century will see a shift from single root traits to rhizosphere selections that can be managed dynamically on farms and a shift to phenotype-based improvement to accommodate the dynamic complexity of whole crop systems.Root systems determine the water and nutrients for photosynthesis and harvested products, underpinning agricultural productivity. We highlight 11 programs that integrated root traits into germplasm for breeding, relying on phenotyping. Progress was successful but slow. Today's phenotyping technologies will speed up root trait improvement. They combine multiple new alleles in germplasm for target environments, in parallel. Roots and shoots are detected simultaneously and nondestructively, seed to seed measures are automated, and field and laboratory technologies are increasingly linked. Available simulation models can aid all phenotyping decisions. This century will see a shift from single root traits to rhizosphere selections that can be managed dynamically on farms and a shift to phenotype-based improvement to accommodate the dynamic complexity of whole crop systems.
Root systems determine the water and nutrients for photosynthesis and harvested products, underpinning agricultural productivity. We highlight 11 programs that integrated root traits into germplasm for breeding, relying on phenotyping. Progress was successful but slow. Today’s phenotyping technologies will speed up root trait improvement. They combine multiple new alleles in germplasm for target environments, in parallel. Roots and shoots are detected simultaneously and nondestructively, seed to seed measures are automated, and field and laboratory technologies are increasingly linked. Available simulation models can aid all phenotyping decisions. This century will see a shift from single root traits to rhizosphere selections that can be managed dynamically on farms and a shift to phenotype-based improvement to accommodate the dynamic complexity of whole crop systems. Root and rhizosphere traits have been selected and incorporated into germplasm since the 1970s, proving the value of roots and phenotyping in prebreeding programs.Past examples show how today’s noninvasive phenotyping technologies that measure roots, shoots, and seeds, can be strategically combined to speed up germplasm enhancement.Models are available to test and incorporate root phenotypes at different stages of selection programs.The root–soil rhizosphere can be phenotyped noninvasively in soils, revealing new combinatorial traits relevant to the reality of farming systems and to select for crop improvement.
Author Nagel, Kerstin A.
Wasson, Anton
Watt, Michelle
Tracy, Saoirse R.
Postma, Johannes A.
Fassbender, Heike
Author_xml – sequence: 1
  givenname: Saoirse R.
  surname: Tracy
  fullname: Tracy, Saoirse R.
  organization: School of Agriculture & Food Science, University College Dublin, Dublin, Ireland
– sequence: 2
  givenname: Kerstin A.
  surname: Nagel
  fullname: Nagel, Kerstin A.
  organization: Institute for Bio and Geosciences-2, Plant Sciences, Forschungszentrum Juelich GmbH, 52428 Juelich, Germany
– sequence: 3
  givenname: Johannes A.
  surname: Postma
  fullname: Postma, Johannes A.
  organization: Institute for Bio and Geosciences-2, Plant Sciences, Forschungszentrum Juelich GmbH, 52428 Juelich, Germany
– sequence: 4
  givenname: Heike
  surname: Fassbender
  fullname: Fassbender, Heike
  organization: Institute for Bio and Geosciences-2, Plant Sciences, Forschungszentrum Juelich GmbH, 52428 Juelich, Germany
– sequence: 5
  givenname: Anton
  surname: Wasson
  fullname: Wasson, Anton
  organization: CSIRO Agriculture and Food, Canberra, Australian Capital Territory, Australia
– sequence: 6
  givenname: Michelle
  surname: Watt
  fullname: Watt, Michelle
  email: m.watt@fz-juelich.de
  organization: Institute for Bio and Geosciences-2, Plant Sciences, Forschungszentrum Juelich GmbH, 52428 Juelich, Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31806535$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1r3DAQhkVIyWd_Qouhl168GUm2JaeHUpZ8QSBlSc9CtseJFltyJHlp_n207OaSSw6DhuF5R8P7npJD6ywS8o3CggKtLtaLOA3axrBgQOs0WwAtD8gJlULmBRfsMPW8gpxyWR6T0xDWACCorI7IMacSqpKXJ2S19G7K7sbJuw2OaGPWezdmf5_Ruvg6GfuUrZyL4TK7NU_PQ6oYshVuUA_Z1f9J226LPEyT83G2JhoM5-RLr4eAX_fvGfl3ffW4vM3vH27uln_u87YoIOaiB9aDlNDUbVdDw4TgUHEmdUOLvtBFXzIBuukqqZEypAUred1UCa45oOBn5Odub7r9ZcYQ1WhCi0NyBd0cFOOMiRKglgn98QFdu9nbdF2iClHxZBRL1Pc9NTcjdmryZtT-Vb27lYBfO6D1LgSPvWpN1NE4G702g6Kgttmotdpno7bZbMcpm6QuP6jfP_hM93unw2TmxqBXoTVoW-yMxzaqzplPNrwBXTSrLw
CitedBy_id crossref_primary_10_1093_aobpla_plab056
crossref_primary_10_1016_j_xplc_2023_100716
crossref_primary_10_1007_s00122_021_03819_w
crossref_primary_10_3390_ijms23147958
crossref_primary_10_1139_cjps_2023_0020
crossref_primary_10_3389_fpls_2022_853601
crossref_primary_10_3390_ijms23094781
crossref_primary_10_3390_plants11212927
crossref_primary_10_3390_plants12234015
crossref_primary_10_3390_plants11172300
crossref_primary_10_3390_agronomy11081534
crossref_primary_10_1111_ppl_13313
crossref_primary_10_1016_j_tplants_2022_11_008
crossref_primary_10_1111_pce_14035
crossref_primary_10_3389_fpls_2024_1366173
crossref_primary_10_1126_science_aaz5192
crossref_primary_10_1111_pbi_14244
crossref_primary_10_1002_vzj2_20382
crossref_primary_10_1007_s10681_024_03351_0
crossref_primary_10_34133_plantphenomics_0175
crossref_primary_10_3390_agronomy11122452
crossref_primary_10_1093_jxb_erab231
crossref_primary_10_1093_treephys_tpaa148
crossref_primary_10_3390_plants13233369
crossref_primary_10_34133_2020_3252703
crossref_primary_10_1186_s12870_024_05477_8
crossref_primary_10_1007_s11104_020_04736_5
crossref_primary_10_1186_s13007_022_00874_2
crossref_primary_10_7717_peerj_15587
crossref_primary_10_1007_s11032_021_01273_6
crossref_primary_10_1073_pnas_2022666118
crossref_primary_10_3390_agronomy12061329
crossref_primary_10_1016_j_agwat_2022_107781
crossref_primary_10_1016_j_scitotenv_2024_176738
crossref_primary_10_1016_j_compag_2022_107337
crossref_primary_10_1016_j_tplants_2022_01_010
crossref_primary_10_15302_J_FASE_2022449
crossref_primary_10_1016_j_envexpbot_2023_105414
crossref_primary_10_1007_s11104_024_06648_0
crossref_primary_10_1093_plphys_kiab352
crossref_primary_10_1007_s10722_024_02066_4
crossref_primary_10_1038_s41467_024_55324_5
crossref_primary_10_1038_s41477_020_00808_7
crossref_primary_10_1371_journal_pone_0252402
crossref_primary_10_3390_plants11223043
crossref_primary_10_3390_plants10112410
crossref_primary_10_1016_j_aquabot_2024_103804
crossref_primary_10_1016_j_apsoil_2022_104615
crossref_primary_10_1016_j_inpa_2021_02_006
crossref_primary_10_1111_pce_14259
crossref_primary_10_1017_S0021859622000521
crossref_primary_10_1111_pce_15462
crossref_primary_10_1146_annurev_arplant_042916_041124
crossref_primary_10_1002_aps3_11541
crossref_primary_10_1093_pcp_pcac108
crossref_primary_10_3389_fpls_2020_00544
crossref_primary_10_3389_fpls_2022_926535
crossref_primary_10_1016_j_plaphy_2025_109497
crossref_primary_10_1007_s00122_024_04797_5
crossref_primary_10_2478_gsr_2024_0013
crossref_primary_10_3389_fpls_2023_1120583
crossref_primary_10_1016_j_eja_2025_127535
crossref_primary_10_1186_s13007_021_00819_1
crossref_primary_10_3389_fpls_2022_1004904
crossref_primary_10_1186_s13007_020_00682_6
crossref_primary_10_3389_fpls_2024_1356078
crossref_primary_10_1016_j_tplants_2019_10_011
crossref_primary_10_1016_j_tplants_2020_07_006
crossref_primary_10_1186_s13007_021_00834_2
crossref_primary_10_1007_s00122_022_04235_4
crossref_primary_10_1186_s13068_023_02403_2
crossref_primary_10_3390_ijms23169262
crossref_primary_10_1111_gcb_16278
crossref_primary_10_1007_s00122_021_03899_8
crossref_primary_10_3389_fpls_2023_1271539
crossref_primary_10_1111_lam_13827
crossref_primary_10_3390_su14063304
crossref_primary_10_34133_2021_9834746
crossref_primary_10_1007_s44279_024_00049_8
crossref_primary_10_1038_s41598_024_53798_3
crossref_primary_10_1080_23311932_2025_2454984
crossref_primary_10_1098_rsob_210353
crossref_primary_10_1111_ppl_14165
crossref_primary_10_1016_j_heliyon_2023_e12973
crossref_primary_10_1093_g3journal_jkac022
crossref_primary_10_1007_s10681_024_03330_5
crossref_primary_10_34133_plantphenomics_0132
crossref_primary_10_1093_jxb_erad179
crossref_primary_10_1007_s11104_022_05661_5
crossref_primary_10_1093_jxb_erab551
crossref_primary_10_1007_s11104_024_06949_4
crossref_primary_10_3389_fpls_2023_1111575
crossref_primary_10_3390_agronomy12030647
crossref_primary_10_3390_life15010121
crossref_primary_10_1111_pbr_13179
crossref_primary_10_1038_s43016_024_01057_z
crossref_primary_10_1016_j_agsy_2021_103244
crossref_primary_10_1186_s12870_022_03937_7
crossref_primary_10_7717_peerj_13638
crossref_primary_10_1002_fes3_70030
crossref_primary_10_3389_fpls_2023_1233553
crossref_primary_10_1016_j_scitotenv_2021_152223
crossref_primary_10_3389_fpls_2023_1166511
crossref_primary_10_1002_ppj2_20041
crossref_primary_10_1007_s42994_023_00112_w
crossref_primary_10_1093_aob_mcad016
crossref_primary_10_9787_KJBS_2024_56_2_113
crossref_primary_10_1016_j_chemosphere_2022_135958
crossref_primary_10_3389_fpls_2024_1397337
crossref_primary_10_3390_s22052031
crossref_primary_10_1111_jipb_13191
crossref_primary_10_3389_fpls_2023_1265994
crossref_primary_10_1016_j_eja_2024_127178
crossref_primary_10_3390_info14040214
crossref_primary_10_1002_ppj2_20034
crossref_primary_10_1007_s00122_023_04412_z
crossref_primary_10_15252_embr_202255631
crossref_primary_10_3389_fpls_2022_926214
crossref_primary_10_34133_research_0059
crossref_primary_10_1186_s13007_021_00798_3
