Machine learning to further improve the decision which boar ejaculates to process into artificial insemination doses

Current artificial insemination (AI) laboratory practices assess semen quality of each boar ejaculate to decide which ones to process into AI doses. This decision is aided with two, world-wide used, motility parameters that come available through computer assisted semen analysis (CASA). This decisio...

Full description

Saved in:
Bibliographic Details
Published inTheriogenology Vol. 144; pp. 112 - 121
Main Authors Kamphuis, Claudia, Duenk, Pascal, Veerkamp, Roel Franciscus, Visser, Bram, Singh, Gurnoor, Nigsch, Annette, De Mol, Rudi Maria, Broekhuijse, Marleen Leonarda Wilhelmina Johanna
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.03.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Current artificial insemination (AI) laboratory practices assess semen quality of each boar ejaculate to decide which ones to process into AI doses. This decision is aided with two, world-wide used, motility parameters that come available through computer assisted semen analysis (CASA). This decision process, however, still results in AI doses with variable and sometimes suboptimal fertility outcomes (e.g., small litter size). The hypothesis was that the decision which ejaculates to process into AI doses can be improved by adding more data from CASA systems, and data from other sources, in combination with a data-driven model. Available data consisted of ejaculates that passed the initial decision, and thus, were processed into AI doses and used to inseminate sows. Data were divided into a training set (6793 records) and a validation set (1191 records) for model development, and an independent test set (1434 records) for performance assessment. Gradient Boosting Machine (GBM) models were developed to predict four fertility phenotypes of interest (gestation length, total number born, number born alive, and number of stillborn piglets). Each fertility phenotype was considered as a numeric and as a binary outcome parameter, totaling to eight different fertility phenotypes. Data used to further improve the decision process originated from four sources: 1) CASA information, 2) boar ejaculate information, 3) breeding value estimations, and 4) weather information. These data were used to create seven prediction sets, where each new set added parameters to the ones included in the previous set. The GBM models predicted fertility phenotypes with low correlations (for numeric phenotypes) and area under the curve values (for binary phenotypes) on the test data. Hence, results demonstrated that a combination of more data and GBM did not enable further improvement of the AI dose quality checks, resulting in the rejection of our hypothesis. However, our study revealed parameters affecting boar ejaculate fertility which were not used in today’s decision process. These parameters (listed in the top 10 in at least four GBM models) included one parameter associated with boar ejaculate information, two with breeding value estimations, five with CASA information, and one with weather information. These parameters, therefore, should be further investigated for their potential value when assessing the quality of boar ejaculates in daily routine AI doses processing. •CASA is a valuable tool for AI laboratories to decide which boar ejaculate to process into AI doses.•This decision could not be improved by a data-driven model to analyze the data.•This decision could not be improved by adding more CASA data or other data.•Nine parameters not used today were identified as potentially interesting.
AbstractList Current artificial insemination (AI) laboratory practices assess semen quality of each boar ejaculate to decide which ones to process into AI doses. This decision is aided with two, world-wide used, motility parameters that come available through computer assisted semen analysis (CASA). This decision process, however, still results in AI doses with variable and sometimes suboptimal fertility outcomes (e.g., small litter size). The hypothesis was that the decision which ejaculates to process into AI doses can be improved by adding more data from CASA systems, and data from other sources, in combination with a data-driven model. Available data consisted of ejaculates that passed the initial decision, and thus, were processed into AI doses and used to inseminate sows. Data were divided into a training set (6793 records) and a validation set (1191 records) for model development, and an independent test set (1434 records) for performance assessment. Gradient Boosting Machine (GBM) models were developed to predict four fertility phenotypes of interest (gestation length, total number born, number born alive, and number of stillborn piglets). Each fertility phenotype was considered as a numeric and as a binary outcome parameter, totaling to eight different fertility phenotypes. Data used to further improve the decision process originated from four sources: 1) CASA information, 2) boar ejaculate information, 3) breeding value estimations, and 4) weather information. These data were used to create seven prediction sets, where each new set added parameters to the ones included in the previous set. The GBM models predicted fertility phenotypes with low correlations (for numeric phenotypes) and area under the curve values (for binary phenotypes) on the test data. Hence, results demonstrated that a combination of more data and GBM did not enable further improvement of the AI dose quality checks, resulting in the rejection of our hypothesis. However, our study revealed parameters affecting boar ejaculate fertility which were not used in today’s decision process. These parameters (listed in the top 10 in at least four GBM models) included one parameter associated with boar ejaculate information, two with breeding value estimations, five with CASA information, and one with weather information. These parameters, therefore, should be further investigated for their potential value when assessing the quality of boar ejaculates in daily routine AI doses processing. •CASA is a valuable tool for AI laboratories to decide which boar ejaculate to process into AI doses.•This decision could not be improved by a data-driven model to analyze the data.•This decision could not be improved by adding more CASA data or other data.•Nine parameters not used today were identified as potentially interesting.
