Machine learning to further improve the decision which boar ejaculates to process into artificial insemination doses
Current artificial insemination (AI) laboratory practices assess semen quality of each boar ejaculate to decide which ones to process into AI doses. This decision is aided with two, world-wide used, motility parameters that come available through computer assisted semen analysis (CASA). This decisio...
Saved in:
Published in | Theriogenology Vol. 144; pp. 112 - 121 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.03.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Current artificial insemination (AI) laboratory practices assess semen quality of each boar ejaculate to decide which ones to process into AI doses. This decision is aided with two, world-wide used, motility parameters that come available through computer assisted semen analysis (CASA). This decision process, however, still results in AI doses with variable and sometimes suboptimal fertility outcomes (e.g., small litter size). The hypothesis was that the decision which ejaculates to process into AI doses can be improved by adding more data from CASA systems, and data from other sources, in combination with a data-driven model. Available data consisted of ejaculates that passed the initial decision, and thus, were processed into AI doses and used to inseminate sows. Data were divided into a training set (6793 records) and a validation set (1191 records) for model development, and an independent test set (1434 records) for performance assessment. Gradient Boosting Machine (GBM) models were developed to predict four fertility phenotypes of interest (gestation length, total number born, number born alive, and number of stillborn piglets). Each fertility phenotype was considered as a numeric and as a binary outcome parameter, totaling to eight different fertility phenotypes. Data used to further improve the decision process originated from four sources: 1) CASA information, 2) boar ejaculate information, 3) breeding value estimations, and 4) weather information. These data were used to create seven prediction sets, where each new set added parameters to the ones included in the previous set. The GBM models predicted fertility phenotypes with low correlations (for numeric phenotypes) and area under the curve values (for binary phenotypes) on the test data. Hence, results demonstrated that a combination of more data and GBM did not enable further improvement of the AI dose quality checks, resulting in the rejection of our hypothesis. However, our study revealed parameters affecting boar ejaculate fertility which were not used in today’s decision process. These parameters (listed in the top 10 in at least four GBM models) included one parameter associated with boar ejaculate information, two with breeding value estimations, five with CASA information, and one with weather information. These parameters, therefore, should be further investigated for their potential value when assessing the quality of boar ejaculates in daily routine AI doses processing.
•CASA is a valuable tool for AI laboratories to decide which boar ejaculate to process into AI doses.•This decision could not be improved by a data-driven model to analyze the data.•This decision could not be improved by adding more CASA data or other data.•Nine parameters not used today were identified as potentially interesting. |
---|---|
AbstractList | Current artificial insemination (AI) laboratory practices assess semen quality of each boar ejaculate to decide which ones to process into AI doses. This decision is aided with two, world-wide used, motility parameters that come available through computer assisted semen analysis (CASA). This decision process, however, still results in AI doses with variable and sometimes suboptimal fertility outcomes (e.g., small litter size). The hypothesis was that the decision which ejaculates to process into AI doses can be improved by adding more data from CASA systems, and data from other sources, in combination with a data-driven model. Available data consisted of ejaculates that passed the initial decision, and thus, were processed into AI doses and used to inseminate sows. Data were divided into a training set (6793 records) and a validation set (1191 records) for model development, and an independent test set (1434 records) for performance assessment. Gradient Boosting Machine (GBM) models were developed to predict four fertility phenotypes of interest (gestation length, total number born, number born alive, and number of stillborn piglets). Each fertility phenotype was considered as a numeric and as a binary outcome parameter, totaling to eight different fertility phenotypes. Data used to further improve the decision process originated from four sources: 1) CASA information, 2) boar ejaculate information, 3) breeding value estimations, and 4) weather information. These data were used to create seven prediction sets, where each new set added parameters to the ones included in the previous set. The GBM models predicted fertility phenotypes with low correlations (for numeric phenotypes) and area under the curve values (for binary phenotypes) on the test data. Hence, results demonstrated that a combination of more data and GBM did not enable further improvement of the AI dose quality checks, resulting in the rejection of our hypothesis. However, our study revealed parameters affecting boar ejaculate fertility which were not used in today’s decision process. These parameters (listed in the top 10 in at least four GBM models) included one parameter associated with boar ejaculate information, two with breeding value estimations, five with CASA information, and one with weather information. These parameters, therefore, should be further investigated for their potential value when assessing the quality of boar ejaculates in daily routine AI doses processing.