crossref_primary_10_1016_j_agwat_2021_107257
crossref_primary_10_1002_jsfa_12794
crossref_primary_10_1007_s10722_021_01181_w
crossref_primary_10_3389_fpls_2022_883209
crossref_primary_10_1002_csc2_20635
crossref_primary_10_1016_j_pbi_2021_102151
crossref_primary_10_3390_genes14101929
crossref_primary_10_1093_gigascience_giab052
crossref_primary_10_3390_genes13020181
crossref_primary_10_1002_ppj2_20028
crossref_primary_10_1080_01904167_2022_2046080
crossref_primary_10_1016_j_snb_2022_131816
crossref_primary_10_1016_j_scienta_2022_111779
crossref_primary_10_1002_ppp3_10136
crossref_primary_10_1016_j_apsoil_2020_103781
crossref_primary_10_1016_j_compag_2022_107409
crossref_primary_10_1111_ejss_13219
crossref_primary_10_1111_pce_15391
crossref_primary_10_7717_peerj_12928
crossref_primary_10_1007_s00122_023_04442_7
Cites_doi 10.1093/jxb/erv290
10.1111/nph.14243
10.1002/humu.22080
10.1186/s13007-015-0060-z
10.1007/s00122-015-2453-9
10.1007/s11104-016-3144-2
10.1007/s11104-016-3161-1
10.1104/pp.16.01122
10.1093/jxb/erw093
10.1016/j.fcr.2014.07.004
10.1071/FP03045
10.1071/AR01031
10.1146/annurev-arplant-050312-120137
10.1126/science.aad2776
10.1016/S0065-2113(08)60803-2
10.1093/jxb/erw035
10.1023/A:1004296707631
10.1093/jxb/erq429
10.1093/jxb/erw494
10.1038/nature11909
10.1016/0002-1571(74)90009-0
10.1071/FP09121
10.1071/FP09219
10.1093/jxb/erv289
10.1111/nph.15662
10.1071/FP13224
10.1071/AR05157
10.1093/aob/mcy092
10.3389/fpls.2013.00392
10.1093/jxb/eru250
10.4161/psb.1.5.3447
10.1007/s11104-010-0623-8
10.1093/jxb/ers111
10.1016/j.fcr.2009.10.004
10.1093/jxb/erw108
10.3389/fpls.2016.01419
10.1007/s11104-015-2379-7
10.1104/pp.114.250449
10.1093/jxb/erp386
10.3389/fpls.2016.00944
10.1038/s41598-017-14904-w
10.1093/jxb/ery034
10.1071/SR05142
10.1093/jxb/erw061
10.34133/2019/7507131
10.1007/s11104-011-0896-6
10.1007/s11104-007-9514-z
10.1093/aob/mct122
10.1071/FP16156
10.1038/nbt.2120
10.1093/jxb/ers044
10.1111/nph.15213
10.1093/jxb/erv570
10.1093/jxb/eru509
10.1186/s13007-017-0252-9
10.1093/jxb/erz232
10.1104/pp.109.1.7
10.1016/j.copbio.2018.06.002
10.1071/FP12044
10.1093/jxb/ert043
10.1093/jxb/erq245
10.1016/j.soilbio.2012.12.004
10.1038/ncomms13342
10.1016/j.fcr.2012.05.014
10.1111/j.1462-2920.2005.00973.x
10.1007/s11104-016-2822-4
10.1071/AR9890943
10.1104/pp.17.00648
10.1016/j.fcr.2004.07.014
10.2134/agronj15.0076
10.1111/nph.13312
10.1111/nph.15955
10.1104/pp.15.01388
10.2134/agronj1982.00021962007400030023x
10.1016/j.tplants.2015.12.005
10.1093/jxb/erv239
10.3390/agronomy8110241
10.1111/j.1365-3040.2005.01490.x
10.1071/FP09150
10.1146/annurev-genet-120215-035254
10.1038/srep03194
10.1111/pce.12983
10.1111/j.1469-8137.2007.02358.x
10.1111/nph.14641
10.1071/FP12023
10.1093/jxb/erv241
10.1111/2041-210X.12771
10.1016/j.fcr.2016.04.008
10.1111/j.1467-7652.2004.00116.x
10.1007/s11104-014-2191-9
10.3389/fpls.2017.00786
10.1104/pp.15.00095
10.1104/pp.113.233916
10.1105/tpc.19.00015
10.1016/j.tplants.2013.09.008
10.1093/jxb/erw055
10.1093/jxb/eru061
10.1016/j.compag.2016.08.021
10.1073/pnas.1400966111
10.1093/aob/mcv099
10.1071/FP15182
10.3389/fpls.2017.00282
10.1104/pp.114.243519
10.1093/jxb/erw039
10.1104/pp.18.00234
10.1590/1678-4499.0295
10.1007/s00122-015-2506-0
10.1071/SR07139
10.1111/j.1365-313X.2009.03888.x
10.1071/FP12180
10.1071/FP16128
10.1111/j.1469-8137.2012.04183.x
10.1111/ppl.12150
10.3389/fpls.2016.01155
ContentType Journal Article
Copyright 2019
Crown Copyright © 2019. Published by Elsevier Ltd. All rights reserved.
Copyright Elsevier BV Jan 2020
Copyright_xml – notice: 2019
– notice: Crown Copyright © 2019. Published by Elsevier Ltd. All rights reserved.
– notice: Copyright Elsevier BV Jan 2020
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QO
7QR
7T7
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
DOI 10.1016/j.tplants.2019.10.015
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Technology Research Database
Nucleic Acids Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Genetics Abstracts
Biotechnology Research Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
MEDLINE - Academic
DatabaseTitleList MEDLINE
Virology and AIDS Abstracts
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Botany
EISSN 1878-4372
EndPage 118
ExternalDocumentID 31806535
10_1016_j_tplants_2019_10_015
S1360138519302845
Genre Research Support, Non-U.S. Gov't
Journal Article
Review
GroupedDBID ---
--K
--M
-DZ
.~1
0R~
123
186
1B1
1RT
1~.
1~5
29Q
4.4
457
4G.
53G
5VS
6I.
7-5
71M
8P~
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
ABFNM
ABFRF
ABGRD
ABGSF
ABJNI
ABMAC
ABUDA
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIWK
ACPRK
ACRLP
ADBBV
ADEZE
ADMUD
ADQTV
ADUVX
AEBSH
AEFWE
AEHWI
AEKER
AENEX
AEQOU
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CBWCG
CS3
DOVZS
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RCE
RIG
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SEW
SPCBC
SSA
SSU
SSZ
T5K
TWZ
VQA
XPP
Y6R
ZCA
~G-
~KM
AAHBH
AAMRU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QO
7QR
7T7
7TM
7U9
8FD
C1K
EFKBS
FR3
H94
M7N
P64
RC3
7X8
ID FETCH-LOGICAL-c440t-7f02f0880b9cd90b277306328ab14f4a4f5270abd68ae12e142539b6cd9930e73
IEDL.DBID .~1
ISSN 1360-1385
1878-4372
IngestDate Tue Aug 05 10:00:05 EDT 2025
Wed Aug 13 07:44:11 EDT 2025
Wed Feb 19 02:30:55 EST 2025
Thu Apr 24 23:02:27 EDT 2025
Tue Jul 01 00:57:56 EDT 2025
Fri Feb 23 02:49:31 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords root architecture
combinatorial stresses
simulation model
soil
climate
agronomy
water
imaging
rhizosphere
breeding
Language English
License This is an open access article under the CC BY-NC-ND license.
Crown Copyright © 2019. Published by Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c440t-7f02f0880b9cd90b277306328ab14f4a4f5270abd68ae12e142539b6cd9930e73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1360138519302845
PMID 31806535
PQID 2347633602
PQPubID 2045386
PageCount 14
ParticipantIDs proquest_miscellaneous_2322750098
proquest_journals_2347633602
pubmed_primary_31806535
crossref_citationtrail_10_1016_j_tplants_2019_10_015
crossref_primary_10_1016_j_tplants_2019_10_015
elsevier_sciencedirect_doi_10_1016_j_tplants_2019_10_015
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2020
2020-01-00
20200101
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: January 2020
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Kidlington
PublicationTitle Trends in plant science
PublicationTitleAlternate Trends Plant Sci
PublicationYear 2020
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Marshall-Colon (bib82) 2017; 8
Zhao (bib89) 2017; 68
Hurd (bib7) 1974; 14
Mohanty (bib113) 2016; 7
Vamerali (bib75) 2011
Vandenkoornhuyse (bib116) 2015; 206
Foster (bib100) 1981; 89
Sasse (bib109) 2019; 222
Sun (bib63) 2018; 177
Hatfield, Walthall (bib93) 2015; 107
Pieruschka, Schurr (bib46) 2019; 2019
Wasson (bib61) 2017; 8
Hartmann (bib118) 2008; 312
O’Sullivan (bib111) 2016; 404
Lynch (bib119) 1995; 109
Faget (bib103) 2013; 4
Watt (bib96) 2006; 8
Jiang (bib73) 2019; 31
Al-Tamimi (bib35) 2016; 7
Bai (bib112) 2016; 128
Schroeder (bib17) 2013; 497
Colombi (bib67) 2015; 388
Lopes, Reynolds (bib55) 2010; 37
Rytter, Rytter (bib74) 2012; 350
Tracy (bib41) 2010; 61
Avramova (bib33) 2016; 67
Ryan (bib99) 2014; 151
Seethepalli (bib68) 2018
Postma (bib83) 2017; 215
Bucksch (bib66) 2014; 166
Gray (bib78) 2013; 40
Munns (bib15) 2012; 30
Ohashi (bib76) 2015; 74
Fiorani, Schurr (bib114) 2013; 64
Trachsel (bib59) 2011; 341
Jahnke (bib45) 2009; 59
Wasson (bib47) 2019; 25
Rabbi (bib108) 2018; 219
Hall, Richards (bib110) 2013; 143
Watt (bib53) 2013; 112
Burridge (bib65) 2016; 192
Nagel (bib27) 2015; 66
Giller (bib121) 2018
Nagel (bib22) 2012; 39
Poorter (bib52) 2016; 212
Robinson (bib117) 2012; 33
Huang (bib71) 2013; 3
Rebetzke (bib79) 2012; 40
Negin, Moshelion (bib6) 2017; 44
Quadrana, Colot (bib115) 2016; 50
Atkinson (bib38) 2019; 55
Maccaferri (bib54) 2016; 67
Barboza-Barquero (bib31) 2015; 116
Pfeifer (bib28) 2014; 41
Nakhforoosh (bib34) 2016; 7
Gregory (bib3) 2009; 36
Postma (bib88) 2014; 166
Watt (bib72) 2008; 178
van Dusschoten (bib44) 2016; 170
Hoogenboom (bib85) 2004; 90
Achim, Nagel (bib29) 2006; 1
York (bib94) 2016; 67
Lilley, Kirkegaard (bib90) 2016; 67
Xuan (bib95) 2016; 351
Rich, Watt (bib120) 2013; 64
Pinto, Reynolds (bib18) 2015; 128
Sasaki (bib14) 2005; 46
Kuijken (bib4) 2015; 66
Li (bib21) 2019; 70
O’Toole, Bland (bib1) 1987; 41
Chochois (bib5) 2012; 63
Wasson (bib9) 2014; 65
Jansen (bib23) 2014
Araus, Cairns (bib57) 2014; 19
Schefe (bib97) 2008; 46
Schurr (bib36) 2006; 29
Bao (bib105) 2014; 111
Smucker (bib69) 1982; 74
Caradus, Woodfield (bib11) 1998; 200
Chochois (bib26) 2015; 168
Chen (bib77) 2019; 69
Daly (bib87) 2017; 41
Gioia (bib32) 2016; 44
Jahnke (bib49) 2016; 172
Huang (bib122) 2015; 128
Richards (bib51) 2010; 37
Kirkegaard, Hunt (bib92) 2010; 61
Schneider (bib86) 2017; 174
Metzner (bib39) 2015; 11
Spohn (bib102) 2013; 58
Gioia (bib25) 2015; 66
Uga (bib8) 2011; 62
Watt (bib2) 2006; 44
Sadras, Richards (bib50) 2014; 65
Daly (bib106) 2015; 66
Wasaya (bib56) 2018; 8
Delory (bib70) 2017; 8
Pflugfelder (bib40) 2017; 13
Wasson (bib60) 2016; 67
Whalley (bib58) 2017; 415
Hammer (bib91) 2005; 56
Flavel (bib42) 2014; 385
Dietrich (bib43) 2018; 69
Pask (bib19) 2014; 168
Oburger, Schmidt (bib101) 2016; 21
Watt (bib123) 2003; 30
Wasson (bib24) 2012; 63
Rangarajan (bib84) 2018; 122
Rich (bib20) 2016; 43
Richards, Passioura (bib10) 1989; 40
York, Lynch (bib62) 2015; 66
Henry (bib12) 2010; 115
Slack (bib64) 2018
Arsova (bib37) 2019
Delhaize (bib48) 2012; 195