Current artificial insemination (AI) laboratory practices assess semen quality of each boar ejaculate to decide which ones to process into AI doses. This decision is aided with two, world-wide used, motility parameters that come available through computer assisted semen analysis (CASA). This decision process, however, still results in AI doses with variable and sometimes suboptimal fertility outcomes (e.g., small litter size). The hypothesis was that the decision which ejaculates to process into AI doses can be improved by adding more data from CASA systems, and data from other sources, in combination with a data-driven model. Available data consisted of ejaculates that passed the initial decision, and thus, were processed into AI doses and used to inseminate sows. Data were divided into a training set (6793 records) and a validation set (1191 records) for model development, and an independent test set (1434 records) for performance assessment. Gradient Boosting Machine (GBM) models were developed to predict four fertility phenotypes of interest (gestation length, total number born, number born alive, and number of stillborn piglets). Each fertility phenotype was considered as a numeric and as a binary outcome parameter, totaling to eight different fertility phenotypes. Data used to further improve the decision process originated from four sources: 1) CASA information, 2) boar ejaculate information, 3) breeding value estimations, and 4) weather information. These data were used to create seven prediction sets, where each new set added parameters to the ones included in the previous set. The GBM models predicted fertility phenotypes with low correlations (for numeric phenotypes) and area under the curve values (for binary phenotypes) on the test data. Hence, results demonstrated that a combination of more data and GBM did not enable further improvement of the AI dose quality checks, resulting in the rejection of our hypothesis. However, our study revealed parameters affecting boar ejaculate fertility which were not used in today's decision process. These parameters (listed in the top 10 in at least four GBM models) included one parameter associated with boar ejaculate information, two with breeding value estimations, five with CASA information, and one with weather information. These parameters, therefore, should be further investigated for their potential value when assessing the quality of boar ejaculates in daily routine AI doses processing.
Author Singh, Gurnoor
Veerkamp, Roel Franciscus
Visser, Bram
De Mol, Rudi Maria
Kamphuis, Claudia
Duenk, Pascal
Broekhuijse, Marleen Leonarda Wilhelmina Johanna
Nigsch, Annette
Author_xml – sequence: 1
  givenname: Claudia
  surname: Kamphuis
  fullname: Kamphuis, Claudia
  email: claudia.kamphuis@wur.nl
  organization: Wageningen University & Research, Animal Breeding and Genomics, P.O. Box 338, 6700 AH, Wageningen, the Netherlands
– sequence: 2
  givenname: Pascal
  surname: Duenk
  fullname: Duenk, Pascal
  organization: Wageningen University & Research, Animal Breeding and Genomics, P.O. Box 338, 6700 AH, Wageningen, the Netherlands
– sequence: 3
  givenname: Roel Franciscus
  surname: Veerkamp
  fullname: Veerkamp, Roel Franciscus
  organization: Wageningen University & Research, Animal Breeding and Genomics, P.O. Box 338, 6700 AH, Wageningen, the Netherlands
– sequence: 4
  givenname: Bram
  surname: Visser
  fullname: Visser, Bram
  organization: Hendrix Genetics Research, Technology & Services B.V., Spoorstraat 69, 5831 CK, Boxmeer, the Netherlands
– sequence: 5
  givenname: Gurnoor
  surname: Singh
  fullname: Singh, Gurnoor
  organization: Radboud University Medical Center, The Centre for Molecular and Biomolecular Informatics, Nijmegen, the Netherlands
– sequence: 6
  givenname: Annette
  surname: Nigsch
  fullname: Nigsch, Annette
  organization: Wageningen University & Research, Department of Quantitative Veterinary Epidemiology, P.O. Box 338, 6700 AH, Wageningen, the Netherlands
– sequence: 7
  givenname: Rudi Maria
  surname: De Mol
  fullname: De Mol, Rudi Maria
  organization: Wageningen University & Research, Animal Welfare & Adaptation, P.O. Box 338, 6700 AH, Wageningen, the Netherlands
– sequence: 8
  givenname: Marleen Leonarda Wilhelmina Johanna
  surname: Broekhuijse
  fullname: Broekhuijse, Marleen Leonarda Wilhelmina Johanna
  organization: Topigs Norsvin Research Center, P.O. Box 43, 6640 AA, Beuningen, the Netherlands
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31927416$$D View this record in MEDLINE/PubMed
BookMark eNqNkEFv1DAQhS1URLeFv4B84MAlwWNnnY3EBVUtIBVxAYmb5UzGu14ldrGTVv33ONqCxK0n68nvzZv5LthZiIEYeweiBgH6w7GeD5R83FOIY9w_1lJAV4OsBbQv2AZ2bVcpqeCMbYToVKU7-HXOLnI-CiGU1vCKnSvoZNuA3rD5m8WDD8RHsin4sOdz5G5Jawf3012K98SL4AOhzz4G_nDweOB9tInT0eIy2pnymipepJy5D0XYNHvn0dux6EyTD3Ze00PMlF-zl86Omd48vZfs5831j6sv1e33z1-vPt1W2DRirtotds0gd1vRglLY7Mr-gG3bOyUBEMu3HnoEpxrh0FoHToOkHvQgde-26pK9P80tq_1eKM9m8hlpHG2guGQjlWqF7gqVYv14smKKOSdy5i75yaZHA8Ks3M3R_M_drNwNSFO4l_jbp6aln2j4F_4LuhhuTgYq9957Siajp4A0-EQ4myH65zX9AQtWoaA
CitedBy_id crossref_primary_10_1016_j_anireprosci_2021_106849
crossref_primary_10_2196_35465
crossref_primary_10_3390_ani13101596
crossref_primary_10_1002_mrd_23643
crossref_primary_10_3389_fanim_2023_1324830
crossref_primary_10_3390_dna1020007
crossref_primary_10_1016_j_anireprosci_2024_107538
crossref_primary_10_3390_cells10020250
crossref_primary_10_1016_j_anireprosci_2024_107501
Cites_doi 10.1023/A:1009420432234
10.1126/science.3287615
10.1016/j.theriogenology.2011.11.016
10.1098/rstb.2009.0131
10.2527/jas1976.423664x
10.1016/j.theriogenology.2004.04.006
10.1016/S0093-691X(01)00664-1
10.1016/j.theriogenology.2008.07.007
10.1017/S1751731115002517
10.1023/A:1010933404324
10.1111/j.1439-0531.2011.01861.x
10.1093/jas/sky359
10.1016/S0093-691X(99)00142-9
10.1095/biolreprod20.2.235
10.1016/j.smallrumres.2018.12.008
10.1016/S0015-0282(16)48687-5
10.1016/j.theriogenology.2011.05.040
10.1111/rda.12558
10.1016/j.theriogenology.2008.07.014
10.1093/jas/skz274
10.1214/aos/1013203451
10.4067/S0716-97602012000400009
10.2527/jas.2011-4311
10.3168/jds.2019-16295
10.1148/radiology.143.1.7063747
ContentType Journal Article
Copyright 2020 The Authors
Copyright © 2020 The Authors. Published by Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2020 The Authors
– notice: Copyright © 2020 The Authors. Published by Elsevier Inc. All rights reserved.
