Explainable Artificial Intelligence for Human Decision Support System in the Medical Domain
In this paper, we present the potential of Explainable Artificial Intelligence methods for decision support in medical image analysis scenarios. Using three types of explainable methods applied to the same medical image data set, we aimed to improve the comprehensibility of the decisions provided by...
Saved in:
Published in | Machine learning and knowledge extraction Vol. 3; no. 3; pp. 740 - 770 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.09.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this paper, we present the potential of Explainable Artificial Intelligence methods for decision support in medical image analysis scenarios. Using three types of explainable methods applied to the same medical image data set, we aimed to improve the comprehensibility of the decisions provided by the Convolutional Neural Network (CNN). In vivo gastral images obtained by a video capsule endoscopy (VCE) were the subject of visual explanations, with the goal of increasing health professionals’ trust in black-box predictions. We implemented two post hoc interpretable machine learning methods, called Local Interpretable Model-Agnostic Explanations (LIME) and SHapley Additive exPlanations (SHAP), and an alternative explanation approach, the Contextual Importance and Utility (CIU) method. The produced explanations were assessed by human evaluation. We conducted three user studies based on explanations provided by LIME, SHAP and CIU. Users from different non-medical backgrounds carried out a series of tests in a web-based survey setting and stated their experience and understanding of the given explanations. Three user groups (n = 20, 20, 20) with three distinct forms of explanations were quantitatively analyzed. We found that, as hypothesized, the CIU-explainable method performed better than both LIME and SHAP methods in terms of improving support for human decision-making and being more transparent and thus understandable to users. Additionally, CIU outperformed LIME and SHAP by generating explanations more rapidly. Our findings suggest that there are notable differences in human decision-making between various explanation support settings. In line with that, we present three potential explainable methods that, with future improvements in implementation, can be generalized to different medical data sets and can provide effective decision support to medical experts. |
---|---|
AbstractList | In this paper, we present the potential of Explainable Artificial Intelligence methods for decision support in medical image analysis scenarios. Using three types of explainable methods applied to the same medical image data set, we aimed to improve the comprehensibility of the decisions provided by the Convolutional Neural Network (CNN). In vivo gastral images obtained by a video capsule endoscopy (VCE) were the subject of visual explanations, with the goal of increasing health professionals’ trust in black-box predictions. We implemented two post hoc interpretable machine learning methods, called Local Interpretable Model-Agnostic Explanations (LIME) and SHapley Additive exPlanations (SHAP), and an