Chimungu (bib80) 2014; 166
Helliwell (bib107) 2017; 7
George (bib98) 2005; 3
Ogbonnaya (bib16) 2001; 52
Landl (bib104) 2017; 415
James (bib81) 2016; 67
Wissuwa (bib13) 2016; 67
Hecht (bib30) 2016; 7
Jahnke (10.1016/j.tplants.2019.10.015_bib49) 2016; 172
Slack (10.1016/j.tplants.2019.10.015_bib64) 2018
Wasaya (10.1016/j.tplants.2019.10.015_bib56) 2018; 8
Robinson (10.1016/j.tplants.2019.10.015_bib117) 2012; 33
Kuijken (10.1016/j.tplants.2019.10.015_bib4) 2015; 66
Lopes (10.1016/j.tplants.2019.10.015_bib55) 2010; 37
Fiorani (10.1016/j.tplants.2019.10.015_bib114) 2013; 64
Watt (10.1016/j.tplants.2019.10.015_bib2) 2006; 44
Burridge (10.1016/j.tplants.2019.10.015_bib65) 2016; 192
Poorter (10.1016/j.tplants.2019.10.015_bib52) 2016; 212
Wasson (10.1016/j.tplants.2019.10.015_bib61) 2017; 8
York (10.1016/j.tplants.2019.10.015_bib62) 2015; 66
Landl (10.1016/j.tplants.2019.10.015_bib104) 2017; 415
Barboza-Barquero (10.1016/j.tplants.2019.10.015_bib31) 2015; 116
Gioia (10.1016/j.tplants.2019.10.015_bib32) 2016; 44
Chimungu (10.1016/j.tplants.2019.10.015_bib80) 2014; 166
Hatfield (10.1016/j.tplants.2019.10.015_bib93) 2015; 107
Kirkegaard (10.1016/j.tplants.2019.10.015_bib92) 2010; 61
Schneider (10.1016/j.tplants.2019.10.015_bib86) 2017; 174
Nakhforoosh (10.1016/j.tplants.2019.10.015_bib34) 2016; 7
Wasson (10.1016/j.tplants.2019.10.015_bib60) 2016; 67
Pflugfelder (10.1016/j.tplants.2019.10.015_bib40) 2017; 13
Faget (10.1016/j.tplants.2019.10.015_bib103) 2013; 4
Zhao (10.1016/j.tplants.2019.10.015_bib89) 2017; 68
Watt (10.1016/j.tplants.2019.10.015_bib53) 2013; 112
Helliwell (10.1016/j.tplants.2019.10.015_bib107) 2017; 7
George (10.1016/j.tplants.2019.10.015_bib98) 2005; 3
James (10.1016/j.tplants.2019.10.015_bib81) 2016; 67
Rabbi (10.1016/j.tplants.2019.10.015_bib108) 2018; 219
York (10.1016/j.tplants.2019.10.015_bib94) 2016; 67
Gregory (10.1016/j.tplants.2019.10.015_bib3) 2009; 36
Schurr (10.1016/j.tplants.2019.10.015_bib36) 2006; 29
Wasson (10.1016/j.tplants.2019.10.015_bib47) 2019; 25
Hammer (10.1016/j.tplants.2019.10.015_bib91) 2005; 56
van Dusschoten (10.1016/j.tplants.2019.10.015_bib44) 2016; 170
Ohashi (10.1016/j.tplants.2019.10.015_bib76) 2015; 74
Munns (10.1016/j.tplants.2019.10.015_bib15) 2012; 30
Richards (10.1016/j.tplants.2019.10.015_bib10) 1989; 40
Atkinson (10.1016/j.tplants.2019.10.015_bib38) 2019; 55
Negin (10.1016/j.tplants.2019.10.015_bib6) 2017; 44
Tracy (10.1016/j.tplants.2019.10.015_bib41) 2010; 61
Dietrich (10.1016/j.tplants.2019.10.015_bib43) 2018; 69
Uga (10.1016/j.tplants.2019.10.015_bib8) 2011; 62
Henry (10.1016/j.tplants.2019.10.015_bib12) 2010; 115
Schefe (10.1016/j.tplants.2019.10.015_bib97) 2008; 46
Postma (10.1016/j.tplants.2019.10.015_bib83) 2017; 215
Postma (10.1016/j.tplants.2019.10.015_bib88) 2014; 166
Sun (10.1016/j.tplants.2019.10.015_bib63) 2018; 177
Richards (10.1016/j.tplants.2019.10.015_bib51) 2010; 37
Chochois (10.1016/j.tplants.2019.10.015_bib26) 2015; 168
Daly (10.1016/j.tplants.2019.10.015_bib87) 2017; 41
Li (10.1016/j.tplants.2019.10.015_bib21) 2019; 70
O’Sullivan (10.1016/j.tplants.2019.10.015_bib111) 2016; 404
Arsova (10.1016/j.tplants.2019.10.015_bib37) 2019
Pfeifer (10.1016/j.tplants.2019.10.015_bib28) 2014; 41
Marshall-Colon (10.1016/j.tplants.2019.10.015_bib82) 2017; 8
Huang (10.1016/j.tplants.2019.10.015_bib71) 2013; 3
Sasse (10.1016/j.tplants.2019.10.015_bib109) 2019; 222
Quadrana (10.1016/j.tplants.2019.10.015_bib115) 2016; 50
Smucker (10.1016/j.tplants.2019.10.015_bib69) 1982; 74
Lilley (10.1016/j.tplants.2019.10.015_bib90) 2016; 67
Pinto (10.1016/j.tplants.2019.10.015_bib18) 2015; 128
Hecht (10.1016/j.tplants.2019.10.015_bib30) 2016; 7
Colombi (10.1016/j.tplants.2019.10.015_bib67) 2015; 388
Xuan (10.1016/j.tplants.2019.10.015_bib95) 2016; 351
O’Toole (10.1016/j.tplants.2019.10.015_bib1) 1987; 41
Seethepalli (10.1016/j.tplants.2019.10.015_bib68) 2018
Hoogenboom (10.1016/j.tplants.2019.10.015_bib85) 2004; 90
Hurd (10.1016/j.tplants.2019.10.015_bib7) 1974; 14
Avramova (10.1016/j.tplants.2019.10.015_bib33) 2016; 67
Watt (10.1016/j.tplants.2019.10.015_bib72) 2008; 178
Rich (10.1016/j.tplants.2019.10.015_bib120) 2013; 64
Wasson (10.1016/j.tplants.2019.10.015_bib9) 2014; 65
Hartmann (10.1016/j.tplants.2019.10.015_bib118) 2008; 312
Delhaize (10.1016/j.tplants.2019.10.015_bib48) 2012; 195
Ogbonnaya (10.1016/j.tplants.2019.10.015_bib16) 2001; 52
Rich (10.1016/j.tplants.2019.10.015_bib20) 2016; 43
Sasaki (10.1016/j.tplants.2019.10.015_bib14) 2005; 46
Delory (10.1016/j.tplants.2019.10.015_bib70) 2017; 8
Oburger (10.1016/j.tplants.2019.10.015_bib101) 2016; 21
Maccaferri (10.1016/j.tplants.2019.10.015_bib54) 2016; 67
Ryan (10.1016/j.tplants.2019.10.015_bib99) 2014; 151
Flavel (10.1016/j.tplants.2019.10.015_bib42) 2014; 385
Spohn (10.1016/j.tplants.2019.10.015_bib102) 2013; 58
Al-Tamimi (10.1016/j.tplants.2019.10.015_bib35) 2016; 7
Jahnke (10.1016/j.tplants.2019.10.015_bib45) 2009; 59
Nagel (10.1016/j.tplants.2019.10.015_bib22) 2012; 39
Gioia (10.1016/j.tplants.2019.10.015_bib25) 2015; 66
Achim (10.1016/j.tplants.2019.10.015_bib29) 2006; 1
Pask (10.1016/j.tplants.2019.10.015_bib19) 2014; 168
Rytter (10.1016/j.tplants.2019.10.015_bib74) 2012; 350
Trachsel (10.1016/j.tplants.2019.10.015_bib59) 2011; 341
Pieruschka (10.1016/j.tplants.2019.10.015_bib46) 2019; 2019
Jansen (10.1016/j.tplants.2019.10.015_bib23) 2014
Wasson (10.1016/j.tplants.2019.10.015_bib24) 2012; 63
Hall (10.1016/j.tplants.2019.10.015_bib110) 2013; 143
Foster (10.1016/j.tplants.2019.10.015_bib100) 1981; 89
Vamerali (10.1016/j.tplants.2019.10.015_bib75) 2011
Chen (10.1016/j.tplants.2019.10.015_bib77) 2019; 69
Araus (10.1016/j.tplants.2019.10.015_bib57) 2014; 19
Schroeder (10.1016/j.tplants.2019.10.015_bib17) 2013; 497
Rebetzke (10.1016/j.tplants.2019.10.015_bib79) 2012; 40
Watt (10.1016/j.tplants.2019.10.015_bib123) 2003; 30
Daly (10.1016/j.tplants.2019.10.015_bib106) 2015; 66
Wissuwa (10.1016/j.tplants.2019.10.015_bib13) 2016; 67
Giller (10.1016/j.tplants.2019.10.015_bib121) 2018
Huang (10.1016/j.tplants.2019.10.015_bib122) 2015; 128
Metzner (10.1016/j.tplants.2019.10.015_bib39) 2015; 11
Vandenkoornhuyse (10.1016/j.tplants.2019.10.015_bib116) 2015; 206
Lynch (10.1016/j.tplants.2019.10.015_bib119) 1995; 109
Whalley (10.1016/j.tplants.2019.10.015_bib58) 2017; 415
Sadras (10.1016/j.tplants.2019.10.015_bib50) 2014; 65
Bai (10.1016/j.tplants.2019.10.015_bib112) 2016; 128
Chochois (10.1016/j.tplants.2019.10.015_bib5) 2012; 63
Caradus (10.1016/j.tplants.2019.10.015_bib11) 1998; 200
Rangarajan (10.1016/j.tplants.2019.10.015_bib84) 2018; 122
Watt (10.1016/j.tplants.2019.10.015_bib96) 2006; 8
Nagel (10.1016/j.tplants.2019.10.015_bib27) 2015; 66
Gray (10.1016/j.tplants.2019.10.015_bib78) 2013; 40
Bucksch (10.1016/j.tplants.2019.10.015_bib66) 2014; 166
Bao (10.1016/j.tplants.2019.10.015_bib105) 2014; 111
Mohanty (10.1016/j.tplants.2019.10.015_bib113) 2016; 7
Jiang (10.1016/j.tplants.2019.10.015_bib73) 2019; 31
References_xml – volume: 43
  start-page: 173
  year: 2016
  end-page: 188
  ident: bib20
  article-title: Wheats developed for high yield on stored soil moisture have deep vigorous root systems
  publication-title: Funct. Plant Biol.
– volume: 415
  start-page: 99
  year: 2017
  end-page: 116
  ident: bib104
  article-title: A new model for root growth in soil with macropores
  publication-title: Plant Soil
– volume: 30
  start-page: 360
  year: 2012
  end-page: 364
  ident: bib15
  article-title: Wheat grain yield on saline soils is improved by an ancestral Na(+) transporter gene
  publication-title: Nat. Biotechnol.
– volume: 41
  start-page: 121
  year: 2017
  end-page: 133
  ident: bib87
  article-title: Quantification of root water uptake in soil using X-ray computed tomography and image-based modelling
  publication-title: Plant Cell Environ.
– volume: 39
  start-page: 891
  year: 2012
  end-page: 904
  ident: bib22
  article-title: GROWSCREEN-Rhizo is a novel phenotyping robot enabling simultaneous measurements of root and shoot growth for plants grown in soil-filled rhizotrons
  publication-title: Funct. Plant Biol.
– volume: 7
  start-page: 14875
  year: 2017
  ident: bib107
  article-title: The emergent rhizosphere: imaging the development of the porous architecture at the root-soil interface
  publication-title: Sci. Rep.
– volume: 66
  start-page: 2305
  year: 2015
  end-page: 2314
  ident: bib106
  article-title: Assessing the influence of the rhizosphere on soil hydraulic properties using X-ray computed tomography and numerical modelling
  publication-title: J. Exp. Bot.
– volume: 109
  start-page: 7
  year: 1995
  end-page: 13
  ident: bib119
  article-title: Root architecture and plant productivity
  publication-title: Plant Physiol.
– volume: 2019
  start-page: 6
  year: 2019
  ident: bib46
  article-title: Plant phenotyping: past, present, and future
  publication-title: Plant Phenomics
– volume: 67
  start-page: 3709
  year: 2016
  end-page: 3718
  ident: bib81
  article-title: Rhizosheaths on wheat grown in acid soils: phosphorus acquisition efficiency and genetic control
  publication-title: J. Exp. Bot.
– volume: 1
  start-page: 225
  year: 2006
  end-page: 226
  ident: bib29
  article-title: Root growth reacts rapidly and more pronounced than shoot growth towards increasing light intensity in tobacco seedlings
  publication-title: Plant Signal. Behav.
– volume: 166
  start-page: 590
  year: 2014
  ident: bib88
  article-title: The optimal lateral root branching density for maize depends on nitrogen and phosphorus availability
  publication-title: Plant Physiol.