DBID 6I.
AAFTH
NPM
AAYXX
CITATION
7X8
DOI 10.1016/j.theriogenology.2019.12.017
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
PubMed
CrossRef
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
MEDLINE - Academic
DatabaseTitleList
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Veterinary Medicine
Agriculture
EISSN 1879-3231
EndPage 121
ExternalDocumentID 10_1016_j_theriogenology_2019_12_017
31927416
S0093691X19305618
Genre Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
53G
5VS
6I.
7-5
71M
8P~
9JM
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATLK
AAXUO
ABBQC
ABFNM
ABGRD
ABGSF
ABJNI
ABKYH
ABLVK
ABMAC
ABMZM
ABRWV
ABUDA
ABYKQ
ACDAQ
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
ADQTV
ADUVX
AEBSH
AEHWI
AEKER
AENEX
AEQOU
AESVU
AEXOQ
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AIEXJ
AIKHN
AITUG
AJOXV
AJRQY
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
AXJTR
BKOJK
BLXMC
BNPGV
CBWCG
CS3
DOVZS
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
LCYCR
LW9
M29
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
QYZTP
ROL
RPZ
SAB
SDF
SDG
SEL
SES
SNL
SPCBC
SSA
SSH
SSU
SSZ
T5K
TWZ
WH7
Y6R
~G-
~KM
AAHBH
AAXKI
AKRWK
NPM
RIG
.GJ
186
29Q
AALCJ
AAQXK
AAYXX
ABXDB
ADMUD
AFJKZ
AGRDE
AHHHB
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FGOYB
G-2
HLV
HMK
HMO
HVGLF
HZ~
R2-
SAE
SEW
SVS
WUQ
7X8
ID FETCH-LOGICAL-c440t-75c94d28507133c480031c77bf3211cc5c96dbc1f340fcaaf1f612eb16d26bf53
IEDL.DBID AIKHN
ISSN 0093-691X
IngestDate Fri Oct 25 12:24:51 EDT 2024
Thu Sep 26 17:01:39 EDT 2024
Sat Sep 28 08:31:11 EDT 2024
Fri Feb 23 02:48:40 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Boar semen
Fertility phenotypes
Machine learning
Prediction model
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2020 The Authors. Published by Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c440t-75c94d28507133c480031c77bf3211cc5c96dbc1f340fcaaf1f612eb16d26bf53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0093691X19305618
PMID 31927416
PQID 2337069036
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_2337069036
crossref_primary_10_1016_j_theriogenology_2019_12_017
pubmed_primary_31927416
elsevier_sciencedirect_doi_10_1016_j_theriogenology_2019_12_017
PublicationCentury 2000
PublicationDate 2020-03-01
2020-Mar-01
2020-03-00
20200301
PublicationDateYYYYMMDD 2020-03-01
PublicationDate_xml – month: 03
  year: 2020
  text: 2020-03-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Theriogenology
PublicationTitleAlternate Theriogenology
PublicationYear 2020
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Davis, Katz (bib6) 1993; 14
Broekhuijse, Feitsma, Gadella (bib32) 2011; 46
Gil, Garcia-Herreros, Baron, Aparicio, Santos, García-Marín (bib35) 2009; 71
Wettemann, Wells, Omtvedt, Pope, Turman (bib39) 1976; 42
Van der Heide, Veerkamp, van Pelt, Kamphuis, Athanasiadis, Ducro (bib23) 2019; 10
Broekhuijse, Gaustad, Bolarin Guillen, Knol (bib2) 2015; 50
Hanley, McNeil (bib28) 1982; 143
Witten, Frank (bib18) 2005
Feitsma (bib1) 2009; 37
Hansen (bib8) 2009; 364
Broekhuijse, Sostaric, Feitsma, Gadella (bib33) 2012; 77
Aumuller, Willeke (bib36) 1988
Wettemann, Desjardins (bib38) 1979; 20
Tardif, Laforest, Cormier, Bailey (bib7) 1999; 52
Didion (bib37) 2008; 70
Hastie, Tibshirani, Friedman (bib25) 2009
Breiman (bib16) 2001; 45
Mottram (bib15) 2016; 10
Vyt, Maes, Quinten, Rijsselaere, Deley, Aerts, de Kruif, van Soom (bib14) 2008; 77
Friedman (bib17) 2001; 29
Verstegen, Iguer-ouada, Onclin (bib34) 2002; 57
Broekhuijse, Feitsma, Gadella (bib4) 2011; 76
Alsahaf, Azzopardi, Ducro, Hanenberg, Veerkamp, Petkov (bib20) 2018; 96
Ogutu, Piepho, Schulz-Streck (bib24) 2011; vol. 5
(bib26) 2019
Didion (bib10) 2008; 70
Hirano, Shibahara, Obara, Suzuki, Takamizawa, Yamaguchi, Tsunoda, Sato (bib12) 2001; 18
James, Witten, Hastie, Tibshirani (bib19) 2015
Holt, Moore, Hillier (bib11) 1985; 44
Broekhuijse, Sostaric, Feitsma, Gadella (bib5) 2012; 90
Tsakmakidis, Khalifa, Boscos (bib9) 2012; 45
Swets (bib29) 1988; 240
(bib31) 2016
bib3
Sutkeviĉiene, Andersson, Zilinskas, Andersson (bib13) 2005; 63
Alves, Chaparro Pinzon, da Costa, da Silva, Vieira, de Mendonça, de Sena Sales Viana, Lôbo (bib21) 2019; 71
(bib27) 2019
Waites (bib40) 1970
Mollenhorst, Ducro, de Greef, Hulsegge, Kamphuis (bib22) 2019
Cortes, Mohri (bib30) 2005
Hirano (10.1016/j.theriogenology.2019.12.017_bib12) 2001; 18
Wettemann (10.1016/j.theriogenology.2019.12.017_bib39) 1976; 42
James (10.1016/j.theriogenology.2019.12.017_bib19) 2015
Broekhuijse (10.1016/j.theriogenology.2019.12.017_bib32) 2011; 46
Didion (10.1016/j.theriogenology.2019.12.017_bib37) 2008; 70
Broekhuijse (10.1016/j.theriogenology.2019.12.017_bib2) 2015; 50
Mottram (10.1016/j.theriogenology.2019.12.017_bib15) 2016; 10
Wettemann (10.1016/j.theriogenology.2019.12.017_bib38) 1979; 20
Hastie (10.1016/j.theriogenology.2019.12.017_bib25) 2009
Feitsma (10.1016/j.theriogenology.2019.12.017_bib1) 2009; 37
Broekhuijse (10.1016/j.theriogenology.2019.12.017_bib5) 2012; 90
Vyt (10.1016/j.theriogenology.2019.12.017_bib14) 2008; 77
Waites (10.1016/j.theriogenology.2019.12.017_bib40) 1970
(10.1016/j.theriogenology.2019.12.017_bib31) 2016
