Explainable Artificial Intelligence for Human Decision Support System in the Medical Domain

In this paper, we present the potential of Explainable Artificial Intelligence methods for decision support in medical image analysis scenarios. Using three types of explainable methods applied to the same medical image data set, we aimed to improve the comprehensibility of the decisions provided by...

Full description

Saved in:
Bibliographic Details
Published inMachine learning and knowledge extraction Vol. 3; no. 3; pp. 740 - 770
Main Authors Knapič, Samanta, Malhi, Avleen, Saluja, Rohit, Främling, Kary
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.09.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper, we present the potential of Explainable Artificial Intelligence methods for decision support in medical image analysis scenarios. Using three types of explainable methods applied to the same medical image data set, we aimed to improve the comprehensibility of the decisions provided by the Convolutional Neural Network (CNN). In vivo gastral images obtained by a video capsule endoscopy (VCE) were the subject of visual explanations, with the goal of increasing health professionals’ trust in black-box predictions. We implemented two post hoc interpretable machine learning methods, called Local Interpretable Model-Agnostic Explanations (LIME) and SHapley Additive exPlanations (SHAP), and an alternative explanation approach, the Contextual Importance and Utility (CIU) method. The produced explanations were assessed by human evaluation. We conducted three user studies based on explanations provided by LIME, SHAP and CIU. Users from different non-medical backgrounds carried out a series of tests in a web-based survey setting and stated their experience and understanding of the given explanations. Three user groups (n = 20, 20, 20) with three distinct forms of explanations were quantitatively analyzed. We found that, as hypothesized, the CIU-explainable method performed better than both LIME and SHAP methods in terms of improving support for human decision-making and being more transparent and thus understandable to users. Additionally, CIU outperformed LIME and SHAP by generating explanations more rapidly. Our findings suggest that there are notable differences in human decision-making between various explanation support settings. In line with that, we present three potential explainable methods that, with future improvements in implementation, can be generalized to different medical data sets and can provide effective decision support to medical experts.
AbstractList In this paper, we present the potential of Explainable Artificial Intelligence methods for decision support in medical image analysis scenarios. Using three types of explainable methods applied to the same medical image data set, we aimed to improve the comprehensibility of the decisions provided by the Convolutional Neural Network (CNN). In vivo gastral images obtained by a video capsule endoscopy (VCE) were the subject of visual explanations, with the goal of increasing health professionals’ trust in black-box predictions. We implemented two post hoc interpretable machine learning methods, called Local Interpretable Model-Agnostic Explanations (LIME) and SHapley Additive exPlanations (SHAP), and an alternative explanation approach, the Contextual Importance and Utility (CIU) method. The produced explanations were assessed by human evaluation. We conducted three user studies based on explanations provided by LIME, SHAP and CIU. Users from different non-medical backgrounds carried out a series of tests in a web-based survey setting and stated their experience and understanding of the given explanations. Three user groups (n = 20, 20, 20) with three distinct forms of explanations were quantitatively analyzed. We found that, as hypothesized, the CIU-explainable method performed better than both LIME and SHAP methods in terms of improving support for human decision-making and being more transparent and thus understandable to users. Additionally, CIU outperformed LIME and SHAP by generating explanations more rapidly. Our findings suggest that there are notable differences in human decision-making between various explanation support settings. In line with that, we present three potential explainable methods that, with future improvements in implementation, can be generalized to different medical data sets and can provide effective decision support to medical experts.