alternative explanation approach, the Contextual Importance and Utility (CIU) method. The produced explanations were assessed by human evaluation. We conducted three user studies based on explanations provided by LIME, SHAP and CIU. Users from different non-medical backgrounds carried out a series of tests in a web-based survey setting and stated their experience and understanding of the given explanations. Three user groups (n = 20, 20, 20) with three distinct forms of explanations were quantitatively analyzed. We found that, as hypothesized, the CIU-explainable method performed better than both LIME and SHAP methods in terms of improving support for human decision-making and being more transparent and thus understandable to users. Additionally, CIU outperformed LIME and SHAP by generating explanations more rapidly. Our findings suggest that there are notable differences in human decision-making between various explanation support settings. In line with that, we present three potential explainable methods that, with future improvements in implementation, can be generalized to different medical data sets and can provide effective decision support to medical experts. |
Author | Knapič, Samanta Främling, Kary Malhi, Avleen Saluja, Rohit |
Author_xml | – sequence: 1 givenname: Samanta orcidid: 0000-0001-5926-6151 surname: Knapič fullname: Knapič, Samanta – sequence: 2 givenname: Avleen surname: Malhi fullname: Malhi, Avleen – sequence: 3 givenname: Rohit surname: Saluja fullname: Saluja, Rohit – sequence: 4 givenname: Kary surname: Främling fullname: Främling, Kary |
BackLink | https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-303546$$DView record from Swedish Publication Index https://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-190507$$DView record from Swedish Publication Index |
BookMark | eNqNkc1u1DAURiNUJErpihewxBIFbvwTx8tRp6UjFbEosGFh2c5N62kSB9sR9O0xHZAKYsHKlnW-I9_7Pa-O5jBjVb1s4A1jCt5O5g4ZMAAmn1THVACvuVJw9Oj-rDpNaQ8AVCreAD-uvpx_X0bjZ2NHJJuY_eCdNyPZzRnH0d_g7JAMIZLLdTIz2aLzyYeZXK_LEmIm1_cp40T8TPItkvfYe1fS2zAV54vq6WDGhKe_zpPq08X5x7PL-urDu93Z5qp2nEOuhZDARd_TVjJqbC-VgVa2zMlBOtr2HeWDVAjWDLZ3reyhGyxD6hwrAirYSbU7ePtg9nqJfjLxXgfj9cNDiDfalMnciNqYogJsbdNZLkSnuFPMUtcx6ix2trjqgyt9w2W1f9i2_vPmwbZOq24UCJD_x9_lW12aEbwt_KsDv8TwdcWU9T6scS7r0VTIlgtQjBWqOVAuhpQiDtr5bHJZfI7Gj7oB_bNy_ajyknn9V-b3X_5F_wCqHa7i |
CitedBy_id | crossref_primary_10_3390_make6030071 crossref_primary_10_1016_j_knosys_2023_110413 crossref_primary_10_2196_44909 crossref_primary_10_1007_s41870_023_01635_7 crossref_primary_10_3390_info15110725 crossref_primary_10_1016_j_eswa_2023_119638 crossref_primary_10_3390_app14167192 crossref_primary_10_3390_jcdd10050202 crossref_primary_10_1117_1_JEI_32_2_020801 crossref_primary_10_1080_10447318_2024_2381929 crossref_primary_10_1016_j_ajp_2022_103316 crossref_primary_10_1177_03611981221143106 crossref_primary_10_12771_emj_2024_e49 crossref_primary_10_1007_s10586_024_04804_w crossref_primary_10_3390_diagnostics13101692 crossref_primary_10_3390_jpm12030480 crossref_primary_10_3390_rs14153565 crossref_primary_10_1016_j_engappai_2023_107829 crossref_primary_10_3390_foods11142019 crossref_primary_10_1080_08839514_2021_2008148 crossref_primary_10_1016_j_jbi_2023_104363 