– volume: 212
  start-page: 838
  year: 2016
  end-page: 855
  ident: bib52
  article-title: Pampered inside, pestered outside? Differences and similarities between plants growing in controlled conditions and in the field
  publication-title: New Phytol.
– volume: 66
  start-page: 5441
  year: 2015
  end-page: 5452
  ident: bib27
  article-title: Simultaneous effects of leaf irradiance and soil moisture on growth and root system architecture of novel wheat genotypes: implications for phenotyping
  publication-title: J. Exp. Bot.
– volume: 52
  start-page: 1367
  year: 2001
  end-page: 1374
  ident: bib16
  article-title: Diagnostic DNA markers for cereal cyst nematode resistance in bread wheat
  publication-title: Aust. J. Agr. Res.
– volume: 8
  start-page: 241
  year: 2018
  ident: bib56
  article-title: Root phenotyping for drought tolerance: a review
  publication-title: Agronomy
– volume: 65
  start-page: 6231
  year: 2014
  end-page: 6249
  ident: bib9
  article-title: Soil coring at multiple field environments can directly quantify variation in deep root traits to select wheat genotypes for breeding
  publication-title: J. Exp. Bot.
– volume: 67
  start-page: 1033
  year: 2016
  end-page: 1043
  ident: bib60
  article-title: A portable fluorescence spectroscopy imaging system for automated root phenotyping in soil cores in the field
  publication-title: J. Exp. Bot.
– volume: 351
  start-page: 384
  year: 2016
  ident: bib95
  article-title: Cyclic programmed cell death stimulates hormone signaling and root development in
  publication-title: Science
– volume: 69
  start-page: 2759
  year: 2018
  end-page: 2771
  ident: bib43
  article-title: Hydrotropism: how roots search for water
  publication-title: J. Exp. Bot.
– volume: 107
  start-page: 1215
  year: 2015
  end-page: 1226
  ident: bib93
  article-title: Meeting global food needs: realizing the potential via genetics × environment × management interactions
  publication-title: Agronomy J.
– volume: 37
  start-page: 85
  year: 2010
  end-page: 97
  ident: bib51
  article-title: Breeding for improved water productivity in temperate cereals: phenotyping, quantitative trait loci, markers and the selection environment
  publication-title: Funct. Plant Biol.
– volume: 68
  start-page: 965
  year: 2017
  end-page: 982
  ident: bib89
  article-title: Root architecture simulation improves the inference from seedling root phenotyping towards mature root systems
  publication-title: J. Exp. Bot.
– volume: 4
  start-page: 392
  year: 2013
  ident: bib103
  article-title: Disentangling who is who during rhizosphere acidification in root interactions: combining fluorescence with optode techniques
  publication-title: Front. Plant Sci.
– volume: 37
  start-page: 147
  year: 2010
  end-page: 156
  ident: bib55
  article-title: Partitioning of assimilates to deeper roots is associated with cooler canopies and increased yield under drought in wheat
  publication-title: Funct. Plant Biol.
– volume: 388
  start-page: 1
  year: 2015
  end-page: 20
  ident: bib67
  article-title: Next generation shovelomics: set up a tent and REST
  publication-title: Plant Soil
– volume: 21
  start-page: 243
  year: 2016
  end-page: 255
  ident: bib101
  article-title: New methods to unravel rhizosphere processes
  publication-title: Trends Plant Sci.
– volume: 67
  start-page: 3665
  year: 2016
  end-page: 3681
  ident: bib90
  article-title: Farming system context drives the value of deep wheat roots in semi-arid environments
  publication-title: J. Exp. Bot.
– volume: 222
  start-page: 1149
  year: 2019
  end-page: 1160
  ident: bib109
  article-title: Multilab EcoFAB study shows highly reproducible physiology and depletion of soil metabolites by a model grass
  publication-title: New Phytol.
– volume: 122
  start-page: 485
  year: 2018
  end-page: 499
  ident: bib84
  article-title: Co-optimization of axial root phenotypes for nitrogen and phosphorus acquisition in common bean
  publication-title: Ann. Bot.
– volume: 67
  start-page: 1161
  year: 2016
  end-page: 1178
  ident: bib54
  article-title: Prioritizing quantitative trait loci for root system architecture in tetraploid wheat
  publication-title: J. Exp. Bot.
– volume: 33
  start-page: 777
  year: 2012
  end-page: 780
  ident: bib117
  article-title: Deep phenotyping for precision medicine
  publication-title: Hum. Mutat.
– volume: 177
  start-page: 90
  year: 2018
  ident: bib63
  article-title: Large crown root number improves topsoil foraging and phosphorus acquisition
  publication-title: Plant Physiol.
– volume: 112
  start-page: 447
  year: 2013
  end-page: 455
  ident: bib53
  article-title: A rapid, controlled-environment seedling root screen for wheat correlates well with rooting depths at vegetative, but not reproductive, stages at two field sites
  publication-title: Ann. Bot.
– volume: 66
  start-page: 5389
  year: 2015
  end-page: 5401
  ident: bib4
  article-title: Root phenotyping: from component trait in the lab to breeding
  publication-title: J. Exp. Bot.
– volume: 59
  start-page: 634
  year: 2009
  end-page: 644
  ident: bib45
  article-title: Combined MRI-PET dissects dynamic changes in plant structures and functions
  publication-title: Plant J.
– volume: 64
  start-page: 267
  year: 2013
  end-page: 291
  ident: bib114
  article-title: Future scenarios for plant phenotyping
  publication-title: Annu. Rev. Plant Biol.
– volume: 74
  start-page: 131
  year: 2015
  end-page: 138
  ident: bib76
  article-title: Root growth and distribution in sugarcane cultivars fertigated by a subsurface drip system
  publication-title: Bragantia
– volume: 44
  start-page: 299
  year: 2006
  end-page: 317
  ident: bib2
  article-title: Rhizosphere biology and crop productivity - a review
  publication-title: Aust. J. Soil Res.
– year: 2018
  ident: bib64
  article-title: Wheat shovelomics II: revealing relationships between root crown traits and crop growth
  publication-title: bioRxiv
– volume: 415
  start-page: 407
  year: 2017
  end-page: 422
  ident: bib58
  article-title: Methods to estimate changes in soil water for phenotyping root activity in the field
  publication-title: Plant Soil
– volume: 29
  start-page: 340
  year: 2006
  end-page: 352
  ident: bib36
  article-title: Functional dynamics of plant growth and photosynthesis – from steady-state to dynamics – from homogeneity to heterogeneity
  publication-title: Plant, Cell Environ.
– volume: 8
  start-page: 282
  year: 2017
  ident: bib61
  article-title: Differentiating wheat genotypes by Bayesian hierarchical nonlinear mixed modeling of wheat root density
  publication-title: Front. Plant Sci.
– start-page: 173
  year: 2014
  end-page: 206
  ident: bib23
  article-title: Non-invasive phenotyping methodologies enable the accurate characterization of growth and performance of shoots and roots
  publication-title: Genomics of Plant Genetic Resources
– volume: 67
  start-page: 3629
  year: 2016
  end-page: 3643
  ident: bib94
  article-title: The holistic rhizosphere: integrating zones, processes, and semantics in the soil influenced by roots
  publication-title: J. Exp. Bot.
– volume: 8
  start-page: 871
  year: 2006
  end-page: 884
  ident: bib96
  article-title: Numbers and locations of native bacteria on field-grown wheat roots quantified by fluorescence in situ hybridization (FISH)
  publication-title: Environ. Microbiol.
– volume: 58
  start-page: 275
  year: 2013
  end-page: 280
  ident: bib102
  article-title: Soil zymography – a novel in situ method for mapping distribution of enzyme activity in soil
  publication-title: Soil Biol. Biochem.
– volume: 168
  start-page: 953
  year: 2015
  ident: bib26
  article-title: Variation in adult plant phenotypes and partitioning among seed and stem-borne roots across
  publication-title: Plant Physiol.
– volume: 63
  start-page: 3467
  year: 2012
  end-page: 3474
  ident: bib5
  article-title: Application of
  publication-title: J. Exp. Bot.
– volume: 3
  start-page: 129
  year: 2005
  end-page: 140
  ident: bib98
  article-title: Expression of a fungal phytase gene in
  publication-title: Plant Biotechnol. J.
– volume: 89
  start-page: 263
  year: 1981
  end-page: 273
  ident: bib100
  article-title: The ultrastructure and histochemistry of the rhizosphere
  publication-title: New Phytol.
– volume: 151
  start-page: 230
  year: 2014
  end-page: 242
  ident: bib99
  article-title: Can citrate efflux from roots improve phosphorus uptake by plants? Testing the hypothesis with near-isogenic lines of wheat
  publication-title: Physiol. Plant.
– volume: 41
  start-page: 91
  year: 1987
  end-page: 145
  ident: bib1
  article-title: Genotypic variation in crop plant root systems
  publication-title: Adv. Agron.
– volume: 7
  start-page: 13342
  year: 2016
  ident: bib35
  article-title: Salinity tolerance loci revealed in rice using high-throughput non-invasive phenotyping
  publication-title: Nat. Commun.
– volume: 219
  start-page: 542
  year: 2018
  end-page: 550
  ident: bib108
  article-title: Plant roots redesign the rhizosphere to alter the three-dimensional physical architecture and water dynamics
  publication-title: New Phytol.
– volume: 69
  start-page: 62
  year: 2019
  end-page: 74
  ident: bib77
  article-title: Evaluation of deep root phenotyping techniques in tube rhizotrons
  publication-title: Acta Agric. Scand. B Plant Sci.
– volume: 206
  start-page: 1196
  year: 2015
  end-page: 1206
  ident: bib116
  article-title: The importance of the microbiome of the plant holobiont
  publication-title: New Phytol.
– volume: 166
  start-page: 2166
  year: 2014
  ident: bib80
  article-title: Large root cortical cell size improves drought tolerance in maize
  publication-title: Plant Physiol.
– year: 2018
  ident: bib121
  article-title: Developing Global Priorities for Plant Research
– volume: 8
  start-page: 1594
  year: 2017
  end-page: 1606
  ident: bib70
  article-title: Accuracy and bias of methods used for root length measurements in functional root research
  publication-title: Methods in Ecology and Evolution
– volume: 8
  start-page: 786
  year: 2017
  ident: bib82
  article-title: Crops in silico: generating virtual crops using an integrative and multi-scale modeling platform
  publication-title: Front. Plant Sci.
– volume: 111
  start-page: 9319
  year: 2014
  ident: bib105
  article-title: Plant roots use a patterning mechanism to position lateral root branches toward available water
  publication-title: Proc. Natl. Acad. Sci. U. S. A
– volume: 41
  start-page: 581
  year: 2014
  end-page: 597
  ident: bib28
  article-title: Spring barley shows dynamic compensatory root and shoot growth responses when exposed to localised soil compaction and fertilisation
  publication-title: Funct. Plant Biol.
– volume: 44
  start-page: 76
  year: 2016
  end-page: 93
  ident: bib32
  article-title: GrowScreen-PaGe, a non-invasive, high-throughput phenotyping system based on germination paper to quantify crop phenotypic diversity and plasticity of root traits under varying nutrient supply
  publication-title: Funct. Plant Biol.
– volume: 195
  start-page: 609
  year: 2012
  end-page: 619
  ident: bib48
  article-title: Aluminium tolerance of root hairs underlies genotypic differences in rhizosheath size of wheat (
  publication-title: New Phytol.
– volume: 44
  start-page: 107
  year: 2017
  end-page: 118
  ident: bib6
  article-title: The advantages of functional phenotyping in pre-field screening for drought-tolerant crops
  publication-title: Funct. Plant Biol.
– volume: 40
  start-page: 1
  year: 2012
  end-page: 13
  ident: bib79
  article-title: A multisite managed environment facility for targeted trait and germplasm phenotyping
  publication-title: Funct. Plant Biol.
– volume: 7
  start-page: 1419
  year: 2016
  ident: bib113
  article-title: Using deep learning for image-based plant disease detection
  publication-title: Front. Plant Sci.
– volume: 166
  start-page: 470
  year: 2014
  ident: bib66
  article-title: Image-based high-throughput field phenotyping of crop roots
  publication-title: Plant Physiol.
– volume: 36
  start-page: 922
  year: 2009
  end-page: 929
  ident: bib3
  article-title: Root phenomics of crops: opportunities and challenges
  publication-title: Funct. Plant Biol.