Broekhuijse (10.1016/j.theriogenology.2019.12.017_bib4) 2011; 76
Hansen (10.1016/j.theriogenology.2019.12.017_bib8) 2009; 364
Broekhuijse (10.1016/j.theriogenology.2019.12.017_bib33) 2012; 77
Verstegen (10.1016/j.theriogenology.2019.12.017_bib34) 2002; 57
Gil (10.1016/j.theriogenology.2019.12.017_bib35) 2009; 71
Breiman (10.1016/j.theriogenology.2019.12.017_bib16) 2001; 45
Friedman (10.1016/j.theriogenology.2019.12.017_bib17) 2001; 29
Hanley (10.1016/j.theriogenology.2019.12.017_bib28) 1982; 143
Holt (10.1016/j.theriogenology.2019.12.017_bib11) 1985; 44
Mollenhorst (10.1016/j.theriogenology.2019.12.017_bib22) 2019
Sutkeviĉiene (10.1016/j.theriogenology.2019.12.017_bib13) 2005; 63
Witten (10.1016/j.theriogenology.2019.12.017_bib18) 2005
Aumuller (10.1016/j.theriogenology.2019.12.017_bib36) 1988
Didion (10.1016/j.theriogenology.2019.12.017_bib10) 2008; 70
Ogutu (10.1016/j.theriogenology.2019.12.017_bib24) 2011; vol. 5
Swets (10.1016/j.theriogenology.2019.12.017_bib29) 1988; 240
Van der Heide (10.1016/j.theriogenology.2019.12.017_bib23) 2019; 10
Cortes (10.1016/j.theriogenology.2019.12.017_bib30) 2005
Tsakmakidis (10.1016/j.theriogenology.2019.12.017_bib9) 2012; 45
Alsahaf (10.1016/j.theriogenology.2019.12.017_bib20) 2018; 96
Davis (10.1016/j.theriogenology.2019.12.017_bib6) 1993; 14
Tardif (10.1016/j.theriogenology.2019.12.017_bib7) 1999; 52
Alves (10.1016/j.theriogenology.2019.12.017_bib21) 2019; 71
References_xml – volume: 77
  start-page: 1466
  year: 2012
  end-page: 1479
  ident: bib33
  article-title: The value of microscopic semen motility assessment at collection for a commercial artificial insemination centre, a retrospective study on factors explaining variation in pig fertility
  publication-title: Theriogenology
  contributor:
    fullname: Gadella
– volume: 63
  start-page: 739
  year: 2005
  end-page: 747
  ident: bib13
  article-title: Assessment of boar semen quality in relation to fertility with special reference to methanol stress
  publication-title: Theriogenology
  contributor:
    fullname: Andersson
– volume: 45
  start-page: 381
  year: 2012
  end-page: 386
  ident: bib9
  article-title: Age-related changes in quality and fertility or porcine semen
  publication-title: Biol Res
  contributor:
    fullname: Boscos
– volume: 46
  start-page: 59
  year: 2011
  end-page: 63
  ident: bib32
  article-title: Field data analysis of boar semen quality
  publication-title: Reprod Domest Anim
  contributor:
    fullname: Gadella
– volume: 18
  start-page: 213
  year: 2001
  end-page: 218
  ident: bib12
  article-title: Relationships between sperm motility characteristics assessed by the computer aided sperm analysis (CASA) and fertilization rates in vitro
  publication-title: J Assist Reprod Genet
  contributor:
    fullname: Sato
– volume: 37
  start-page: 61
  year: 2009
  end-page: 71
  ident: bib1
  article-title: Artificial insemination in pigs, research and developments in The Netherlands: a review
  publication-title: Acta Sci Vet
  contributor:
    fullname: Feitsma
– year: 2016
  ident: bib31
  article-title: R: A language and environment for statistical computing
– year: 2019
  ident: bib22
  article-title: Boosted trees to predict pneumonia, growth, and meat percentage of growing-finishing pigs
  publication-title: J Anim Sci
  contributor:
    fullname: Kamphuis
– start-page: 241
  year: 1970
  end-page: 279
  ident: bib40
  article-title: Temperature regulation and the testis
  publication-title: The testis
  contributor:
    fullname: Waites
– volume: 10
  start-page: 9409
  year: 2019
  end-page: 9421
  ident: bib23
  article-title: Comparing regression, naive Bayes, and random forest methods in the prediction of individual survival to second lactation in Holstein cattle
  publication-title: J Dairy Sci
  contributor:
    fullname: Ducro
– year: 2019
  ident: bib27
  article-title: h20.ai
– volume: 57
  start-page: 149
  year: 2002
  end-page: 179
  ident: bib34
  article-title: Computer assisted semen analyzers in andrology research and veterinary practice
  publication-title: Theriogenology
  contributor:
    fullname: Onclin
– volume: 76
  year: 2011
  ident: bib4
  article-title: Additional value of computer assisted semen analysis (CASA) compared to conventional motility assessments in pig artificial insemination
  publication-title: Theriogenology
  contributor:
    fullname: Gadella
– volume: 71
  start-page: 49
  year: 2019
  end-page: 56
  ident: bib21
  article-title: Multiple regression and machine learning based methods for carcass traits and saleable meat cuts prediction using non-invasive in vivo measurements in commercial lambs
  publication-title: Small Rumin Res
  contributor:
    fullname: Lôbo
– year: 2009
  ident: bib25
  article-title: The elements of statistical learning - data mining, inference, and prediction
  contributor:
    fullname: Friedman
– volume: 71
  start-page: 254
  year: 2009
  end-page: 263
  ident: bib35
  article-title: Morphometry of porcine spermatozoa and its functional significance in relation with the motility parameters in fresh semen
  publication-title: Theriogenology
  contributor:
    fullname: García-Marín
– volume: 70
  start-page: 1374