crossref_primary_10_3390_electronics13142842 crossref_primary_10_1016_j_engappai_2024_108657 crossref_primary_10_1109_ACCESS_2025_3538280 crossref_primary_10_1016_j_compbiomed_2024_109569 crossref_primary_10_1007_s00521_023_08319_0 crossref_primary_10_1007_s13534_023_00319_2 crossref_primary_10_1016_j_ijmedinf_2024_105441 crossref_primary_10_1007_s11042_023_16305_w crossref_primary_10_3233_JIFS_235053 crossref_primary_10_1007_s10994_023_06504_9 crossref_primary_10_1016_j_ecoenv_2024_117570 crossref_primary_10_1007_s11831_024_10103_9 crossref_primary_10_1007_s12065_023_00833_3 crossref_primary_10_1109_LGRS_2023_3251652 crossref_primary_10_3390_jpm11111213 crossref_primary_10_3390_healthcare10010155 crossref_primary_10_3390_s22176338 crossref_primary_10_1080_10447318_2024_2323263 crossref_primary_10_3390_axioms12050462 crossref_primary_10_1080_09540091_2024_2325496 crossref_primary_10_1007_s00481_023_00761_x crossref_primary_10_1016_j_heliyon_2022_e11185 crossref_primary_10_1016_j_imu_2023_101286 crossref_primary_10_3390_biomedinformatics3030048 crossref_primary_10_7717_peerj_cs_1253 crossref_primary_10_3390_math11143145 crossref_primary_10_1016_j_artmed_2024_102780 crossref_primary_10_3390_make5040079 crossref_primary_10_1021_acs_est_3c00653 crossref_primary_10_1038_s41598_025_89934_w crossref_primary_10_1109_JBHI_2023_3348334 crossref_primary_10_48175_IJARSCT_17257 crossref_primary_10_1111_exsy_13403 crossref_primary_10_32604_cmes_2024_051363 crossref_primary_10_1109_ACCESS_2023_3274851 crossref_primary_10_2139_ssrn_4640316 crossref_primary_10_1016_j_compbiomed_2023_106668 crossref_primary_10_1016_j_aej_2022_03_050 crossref_primary_10_1109_TNSM_2023_3282740 crossref_primary_10_7717_peerj_cs_2051 |
Cites_doi | 10.1145/2939672.2939778 10.1073/pnas.1716999115 10.1002/mp.13264 10.23919/MIPRO.2018.8400040 10.1109/ICCV.2017.74 10.1007/978-3-030-50334-5_4 10.1007/978-3-319-93000-8_63 10.1007/978-3-030-51924-7_8 10.18653/v1/2020.acl-main.491 10.1109/ACCESS.2018.2870052 10.1007/978-3-030-82017-6_4 10.1109/MCG.2018.042731661 10.3390/e23010018 10.1109/ACCESS.2020.2976199 10.1155/2021/6633755 10.1016/j.inffus.2021.05.009 10.1515/9781400881970-018 10.1007/978-3-030-82017-6_3 10.1186/s12911-020-01332-6 10.1109/DICTA47822.2019.8945986 |
ContentType | Journal Article |
Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU COVID DWQXO GNUQQ HCIFZ JQ2 K7- P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS ADTPV AFDQA AOWAS D8T D8V ZZAVC ADHXS D93 DOA |
DOI | 10.3390/make3030037 |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Coronavirus Research Database ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China SwePub SWEPUB Kungliga Tekniska Högskolan full text SwePub Articles SWEPUB Freely available online SWEPUB Kungliga Tekniska Högskolan SwePub Articles full text SWEPUB Umeå universitet full text SWEPUB Umeå universitet DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2504-4990 |
EndPage | 770 |
ExternalDocumentID | oai_doaj_org_article_aaf790e6b18b455894c93b2c832cbe8b oai_DiVA_org_umu_190507 oai_DiVA_org_kth_303546 10_3390_make3030037 |