– volume: 341
  start-page: 75
  year: 2011
  end-page: 87
  ident: bib59
  article-title: Shovelomics: high throughput phenotyping of maize (
  publication-title: Plant Soil
– volume: 312
  start-page: 7
  year: 2008
  end-page: 14
  ident: bib118
  article-title: Lorenz Hiltner, a pioneer in rhizosphere microbial ecology and soil bacteriology research
  publication-title: Plant Soil
– volume: 67
  start-page: 3605
  year: 2016
  end-page: 3615
  ident: bib13
  article-title: From promise to application: root traits for enhanced nutrient capture in rice breeding
  publication-title: J. Exp. Bot.
– volume: 31
  start-page: 1708
  year: 2019
  end-page: 1722
  ident: bib73
  article-title: High-resolution 4D spatiotemporal analysis reveals the contributions of local growth dynamics to contrasting maize root architectures
  publication-title: Plant Cell
– volume: 200
  start-page: 63
  year: 1998
  end-page: 69
  ident: bib11
  article-title: Genetic control of adaptive root characteristics in white clover
  publication-title: Plant Soil
– volume: 13
  start-page: 102
  year: 2017
  ident: bib40
  article-title: Non-invasive imaging of plant roots in different soils using magnetic resonance imaging (MRI)
  publication-title: Plant Methods
– year: 2018
  ident: bib68
  article-title: A novel multi-perspective imaging platform (M-PIP) for phenotyping soybean root crowns in the field increases throughput and separation ability of genotype root properties
  publication-title: bioRxiv
– volume: 215
  start-page: 1274
  year: 2017
  end-page: 1286
  ident: bib83
  article-title: OpenSimRoot: widening the scope and application of root architectural models
  publication-title: New Phytol.
– volume: 30
  start-page: 483
  year: 2003
  end-page: 491
  ident: bib123
  article-title: Soil strength and rate of root elongation alter the accumulation of
  publication-title: Funct. Plant Biol.
– start-page: 341
  year: 2011
  end-page: 361
  ident: bib75
  article-title: Minirhizotrons in modern root studies
  publication-title: Measuring Roots
– volume: 40
  start-page: 137
  year: 2013
  end-page: 147
  ident: bib78
  article-title: Minirhizotron imaging reveals that nodulation of field-grown soybean is enhanced by free-air CO2 enrichment only when combined with drought stress
  publication-title: Funct. Plant Biol.
– volume: 497
  start-page: 60
  year: 2013
  end-page: 66
  ident: bib17
  article-title: Using membrane transporters to improve crops for sustainable food production
  publication-title: Nature
– volume: 25
  year: 2019
  ident: bib47
  article-title: Beyond digging: non-invasive root and rhizosphere phenotyping
  publication-title: Trends Plant Sci.
– volume: 56
  start-page: 947
  year: 2005
  end-page: 960
  ident: bib91
  article-title: Trait physiology and crop modelling as a framework to link phenotypic complexity to underlying genetic systems
  publication-title: Aust. J. Agric. Res.
– volume: 64
  start-page: 1193
  year: 2013
  end-page: 1208
  ident: bib120
  article-title: Soil conditions and cereal root system architecture: review and considerations for linking Darwin and Weaver
  publication-title: J. Exp. Bot.
– volume: 172
  start-page: 1358
  year: 2016
  ident: bib49
  article-title: PhenoSeeder - a robot system for automated handling and phenotyping of individual seeds
  publication-title: Plant Physiol.
– volume: 61
  start-page: 4129
  year: 2010
  end-page: 4143
  ident: bib92
  article-title: Increasing productivity by matching farming system management and genotype in water-limited environments
  publication-title: J. Exp. Bot.
– volume: 63
  start-page: 3485
  year: 2012
  end-page: 3498
  ident: bib24
  article-title: Traits and selection strategies to improve root systems and water uptake in water-limited wheat crops
  publication-title: J. Exp. Bot.
– volume: 46
  start-page: S158
  year: 2005
  ident: bib14
  article-title: Overexpression of wheat ALMT1 gene confers aluminum tolerance in plants
  publication-title: Plant Cell Physiol.
– volume: 170
  start-page: 1176
  year: 2016
  end-page: 1188
  ident: bib44
  article-title: Quantitative 3D analysis of plant roots growing in soil using magnetic resonance imaging
  publication-title: Plant Physiol.
– volume: 55
  start-page: 1
  year: 2019
  end-page: 8
  ident: bib38
  article-title: Uncovering the hidden half of plants using new advances in root phenotyping
  publication-title: Curr. Opin. Biotechnol.
– volume: 192
  start-page: 21
  year: 2016
  end-page: 32
  ident: bib65
  article-title: Legume shovelomics: high-throughput phenotyping of common bean (
  publication-title: Field Crops Res.
– volume: 3
  start-page: 3194
  year: 2013
  ident: bib71
  article-title: A DNA-based method for studying root responses to drought in field-grown wheat genotypes
  publication-title: Sci. Rep.
– year: 2019
  ident: bib37
  article-title: Dynamics in plant roots and shoots minimise stress, save energy and maintain water and nutrient uptake
  publication-title: New Phytol.
– volume: 7
  start-page: 944
  year: 2016
  ident: bib30
  article-title: Sowing density: a neglected factor fundamentally affecting root distribution and biomass allocation of field grown spring barley (
  publication-title: Front. Plant Sci.
– volume: 168
  start-page: 156
  year: 2014
  end-page: 167
  ident: bib19
  article-title: A wheat phenotyping network to incorporate physiological traits for climate change in South Asia
  publication-title: Field Crop Res.
– volume: 11
  start-page: 17
  year: 2015
  ident: bib39
  article-title: Direct comparison of MRI and X-ray CT technologies for 3D imaging of root systems in soil: potential and challenges for root trait quantification
  publication-title: Plant Methods
– volume: 90
  start-page: 145
  year: 2004
  end-page: 163
  ident: bib85
  article-title: From genome to crop: integration through simulation modeling
  publication-title: Field Crops Res.
– volume: 128
  start-page: 181
  year: 2016
  end-page: 192
  ident: bib112
  article-title: A multi-sensor system for high throughput field phenotyping in soybean and wheat breeding
  publication-title: Comput. Electron. Agr.
– volume: 46
  start-page: 257
  year: 2008
  end-page: 264
  ident: bib97
  article-title: Organic anions in the rhizosphere of Al-tolerant and Al-sensitive wheat lines grown in an acid soil in controlled and field environments
  publication-title: Aust. J. Soil Res.
– volume: 7
  start-page: 1155
  year: 2016
  ident: bib34
  article-title: Identification of water use strategies at early growth stages in durum wheat from shoot phenotyping and physiological measurements
  publication-title: Front. Plant Sci.
– volume: 50
  start-page: 467
  year: 2016
  end-page: 491
  ident: bib115
  article-title: Plant transgenerational epigenetics
  publication-title: Annu. Rev. Genet.
– volume: 14
  start-page: 39
  year: 1974
  end-page: 55
  ident: bib7
  article-title: Phenotype and drought tolerance in wheat
  publication-title: Agr. Meteorol.
– volume: 66
  start-page: 5493
  year: 2015
  end-page: 5505
  ident: bib62
  article-title: Intensive field phenotyping of maize (
  publication-title: J. Exp. Bot.
– volume: 40
  start-page: 943
  year: 1989
  end-page: 950
  ident: bib10
  article-title: A breeding program to reduce the diameter of the major xylem vessel in the seminal roots of wheat and its effect on grain-yield in rain-fed environments
  publication-title: Aust. J. Agr. Res.
– volume: 67
  start-page: 2453
  year: 2016
  end-page: 2466
  ident: bib33
  article-title: Screening for drought tolerance of maize hybrids by multi-scale analysis of root and shoot traits at the seedling stage
  publication-title: J. Exp. Bot.
– volume: 128
  start-page: 999
  year: 2015
  end-page: 1017
  ident: bib122
  article-title: MAGIC populations in crops: current status and future prospects
  publication-title: Theor. Appl. Genet.
– volume: 404
  start-page: 61
  year: 2016
  end-page: 74
  ident: bib111
  article-title: Identification of several wheat landraces with biological nitrification inhibition capacity
  publication-title: Plant Soil
– volume: 74
  start-page: 500
  year: 1982
  end-page: 503
  ident: bib69
  article-title: Quantitative separation of roots from compacted soil profiles by the hydropneumatic elutriation system
  publication-title: Agronomy J.
– volume: 385
  start-page: 303
  year: 2014
  end-page: 310
  ident: bib42
  article-title: Quantifying the response of wheat (
  publication-title: Plant Soil
– volume: 174
  start-page: 2333
  year: 2017
  ident: bib86
  article-title: Root cortical senescence improves growth under suboptimal availability of N, P, and K
  publication-title: Plant Physiol.
– volume: 62
  start-page: 2485
  year: 2011
  end-page: 2494
  ident: bib8
  article-title: Dro1, a major QTL involved in deep rooting of rice under upland field conditions
  publication-title: J. Exp. Bot.
– volume: 128
  start-page: 575
  year: 2015
  end-page: 585
  ident: bib18
  article-title: Common genetic basis for canopy temperature depression under heat and drought stress associated with optimized root distribution in bread wheat
  publication-title: Theor. Appl. Genet.
– volume: 70
  start-page: 4963
  year: 2019
  end-page: 4974
  ident: bib21
  article-title: Deeper roots associated with cooler canopies, higher normalized difference vegetation index, and greater yield in three wheat populations grown on stored soil water
  publication-title: J. Exp. Bot.
– volume: 61
  start-page: 311
  year: 2010
  end-page: 313
  ident: bib41
  article-title: The X-factor: visualizing undisturbed root architecture in soils using X-ray computed tomography
  publication-title: J. Exp. Bot.
– volume: 65
  start-page: 1981
  year: 2014
  end-page: 1995
  ident: bib50
  article-title: Improvement of crop yield in dry environments: benchmarks, levels of organisation and the role of nitrogen
  publication-title: J. Exp. Bot.
– volume: 143
  start-page: 18
  year: 2013
  end-page: 33
  ident: bib110
  article-title: Prognosis for genetic improvement of yield potential and water-limited yield of major grain crops
  publication-title: Field Crops Res.
– volume: 178
  start-page: 690
  year: 2008
  ident: bib72
  article-title: Types, structure and potential for axial water flow in the deepest roots of field-grown cereals
  publication-title: New Phytol.
– volume: 350
  start-page: 205
  year: 2012
  end-page: 220
  ident: bib74
  article-title: Quantitative estimates of root densities at minirhizotrons differ from those in the bulk soil
  publication-title: Plant Soil
– volume: 115
  start-page: 67
  year: 2010
  end-page: 78
  ident: bib12
  article-title: Will nutrient-efficient genotypes mine the soil? Effects of genetic differences in root architecture in common bean (
  publication-title: Field Crop Res.
– volume: 19
  start-page: 52
  year: 2014
  end-page: 61
  ident: bib57
  article-title: Field high-throughput phenotyping: the new crop breeding frontier
  publication-title: Trends Plant Sci.
– volume: 66
  start-page: 5519
  year: 2015
  end-page: 5530
  ident: bib25
  article-title: Impact of domestication on the phenotypic architecture of durum wheat under contrasting nitrogen fertilization
  publication-title: J. Exp. Bot.
– volume: 116
  start-page: 321
  year: 2015
  end-page: 331
  ident: bib31
  article-title: Phenotype of
  publication-title: Ann. Bot.