•CASA is a valuable tool for AI laboratories to decide which boar ejaculate to process into AI doses.•This decision could not be improved by a data-driven model to analyze the data.•This decision could not be improved by adding more CASA data or other data.•Nine parameters not used today were identified as potentially interesting. Current artificial insemination (AI) laboratory practices assess semen quality of each boar ejaculate to decide which ones to process into AI doses. This decision is aided with two, world-wide used, motility parameters that come available through computer assisted semen analysis (CASA). This decision process, however, still results in AI doses with variable and sometimes suboptimal fertility outcomes (e.g., small litter size). The hypothesis was that the decision which ejaculates to process into AI doses can be improved by adding more data from CASA systems, and data from other sources, in combination with a data-driven model. Available data consisted of ejaculates that passed the initial decision, and thus, were processed into AI doses and used to inseminate sows. Data were divided into a training set (6793 records) and a validation set (1191 records) for model development, and an independent test set (1434 records) for performance assessment. Gradient Boosting Machine (GBM) models were developed to predict four fertility phenotypes of interest (gestation length, total number born, number born alive, and number of stillborn piglets). Each fertility phenotype was considered as a numeric and as a binary outcome parameter, totaling to eight different fertility phenotypes. Data used to further improve the decision process originated from four sources: 1) CASA information, 2) boar ejaculate information, 3) breeding value estimations, and 4) weather information. These data were used to create seven prediction sets, where each new set added parameters to the ones included in the previous set. The GBM models predicted fertility phenotypes with low correlations (for numeric phenotypes) and area under the curve values (for binary phenotypes) on the test data. Hence, results demonstrated that a combination of more data and GBM did not enable further improvement of the AI dose quality checks, resulting in the rejection of our hypothesis. However, our study revealed parameters affecting boar ejaculate fertility which were not used in today's decision process. These parameters (listed in the top 10 in at least four GBM models) included one parameter associated with boar ejaculate information, two with breeding value estimations, five with CASA information, and one with weather information. These parameters, therefore, should be further investigated for their potential value when assessing the quality of boar ejaculates in daily routine AI doses processing. |
Author | Singh, Gurnoor Veerkamp, Roel Franciscus Visser, Bram De Mol, Rudi Maria Kamphuis, Claudia Duenk, Pascal Broekhuijse, Marleen Leonarda Wilhelmina Johanna Nigsch, Annette |
Author_xml | – sequence: 1 givenname: Claudia surname: Kamphuis fullname: Kamphuis, Claudia email: claudia.kamphuis@wur.nl organization: Wageningen University & Research, Animal Breeding and Genomics, P.O. Box 338, 6700 AH, Wageningen, the Netherlands – sequence: 2 givenname: Pascal surname: Duenk fullname: Duenk, Pascal organization: Wageningen University & Research, Animal Breeding and Genomics, P.O. Box 338, 6700 AH, Wageningen, the Netherlands – sequence: 3 givenname: Roel Franciscus surname: Veerkamp fullname: Veerkamp, Roel Franciscus organization: Wageningen University & Research, Animal Breeding and Genomics, P.O. Box 338, 6700 AH, Wageningen, the Netherlands – sequence: 4 givenname: Bram surname: Visser fullname: Visser, Bram organization: Hendrix Genetics Research, Technology & Services B.V., Spoorstraat 69, 5831 CK, Boxmeer, the Netherlands – sequence: 5 givenname: Gurnoor surname: Singh fullname: Singh, Gurnoor organization: Radboud University Medical Center, The Centre for Molecular and Biomolecular Informatics, Nijmegen, the Netherlands – sequence: 6 givenname: Annette surname: Nigsch fullname: Nigsch, Annette organization: Wageningen University & Research, Department of Quantitative Veterinary Epidemiology, P.O. Box 338, 6700 AH, Wageningen, the Netherlands – sequence: 7 givenname: Rudi Maria surname: De Mol fullname: De Mol, Rudi Maria organization: Wageningen University & Research, Animal Welfare & Adaptation, P.O. Box 338, 6700 AH, Wageningen, the Netherlands – sequence: 8 givenname: Marleen Leonarda Wilhelmina Johanna surname: Broekhuijse fullname: Broekhuijse, Marleen Leonarda Wilhelmina Johanna organization: Topigs Norsvin Research Center, P.O. Box 43, 6640 AA, Beuningen, the Netherlands |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31927416$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkEFv1DAQhS1URLeFv4B84MAlwWNnnY3EBVUtIBVxAYmb5UzGu14ldrGTVv33ONqCxK0n68nvzZv5LthZiIEYeweiBgH6w7GeD5R83FOIY9w_1lJAV4OsBbQv2AZ2bVcpqeCMbYToVKU7-HXOLnI-CiGU1vCKnSvoZNuA3rD5m8WDD8RHsin4sOdz5G5Jawf3012K98SL4AOhzz4G_nDweOB9tInT0eIy2pnymipepJy5D0XYNHvn0dux6EyTD3Ze00PMlF-zl86Omd48vZfs5831j6sv1e33z1-vPt1W2DRirtotds0gd1vRglLY7Mr-gG3bOyUBEMu3HnoEpxrh0FoHToOkHvQgde-26pK9P80tq_1eKM9m8hlpHG2guGQjlWqF7gqVYv14smKKOSdy5i75yaZHA8Ks3M3R_M_drNwNSFO4l_jbp6aln2j4F_4LuhhuTgYq9957Siajp4A0-EQ4myH65zX9AQtWoaA |