GroupedDBID | AADQD AAFWJ AAYXX AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BENPR BGLVJ CCPQU CITATION GROUPED_DOAJ HCIFZ K7- MODMG M~E OK1 PHGZM PHGZT PIMPY 8FE 8FG ABUWG AZQEC COVID DWQXO GNUQQ JQ2 P62 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS ADTPV AFDQA AOWAS D8T D8V IAO ICD ITC ZZAVC ADHXS D93 PUEGO |
ID | FETCH-LOGICAL-c440t-557045dd26732abd79a06763c7f7c26d824f79e0bafbdc67d08fb3e2cc3c44253 |
IEDL.DBID | DOA |
ISSN | 2504-4990 |
IngestDate | Wed Aug 27 01:24:48 EDT 2025 Thu Aug 21 06:47:01 EDT 2025 Thu Aug 21 06:56:27 EDT 2025 Fri Jul 25 22:06:45 EDT 2025 Thu Apr 24 23:09:15 EDT 2025 Tue Jul 01 03:11:07 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c440t-557045dd26732abd79a06763c7f7c26d824f79e0bafbdc67d08fb3e2cc3c44253 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-5926-6151 |
OpenAccessLink | https://doaj.org/article/aaf790e6b18b455894c93b2c832cbe8b |
PQID | 2576450933 |
PQPubID | 5046881 |
PageCount | 31 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_aaf790e6b18b455894c93b2c832cbe8b swepub_primary_oai_DiVA_org_umu_190507 swepub_primary_oai_DiVA_org_kth_303546 proquest_journals_2576450933 crossref_citationtrail_10_3390_make3030037 crossref_primary_10_3390_make3030037 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-09-01 |
PublicationDateYYYYMMDD | 2021-09-01 |
PublicationDate_xml | – month: 09 year: 2021 text: 2021-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Machine learning and knowledge extraction |
PublicationYear | 2021 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Choo (ref_17) 2018; 38 ref_14 ref_36 ref_13 Roscher (ref_30) 2020; 8 ref_35 Vilone (ref_9) 2021; 76 ref_12 ref_34 ref_11 ref_33 ref_10 ref_32 ref_31 Sahiner (ref_23) 2019; 46 ref_39 ref_16 Amann (ref_24) 2020; 20 ref_38 ref_15 ref_37 Ghosal (ref_19) 2018; 115 Zhang (ref_27) 2021; 127 Guidotti (ref_7) 2018; 51 ref_25 Voigt (ref_28) 2017; Volume 10 ref_22 ref_21 ref_20 ref_42 ref_41 ref_40 ref_1 ref_3 ref_2 ref_29 Gunning (ref_18) 2019; 40 ref_26 ref_8 ref_5 ref_4 Adadi (ref_6) 2018; 6 |
References_xml | – volume: 127 start-page: 1037 year: 2021 ident: ref_27 article-title: ANC: Attention network for COVID-19 explainable diagnosis based on convolutional block attention module publication-title: CMES-Comput. Model. Eng. Sci. – ident: ref_25 doi: 10.1145/2939672.2939778 – ident: ref_5 – ident: ref_34 – volume: 115 start-page: 4613 year: 2018 ident: ref_19 article-title: An explainable deep machine vision framework for plant stress phenotyping publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1716999115 – volume: 46 start-page: e1 year: 2019 ident: ref_23 article-title: Deep learning in medical imaging and radiation therapy publication-title: Med. Phys. doi: 10.1002/mp.13264 – ident: ref_33 doi: 10.23919/MIPRO.2018.8400040 – ident: ref_39 doi: 10.1109/ICCV.2017.74 – ident: ref_11 – ident: ref_1 doi: 10.1007/978-3-030-50334-5_4 – ident: ref_2 doi: 10.1007/978-3-319-93000-8_63 – ident: ref_16 – ident: ref_4 doi: 10.1007/978-3-030-51924-7_8 – ident: ref_14 – ident: ref_35 – ident: ref_20 doi: 10.18653/v1/2020.acl-main.491 – ident: ref_21 – volume: Volume 10 start-page: 3152676 year: 2017 ident: ref_28 article-title: The eu general data protection regulation (gdpr) publication-title: A Practical Guide – volume: 6 start-page: 52138 year: 2018 ident: ref_6 article-title: Peeking