– volume: 66
  start-page: 5441
  year: 2015
  ident: 10.1016/j.tplants.2019.10.015_bib27
  article-title: Simultaneous effects of leaf irradiance and soil moisture on growth and root system architecture of novel wheat genotypes: implications for phenotyping
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erv290
– volume: 212
  start-page: 838
  year: 2016
  ident: 10.1016/j.tplants.2019.10.015_bib52
  article-title: Pampered inside, pestered outside? Differences and similarities between plants growing in controlled conditions and in the field
  publication-title: New Phytol.
  doi: 10.1111/nph.14243
– start-page: 173
  year: 2014
  ident: 10.1016/j.tplants.2019.10.015_bib23
  article-title: Non-invasive phenotyping methodologies enable the accurate characterization of growth and performance of shoots and roots
– volume: 33
  start-page: 777
  year: 2012
  ident: 10.1016/j.tplants.2019.10.015_bib117
  article-title: Deep phenotyping for precision medicine
  publication-title: Hum. Mutat.
  doi: 10.1002/humu.22080
– volume: 11
  start-page: 17
  year: 2015
  ident: 10.1016/j.tplants.2019.10.015_bib39
  article-title: Direct comparison of MRI and X-ray CT technologies for 3D imaging of root systems in soil: potential and challenges for root trait quantification
  publication-title: Plant Methods
  doi: 10.1186/s13007-015-0060-z
– volume: 128
  start-page: 575
  year: 2015
  ident: 10.1016/j.tplants.2019.10.015_bib18
  article-title: Common genetic basis for canopy temperature depression under heat and drought stress associated with optimized root distribution in bread wheat
  publication-title: Theor. Appl. Genet.
  doi: 10.1007/s00122-015-2453-9
– volume: 415
  start-page: 99
  year: 2017
  ident: 10.1016/j.tplants.2019.10.015_bib104
  article-title: A new model for root growth in soil with macropores
  publication-title: Plant Soil
  doi: 10.1007/s11104-016-3144-2
– volume: 415
  start-page: 407
  year: 2017
  ident: 10.1016/j.tplants.2019.10.015_bib58
  article-title: Methods to estimate changes in soil water for phenotyping root activity in the field
  publication-title: Plant Soil
  doi: 10.1007/s11104-016-3161-1
– volume: 25
  year: 2019
  ident: 10.1016/j.tplants.2019.10.015_bib47
  article-title: Beyond digging: non-invasive root and rhizosphere phenotyping
  publication-title: Trends Plant Sci.
– volume: 172
  start-page: 1358
  year: 2016
  ident: 10.1016/j.tplants.2019.10.015_bib49
  article-title: PhenoSeeder - a robot system for automated handling and phenotyping of individual seeds
  publication-title: Plant Physiol.
  doi: 10.1104/pp.16.01122
– year: 2018
  ident: 10.1016/j.tplants.2019.10.015_bib64
  article-title: Wheat shovelomics II: revealing relationships between root crown traits and crop growth
  publication-title: bioRxiv
– volume: 67
  start-page: 3665
  year: 2016
  ident: 10.1016/j.tplants.2019.10.015_bib90
  article-title: Farming system context drives the value of deep wheat roots in semi-arid environments
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erw093
– volume: 168
  start-page: 156
  year: 2014
  ident: 10.1016/j.tplants.2019.10.015_bib19
  article-title: A wheat phenotyping network to incorporate physiological traits for climate change in South Asia
  publication-title: Field Crop Res.
  doi: 10.1016/j.fcr.2014.07.004
– volume: 30
  start-page: 483
  year: 2003
  ident: 10.1016/j.tplants.2019.10.015_bib123
  article-title: Soil strength and rate of root elongation alter the accumulation of Pseudomonas spp. and other bacteria in the rhizosphere of wheat
  publication-title: Funct. Plant Biol.
  doi: 10.1071/FP03045
– volume: 52
  start-page: 1367
  year: 2001
  ident: 10.1016/j.tplants.2019.10.015_bib16
  article-title: Diagnostic DNA markers for cereal cyst nematode resistance in bread wheat
  publication-title: Aust. J. Agr. Res.
  doi: 10.1071/AR01031
– volume: 64
  start-page: 267
  year: 2013
  ident: 10.1016/j.tplants.2019.10.015_bib114
  article-title: Future scenarios for plant phenotyping
  publication-title: Annu. Rev. Plant Biol.
  doi: 10.1146/annurev-arplant-050312-120137
– volume: 351
  start-page: 384
  year: 2016
  ident: 10.1016/j.tplants.2019.10.015_bib95
  article-title: Cyclic programmed cell death stimulates hormone signaling and root development in Arabidopsis
  publication-title: Science
  doi: 10.1126/science.aad2776
– volume: 41
  start-page: 91
  year: 1987
  ident: 10.1016/j.tplants.2019.10.015_bib1
  article-title: Genotypic variation in crop plant root systems
  publication-title: Adv. Agron.
  doi: 10.1016/S0065-2113(08)60803-2
– volume: 67
  start-page: 3709
  year: 2016
  ident: 10.1016/j.tplants.2019.10.015_bib81
  article-title: Rhizosheaths on wheat grown in acid soils: phosphorus acquisition efficiency and genetic control
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erw035
– volume: 200
  start-page: 63
  year: 1998
  ident: 10.1016/j.tplants.2019.10.015_bib11
  article-title: Genetic control of adaptive root characteristics in white clover
  publication-title: Plant Soil
  doi: 10.1023/A:1004296707631
– volume: 62
  start-page: 2485
  year: 2011
  ident: 10.1016/j.tplants.2019.10.015_bib8
  article-title: Dro1, a major QTL involved in deep rooting of rice under upland field conditions
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erq429
– volume: 68
  start-page: 965
  year: 2017
  ident: 10.1016/j.tplants.2019.10.015_bib89
  article-title: Root architecture simulation improves the inference from seedling root phenotyping towards mature root systems
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erw494
– volume: 497
  start-page: 60
  year: 2013
  ident: 10.1016/j.tplants.2019.10.015_bib17
  article-title: Using membrane transporters to improve crops for sustainable food production
  publication-title: Nature
  doi: 10.1038/nature11909
– year: 2018
  ident: 10.1016/j.tplants.2019.10.015_bib68
  article-title: A novel multi-perspective imaging platform (M-PIP) for phenotyping soybean root crowns in the field increases throughput and separation ability of genotype root properties
  publication-title: bioRxiv
– volume: 14
  start-page: 39
  year: 1974
  ident: 10.1016/j.tplants.2019.10.015_bib7
  article-title: Phenotype and drought tolerance in wheat
  publication-title: Agr. Meteorol.
  doi: 10.1016/0002-1571(74)90009-0
– volume: 37
  start-page: 147
  year: 2010
  ident: 10.1016/j.tplants.2019.10.015_bib55
  article-title: Partitioning of assimilates to deeper roots is associated with cooler canopies and increased yield under drought in wheat
  publication-title: Funct. Plant Biol.
  doi: 10.1071/FP09121
– volume: 37
  start-page: 85
  year: 2010
  ident: 10.1016/j.tplants.2019.10.015_bib51
  article-title: Breeding for improved water productivity in temperate cereals: phenotyping, quantitative trait loci, markers and the selection environment
  publication-title: Funct. Plant Biol.
  doi: 10.1071/FP09219
– volume: 66
  start-page: 5519
  year: 2015
  ident: 10.1016/j.tplants.2019.10.015_bib25
  article-title: Impact of domestication on the phenotypic architecture of durum wheat under contrasting nitrogen fertilization
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erv289
– volume: 222
  start-page: 1149
  year: 2019
  ident: 10.1016/j.tplants.2019.10.015_bib109
  article-title: Multilab EcoFAB study shows highly reproducible physiology and depletion of soil metabolites by a model grass
  publication-title: New Phytol.
  doi: 10.1111/nph.15662
– volume: 41
  start-page: 581
  year: 2014
  ident: 10.1016/j.tplants.2019.10.015_bib28
  article-title: Spring barley shows dynamic compensatory root and shoot growth responses when exposed to localised soil compaction and fertilisation
  publication-title: Funct. Plant Biol.
  doi: 10.1071/FP13224
– volume: 56
  start-page: 947
  year: 2005
  ident: 10.1016/j.tplants.2019.10.015_bib91
  article-title: Trait physiology and crop modelling as a framework to link phenotypic complexity to underlying genetic systems
  publication-title: Aust. J. Agric. Res.
  doi: 10.1071/AR05157
– volume: 122
  start-page: 485
  year: 2018
  ident: 10.1016/j.tplants.2019.10.015_bib84
  article-title: Co-optimization of axial root phenotypes for nitrogen and phosphorus acquisition in common bean
  publication-title: Ann. Bot.
  doi: 10.1093/aob/mcy092
– volume: 4
  start-page: 392
  year: 2013
  ident: 10.1016/j.tplants.2019.10.015_bib103
  article-title: Disentangling who is who during rhizosphere acidification in root interactions: combining fluorescence with optode techniques
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2013.00392
– volume: 65
  start-page: 6231
  year: 2014
  ident: 10.1016/j.tplants.2019.10.015_bib9
  article-title: Soil coring at multiple field environments can directly quantify variation in deep root traits to select wheat genotypes for breeding
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/eru250
– volume: 1
  start-page: 225
  year: 2006
  ident: 10.1016/j.tplants.2019.10.015_bib29
  article-title: Root growth reacts rapidly and more pronounced than shoot growth towards increasing light intensity in tobacco seedlings
  publication-title: Plant Signal. Behav.
  doi: 10.4161/psb.1.5.3447
– volume: 341
  start-page: 75
  year: 2011
  ident: 10.1016/j.tplants.2019.10.015_bib59
  article-title: Shovelomics: high throughput phenotyping of maize (Zea mays L.) root architecture in the field
  publication-title: Plant Soil
  doi: 10.1007/s11104-010-0623-8
– volume: 63
  start-page: 3485
  year: 2012
  ident: 10.1016/j.tplants.2019.10.015_bib24
  article-title: Traits and selection strategies to improve root systems and water uptake in water-limited wheat crops
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/ers111
– volume: 115
  start-page: 67
  year: 2010
  ident: 10.1016/j.tplants.2019.10.015_bib12
  article-title: Will nutrient-efficient genotypes mine the soil? Effects of genetic differences in root architecture in common bean (Phaseolus vulgaris L.) on soil phosphorus depletion in a low-input agro-ecosystem in Central America
  publication-title: Field Crop Res.
  doi: 10.1016/j.fcr.2009.10.004
– volume: 67
  start-page: 3629
  year: 2016
  ident: 10.1016/j.tplants.2019.10.015_bib94
  article-title: The holistic rhizosphere: integrating zones, processes, and semantics in the soil influenced by roots
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erw108
– volume: 7
  start-page: 1419
  year: 2016
  ident: 10.1016/j.tplants.2019.10.015_bib113
  article-title: Using deep learning for image-based plant disease detection
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2016.01419
– volume: 388
  start-page: 1
  year: 2015
  ident: 10.1016/j.tplants.2019.10.015_bib67
  article-title: Next generation shovelomics: set up a tent and REST
  publication-title: Plant Soil
  doi: 10.1007/s11104-015-2379-7
– volume: 166
  start-page: 2166
  year: 2014
  ident: 10.1016/j.tplants.2019.10.015_bib80
  article-title: Large root cortical cell size improves drought tolerance in maize
  publication-title: Plant Physiol.
  doi: 10.1104/pp.114.250449
– volume: 61
  start-page: 311
  year: 2010
  ident: 10.1016/j.tplants.2019.10.015_bib41
  article-title: The X-factor: visualizing undisturbed root architecture in soils using X-ray computed tomography
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erp386
– volume: 7
  start-page: 944
  year: 2016
  ident: 10.1016/j.tplants.2019.10.015_bib30
  article-title: Sowing density: a neglected factor fundamentally affecting root distribution and biomass allocation of field grown spring barley (Hordeum vulgare L.)