  year: 2008
  end-page: 1376
  ident: bib37
  article-title: Computer-assisted semen analysis and its utility for profiling boar semen samples
  publication-title: Theriogenology
  contributor:
    fullname: Didion
– volume: 90
  start-page: 779
  year: 2012
  end-page: 789
  ident: bib5
  article-title: Application of computer assisted semen analysis to explain variations in pig fertility
  publication-title: J Anim Sci
  contributor:
    fullname: Gadella
– volume: 42
  start-page: 664
  year: 1976
  end-page: 669
  ident: bib39
  article-title: Influence of elevated ambient temperature on reproductive performance of boars
  publication-title: J Anim Sci
  contributor:
    fullname: Turman
– volume: 20
  start-page: 235
  year: 1979
  end-page: 241
  ident: bib38
  article-title: Testicular function in boars exposed to elevated ambient temperature
  publication-title: Biol Reprod
  contributor:
    fullname: Desjardins
– volume: 70
  start-page: 1374
  year: 2008
  end-page: 1376
  ident: bib10
  article-title: Computer-assisted semen analysis and its utility for profiling boar semen samples
  publication-title: Theriogenology
  contributor:
    fullname: Didion
– volume: 14
  start-page: 385
  year: 1993
  end-page: 394
  ident: bib6
  article-title: Operational standard for CASA instruments
  publication-title: J Androl
  contributor:
    fullname: Katz
– volume: 96
  start-page: 4935
  year: 2018
  end-page: 4943
  ident: bib20
  article-title: Prediction of slaughter age in pigs and assessment of the predictive value of phenotypic and genetic information using random forest
  publication-title: J Anim Sci
  contributor:
    fullname: Petkov
– volume: 240
  start-page: 1285
  year: 1988
  end-page: 1293
  ident: bib29
  article-title: Measuring the accuracy of diagnostic systems
  publication-title: Science
  contributor:
    fullname: Swets
– start-page: 305
  year: 2005
  end-page: 312
  ident: bib30
  article-title: Confidence intervals for the area under the ROC curve
  publication-title: Advances in neural information processing systems 17
  contributor:
    fullname: Mohri
– volume: 52
  start-page: 447
  year: 1999
  end-page: 459
  ident: bib7
  article-title: The importance of porcine sperm parameters on fertility in vivo
  publication-title: Theriogenology
  contributor:
    fullname: Bailey
– volume: 50
  start-page: 103
  year: 2015
  end-page: 109
  ident: bib2
  article-title: Efficient boar semen production and genetic contribution: the impact of low-dose artificial insemination on fertility
  publication-title: Reprod Domest Anim
  contributor:
    fullname: Knol
– ident: bib3
  article-title: Agrovision Kengetalspiegel 2017-2018
– volume: 10
  start-page: 1575
  year: 2016
  end-page: 1584
  ident: bib15
  article-title: Animal board invited review: precision livestock farming for dairy cows with a focus on oestrus detection
  publication-title: Animal
  contributor:
    fullname: Mottram
– volume: 364
  start-page: 3341
  year: 2009
  end-page: 3350
  ident: bib8
  article-title: Effects of heat stress on mammalian reproduction
  publication-title: Phil Trans R Soc B
  contributor:
    fullname: Hansen
– volume: 77
  start-page: 291
  year: 2008
  end-page: 298
  ident: bib14
  article-title: Detailed motility examination of porcine semen and its predictive value towards reproductive performance in sows
  publication-title: Vlaams Diergeneeskd Tijdschr
  contributor:
    fullname: van Soom
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: bib16
  article-title: Random forests
  publication-title: Mach Learn
  contributor:
    fullname: Breiman
– volume: vol. 5
  start-page: S11
  year: 2011
  ident: bib24
  article-title: A comparison of random forests, boosting, and support vector machines for genomic selection
  publication-title: BMC proceedings of the 14
  contributor:
    fullname: Schulz-Streck
– year: 2019
  ident: bib26
  article-title: Package ‘h2o’
– volume: 29
  start-page: 1189
  year: 2001
  end-page: 1459
  ident: bib17
  article-title: Greedy function approximation: a gradient boosting machine
  publication-title: Ann Stat
  contributor:
    fullname: Friedman
– volume: 143
  start-page: 29
  year: 1982
  end-page: 36
  ident: bib28
  article-title: The meaning and use of the area under the receiver operating characteristic (ROC) curve
  publication-title: Radiology
  contributor:
    fullname: McNeil
– year: 2005
  ident: bib18
  article-title: Data mining: practical machine learning tools and techniques
  contributor:
    fullname: Frank
– start-page: 227
  year: 1988
  ident: bib36
  article-title: Computer controlled analysis of boar semen with the “Cellsoft” system
  publication-title: Proc 11
  contributor:
    fullname: Willeke
– volume: 44
  start-page: 112
  year: 1985
  end-page: 119
  ident: bib11
  article-title: Computer assisted measurement of sperm swimming speed in human semen: correlation with in vitro fertilization assays
  publication-title: Fertil Steril
  contributor:
    fullname: Hillier
– year: 2015
  ident: bib19
  article-title: An introduction to statistical learning with applications in R
  contributor:
    fullname: Tibshirani
– volume: 18
  start-page: 213
  year: 2001
  ident: 10.1016/j.theriogenology.2019.12.017_bib12
  article-title: Relationships between sperm motility characteristics assessed by the computer aided sperm analysis (CASA) and fertilization rates in vitro
  publication-title: J Assist Reprod Genet
  doi: 10.1023/A:1009420432234
  contributor:
    fullname: Hirano
– volume: 240
  start-page: 1285
  year: 1988
  ident: 10.1016/j.theriogenology.2019.12.017_bib29
  article-title: Measuring the accuracy of diagnostic systems
  publication-title: Science
  doi: 10.1126/science.3287615
  contributor:
    fullname: Swets
– volume: 77
  start-page: 1466
  year: 2012
  ident: 10.1016/j.theriogenology.2019.12.017_bib33
  article-title: The value of microscopic semen motility assessment at collection for a commercial artificial insemination centre, a retrospective study on factors explaining variation in pig fertility
  publication-title: Theriogenology
  doi: 10.1016/j.theriogenology.2011.11.016
  contributor:
    fullname: Broekhuijse
– start-page: 227
  year: 1988
  ident: 10.1016/j.theriogenology.2019.12.017_bib36
  article-title: Computer controlled analysis of boar semen with the “Cellsoft” system
  contributor:
    fullname: Aumuller
– volume: 364
  start-page: 3341
  year: 2009
  ident: 10.1016/j.theriogenology.2019.12.017_bib8
  article-title: Effects of heat stress on mammalian reproduction
  publication-title: Phil Trans R Soc B
  doi: 10.1098/rstb.2009.0131
  contributor:
    fullname: Hansen
– year: 2005
  ident: 10.1016/j.theriogenology.2019.12.017_bib18
  contributor:
    fullname: Witten
– year: 2009
  ident: 10.1016/j.theriogenology.2019.12.017_bib25
  contributor:
    fullname: Hastie
– volume: 42
  start-page: 664
  year: 1976
  ident: 10.1016/j.theriogenology.2019.12.017_bib39
  article-title: Influence of elevated ambient temperature on reproductive performance of boars
  publication-title: J Anim Sci
  doi: 10.2527/jas1976.423664x
  contributor:
    fullname: Wettemann
– volume: 63
  start-page: 739
  year: 2005
  ident: 10.1016/j.theriogenology.2019.12.017_bib13
  article-title: Assessment of boar semen quality in relation to fertility with special reference to methanol stress
  publication-title: Theriogenology
  doi: 10.1016/j.theriogenology.2004.04.006
  contributor:
    fullname: Sutkeviĉiene
– volume: 57
  start-page: 149
  year: 2002
  ident: 10.1016/j.theriogenology.2019.12.017_bib34
  article-title: Computer assisted semen analyzers in andrology research and veterinary practice
  publication-title: Theriogenology
  doi: 10.1016/S0093-691X(01)00664-1
  contributor:
    fullname: Verstegen
– volume: 71
  start-page: 254
  year: 2009
  ident: 10.1016/j.theriogenology.2019.12.017_bib35
  article-title: Morphometry of porcine spermatozoa and its functional significance in relation with the motility parameters in fresh semen
  publication-title: Theriogenology
  doi: 10.1016/j.theriogenology.2008.07.007
  contributor:
    fullname: Gil
– volume: 10
  start-page: 1575
  year: 2016
  ident: 10.1016/j.theriogenology.2019.12.017_bib15
  article-title: Animal board invited review: precision livestock farming for dairy cows with a focus on oestrus detection
  publication-title: Animal
  doi: 10.1017/S1751731115002517
  contributor:
    fullname: Mottram
– volume: 45
  start-page: 5
  year: 2001
  ident: 10.1016/j.theriogenology.2019.12.017_bib16
  article-title: Random forests
  publication-title: Mach Learn
  doi: 10.1023/A:1010933404324
  contributor:
    fullname: Breiman
– volume: 46
  start-page: 59
  year: 2011
  ident: 10.1016/j.theriogenology.2019.12.017_bib32
  article-title: Field data analysis of boar semen quality
  publication-title: Reprod Domest Anim
  doi: 10.1111/j.1439-0531.2011.01861.x
  contributor:
    fullname: Broekhuijse
– volume: vol. 5
  start-page: S11
  year: 2011
  ident: 10.1016/j.theriogenology.2019.12.017_bib24
  article-title: A comparison of random forests, boosting, and support vector machines for genomic selection
  contributor:
    fullname: Ogutu
– start-page: 305
  year: 2005
  ident: 10.1016/j.theriogenology.2019.12.017_bib30
  article-title: Confidence intervals for the area under the ROC curve
  contributor:
    fullname: Cortes
– volume: 96
  start-page: 4935
  year: 2018
  ident: 10.1016/j.theriogenology.2019.12.017_bib20
  article-title: Prediction of slaughter age in pigs and assessment of the predictive value of phenotypic and genetic information using random forest
  publication-title: J Anim Sci
  doi: 10.1093/jas/sky359
  contributor:
    fullname: Alsahaf
– volume: 52
  start-page: 447
  year: 1999
  ident: 10.1016/j.theriogenology.2019.12.017_bib7
  article-title: The importance of porcine sperm parameters on fertility in vivo
  publication-title: Theriogenology
  doi: 10.1016/S0093-691X(99)00142-9
  contributor:
    fullname: Tardif
– volume: 37
  start-page: 61
  year: 2009
  ident: 10.1016/j.theriogenology.2019.12.017_bib1
  article-title: Artificial insemination in pigs, research and developments in The Netherlands: a review
  publication-title: Acta Sci Vet
  contributor:
    fullname: Feitsma
– volume: 20