inside the black-box: A survey on Explainable Artificial Intelligence (XAI) publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2870052 – ident: ref_42 doi: 10.1007/978-3-030-82017-6_4 – volume: 38 start-page: 84 year: 2018 ident: ref_17 article-title: Visual analytics for explainable deep learning publication-title: IEEE Comput. Graph. Appl. doi: 10.1109/MCG.2018.042731661 – ident: ref_8 – ident: ref_31 – volume: 51 start-page: 93 year: 2018 ident: ref_7 article-title: A survey of methods for explaining black box models publication-title: ACM Comput. Surv. (CSUR) – ident: ref_29 – ident: ref_32 doi: 10.3390/e23010018 – ident: ref_12 – volume: 8 start-page: 42200 year: 2020 ident: ref_30 article-title: Explainable machine learning for scientific insights and discoveries publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2976199 – ident: ref_10 – ident: ref_26 doi: 10.1155/2021/6633755 – volume: 40 start-page: 44 year: 2019 ident: ref_18 article-title: DARPA’s explainable artificial intelligence (XAI) program publication-title: AI Mag. – ident: ref_41 – ident: ref_15 – volume: 76 start-page: 89 year: 2021 ident: ref_9 article-title: Notions of explainability and evaluation approaches for explainable artificial intelligence publication-title: Inf. Fusion doi: 10.1016/j.inffus.2021.05.009 – ident: ref_13 – ident: ref_37 doi: 10.1515/9781400881970-018 – ident: ref_38 – ident: ref_36 – ident: ref_40 doi: 10.1007/978-3-030-82017-6_3 – ident: ref_22 – volume: 20 start-page: 1 year: 2020 ident: ref_24 article-title: Explainability for artificial intelligence in healthcare: A multidisciplinary perspective publication-title: BMC Med. Inform. Decis. Mak. doi: 10.1186/s12911-020-01332-6 – ident: ref_3 doi: 10.1109/DICTA47822.2019.8945986 |
SSID | ssj0002794104 |
Score | 2.479369 |
Snippet | In this paper, we present the potential of Explainable Artificial Intelligence methods for decision support in medical image analysis scenarios. Using three... |
SourceID | doaj swepub proquest crossref |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 740 |
SubjectTerms | Algorithms Artificial intelligence Artificial neural networks Automation computer and systems sciences data- och systemvetenskap Datasets Decision analysis Decision making Decision support systems Deep learning Explainable artificial intelligence human decision support Image analysis image recognition In vivo methods and tests Lime Machine learning medical image analyses Medical imaging Neural networks Trust User groups Vision systems |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LSyQxEA4-LnsRRcVZH-QgHoTG7rw6fRJ1FBUUWVYRPIRUkt4VnRkfM__fSndmnAHRa3dIuquSyleVyleE7Ba14rbIfSYK4TJhZZkBq4pMAQ-gi5rlOl5OvrpW57fi8l7ep4Dbe0qrHNvExlD7gYsx8oMIjIWM_vfhy2sWq0bF09VUQmOeLKIJ1uh8LR6fXt_8mURZGE43dDjai3kc_fuDnn0KaLYj78rMVtQw9s_CzGnq0Ga7OVsmSwkn0qNWsStkLvRXyUPMmEvXnZpXLf0DvZji1aSIQmkTmqfdVD-HxtKdCLNpS09OH_sUYR9NZzS0O-hhn2vk9uz078l5lqojZE6IfJhF7iwhvWeq5MyCLyuLO4_irqxLx5TXTNRlFXKwNXinSp_rGhXAnOPYAZN8nSz0B_2wQWgAyL2QGjggoILSgsY-rC-CDMx61iH7Y0EZl6jDYwWLZ4MuRJSqmZJqh-xOGr-0jBlfNzuOEp80iTTXzYPB2z-TVo2xFn8hDwoKDUJKXQlXcWAOzZCDoKFDtsb6MmntvZvPmdIhe60OZ0bpPt4dNaM8Df8b_Bop1A8NR72RQeCE0Pn39wNukl8s5rw0OWhbZGH4NgrbCFqGsJNm5geTFu9- priority: 102 providerName: ProQuest |