CitedBy_id | crossref_primary_10_1016_j_anireprosci_2021_106849 crossref_primary_10_2196_35465 crossref_primary_10_3390_ani13101596 crossref_primary_10_1002_mrd_23643 crossref_primary_10_3389_fanim_2023_1324830 crossref_primary_10_3390_dna1020007 crossref_primary_10_1016_j_anireprosci_2024_107538 crossref_primary_10_3390_cells10020250 crossref_primary_10_1016_j_anireprosci_2024_107501 |
Cites_doi | 10.1023/A:1009420432234 10.1126/science.3287615 10.1016/j.theriogenology.2011.11.016 10.1098/rstb.2009.0131 10.2527/jas1976.423664x 10.1016/j.theriogenology.2004.04.006 10.1016/S0093-691X(01)00664-1 10.1016/j.theriogenology.2008.07.007 10.1017/S1751731115002517 10.1023/A:1010933404324 10.1111/j.1439-0531.2011.01861.x 10.1093/jas/sky359 10.1016/S0093-691X(99)00142-9 10.1095/biolreprod20.2.235 10.1016/j.smallrumres.2018.12.008 10.1016/S0015-0282(16)48687-5 10.1016/j.theriogenology.2011.05.040 10.1111/rda.12558 10.1016/j.theriogenology.2008.07.014 10.1093/jas/skz274 10.1214/aos/1013203451 10.4067/S0716-97602012000400009 10.2527/jas.2011-4311 10.3168/jds.2019-16295 10.1148/radiology.143.1.7063747 |
ContentType | Journal Article |
Copyright | 2020 The Authors Copyright © 2020 The Authors. Published by Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2020 The Authors – notice: Copyright © 2020 The Authors. Published by Elsevier Inc. All rights reserved. |
DBID | 6I. AAFTH NPM AAYXX CITATION 7X8 |
DOI | 10.1016/j.theriogenology.2019.12.017 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access PubMed CrossRef MEDLINE - Academic |
DatabaseTitle | PubMed CrossRef MEDLINE - Academic |
DatabaseTitleList | PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Veterinary Medicine Agriculture |
EISSN | 1879-3231 |
EndPage | 121 |
ExternalDocumentID | 10_1016_j_theriogenology_2019_12_017 31927416 S0093691X19305618 |
Genre | Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5VS 6I. 7-5 71M 8P~ 9JM AABNK AABVA AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AATLK AAXUO ABBQC ABFNM ABGRD ABGSF ABJNI ABKYH ABLVK ABMAC ABMZM ABRWV ABUDA ABYKQ ACDAQ ACGFS ACIUM ACRLP ADBBV ADEZE ADQTV ADUVX AEBSH AEHWI AEKER AENEX AEQOU AESVU AEXOQ AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AIEXJ AIKHN AITUG AJOXV AJRQY ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANZVX AXJTR BKOJK BLXMC BNPGV CBWCG CS3 DOVZS EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM LCYCR LW9 M29 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 QYZTP ROL RPZ SAB SDF SDG SEL SES SNL SPCBC SSA SSH SSU SSZ T5K TWZ WH7 Y6R ~G- ~KM AAHBH AAXKI AKRWK NPM RIG .GJ 186 29Q AALCJ AAQXK AAYXX ABXDB ADMUD AFJKZ AGRDE AHHHB ASPBG AVWKF AZFZN CITATION EJD FEDTE FGOYB G-2 HLV HMK HMO HVGLF HZ~ R2- SAE SEW SVS WUQ 7X8 |
ID | FETCH-LOGICAL-c440t-75c94d28507133c480031c77bf3211cc5c96dbc1f340fcaaf1f612eb16d26bf53 |
IEDL.DBID | AIKHN |
ISSN | 0093-691X |
IngestDate | Fri Oct 25 12:24:51 EDT 2024 Thu Sep 26 17:01:39 EDT 2024 Sat Sep 28 08:31:11 EDT 2024 Fri Feb 23 02:48:40 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Boar semen Fertility phenotypes Machine learning Prediction model |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. Copyright © 2020 The Authors. Published by Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c440t-75c94d28507133c480031c77bf3211cc5c96dbc1f340fcaaf1f612eb16d26bf53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0093691X19305618 |
PMID | 31927416 |
PQID | 2337069036 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2337069036 crossref_primary_10_1016_j_theriogenology_2019_12_017 pubmed_primary_31927416 elsevier_sciencedirect_doi_10_1016_j_theriogenology_2019_12_017 |
PublicationCentury | 2000 |
PublicationDate | 2020-03-01 2020-Mar-01 2020-03-00 20200301 |
PublicationDateYYYYMMDD | 2020-03-01 |
PublicationDate_xml | – month: 03 year: 2020 text: 2020-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Theriogenology |
PublicationTitleAlternate | Theriogenology |