Author Knapič, Samanta
Främling, Kary
Malhi, Avleen
Saluja, Rohit
Author_xml – sequence: 1
  givenname: Samanta
  orcidid: 0000-0001-5926-6151
  surname: Knapič
  fullname: Knapič, Samanta
– sequence: 2
  givenname: Avleen
  surname: Malhi
  fullname: Malhi, Avleen
– sequence: 3
  givenname: Rohit
  surname: Saluja
  fullname: Saluja, Rohit
– sequence: 4
  givenname: Kary
  surname: Främling
  fullname: Främling, Kary
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-303546$$DView record from Swedish Publication Index
https://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-190507$$DView record from Swedish Publication Index
BookMark eNqNkc1u1DAURiNUJErpihewxBIFbvwTx8tRp6UjFbEosGFh2c5N62kSB9sR9O0xHZAKYsHKlnW-I9_7Pa-O5jBjVb1s4A1jCt5O5g4ZMAAmn1THVACvuVJw9Oj-rDpNaQ8AVCreAD-uvpx_X0bjZ2NHJJuY_eCdNyPZzRnH0d_g7JAMIZLLdTIz2aLzyYeZXK_LEmIm1_cp40T8TPItkvfYe1fS2zAV54vq6WDGhKe_zpPq08X5x7PL-urDu93Z5qp2nEOuhZDARd_TVjJqbC-VgVa2zMlBOtr2HeWDVAjWDLZ3reyhGyxD6hwrAirYSbU7ePtg9nqJfjLxXgfj9cNDiDfalMnciNqYogJsbdNZLkSnuFPMUtcx6ix2trjqgyt9w2W1f9i2_vPmwbZOq24UCJD_x9_lW12aEbwt_KsDv8TwdcWU9T6scS7r0VTIlgtQjBWqOVAuhpQiDtr5bHJZfI7Gj7oB_bNy_ajyknn9V-b3X_5F_wCqHa7i
CitedBy_id crossref_primary_10_3390_make6030071
crossref_primary_10_1016_j_knosys_2023_110413
crossref_primary_10_2196_44909
crossref_primary_10_1007_s41870_023_01635_7
crossref_primary_10_3390_info15110725
crossref_primary_10_1016_j_eswa_2023_119638
crossref_primary_10_3390_app14167192
crossref_primary_10_3390_jcdd10050202
crossref_primary_10_1117_1_JEI_32_2_020801
crossref_primary_10_1080_10447318_2024_2381929
crossref_primary_10_1016_j_ajp_2022_103316
crossref_primary_10_1177_03611981221143106
crossref_primary_10_12771_emj_2024_e49
crossref_primary_10_1007_s10586_024_04804_w
crossref_primary_10_3390_diagnostics13101692
crossref_primary_10_3390_jpm12030480
crossref_primary_10_3390_rs14153565
crossref_primary_10_1016_j_engappai_2023_107829
crossref_primary_10_3390_foods11142019
crossref_primary_10_1080_08839514_2021_2008148
crossref_primary_10_1016_j_jbi_2023_104363
crossref_primary_10_3390_electronics13142842
crossref_primary_10_1016_j_engappai_2024_108657
crossref_primary_10_1109_ACCESS_2025_3538280
crossref_primary_10_1016_j_compbiomed_2024_109569
crossref_primary_10_1007_s00521_023_08319_0
crossref_primary_10_1007_s13534_023_00319_2
crossref_primary_10_1016_j_ijmedinf_2024_105441
crossref_primary_10_1007_s11042_023_16305_w
crossref_primary_10_3233_JIFS_235053
crossref_primary_10_1007_s10994_023_06504_9
crossref_primary_10_1016_j_ecoenv_2024_117570
crossref_primary_10_1007_s11831_024_10103_9
crossref_primary_10_1007_s12065_023_00833_3
crossref_primary_10_1109_LGRS_2023_3251652
crossref_primary_10_3390_jpm11111213
crossref_primary_10_3390_healthcare10010155
crossref_primary_10_3390_s22176338
crossref_primary_10_1080_10447318_2024_2323263
crossref_primary_10_3390_axioms12050462
crossref_primary_10_1080_09540091_2024_2325496
crossref_primary_10_1007_s00481_023_00761_x
crossref_primary_10_1016_j_heliyon_2022_e11185
crossref_primary_10_1016_j_imu_2023_101286
crossref_primary_10_3390_biomedinformatics3030048
crossref_primary_10_7717_peerj_cs_1253
crossref_primary_10_3390_math11143145
crossref_primary_10_1016_j_artmed_2024_102780
crossref_primary_10_3390_make5040079
crossref_primary_10_1021_acs_est_3c00653
crossref_primary_10_1038_s41598_025_89934_w
crossref_primary_10_1109_JBHI_2023_3348334
crossref_primary_10_48175_IJARSCT_17257
crossref_primary_10_1111_exsy_13403
crossref_primary_10_32604_cmes_2024_051363
crossref_primary_10_1109_ACCESS_2023_3274851
crossref_primary_10_2139_ssrn_4640316
crossref_primary_10_1016_j_compbiomed_2023_106668
crossref_primary_10_1016_j_aej_2022_03_050