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2016.00944
– volume: 7
  start-page: 14875
  year: 2017
  ident: 10.1016/j.tplants.2019.10.015_bib107
  article-title: The emergent rhizosphere: imaging the development of the porous architecture at the root-soil interface
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-14904-w
– volume: 69
  start-page: 2759
  year: 2018
  ident: 10.1016/j.tplants.2019.10.015_bib43
  article-title: Hydrotropism: how roots search for water
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/ery034
– volume: 44
  start-page: 299
  year: 2006
  ident: 10.1016/j.tplants.2019.10.015_bib2
  article-title: Rhizosphere biology and crop productivity - a review
  publication-title: Aust. J. Soil Res.
  doi: 10.1071/SR05142
– volume: 67
  start-page: 3605
  year: 2016
  ident: 10.1016/j.tplants.2019.10.015_bib13
  article-title: From promise to application: root traits for enhanced nutrient capture in rice breeding
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erw061
– volume: 2019
  start-page: 6
  year: 2019
  ident: 10.1016/j.tplants.2019.10.015_bib46
  article-title: Plant phenotyping: past, present, and future
  publication-title: Plant Phenomics
  doi: 10.34133/2019/7507131
– volume: 350
  start-page: 205
  year: 2012
  ident: 10.1016/j.tplants.2019.10.015_bib74
  article-title: Quantitative estimates of root densities at minirhizotrons differ from those in the bulk soil
  publication-title: Plant Soil
  doi: 10.1007/s11104-011-0896-6
– volume: 312
  start-page: 7
  year: 2008
  ident: 10.1016/j.tplants.2019.10.015_bib118
  article-title: Lorenz Hiltner, a pioneer in rhizosphere microbial ecology and soil bacteriology research
  publication-title: Plant Soil
  doi: 10.1007/s11104-007-9514-z
– volume: 112
  start-page: 447
  year: 2013
  ident: 10.1016/j.tplants.2019.10.015_bib53
  article-title: A rapid, controlled-environment seedling root screen for wheat correlates well with rooting depths at vegetative, but not reproductive, stages at two field sites
  publication-title: Ann. Bot.
  doi: 10.1093/aob/mct122
– volume: 44
  start-page: 107
  year: 2017
  ident: 10.1016/j.tplants.2019.10.015_bib6
  article-title: The advantages of functional phenotyping in pre-field screening for drought-tolerant crops
  publication-title: Funct. Plant Biol.
  doi: 10.1071/FP16156
– volume: 30
  start-page: 360
  year: 2012
  ident: 10.1016/j.tplants.2019.10.015_bib15
  article-title: Wheat grain yield on saline soils is improved by an ancestral Na(+) transporter gene
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.2120
– volume: 63
  start-page: 3467
  year: 2012
  ident: 10.1016/j.tplants.2019.10.015_bib5
  article-title: Application of Brachypodium to the genetic improvement of wheat roots
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/ers044
– volume: 219
  start-page: 542
  year: 2018
  ident: 10.1016/j.tplants.2019.10.015_bib108
  article-title: Plant roots redesign the rhizosphere to alter the three-dimensional physical architecture and water dynamics
  publication-title: New Phytol.
  doi: 10.1111/nph.15213
– volume: 67
  start-page: 1033
  year: 2016
  ident: 10.1016/j.tplants.2019.10.015_bib60
  article-title: A portable fluorescence spectroscopy imaging system for automated root phenotyping in soil cores in the field
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erv570
– volume: 66
  start-page: 2305
  year: 2015
  ident: 10.1016/j.tplants.2019.10.015_bib106
  article-title: Assessing the influence of the rhizosphere on soil hydraulic properties using X-ray computed tomography and numerical modelling
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/eru509
– volume: 13
  start-page: 102
  year: 2017
  ident: 10.1016/j.tplants.2019.10.015_bib40
  article-title: Non-invasive imaging of plant roots in different soils using magnetic resonance imaging (MRI)
  publication-title: Plant Methods
  doi: 10.1186/s13007-017-0252-9
– volume: 70
  start-page: 4963
  year: 2019
  ident: 10.1016/j.tplants.2019.10.015_bib21
  article-title: Deeper roots associated with cooler canopies, higher normalized difference vegetation index, and greater yield in three wheat populations grown on stored soil water
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erz232
– volume: 109
  start-page: 7
  year: 1995
  ident: 10.1016/j.tplants.2019.10.015_bib119
  article-title: Root architecture and plant productivity
  publication-title: Plant Physiol.
  doi: 10.1104/pp.109.1.7
– volume: 55
  start-page: 1
  year: 2019
  ident: 10.1016/j.tplants.2019.10.015_bib38
  article-title: Uncovering the hidden half of plants using new advances in root phenotyping
  publication-title: Curr. Opin. Biotechnol.
  doi: 10.1016/j.copbio.2018.06.002
– volume: 40
  start-page: 137
  year: 2013
  ident: 10.1016/j.tplants.2019.10.015_bib78
  article-title: Minirhizotron imaging reveals that nodulation of field-grown soybean is enhanced by free-air CO2 enrichment only when combined with drought stress
  publication-title: Funct. Plant Biol.
  doi: 10.1071/FP12044
– volume: 64
  start-page: 1193
  year: 2013
  ident: 10.1016/j.tplants.2019.10.015_bib120
  article-title: Soil conditions and cereal root system architecture: review and considerations for linking Darwin and Weaver
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/ert043
– volume: 61
  start-page: 4129
  year: 2010
  ident: 10.1016/j.tplants.2019.10.015_bib92
  article-title: Increasing productivity by matching farming system management and genotype in water-limited environments
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erq245
– volume: 58
  start-page: 275
  year: 2013
  ident: 10.1016/j.tplants.2019.10.015_bib102
  article-title: Soil zymography – a novel in situ method for mapping distribution of enzyme activity in soil
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2012.12.004
– volume: 7
  start-page: 13342
  year: 2016
  ident: 10.1016/j.tplants.2019.10.015_bib35
  article-title: Salinity tolerance loci revealed in rice using high-throughput non-invasive phenotyping
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms13342
– volume: 143
  start-page: 18
  year: 2013
  ident: 10.1016/j.tplants.2019.10.015_bib110
  article-title: Prognosis for genetic improvement of yield potential and water-limited yield of major grain crops
  publication-title: Field Crops Res.
  doi: 10.1016/j.fcr.2012.05.014
– volume: 46
  start-page: S158
  year: 2005
  ident: 10.1016/j.tplants.2019.10.015_bib14
  article-title: Overexpression of wheat ALMT1 gene confers aluminum tolerance in plants
  publication-title: Plant Cell Physiol.
– volume: 8
  start-page: 871
  year: 2006
  ident: 10.1016/j.tplants.2019.10.015_bib96
  article-title: Numbers and locations of native bacteria on field-grown wheat roots quantified by fluorescence in situ hybridization (FISH)
  publication-title: Environ. Microbiol.
  doi: 10.1111/j.1462-2920.2005.00973.x
– volume: 404
  start-page: 61
  year: 2016
  ident: 10.1016/j.tplants.2019.10.015_bib111
  article-title: Identification of several wheat landraces with biological nitrification inhibition capacity
  publication-title: Plant Soil
  doi: 10.1007/s11104-016-2822-4
– volume: 40
  start-page: 943
  year: 1989
  ident: 10.1016/j.tplants.2019.10.015_bib10
  article-title: A breeding program to reduce the diameter of the major xylem vessel in the seminal roots of wheat and its effect on grain-yield in rain-fed environments
  publication-title: Aust. J. Agr. Res.
  doi: 10.1071/AR9890943
– volume: 174
  start-page: 2333
  year: 2017
  ident: 10.1016/j.tplants.2019.10.015_bib86
  article-title: Root cortical senescence improves growth under suboptimal availability of N, P, and K
  publication-title: Plant Physiol.
  doi: 10.1104/pp.17.00648
– volume: 90
  start-page: 145
  year: 2004
  ident: 10.1016/j.tplants.2019.10.015_bib85
  article-title: From genome to crop: integration through simulation modeling
  publication-title: Field Crops Res.
  doi: 10.1016/j.fcr.2004.07.014
– volume: 107
  start-page: 1215
  year: 2015
  ident: 10.1016/j.tplants.2019.10.015_bib93
  article-title: Meeting global food needs: realizing the potential via genetics × environment × management interactions
  publication-title: Agronomy J.
  doi: 10.2134/agronj15.0076
– volume: 206
  start-page: 1196
  year: 2015
  ident: 10.1016/j.tplants.2019.10.015_bib116
  article-title: The importance of the microbiome of the plant holobiont
  publication-title: New Phytol.
  doi: 10.1111/nph.13312
– year: 2019
  ident: 10.1016/j.tplants.2019.10.015_bib37
  article-title: Dynamics in plant roots and shoots minimise stress, save energy and maintain water and nutrient uptake
  publication-title: New Phytol.
  doi: 10.1111/nph.15955
– volume: 69
  start-page: 62
  year: 2019
  ident: 10.1016/j.tplants.2019.10.015_bib77
  article-title: Evaluation of deep root phenotyping techniques in tube rhizotrons
  publication-title: Acta Agric. Scand. B Plant Sci.
– volume: 170
  start-page: 1176
  year: 2016
  ident: 10.1016/j.tplants.2019.10.015_bib44
  article-title: Quantitative 3D analysis of plant roots growing in soil using magnetic resonance imaging
  publication-title: Plant Physiol.
  doi: 10.1104/pp.15.01388
– volume: 74
  start-page: 500
  year: 1982
  ident: 10.1016/j.tplants.2019.10.015_bib69
  article-title: Quantitative separation of roots from compacted soil profiles by the hydropneumatic elutriation system
  publication-title: Agronomy J.
  doi: 10.2134/agronj1982.00021962007400030023x
– volume: 21
  start-page: 243
  year: 2016
  ident: 10.1016/j.tplants.2019.10.015_bib101
  article-title: New methods to unravel rhizosphere processes
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2015.12.005
– volume: 66
  start-page: 5389
  year: 2015
  ident: 10.1016/j.tplants.2019.10.015_bib4
  article-title: Root phenotyping: from component trait in the lab to breeding
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erv239
– volume: 8
  start-page: 241
  year: 2018
  ident: 10.1016/j.tplants.2019.10.015_bib56
  article-title: Root phenotyping for drought tolerance: a review
  publication-title: Agronomy
  doi: 10.3390/agronomy8110241
– volume: 29
  start-page: 340
  year: 2006
  ident: 10.1016/j.tplants.2019.10.015_bib36
  article-title: Functional dynamics of plant growth and photosynthesis – from steady-state to dynamics – from homogeneity to heterogeneity
  publication-title: Plant, Cell Environ.
  doi: 10.1111/j.1365-3040.2005.01490.x
– volume: 36
  start-page: 922
  year: 2009
  ident: 10.1016/j.tplants.2019.10.015_bib3
  article-title: Root phenomics of crops: opportunities and challenges
  publication-title: Funct. Plant Biol.
  doi: 10.1071/FP09150
– volume: 50
  start-page: 467
  year: 2016
  ident: 10.1016/j.tplants.2019.10.015_bib115
  article-title: Plant transgenerational epigenetics
  publication-title: Annu. Rev. Genet.
  doi: 10.1146/annurev-genet-120215-035254
– volume: 3
  start-page: 3194
  year: 2013
  ident: 10.1016/j.tplants.2019.10.015_bib71
  article-title: A DNA-based method for studying root responses to drought in field-grown wheat genotypes
  publication-title: Sci. Rep.
  doi: 10.1038/srep03194
– volume: 41
  start-page: 121
  year: 2017
  ident: 10.1016/j.tplants.2019.10.015_bib87
  article-title: Quantification of root water uptake in soil using X-ray computed tomography and image-based modelling
  publication-title: Plant Cell Environ.
  doi: 10.1111/pce.12983
– volume: 178
  start-page: 690
  year: 2008
  ident: 10.1016/j.tplants.2019.10.015_bib72
  article-title: Types, structure and potential for axial water flow in the deepest roots of field-grown cereals
  publication-title: New Phytol.
  doi: 10.1111/j.1469-8137.2007.02358.x
– volume: 215
  start-page: 1274
  year: 2017
  ident: 10.1016/j.tplants.2019.10.015_bib83
  article-title: OpenSimRoot: widening the scope and application of root architectural models
  publication-title: New Phytol.
  doi: 10.1111/nph.14641
– volume: 39
  start-page: 891
  year: 2012
  ident: 10.1016/j.tplants.2019.10.015_bib22
  article-title: GROWSCREEN-Rhizo is a novel phenotyping robot enabling simultaneous measurements of root and shoot growth for plants grown in soil-filled rhizotrons
  publication-title: Funct. Plant Biol.
  doi: 10.1071/FP12023
– volume: 66
  start-page: 5493
  year: 2015
  ident: 10.1016/j.tplants.2019.10.015_bib62
  article-title: Intensive field phenotyping of maize (Zea mays L.) root crowns identifies phenes and phene integration associated with plant growth and nitrogen acquisition
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erv241
– volume: 8
  start-page: 1594
  year: 2017
  ident: 10.1016/j.tplants.2019.10.015_bib70
  article-title: Accuracy and bias of methods used for root length measurements in functional root research
  publication-title: Methods in Ecology and Evolution
  doi: 10.1111/2041-210X.12771
– volume: 192
  start-page: 21
  year: 2016
  ident: 10.1016/j.tplants.2019.10.015_bib65
  article-title: Legume shovelomics: high-throughput phenotyping of common bean (Phaseolus vulgaris L.) and cowpea (Vigna unguiculata subsp, unguiculata) root architecture in the field
  publication-title: Field Crops Res.
  doi: 10.1016/j.fcr.2016.04.008
– volume: 3
  start-page: 129
  year: 2005
  ident: 10.1016/j.tplants.2019.10.015_bib98
  article-title: Expression of a fungal phytase gene in Nicotiana tabacum improves phosphorus nutrition of plants grown in amended soils
  publication-title: Plant Biotechnol. J.