PublicationYear | 2020 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Davis, Katz (bib6) 1993; 14 Broekhuijse, Feitsma, Gadella (bib32) 2011; 46 Gil, Garcia-Herreros, Baron, Aparicio, Santos, García-Marín (bib35) 2009; 71 Wettemann, Wells, Omtvedt, Pope, Turman (bib39) 1976; 42 Van der Heide, Veerkamp, van Pelt, Kamphuis, Athanasiadis, Ducro (bib23) 2019; 10 Broekhuijse, Gaustad, Bolarin Guillen, Knol (bib2) 2015; 50 Hanley, McNeil (bib28) 1982; 143 Witten, Frank (bib18) 2005 Feitsma (bib1) 2009; 37 Hansen (bib8) 2009; 364 Broekhuijse, Sostaric, Feitsma, Gadella (bib33) 2012; 77 Aumuller, Willeke (bib36) 1988 Wettemann, Desjardins (bib38) 1979; 20 Tardif, Laforest, Cormier, Bailey (bib7) 1999; 52 Didion (bib37) 2008; 70 Hastie, Tibshirani, Friedman (bib25) 2009 Breiman (bib16) 2001; 45 Mottram (bib15) 2016; 10 Vyt, Maes, Quinten, Rijsselaere, Deley, Aerts, de Kruif, van Soom (bib14) 2008; 77 Friedman (bib17) 2001; 29 Verstegen, Iguer-ouada, Onclin (bib34) 2002; 57 Broekhuijse, Feitsma, Gadella (bib4) 2011; 76 Alsahaf, Azzopardi, Ducro, Hanenberg, Veerkamp, Petkov (bib20) 2018; 96 Ogutu, Piepho, Schulz-Streck (bib24) 2011; vol. 5 (bib26) 2019 Didion (bib10) 2008; 70 Hirano, Shibahara, Obara, Suzuki, Takamizawa, Yamaguchi, Tsunoda, Sato (bib12) 2001; 18 James, Witten, Hastie, Tibshirani (bib19) 2015 Holt, Moore, Hillier (bib11) 1985; 44 Broekhuijse, Sostaric, Feitsma, Gadella (bib5) 2012; 90 Tsakmakidis, Khalifa, Boscos (bib9) 2012; 45 Swets (bib29) 1988; 240 (bib31) 2016 bib3 Sutkeviĉiene, Andersson, Zilinskas, Andersson (bib13) 2005; 63 Alves, Chaparro Pinzon, da Costa, da Silva, Vieira, de Mendonça, de Sena Sales Viana, Lôbo (bib21) 2019; 71 (bib27) 2019 Waites (bib40) 1970 Mollenhorst, Ducro, de Greef, Hulsegge, Kamphuis (bib22) 2019 Cortes, Mohri (bib30) 2005 Hirano (10.1016/j.theriogenology.2019.12.017_bib12) 2001; 18 Wettemann (10.1016/j.theriogenology.2019.12.017_bib39) 1976; 42 James (10.1016/j.theriogenology.2019.12.017_bib19) 2015 Broekhuijse (10.1016/j.theriogenology.2019.12.017_bib32) 2011; 46 Didion (10.1016/j.theriogenology.2019.12.017_bib37) 2008; 70 Broekhuijse (10.1016/j.theriogenology.2019.12.017_bib2) 2015; 50 Mottram (10.1016/j.theriogenology.2019.12.017_bib15) 2016; 10 Wettemann (10.1016/j.theriogenology.2019.12.017_bib38) 1979; 20 Hastie (10.1016/j.theriogenology.2019.12.017_bib25) 2009 Feitsma (10.1016/j.theriogenology.2019.12.017_bib1) 2009; 37 Broekhuijse (10.1016/j.theriogenology.2019.12.017_bib5) 2012; 90 Vyt (10.1016/j.theriogenology.2019.12.017_bib14) 2008; 77 Waites (10.1016/j.theriogenology.2019.12.017_bib40) 1970 (10.1016/j.theriogenology.2019.12.017_bib31) 2016 Broekhuijse (10.1016/j.theriogenology.2019.12.017_bib4) 2011; 76 Hansen (10.1016/j.theriogenology.2019.12.017_bib8) 2009; 364 Broekhuijse (10.1016/j.theriogenology.2019.12.017_bib33) 2012; 77 Verstegen (10.1016/j.theriogenology.2019.12.017_bib34) 2002; 57 Gil (10.1016/j.theriogenology.2019.12.017_bib35) 2009; 71 Breiman (10.1016/j.theriogenology.2019.12.017_bib16) 2001; 45 Friedman (10.1016/j.theriogenology.2019.12.017_bib17) 2001; 29 Hanley (10.1016/j.theriogenology.2019.12.017_bib28) 1982; 143 Holt (10.1016/j.theriogenology.2019.12.017_bib11) 1985; 44 Mollenhorst (10.1016/j.theriogenology.2019.12.017_bib22) 2019 Sutkeviĉiene (10.1016/j.theriogenology.2019.12.017_bib13) 2005; 63 Witten (10.1016/j.theriogenology.2019.12.017_bib18) 2005 Aumuller (10.1016/j.theriogenology.2019.12.017_bib36) 1988 Didion (10.1016/j.theriogenology.2019.12.017_bib10) 2008; 70 Ogutu (10.1016/j.theriogenology.2019.12.017_bib24) 2011; vol. 5 Swets (10.1016/j.theriogenology.2019.12.017_bib29) 1988; 240 Van der Heide (10.1016/j.theriogenology.2019.12.017_bib23) 2019; 10 Cortes (10.1016/j.theriogenology.2019.12.017_bib30) 2005 Tsakmakidis (10.1016/j.theriogenology.2019.12.017_bib9) 2012; 45 Alsahaf (10.1016/j.theriogenology.2019.12.017_bib20) 2018; 96 Davis (10.1016/j.theriogenology.2019.12.017_bib6) 1993; 14 Tardif (10.1016/j.theriogenology.2019.12.017_bib7) 1999; 52 Alves (10.1016/j.theriogenology.2019.12.017_bib21) 2019; 71 |
References_xml | – volume: 77 start-page: 1466 year: 2012 end-page: 1479 ident: bib33 article-title: The value of microscopic semen motility assessment at collection for a commercial artificial insemination centre, a retrospective study on factors explaining variation in pig fertility publication-title: Theriogenology contributor: fullname: Gadella – volume: 63 start-page: 739 year: 2005 end-page: 747 ident: bib13 article-title: Assessment of boar semen quality in relation to fertility with special reference to methanol stress publication-title: Theriogenology contributor: fullname: Andersson – volume: 45 start-page: 381 year: 2012 end-page: 386 ident: bib9 article-title: Age-related changes in quality and fertility or porcine semen publication-title: Biol Res contributor: fullname: Boscos – volume: 46 start-page: 59 year: 2011 end-page: 63 ident: bib32 article-title: Field data analysis of boar semen quality publication-title: Reprod Domest Anim contributor: fullname: Gadella – volume: 18 start-page: 213 year: 2001 end-page: 218 ident: bib12 article-title: Relationships between sperm motility characteristics assessed by the computer aided sperm analysis (CASA) and fertilization rates in vitro publication-title: J Assist Reprod Genet contributor: fullname: Sato – volume: 37 start-page: 61 year: 2009 end-page: 71 ident: bib1 article-title: Artificial insemination in pigs, research and developments in The Netherlands: a review publication-title: Acta Sci Vet contributor: fullname: Feitsma – year: 2016 ident: bib31 article-title: R: A language and environment for statistical computing – year: 2019 ident: bib22 article-title: Boosted trees to predict pneumonia, growth, and meat percentage of growing-finishing pigs publication-title: J Anim Sci contributor: fullname: Kamphuis – start-page: 241 year: 1970 end-page: 279 ident: bib40 article-title: Temperature regulation and the testis publication-title: The testis contributor: fullname: Waites – volume: 10 start-page: 9409 year: 2019 end-page: 9421 ident: bib23 article-title: Comparing regression, naive Bayes, and random forest methods in the prediction of individual survival to second lactation in Holstein cattle publication-title: J Dairy Sci contributor: fullname: Ducro – year: 2019 ident: bib27 article-title: h20.ai – volume: 57 start-page: 149 year: 2002 end-page: 179 ident: bib34 article-title: Computer assisted semen analyzers in andrology research and veterinary practice publication-title: Theriogenology contributor: fullname: Onclin – volume: 76 year: 2011 ident: bib4 article-title: Additional value of computer assisted semen analysis (CASA) compared to conventional motility assessments in pig artificial insemination publication-title: Theriogenology contributor: fullname: Gadella – volume: 71 start-page: 49 year: 2019 end-page: 56 ident: bib21 article-title: Multiple regression and machine learning based methods for carcass traits and saleable meat cuts prediction using non-invasive in vivo measurements in commercial lambs publication-title: Small Rumin Res contributor: fullname: Lôbo – year: 2009 ident: bib25 article-title: The elements of statistical learning - data mining, inference, and prediction contributor: fullname: Friedman – volume: 71 start-page: 254 year: 2009 end-page: 263 ident: bib35 article-title: Morphometry of porcine spermatozoa and its functional significance in relation with the motility parameters in fresh semen publication-title: Theriogenology contributor: fullname: García-Marín – volume: 70 start-page: 1374 year: 2008 end-page: 1376 ident: bib37 article-title: Computer-assisted semen analysis and its utility for profiling boar semen samples publication-title: Theriogenology contributor: fullname: Didion – volume: 90 start-page: 779 year: 2012 end-page: 789 ident: bib5 article-title: Application of computer assisted semen analysis to explain variations in pig fertility publication-title: J Anim Sci contributor: fullname: Gadella – volume: 42 start-page: 664 year: 1976 end-page: 669 ident: bib39 article-title: Influence of elevated ambient temperature on reproductive performance of boars publication-title: J Anim Sci contributor: fullname: Turman – volume: 20 start-page: 235 year: 1979 end-page: 241 ident: bib38 article-title: Testicular function in boars exposed to elevated ambient temperature publication-title: Biol Reprod contributor: fullname: Desjardins – volume: 70 start-page: 1374 year: 2008 end-page: 1376 ident: bib10 article-title: Computer-assisted semen analysis and its utility for profiling boar semen samples publication-title: Theriogenology contributor: fullname: Didion – volume: 14 start-page: 385 year: 1993 end-page: 394 ident: bib6 article-title: Operational standard for CASA instruments publication-title: J Androl contributor: fullname: Katz – volume: 96 start-page: 4935 year: 2018 end-page: 4943 ident: bib20 article-title: Prediction of slaughter age in pigs and assessment of the predictive value of phenotypic and genetic information using random forest publication-title: J Anim Sci contributor: fullname: Petkov – volume: 240 start-page: 1285 year: 1988 end-page: 1293 ident: bib29 article-title: Measuring the accuracy of diagnostic systems publication-title: Science contributor: fullname: Swets – start-page: 305 year: 2005 end-page: 312 ident: bib30 article-title: Confidence intervals for the area under the ROC curve publication-title: Advances in neural information processing systems 17 contributor: fullname: Mohri – volume: 52 start-page: 447 year: 1999 end-page: 459 ident: bib7 article-title: The importance of porcine sperm parameters on fertility in vivo publication-title: Theriogenology contributor: fullname: Bailey – volume: 50 start-page: 103 year: 2015 end-page: 109 ident: bib2 article-title: Efficient boar semen production and genetic contribution: the impact of low-dose artificial insemination on fertility publication-title: Reprod Domest Anim contributor: fullname: Knol – ident: bib3 article-title: Agrovision Kengetalspiegel 2017-2018 – volume: 10 start-page: 1575 year: 2016 end-page: 1584 ident: bib15 article-title: Animal board invited