crossref_primary_10_1109_TNSM_2023_3282740
crossref_primary_10_7717_peerj_cs_2051
Cites_doi 10.1145/2939672.2939778
10.1073/pnas.1716999115
10.1002/mp.13264
10.23919/MIPRO.2018.8400040
10.1109/ICCV.2017.74
10.1007/978-3-030-50334-5_4
10.1007/978-3-319-93000-8_63
10.1007/978-3-030-51924-7_8
10.18653/v1/2020.acl-main.491
10.1109/ACCESS.2018.2870052
10.1007/978-3-030-82017-6_4
10.1109/MCG.2018.042731661
10.3390/e23010018
10.1109/ACCESS.2020.2976199
10.1155/2021/6633755
10.1016/j.inffus.2021.05.009
10.1515/9781400881970-018
10.1007/978-3-030-82017-6_3
10.1186/s12911-020-01332-6
10.1109/DICTA47822.2019.8945986
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
COVID
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ADTPV
AFDQA
AOWAS
D8T
D8V
ZZAVC
ADHXS
D93
DOA
DOI 10.3390/make3030037
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
Coronavirus Research Database
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
SwePub
SWEPUB Kungliga Tekniska Högskolan full text
SwePub Articles
SWEPUB Freely available online
SWEPUB Kungliga Tekniska Högskolan
SwePub Articles full text
SWEPUB Umeå universitet full text
SWEPUB Umeå universitet
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Publicly Available Content Database


CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISSN 2504-4990
EndPage 770
ExternalDocumentID oai_doaj_org_article_aaf790e6b18b455894c93b2c832cbe8b
oai_DiVA_org_umu_190507
oai_DiVA_org_kth_303546
10_3390_make3030037
GroupedDBID AADQD
AAFWJ
AAYXX
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BENPR
BGLVJ
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
K7-
MODMG
M~E
OK1
PHGZM
PHGZT
PIMPY
8FE
8FG
ABUWG
AZQEC
COVID
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ADTPV
AFDQA
AOWAS
D8T
D8V
IAO
ICD
ITC
ZZAVC
ADHXS
D93
PUEGO
ID FETCH-LOGICAL-c440t-557045dd26732abd79a06763c7f7c26d824f79e0bafbdc67d08fb3e2cc3c44253
IEDL.DBID DOA
ISSN 2504-4990
IngestDate Wed Aug 27 01:24:48 EDT 2025
Thu Aug 21 06:47:01 EDT 2025
Thu Aug 21 06:56:27 EDT 2025
Fri Jul 25 22:06:45 EDT 2025
Thu Apr 24 23:09:15 EDT 2025
Tue Jul 01 03:11:07 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c440t-557045dd26732abd79a06763c7f7c26d824f79e0bafbdc67d08fb3e2cc3c44253
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5926-6151
OpenAccessLink https://doaj.org/article/aaf790e6b18b455894c93b2c832cbe8b
PQID 2576450933
PQPubID 5046881
PageCount 31
ParticipantIDs doaj_primary_oai_doaj_org_article_aaf790e6b18b455894c93b2c832cbe8b
swepub_primary_oai_DiVA_org_umu_190507
swepub_primary_oai_DiVA_org_kth_303546
proquest_journals_2576450933
crossref_citationtrail_10_3390_make3030037
crossref_primary_10_3390_make3030037
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-09-01
PublicationDateYYYYMMDD 2021-09-01
PublicationDate_xml – month: 09
  year: 2021
  text: 2021-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Machine learning and knowledge extraction
PublicationYear 2021
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Choo (ref_17) 2018; 38
ref_14
ref_36
ref_13
Roscher (ref_30) 2020; 8
ref_35
Vilone (ref_9) 2021; 76
ref_12
ref_34
ref_11
ref_33
ref_10
ref_32
ref_31
Sahiner (ref_23) 2019; 46
ref_39
ref_16
Amann (ref_24) 2020; 20
ref_38
ref_15
ref_37
Ghosal (ref_19) 2018; 115
Zhang (ref_27) 2021; 127
Guidotti (ref_7) 2018; 51
ref_25
Voigt (ref_28) 2017; Volume 10
ref_22
ref_21
ref_20
ref_42
ref_41
ref_40
ref_1
ref_3
ref_2
ref_29
Gunning (ref_18) 2019; 40
ref_26
ref_8
ref_5
ref_4
Adadi (ref_6) 2018; 6
References_xml – volume: 127
  start-page: 1037
  year: 2021
  ident: ref_27
  article-title: ANC: Attention network for COVID-19 explainable diagnosis based on convolutional block attention module
  publication-title: CMES-Comput. Model. Eng. Sci.