Title | Explainable Artificial Intelligence for Human Decision Support System in the Medical Domain |
URI | https://www.proquest.com/docview/2576450933 https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-303546 https://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-190507 https://doaj.org/article/aaf790e6b18b455894c93b2c832cbe8b |
Volume | 3 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NTxsxELVauPRSgQCRQiMfIg5IK3b9td4jkIS0UlBVFYTEwfLYXjVAQlWSa387Y--CNhISl172sDuyrRmv5409fkPIoKgVt0XuM1EIlwkrywxYVWQKeABd1CzX8XLy9FJNrsT3G3nTKfUVc8IaeuBGcSfW1mWVBwWFBiGlroSrODCHM9FB0BBXX_R5nWDqLh2nVQIDjeZCHse4_mRu7wMu15FvZc0FJab-dXjZpQxNbma8RT63-JCeNuPaJh_CYofcxky59ppT-tTQPtBvHT5NiuiTpi15Omzr5tBYshPhNW1oyelsQRHu0fZshg4f59jmLrkaj36dT7K2KkLmhMiXWeTMEtJ7pkrOLPiysuhxFHdlXTqmvGYCNRZysDV4p0qf6xoVz5zj2ACTfI9sLB4XYZ_QAJB7ITVwQCAFpQWNbVhfBBmY9axHjl8UZVxLGR4rVzwYDB2iVk1Hqz0yeBX-0zBlvC12FjX-KhLprdMLNLppjW7eM3qPHL7Yy7T_3JOJoZOQcYemR44aG671Mpxdn6Ze7pe_DY5GCvWO4Gq-MgiYEDJ_-R-jPiCfWMyISRlqh2Rj-XcVviKkWUKffNTjiz7ZPBtd_vjZT3MZn9N_o2diPvrO |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELaq9gAX1AoQgRZ8KByQVt31a70HhAohJPRxalElDsZje2nVJiltIsSf4jcy9u6GREJw6nVt2d7xzPgbP74hZLeoFbdF7jNRCJcJK8sMWFVkCngAXdQs1_Fx8tGxGp6KT2fybI386t7CxGuVnU9MjtpPXdwj34vAWMgYf7-9_p7FrFHxdLVLodGoxUH4-QNDtts3oz7O70vGBh9O3g-zNqtA5oTIZ1nknBLSe6ZKziz4srLosRV3ZV06prxmoi6rkIOtwTtV-lzXOHDmHMcGWMwSgS5_Q3BeRYvSg4-LPR2Gyo3hTfMMEMvzvbG9DLhIRJaXlYUv5QdYBbXLRKVpcRtskgctKqX7jRptkbUweUi-xPt57eOqVNSQTdDREosnRcxL00EA7bfZemhMFIqgnjZk6PRiQhFk0vZEiPanY2zzETm9E6k9JuuT6SQ8ITQA5F5IDRwQvkFpQWMb1hdBBmY965HXnaCMa4nKY76MK4MBS5SqWZJqj-wuKl83_Bx_r_YuSnxRJZJqpw_Tm2-mtVFjLf5CHhQUGoSUuhKu4sAcOj0HQUOPbHfzZVpLvzV_9LJHXjVzuNJL_-LzfurlcnZucDRSqP9UnI_nBmEaAvWn_-7wBbk3PDk6NIej44Nn5D6Lt23S7bdtsj67mYcdhEszeJ50lJKvd20UvwHaFys3 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELaqVEJcEKggAgV8KByQVvF6_doDQm23UUMhqhBFlTgYvxaqkqS0iRB_rb-u411vSCQEp153LXt3PDP-xh5_g9BOXovC5MRnLGcuY4bLzNIyz4QtglV5TYmKl5M_jMXhCXt3yk830HV3FyamVXY-sXHUfubiHvkgAmPGY_w9qFNaxHE1fHvxM4sVpOJJa1dOo1WRo_D7F4RvV29GFcz1S0qHB5_2D7NUYSBzjJF5FvmnGPeeCllQY70sDXhvUThZS0eFV5TVsgzEmtp6J6QnqoafoM4V0AGNFSPA_W9KiIpID23uHYyPPy53eCioOgQ77aXAoijJYGLOAywZkfNlbRlsqgWsQ9xV2tJmqRveR_cSRsW7rVI9QBthuoW-xGy9dNWqedVST-DRCqcnBgSMm2MBXKXaPTiWDQWIj1tqdHw2xQA5cTofwtVsAn0-RCe3IrdHqDedTcNjhIO1xDOubGEBzFlprII-jM8DD9R42kevO0Fpl2jLY_WMHxrClyhVvSLVPtpZNr5o2Tr-3mwvSnzZJFJsNw9ml990slhtDPwCCcLmyjLOVclcWVjqwAU6G5Tto-1uvnSy-yv9R0v76FU7h2ujVGefd5tRzuffNXwNZ-I_DReThQbQBrD9yb8HfIHugEHo96Px0VN0l8bUmyYVbhv15peL8Ayw09w-T0qK0dfbtosbc6wwyQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Explainable+Artificial+Intelligence+for+Human+Decision+Support+System+in+the+Medical+Domain&rft.jtitle=Machine+learning+and+knowledge+extraction&rft.au=Knapic%2C+Samanta&rft.au=Malhi%2C+Avleen&rft.au=Saluja%2C+Rohit&rft.au=Framling%2C+Kary&rft.date=2021-09-01&rft.issn=2504-4990&rft.eissn=2504-4990&rft.volume=3&rft.issue=3&rft.spage=740&rft_id=info:doi/10.3390%2Fmake3030037&rft.externalDocID=oai_DiVA_org_kth_303546 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2504-4990&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2504-4990&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2504-4990&client=summon |