review: precision livestock farming for dairy cows with a focus on oestrus detection publication-title: Animal contributor: fullname: Mottram – volume: 364 start-page: 3341 year: 2009 end-page: 3350 ident: bib8 article-title: Effects of heat stress on mammalian reproduction publication-title: Phil Trans R Soc B contributor: fullname: Hansen – volume: 77 start-page: 291 year: 2008 end-page: 298 ident: bib14 article-title: Detailed motility examination of porcine semen and its predictive value towards reproductive performance in sows publication-title: Vlaams Diergeneeskd Tijdschr contributor: fullname: van Soom – volume: 45 start-page: 5 year: 2001 end-page: 32 ident: bib16 article-title: Random forests publication-title: Mach Learn contributor: fullname: Breiman – volume: vol. 5 start-page: S11 year: 2011 ident: bib24 article-title: A comparison of random forests, boosting, and support vector machines for genomic selection publication-title: BMC proceedings of the 14 contributor: fullname: Schulz-Streck – year: 2019 ident: bib26 article-title: Package ‘h2o’ – volume: 29 start-page: 1189 year: 2001 end-page: 1459 ident: bib17 article-title: Greedy function approximation: a gradient boosting machine publication-title: Ann Stat contributor: fullname: Friedman – volume: 143 start-page: 29 year: 1982 end-page: 36 ident: bib28 article-title: The meaning and use of the area under the receiver operating characteristic (ROC) curve publication-title: Radiology contributor: fullname: McNeil – year: 2005 ident: bib18 article-title: Data mining: practical machine learning tools and techniques contributor: fullname: Frank – start-page: 227 year: 1988 ident: bib36 article-title: Computer controlled analysis of boar semen with the “Cellsoft” system publication-title: Proc 11 contributor: fullname: Willeke – volume: 44 start-page: 112 year: 1985 end-page: 119 ident: bib11 article-title: Computer assisted measurement of sperm swimming speed in human semen: correlation with in vitro fertilization assays publication-title: Fertil Steril contributor: fullname: Hillier – year: 2015 ident: bib19 article-title: An introduction to statistical learning with applications in R contributor: fullname: Tibshirani – volume: 18 start-page: 213 year: 2001 ident: 10.1016/j.theriogenology.2019.12.017_bib12 article-title: Relationships between sperm motility characteristics assessed by the computer aided sperm analysis (CASA) and fertilization rates in vitro publication-title: J Assist Reprod Genet doi: 10.1023/A:1009420432234 contributor: fullname: Hirano – volume: 240 start-page: 1285 year: 1988 ident: 10.1016/j.theriogenology.2019.12.017_bib29 article-title: Measuring the accuracy of diagnostic systems publication-title: Science doi: 10.1126/science.3287615 contributor: fullname: Swets – volume: 77 start-page: 1466 year: 2012 ident: 10.1016/j.theriogenology.2019.12.017_bib33 article-title: The value of microscopic semen motility assessment at collection for a commercial artificial insemination centre, a retrospective study on factors explaining variation in pig fertility publication-title: Theriogenology doi: 10.1016/j.theriogenology.2011.11.016 contributor: fullname: Broekhuijse – start-page: 227 year: 1988 ident: 10.1016/j.theriogenology.2019.12.017_bib36 article-title: Computer controlled analysis of boar semen with the “Cellsoft” system contributor: fullname: Aumuller – volume: 364 start-page: 3341 year: 2009 ident: 10.1016/j.theriogenology.2019.12.017_bib8 article-title: Effects of heat stress on mammalian reproduction publication-title: Phil Trans R Soc B doi: 10.1098/rstb.2009.0131 contributor: fullname: Hansen – year: 2005 ident: 10.1016/j.theriogenology.2019.12.017_bib18 contributor: fullname: Witten – year: 2009 ident: 10.1016/j.theriogenology.2019.12.017_bib25 contributor: fullname: Hastie – volume: 42 start-page: 664 year: 1976 ident: 10.1016/j.theriogenology.2019.12.017_bib39 article-title: Influence of elevated ambient temperature on reproductive performance of boars publication-title: J Anim Sci doi: 10.2527/jas1976.423664x contributor: fullname: Wettemann – volume: 63 start-page: 739 year: 2005 ident: 10.1016/j.theriogenology.2019.12.017_bib13 article-title: Assessment of boar semen quality in relation to fertility with special reference to methanol stress publication-title: Theriogenology doi: 10.1016/j.theriogenology.2004.04.006 contributor: fullname: Sutkeviĉiene – volume: 57 start-page: 149 year: 2002 ident: 10.1016/j.theriogenology.2019.12.017_bib34 article-title: Computer assisted semen analyzers in andrology research and veterinary practice publication-title: Theriogenology doi: 10.1016/S0093-691X(01)00664-1 contributor: fullname: Verstegen – volume: 71 start-page: 254 year: 2009 ident: 10.1016/j.theriogenology.2019.12.017_bib35 article-title: Morphometry of porcine spermatozoa and its functional