– ident: ref_25
  doi: 10.1145/2939672.2939778
– ident: ref_5
– ident: ref_34
– volume: 115
  start-page: 4613
  year: 2018
  ident: ref_19
  article-title: An explainable deep machine vision framework for plant stress phenotyping
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1716999115
– volume: 46
  start-page: e1
  year: 2019
  ident: ref_23
  article-title: Deep learning in medical imaging and radiation therapy
  publication-title: Med. Phys.
  doi: 10.1002/mp.13264
– ident: ref_33
  doi: 10.23919/MIPRO.2018.8400040
– ident: ref_39
  doi: 10.1109/ICCV.2017.74
– ident: ref_11
– ident: ref_1
  doi: 10.1007/978-3-030-50334-5_4
– ident: ref_2
  doi: 10.1007/978-3-319-93000-8_63
– ident: ref_16
– ident: ref_4
  doi: 10.1007/978-3-030-51924-7_8
– ident: ref_14
– ident: ref_35
– ident: ref_20
  doi: 10.18653/v1/2020.acl-main.491
– ident: ref_21
– volume: Volume 10
  start-page: 3152676
  year: 2017
  ident: ref_28
  article-title: The eu general data protection regulation (gdpr)
  publication-title: A Practical Guide
– volume: 6
  start-page: 52138
  year: 2018
  ident: ref_6
  article-title: Peeking inside the black-box: A survey on Explainable Artificial Intelligence (XAI)
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2870052
– ident: ref_42
  doi: 10.1007/978-3-030-82017-6_4
– volume: 38
  start-page: 84
  year: 2018
  ident: ref_17
  article-title: Visual analytics for explainable deep learning
  publication-title: IEEE Comput. Graph. Appl.
  doi: 10.1109/MCG.2018.042731661
– ident: ref_8
– ident: ref_31
– volume: 51
  start-page: 93
  year: 2018
  ident: ref_7
  article-title: A survey of methods for explaining black box models
  publication-title: ACM Comput. Surv. (CSUR)
– ident: ref_29
– ident: ref_32
  doi: 10.3390/e23010018
– ident: ref_12
– volume: 8
  start-page: 42200
  year: 2020
  ident: ref_30
  article-title: Explainable machine learning for scientific insights and discoveries
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2976199
– ident: ref_10
– ident: ref_26
  doi: 10.1155/2021/6633755
– volume: 40
  start-page: 44
  year: 2019
  ident: ref_18
  article-title: DARPA’s explainable artificial intelligence (XAI) program
  publication-title: AI Mag.
– ident: ref_41
– ident: ref_15
– volume: 76
  start-page: 89
  year: 2021
  ident: ref_9
  article-title: Notions of explainability and evaluation approaches for explainable artificial intelligence
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2021.05.009
– ident: ref_13
– ident: ref_37
  doi: 10.1515/9781400881970-018
– ident: ref_38
– ident: ref_36
– ident: ref_40
  doi: 10.1007/978-3-030-82017-6_3
– ident: ref_22
– volume: 20
  start-page: 1
  year: 2020
  ident: ref_24
  article-title: Explainability for artificial intelligence in healthcare: A multidisciplinary perspective
  publication-title: BMC Med. Inform. Decis. Mak.
  doi: 10.1186/s12911-020-01332-6
– ident: ref_3
  doi: 10.1109/DICTA47822.2019.8945986
SSID ssj0002794104
Score 2.479369
Snippet In this paper, we present the potential of Explainable Artificial Intelligence methods for decision support in medical image analysis scenarios. Using three...