  start-page: 235
  year: 1979
  ident: 10.1016/j.theriogenology.2019.12.017_bib38
  article-title: Testicular function in boars exposed to elevated ambient temperature
  publication-title: Biol Reprod
  doi: 10.1095/biolreprod20.2.235
  contributor:
    fullname: Wettemann
– start-page: 241
  year: 1970
  ident: 10.1016/j.theriogenology.2019.12.017_bib40
  article-title: Temperature regulation and the testis
  contributor:
    fullname: Waites
– volume: 14
  start-page: 385
  year: 1993
  ident: 10.1016/j.theriogenology.2019.12.017_bib6
  article-title: Operational standard for CASA instruments
  publication-title: J Androl
  contributor:
    fullname: Davis
– volume: 71
  start-page: 49
  year: 2019
  ident: 10.1016/j.theriogenology.2019.12.017_bib21
  article-title: Multiple regression and machine learning based methods for carcass traits and saleable meat cuts prediction using non-invasive in vivo measurements in commercial lambs
  publication-title: Small Rumin Res
  doi: 10.1016/j.smallrumres.2018.12.008
  contributor:
    fullname: Alves
– volume: 44
  start-page: 112
  year: 1985
  ident: 10.1016/j.theriogenology.2019.12.017_bib11
  article-title: Computer assisted measurement of sperm swimming speed in human semen: correlation with in vitro fertilization assays
  publication-title: Fertil Steril
  doi: 10.1016/S0015-0282(16)48687-5
  contributor:
    fullname: Holt
– volume: 76
  year: 2011
  ident: 10.1016/j.theriogenology.2019.12.017_bib4
  article-title: Additional value of computer assisted semen analysis (CASA) compared to conventional motility assessments in pig artificial insemination
  publication-title: Theriogenology
  doi: 10.1016/j.theriogenology.2011.05.040
  contributor:
    fullname: Broekhuijse
– year: 2015
  ident: 10.1016/j.theriogenology.2019.12.017_bib19
  contributor:
    fullname: James
– volume: 50
  start-page: 103
  year: 2015
  ident: 10.1016/j.theriogenology.2019.12.017_bib2
  article-title: Efficient boar semen production and genetic contribution: the impact of low-dose artificial insemination on fertility
  publication-title: Reprod Domest Anim
  doi: 10.1111/rda.12558
  contributor:
    fullname: Broekhuijse
– volume: 70
  start-page: 1374
  year: 2008
  ident: 10.1016/j.theriogenology.2019.12.017_bib10
  article-title: Computer-assisted semen analysis and its utility for profiling boar semen samples
  publication-title: Theriogenology
  doi: 10.1016/j.theriogenology.2008.07.014
  contributor:
    fullname: Didion
– year: 2019
  ident: 10.1016/j.theriogenology.2019.12.017_bib22
  article-title: Boosted trees to predict pneumonia, growth, and meat percentage of growing-finishing pigs
  publication-title: J Anim Sci
  doi: 10.1093/jas/skz274
  contributor:
    fullname: Mollenhorst
– volume: 29
  start-page: 1189
  year: 2001
  ident: 10.1016/j.theriogenology.2019.12.017_bib17
  article-title: Greedy function approximation: a gradient boosting machine
  publication-title: Ann Stat
  doi: 10.1214/aos/1013203451
  contributor:
    fullname: Friedman
– year: 2016
  ident: 10.1016/j.theriogenology.2019.12.017_bib31
– volume: 77
  start-page: 291
  year: 2008
  ident: 10.1016/j.theriogenology.2019.12.017_bib14
  article-title: Detailed motility examination of porcine semen and its predictive value towards reproductive performance in sows
  publication-title: Vlaams Diergeneeskd Tijdschr
  contributor:
    fullname: Vyt
– volume: 70
  start-page: 1374
  year: 2008
  ident: 10.1016/j.theriogenology.2019.12.017_bib37
  article-title: Computer-assisted semen analysis and its utility for profiling boar semen samples
  publication-title: Theriogenology
  doi: 10.1016/j.theriogenology.2008.07.014
  contributor:
    fullname: Didion
– volume: 45
  start-page: 381
  year: 2012
  ident: 10.1016/j.theriogenology.2019.12.017_bib9
  article-title: Age-related changes in quality and fertility or porcine semen
  publication-title: Biol Res
  doi: 10.4067/S0716-97602012000400009
  contributor:
    fullname: Tsakmakidis
– volume: 90
  start-page: 779
  year: 2012
  ident: 10.1016/j.theriogenology.2019.12.017_bib5
  article-title: Application of computer assisted semen analysis to explain variations in pig fertility
  publication-title: J Anim Sci
  doi: 10.2527/jas.2011-4311
  contributor:
    fullname: Broekhuijse
– volume: 10
  start-page: 9409
  year: 2019
  ident: 10.1016/j.theriogenology.2019.12.017_bib23
  article-title: Comparing regression, naive Bayes, and random forest methods in the prediction of individual survival to second lactation in Holstein cattle
  publication-title: J Dairy Sci
  doi: 10.3168/jds.2019-16295
  contributor:
    fullname: Van der Heide
– volume: 143
  start-page: 29
  year: 1982
  ident: 10.1016/j.theriogenology.2019.12.017_bib28
  article-title: The meaning and use of the area under the receiver operating characteristic (ROC) curve
  publication-title: Radiology
  doi: 10.1148/radiology.143.1.7063747
  contributor:
    fullname: Hanley
SSID ssj0003661
Score 2.3922787
Snippet Current artificial insemination (AI) laboratory practices assess semen quality of each boar ejaculate to decide which ones to process into AI doses. This...