significance in relation with the motility parameters in fresh semen publication-title: Theriogenology doi: 10.1016/j.theriogenology.2008.07.007 contributor: fullname: Gil – volume: 10 start-page: 1575 year: 2016 ident: 10.1016/j.theriogenology.2019.12.017_bib15 article-title: Animal board invited review: precision livestock farming for dairy cows with a focus on oestrus detection publication-title: Animal doi: 10.1017/S1751731115002517 contributor: fullname: Mottram – volume: 45 start-page: 5 year: 2001 ident: 10.1016/j.theriogenology.2019.12.017_bib16 article-title: Random forests publication-title: Mach Learn doi: 10.1023/A:1010933404324 contributor: fullname: Breiman – volume: 46 start-page: 59 year: 2011 ident: 10.1016/j.theriogenology.2019.12.017_bib32 article-title: Field data analysis of boar semen quality publication-title: Reprod Domest Anim doi: 10.1111/j.1439-0531.2011.01861.x contributor: fullname: Broekhuijse – volume: vol. 5 start-page: S11 year: 2011 ident: 10.1016/j.theriogenology.2019.12.017_bib24 article-title: A comparison of random forests, boosting, and support vector machines for genomic selection contributor: fullname: Ogutu – start-page: 305 year: 2005 ident: 10.1016/j.theriogenology.2019.12.017_bib30 article-title: Confidence intervals for the area under the ROC curve contributor: fullname: Cortes – volume: 96 start-page: 4935 year: 2018 ident: 10.1016/j.theriogenology.2019.12.017_bib20 article-title: Prediction of slaughter age in pigs and assessment of the predictive value of phenotypic and genetic information using random forest publication-title: J Anim Sci doi: 10.1093/jas/sky359 contributor: fullname: Alsahaf – volume: 52 start-page: 447 year: 1999 ident: 10.1016/j.theriogenology.2019.12.017_bib7 article-title: The importance of porcine sperm parameters on fertility in vivo publication-title: Theriogenology doi: 10.1016/S0093-691X(99)00142-9 contributor: fullname: Tardif – volume: 37 start-page: 61 year: 2009 ident: 10.1016/j.theriogenology.2019.12.017_bib1 article-title: Artificial insemination in pigs, research and developments in The Netherlands: a review publication-title: Acta Sci Vet contributor: fullname: Feitsma – volume: 20 start-page: 235 year: 1979 ident: 10.1016/j.theriogenology.2019.12.017_bib38 article-title: Testicular function in boars exposed to elevated ambient temperature publication-title: Biol Reprod doi: 10.1095/biolreprod20.2.235 contributor: fullname: Wettemann – start-page: 241 year: 1970 ident: 10.1016/j.theriogenology.2019.12.017_bib40 article-title: Temperature regulation and the testis contributor: fullname: Waites – volume: 14 start-page: 385 year: 1993 ident: 10.1016/j.theriogenology.2019.12.017_bib6 article-title: Operational standard for CASA instruments publication-title: J Androl contributor: fullname: Davis – volume: 71 start-page: 49 year: 2019 ident: 10.1016/j.theriogenology.2019.12.017_bib21 article-title: Multiple regression and machine learning based methods for carcass traits and saleable meat cuts prediction using non-invasive in vivo measurements in commercial lambs publication-title: Small Rumin Res doi: 10.1016/j.smallrumres.2018.12.008 contributor: fullname: Alves – volume: 44 start-page: 112 year: 1985 ident: 10.1016/j.theriogenology.2019.12.017_bib11 article-title: Computer assisted measurement of sperm swimming speed in human semen: correlation with in vitro fertilization assays publication-title: Fertil Steril doi: 10.1016/S0015-0282(16)48687-5 contributor: fullname: Holt – volume: 76 year: 2011 ident: 10.1016/j.theriogenology.2019.12.017_bib4 article-title: Additional value of computer assisted semen analysis (CASA) compared to conventional motility assessments in pig artificial insemination publication-title: Theriogenology doi: 10.1016/j.theriogenology.2011.05.040 contributor: fullname: Broekhuijse – year: 2015 ident: 10.1016/j.theriogenology.2019.12.017_bib19 contributor: fullname: James – volume: 50 start-page: 103 year: 2015 ident: 10.1016/j.theriogenology.2019.12.017_bib2 article-title: Efficient boar semen production and genetic contribution: the impact of low-dose artificial insemination on fertility publication-title: Reprod Domest Anim doi: 10.1111/rda.12558 contributor: fullname: Broekhuijse – volume: 70 start-page: 1374 year: 2008 ident: 10.1016/j.theriogenology.2019.12.017_bib10 article-title: Computer-assisted semen analysis and its utility for profiling boar semen samples publication-title: Theriogenology doi: 10.1016/j.theriogenology.2008.07.014 contributor: fullname: Didion – year: 2019 ident: 10.1016/j.theriogenology.2019.12.017_bib22 article-title: Boosted trees to predict pneumonia, growth, and meat percentage of growing-finishing pigs publication-title: J Anim Sci doi: 10.1093/jas/skz274 contributor: fullname: Mollenhorst – volume: 29 start-page: 1189 year: 2001 ident: 