  doi: 10.1111/j.1467-7652.2004.00116.x
– volume: 385
  start-page: 303
  year: 2014
  ident: 10.1016/j.tplants.2019.10.015_bib42
  article-title: Quantifying the response of wheat (Triticum aestivum L) root system architecture to phosphorus in an Oxisol
  publication-title: Plant Soil
  doi: 10.1007/s11104-014-2191-9
– volume: 8
  start-page: 786
  year: 2017
  ident: 10.1016/j.tplants.2019.10.015_bib82
  article-title: Crops in silico: generating virtual crops using an integrative and multi-scale modeling platform
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2017.00786
– volume: 168
  start-page: 953
  year: 2015
  ident: 10.1016/j.tplants.2019.10.015_bib26
  article-title: Variation in adult plant phenotypes and partitioning among seed and stem-borne roots across Brachypodium distachyon accessions to exploit in breeding cereals for well-watered and drought environments
  publication-title: Plant Physiol.
  doi: 10.1104/pp.15.00095
– volume: 166
  start-page: 590
  year: 2014
  ident: 10.1016/j.tplants.2019.10.015_bib88
  article-title: The optimal lateral root branching density for maize depends on nitrogen and phosphorus availability
  publication-title: Plant Physiol.
  doi: 10.1104/pp.113.233916
– volume: 31
  start-page: 1708
  year: 2019
  ident: 10.1016/j.tplants.2019.10.015_bib73
  article-title: High-resolution 4D spatiotemporal analysis reveals the contributions of local growth dynamics to contrasting maize root architectures
  publication-title: Plant Cell
  doi: 10.1105/tpc.19.00015
– volume: 89
  start-page: 263
  year: 1981
  ident: 10.1016/j.tplants.2019.10.015_bib100
  article-title: The ultrastructure and histochemistry of the rhizosphere
  publication-title: New Phytol.
– volume: 19
  start-page: 52
  year: 2014
  ident: 10.1016/j.tplants.2019.10.015_bib57
  article-title: Field high-throughput phenotyping: the new crop breeding frontier
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2013.09.008
– volume: 67
  start-page: 2453
  year: 2016
  ident: 10.1016/j.tplants.2019.10.015_bib33
  article-title: Screening for drought tolerance of maize hybrids by multi-scale analysis of root and shoot traits at the seedling stage
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erw055
– volume: 65
  start-page: 1981
  year: 2014
  ident: 10.1016/j.tplants.2019.10.015_bib50
  article-title: Improvement of crop yield in dry environments: benchmarks, levels of organisation and the role of nitrogen
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/eru061
– volume: 128
  start-page: 181
  year: 2016
  ident: 10.1016/j.tplants.2019.10.015_bib112
  article-title: A multi-sensor system for high throughput field phenotyping in soybean and wheat breeding
  publication-title: Comput. Electron. Agr.
  doi: 10.1016/j.compag.2016.08.021
– volume: 111
  start-page: 9319
  year: 2014
  ident: 10.1016/j.tplants.2019.10.015_bib105
  article-title: Plant roots use a patterning mechanism to position lateral root branches toward available water
  publication-title: Proc. Natl. Acad. Sci. U. S. A
  doi: 10.1073/pnas.1400966111
– volume: 116
  start-page: 321
  year: 2015
  ident: 10.1016/j.tplants.2019.10.015_bib31
  article-title: Phenotype of Arabidopsis thaliana semi-dwarfs with deep roots and high growth rates under water-limiting conditions is independent of the GA5 loss-of-function alleles
  publication-title: Ann. Bot.
  doi: 10.1093/aob/mcv099
– volume: 43
  start-page: 173
  year: 2016
  ident: 10.1016/j.tplants.2019.10.015_bib20
  article-title: Wheats developed for high yield on stored soil moisture have deep vigorous root systems
  publication-title: Funct. Plant Biol.
  doi: 10.1071/FP15182
– volume: 8
  start-page: 282
  year: 2017
  ident: 10.1016/j.tplants.2019.10.015_bib61
  article-title: Differentiating wheat genotypes by Bayesian hierarchical nonlinear mixed modeling of wheat root density
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2017.00282
– volume: 166
  start-page: 470
  year: 2014
  ident: 10.1016/j.tplants.2019.10.015_bib66
  article-title: Image-based high-throughput field phenotyping of crop roots
  publication-title: Plant Physiol.
  doi: 10.1104/pp.114.243519
– volume: 67
  start-page: 1161
  year: 2016
  ident: 10.1016/j.tplants.2019.10.015_bib54
  article-title: Prioritizing quantitative trait loci for root system architecture in tetraploid wheat
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erw039
– volume: 177
  start-page: 90
  year: 2018
  ident: 10.1016/j.tplants.2019.10.015_bib63
  article-title: Large crown root number improves topsoil foraging and phosphorus acquisition
  publication-title: Plant Physiol.
  doi: 10.1104/pp.18.00234
– volume: 74
  start-page: 131
  year: 2015
  ident: 10.1016/j.tplants.2019.10.015_bib76
  article-title: Root growth and distribution in sugarcane cultivars fertigated by a subsurface drip system
  publication-title: Bragantia
  doi: 10.1590/1678-4499.0295
– volume: 128
  start-page: 999
  year: 2015
  ident: 10.1016/j.tplants.2019.10.015_bib122
  article-title: MAGIC populations in crops: current status and future prospects
  publication-title: Theor. Appl. Genet.
  doi: 10.1007/s00122-015-2506-0
– start-page: 341
  year: 2011
  ident: 10.1016/j.tplants.2019.10.015_bib75
  article-title: Minirhizotrons in modern root studies
– volume: 46
  start-page: 257
  year: 2008
  ident: 10.1016/j.tplants.2019.10.015_bib97
  article-title: Organic anions in the rhizosphere of Al-tolerant and Al-sensitive wheat lines grown in an acid soil in controlled and field environments
  publication-title: Aust. J. Soil Res.
  doi: 10.1071/SR07139
– volume: 59
  start-page: 634
  year: 2009
  ident: 10.1016/j.tplants.2019.10.015_bib45
  article-title: Combined MRI-PET dissects dynamic changes in plant structures and functions
  publication-title: Plant J.
  doi: 10.1111/j.1365-313X.2009.03888.x
– volume: 40
  start-page: 1
  year: 2012
  ident: 10.1016/j.tplants.2019.10.015_bib79
  article-title: A multisite managed environment facility for targeted trait and germplasm phenotyping
  publication-title: Funct. Plant Biol.
  doi: 10.1071/FP12180
– volume: 44
  start-page: 76
  year: 2016
  ident: 10.1016/j.tplants.2019.10.015_bib32
  article-title: GrowScreen-PaGe, a non-invasive, high-throughput phenotyping system based on germination paper to quantify crop phenotypic diversity and plasticity of root traits under varying nutrient supply
  publication-title: Funct. Plant Biol.
  doi: 10.1071/FP16128
– year: 2018
  ident: 10.1016/j.tplants.2019.10.015_bib121
– volume: 195
  start-page: 609
  year: 2012
  ident: 10.1016/j.tplants.2019.10.015_bib48
  article-title: Aluminium tolerance of root hairs underlies genotypic differences in rhizosheath size of wheat (Triticum aestivum) grown on acid soil
  publication-title: New Phytol.
  doi: 10.1111/j.1469-8137.2012.04183.x
– volume: 151
  start-page: 230
  year: 2014
  ident: 10.1016/j.tplants.2019.10.015_bib99
  article-title: Can citrate efflux from roots improve phosphorus uptake by plants? Testing the hypothesis with near-isogenic lines of wheat
  publication-title: Physiol. Plant.
  doi: 10.1111/ppl.12150
– volume: 7
  start-page: 1155
  year: 2016
  ident: 10.1016/j.tplants.2019.10.015_bib34
  article-title: Identification of water use strategies at early growth stages in durum wheat from shoot phenotyping and physiological measurements
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2016.01155
SSID ssj0007186
Score 2.631961
SecondaryResourceType review_article
Snippet Root systems determine the water and nutrients for photosynthesis and harvested products, underpinning agricultural productivity. We highlight 11 programs that...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 105
SubjectTerms Agricultural production
agronomy
Breeding
climate
combinatorial stresses
Computer simulation
Crop improvement
Farms
Germplasm
imaging
Nutrients
Phenotype
Phenotypes
Phenotyping
Photosynthesis
Plant Roots
Rhizosphere
root architecture
Roots
Seeds
Shoots
simulation model
soil
water
Title Crop Improvement from Phenotyping Roots: Highlights Reveal Expanding Opportunities
URI https://dx.doi.org/10.1016/j.tplants.2019.10.015
https://www.ncbi.nlm.nih.gov/pubmed/31806535
https://www.proquest.com/docview/2347633602
https://www.proquest.com/docview/2322750098
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5EPehBfButZQWvafPYphtvtViqYpWq4C1kkw1WShJsKvbib3cmj6qgFLzuA5aZ2W9md2e-BTgV9LIoHKmHkQx07pqRLrmQui9sn0do1W7O030zcPqP_Oqp9bQE3aoWhtIqS-wvMD1H67KlWUqzmY5GzXvTduiZjUIQdJKcCs2JvQ5tuvHxleaB2OsUtVcG8e21vqp4mi-NLB1TtglleLkNSvKi33F_909_xZ-5H-ptwkYZQLJOscYtWFLxNqyeJxjkzbZh_Ru_4A4Mu69Jyop7g_wakFE1Cbt7VnGSzahSig2TJJucMUr3GNM5fcKG6g2DR3bxnhYVL-w2pRh9Gufcq7vw2Lt46Pb18hMFPeDcyPR2ZFgRQokh3SB0DWm1cU87tiV8afKIo0JaVtvwZegIX5mWMnET2650cDDKVbXtPViOk1gdAENQpeNh6KI2OYpS2iIMAkm1rr6PrlADXonOC0qGcfroYuxVqWQvXilxjyROzShxDRrzaWlBsbFogqj04v2wFQ_dwKKptUqPXrlZsd_miLJoIJYGJ_Nu3Gb0duLHKpnSGIuY8A1XaLBf6H--WIRFYvhtHf5_XUewZtFBPr_bqcFy9jpVxxjtZLKem3MdVjqX1_3BJyPI_bY
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZS8QwEB50FdQH8XY9I_ja3R5pN_VNF2W9VlkVfCtNm6KytEW7ov_emTZdFRTB1xwQZibfTJKZLwD7gl4WhSeNOJGRwX0rMSQX0giFE_IErdovebov-17vjp_du_cT0K1rYSitUmN_heklWuuWtpZmO398bN9YjkfPbBSCoJPk7iRMETsVb8DU4el5rz8GZIRfryq_Molyz_0s5Gk_tYp8SAknlOTltyjPiz7I_dlF_RaClq7oZAHmdQzJDqtlLsKESpdg-ijDOO99Cea-UAwuw6D7nOWsujoobwIZFZSw6weVZsU7FUuxQZYVLweMMj6GdFR_YQP1ivEjO37Lq6IXdpVTmD5KS_rVFbg7Ob7t9gz9j4IRcW4WRicx7QTRxJR-FPumtDu4rT3HFqG0eMJRJ67dMUMZeyJUlq0s3MeOLz0cjKJVHWcVGmmWqnVgiKt0Qox9VChHUUpHxFEkqdw1DNEbNoHXogsiTTJOf10Mgzqb7CnQEg9I4tSMEm9Cazwtr1g2_pogar0E38wlQE_w19StWo-B3q_Y73AEWjQQuwl7427cafR8EqYqG9EYm8jwTV80Ya3S_3ixiIxE8utu_H9duzDTu728CC5O--ebMGvTub686tmCRvE8UtsY_BRyRxv3B9QKAHY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Crop+Improvement+from+Phenotyping+Roots%3A+Highlights+Reveal+Expanding+Opportunities&rft.jtitle=Trends+in+plant+science&rft.au=Tracy%2C+Saoirse+R&rft.au=Nagel%2C+Kerstin+A&rft.au=Postma%2C+Johannes+A&rft.au=Fassbender%2C+Heike&rft.date=2020-01-01&rft.pub=Elsevier+BV&rft.issn=1360-1385&rft.eissn=1878-4372&rft.volume=25&rft.issue=1&rft.spage=105&rft_id=info:doi/10.1016%2Fj.tplants.2019.10.015&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1360-1385&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1360-1385&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1360-1385&client=summon