SourceID proquest
crossref
pubmed
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 112
SubjectTerms Boar semen
Fertility phenotypes
Machine learning
Prediction model
Title Machine learning to further improve the decision which boar ejaculates to process into artificial insemination doses
URI https://dx.doi.org/10.1016/j.theriogenology.2019.12.017
https://www.ncbi.nlm.nih.gov/pubmed/31927416
https://search.proquest.com/docview/2337069036
Volume 144
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Na9wwEB2SDZT2ENLt16ZtUCFXN7Yly_apLKFh27I5NWVvwpJHiXOwl10vveW3RyPLKYEWCjnKRrbQSKM3ozczAKelMJgUpYy4RYxEKURUcKEjTKuKJ9pYjuTQX17KxZX4vspWe3A-xsIQrTLo_kGne20dnpyF2TxbNw3F-FIxumTlIAjB4GIfDvwl0QQO5t9-LC4fFDKXciicV_KIOjyD0z80Lx9m11FCVPJiE9er9P5BX8HsryfVv5CoP5EujuAwQEk2H0b7EvawncKL-fUmpNPAKUx_EdvFh9yyZbhFfwX90jMokYWSEdes75jdbWiQrPFeBmSuwepQgIf9vmnMDdNdtWF4WxF11SFU6rUe4gxY07oGzduQkMK1t5S1xIud1d0Wt6_h6uLrz_NFFKovREaIuI_yzJSiTovM27FGFLT_TZ5ry53RaIx7LWttEstFbE1V2cQ6tORUv6xTqW3G38Ck7Vp8B0wYrXUsUWLqrK8YS21Rihgd9nJfzXEG2TjTaj0k2VAj--xWPZaQIgmpJFVOQjP4MopFPVo0yp0H__mFT6M0ldtXdFlStdjttirlPKcszlzO4O0g5oexObVFWX_k8ZP__x6ep2TAe1LbB5j0mx1-dCin1yew__kuOQlr-R7wngGa
link.rule.ids 315,783,787,4511,24130,27938,27939,45599,45693
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VIvE4IFhey9NIvYYmseMkJ1RVVAt0e2rR3qzYGbfpIVntZsWN386Mk1BVAgmJo_O0PPb4m_E3MwAHpXKYFKWOpEeMVKlUVEhlI0yrSibWeYns0F-e6cWF-rrKVntwPMXCMK1y1P2DTg_aerxyOI7m4bppOMaXi9ElK4IgDIOLO3BXcf4smtQff97wPKTWQ9m8Ukb8-D04uCF5hSC7jtOhsg-bmV5l8A6G-mV_3Kf-hkPDfnTyGB6NQFIcDX19AnvYzuDh0eVmTKaBM5h9Z65LCLgVy_EM_Sn0y8CfRDEWjLgUfSf8bsOdFE3wMaCghqjH8jvix1XjroTtqo3A64qJq4RP-a31EGUgmpYaPGpDOgpqbzlnSRC6qLstbp_Bxcnn8-NFNNZeiJxScR_lmStVnRZZsGKdKnj1uzy3XpLJ6Bzd1rV1iZcq9q6qfOIJK5Hi13Wqrc_kc9hvuxZfglDOWhtr1JiS7RVjaT1qFSMhL_pqjnPIppE26yHFhpm4Z9fmtoQMS8gkqSEJzeHTJBZza8oY2g3-8QsfJmkaWlV8VFK12O22JpUy5xzOUs_hxSDm330jpcU5f_Sr__7_e7i_OF-emtMvZ99ew4OUTflAb3sD-_1mh28J7_T2XZjPvwBqpwJ8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+to+further+improve+the+decision+which+boar+ejaculates+to+process+into+artificial+insemination+doses&rft.jtitle=Theriogenology&rft.au=Kamphuis%2C+Claudia&rft.au=Duenk%2C+Pascal&rft.au=Veerkamp%2C+Roel+Franciscus&rft.au=Visser%2C+Bram&rft.date=2020-03-01&rft.pub=Elsevier+Inc&rft.issn=0093-691X&rft.eissn=1879-3231&rft.volume=144&rft.spage=112&rft.epage=121&rft_id=info:doi/10.1016%2Fj.theriogenology.2019.12.017&rft.externalDocID=S0093691X19305618
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0093-691X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0093-691X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0093-691X&client=summon