10.1016/j.theriogenology.2019.12.017_bib17 article-title: Greedy function approximation: a gradient boosting machine publication-title: Ann Stat doi: 10.1214/aos/1013203451 contributor: fullname: Friedman – year: 2016 ident: 10.1016/j.theriogenology.2019.12.017_bib31 – volume: 77 start-page: 291 year: 2008 ident: 10.1016/j.theriogenology.2019.12.017_bib14 article-title: Detailed motility examination of porcine semen and its predictive value towards reproductive performance in sows publication-title: Vlaams Diergeneeskd Tijdschr contributor: fullname: Vyt – volume: 70 start-page: 1374 year: 2008 ident: 10.1016/j.theriogenology.2019.12.017_bib37 article-title: Computer-assisted semen analysis and its utility for profiling boar semen samples publication-title: Theriogenology doi: 10.1016/j.theriogenology.2008.07.014 contributor: fullname: Didion – volume: 45 start-page: 381 year: 2012 ident: 10.1016/j.theriogenology.2019.12.017_bib9 article-title: Age-related changes in quality and fertility or porcine semen publication-title: Biol Res doi: 10.4067/S0716-97602012000400009 contributor: fullname: Tsakmakidis – volume: 90 start-page: 779 year: 2012 ident: 10.1016/j.theriogenology.2019.12.017_bib5 article-title: Application of computer assisted semen analysis to explain variations in pig fertility publication-title: J Anim Sci doi: 10.2527/jas.2011-4311 contributor: fullname: Broekhuijse – volume: 10 start-page: 9409 year: 2019 ident: 10.1016/j.theriogenology.2019.12.017_bib23 article-title: Comparing regression, naive Bayes, and random forest methods in the prediction of individual survival to second lactation in Holstein cattle publication-title: J Dairy Sci doi: 10.3168/jds.2019-16295 contributor: fullname: Van der Heide – volume: 143 start-page: 29 year: 1982 ident: 10.1016/j.theriogenology.2019.12.017_bib28 article-title: The meaning and use of the area under the receiver operating characteristic (ROC) curve publication-title: Radiology doi: 10.1148/radiology.143.1.7063747 contributor: fullname: Hanley |
SSID | ssj0003661 |
Score | 2.3922787 |
Snippet | Current artificial insemination (AI) laboratory practices assess semen quality of each boar ejaculate to decide which ones to process into AI doses. This... |
SourceID | proquest crossref pubmed elsevier |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 112 |
SubjectTerms | Boar semen Fertility phenotypes Machine learning Prediction model |
Title | Machine learning to further improve the decision which boar ejaculates to process into artificial insemination doses |
URI | https://dx.doi.org/10.1016/j.theriogenology.2019.12.017 https://www.ncbi.nlm.nih.gov/pubmed/31927416 https://search.proquest.com/docview/2337069036 |
Volume | 144 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Na9wwEB2SDZT2ENLt16ZtUCFXN7Yly_apLKFh27I5NWVvwpJHiXOwl10vveW3RyPLKYEWCjnKRrbQSKM3ozczAKelMJgUpYy4RYxEKURUcKEjTKuKJ9pYjuTQX17KxZX4vspWe3A-xsIQrTLo_kGne20dnpyF2TxbNw3F-FIxumTlIAjB4GIfDvwl0QQO5t9-LC4fFDKXciicV_KIOjyD0z80Lx9m11FCVPJiE9er9P5BX8HsryfVv5CoP5EujuAwQEk2H0b7EvawncKL-fUmpNPAKUx_EdvFh9yyZbhFfwX90jMokYWSEdes75jdbWiQrPFeBmSuwepQgIf9vmnMDdNdtWF4WxF11SFU6rUe4gxY07oGzduQkMK1t5S1xIud1d0Wt6_h6uLrz_NFFKovREaIuI_yzJSiTovM27FGFLT_TZ5ry53RaIx7LWttEstFbE1V2cQ6tORUv6xTqW3G38Ck7Vp8B0wYrXUsUWLqrK8YS21Rihgd9nJfzXEG2TjTaj0k2VAj--xWPZaQIgmpJFVOQjP4MopFPVo0yp0H__mFT6M0ldtXdFlStdjttirlPKcszlzO4O0g5oexObVFWX_k8ZP__x6ep2TAe1LbB5j0mx1-dCin1yew__kuOQlr-R7wngGa |
link.rule.ids | 315,783,787,4511,24130,27938,27939,45599,45693 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VIvE4IFhey9NIvYYmseMkJ1RVVAt0e2rR3qzYGbfpIVntZsWN386Mk1BVAgmJo_O0PPb4m_E3MwAHpXKYFKWOpEeMVKlUVEhlI0yrSibWeYns0F-e6cWF-rrKVntwPMXCMK1y1P2DTg_aerxyOI7m4bppOMaXi9ElK4IgDIOLO3BXcf4smtQff97wPKTWQ9m8Ukb8-D04uCF5hSC7jtOhsg-bmV5l8A6G-mV_3Kf-hkPDfnTyGB6NQFIcDX19AnvYzuDh0eVmTKaBM5h9Z65LCLgVy_EM_Sn0y8CfRDEWjLgUfSf8bsOdFE3wMaCghqjH8jvix1XjroTtqo3A64qJq4RP-a31EGUgmpYaPGpDOgpqbzlnSRC6qLstbp_Bxcnn8-NFNNZeiJxScR_lmStVnRZZsGKdKnj1uzy3XpLJ6Bzd1rV1iZcq9q6qfOIJK5Hi13Wqrc_kc9hvuxZfglDOWhtr1JiS7RVjaT1qFSMhL_pqjnPIppE26yHFhpm4Z9fmtoQMS8gkqSEJzeHTJBZza8oY2g3-8QsfJmkaWlV8VFK12O22JpUy5xzOUs_hxSDm330jpcU5f_Sr__7_e7i_OF-emtMvZ99ew4OUTflAb3sD-_1mh28J7_T2XZjPvwBqpwJ8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+to+further+improve+the+decision+which+boar+ejaculates+to+process+into+artificial+insemination+doses&rft.jtitle=Theriogenology&rft.au=Kamphuis%2C+Claudia&rft.au=Duenk%2C+Pascal&rft.au=Veerkamp%2C+Roel+Franciscus&rft.au=Visser%2C+Bram&rft.date=2020-03-01&rft.pub=Elsevier+Inc&rft.issn=0093-691X&rft.eissn=1879-3231&rft.volume=144&rft.spage=112&rft.epage=121&rft_id=info:doi/10.1016%2Fj.theriogenology.2019.12.017&rft.externalDocID=S0093691X19305618 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0093-691X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0093-691X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0093-691X&client=summon |