SourceID doaj
swepub
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 740
SubjectTerms Algorithms
Artificial intelligence
Artificial neural networks
Automation
computer and systems sciences
data- och systemvetenskap
Datasets
Decision analysis
Decision making
Decision support systems
Deep learning
Explainable artificial intelligence
human decision support
Image analysis
image recognition
In vivo methods and tests
Lime
Machine learning
medical image analyses
Medical imaging
Neural networks
Trust
User groups
Vision systems
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LSyQxEA4-LnsRRcVZH-QgHoTG7rw6fRJ1FBUUWVYRPIRUkt4VnRkfM__fSndmnAHRa3dIuquSyleVyleE7Ba14rbIfSYK4TJhZZkBq4pMAQ-gi5rlOl5OvrpW57fi8l7ep4Dbe0qrHNvExlD7gYsx8oMIjIWM_vfhy2sWq0bF09VUQmOeLKIJ1uh8LR6fXt_8mURZGE43dDjai3kc_fuDnn0KaLYj78rMVtQw9s_CzGnq0Ga7OVsmSwkn0qNWsStkLvRXyUPMmEvXnZpXLf0DvZji1aSIQmkTmqfdVD-HxtKdCLNpS09OH_sUYR9NZzS0O-hhn2vk9uz078l5lqojZE6IfJhF7iwhvWeq5MyCLyuLO4_irqxLx5TXTNRlFXKwNXinSp_rGhXAnOPYAZN8nSz0B_2wQWgAyL2QGjggoILSgsY-rC-CDMx61iH7Y0EZl6jDYwWLZ4MuRJSqmZJqh-xOGr-0jBlfNzuOEp80iTTXzYPB2z-TVo2xFn8hDwoKDUJKXQlXcWAOzZCDoKFDtsb6MmntvZvPmdIhe60OZ0bpPt4dNaM8Df8b_Bop1A8NR72RQeCE0Pn39wNukl8s5rw0OWhbZGH4NgrbCFqGsJNm5geTFu9-
  priority: 102
  providerName: ProQuest
Title Explainable Artificial Intelligence for Human Decision Support System in the Medical Domain
URI https://www.proquest.com/docview/2576450933
https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-303546
https://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-190507
https://doaj.org/article/aaf790e6b18b455894c93b2c832cbe8b
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NTxsxELVauPRSgQCRQiMfIg5IK3b9td4jkIS0UlBVFYTEwfLYXjVAQlWSa387Y--CNhISl172sDuyrRmv5409fkPIoKgVt0XuM1EIlwkrywxYVWQKeABd1CzX8XLy9FJNrsT3G3nTKfUVc8IaeuBGcSfW1mWVBwWFBiGlroSrODCHM9FB0BBXX_R5nWDqLh2nVQIDjeZCHse4_mRu7wMu15FvZc0FJab-dXjZpQxNbma8RT63-JCeNuPaJh_CYofcxky59ppT-tTQPtBvHT5NiuiTpi15Omzr5tBYshPhNW1oyelsQRHu0fZshg4f59jmLrkaj36dT7K2KkLmhMiXWeTMEtJ7pkrOLPiysuhxFHdlXTqmvGYCNRZysDV4p0qf6xoVz5zj2ACTfI9sLB4XYZ_QAJB7ITVwQCAFpQWNbVhfBBmY9axHjl8UZVxLGR4rVzwYDB2iVk1Hqz0yeBX-0zBlvC12FjX-KhLprdMLNLppjW7eM3qPHL7Yy7T_3JOJoZOQcYemR44aG671Mpxdn6Ze7pe_DY5GCvWO4Gq-MgiYEDJ_-R-jPiCfWMyISRlqh2Rj-XcVviKkWUKffNTjiz7ZPBtd_vjZT3MZn9N_o2diPvrO
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELaq9gAX1AoQgRZ8KByQVt31a70HhAohJPRxalElDsZje2nVJiltIsSf4jcy9u6GREJw6nVt2d7xzPgbP74hZLeoFbdF7jNRCJcJK8sMWFVkCngAXdQs1_Fx8tGxGp6KT2fybI386t7CxGuVnU9MjtpPXdwj34vAWMgYf7-9_p7FrFHxdLVLodGoxUH4-QNDtts3oz7O70vGBh9O3g-zNqtA5oTIZ1nknBLSe6ZKziz4srLosRV3ZV06prxmoi6rkIOtwTtV-lzXOHDmHMcGWMwSgS5_Q3BeRYvSg4-LPR2Gyo3hTfMMEMvzvbG9DLhIRJaXlYUv5QdYBbXLRKVpcRtskgctKqX7jRptkbUweUi-xPt57eOqVNSQTdDREosnRcxL00EA7bfZemhMFIqgnjZk6PRiQhFk0vZEiPanY2zzETm9E6k9JuuT6SQ8ITQA5F5IDRwQvkFpQWMb1hdBBmY965HXnaCMa4nKY76MK4MBS5SqWZJqj-wuKl83_Bx_r_YuSnxRJZJqpw_Tm2-mtVFjLf5CHhQUGoSUuhKu4sAcOj0HQUOPbHfzZVpLvzV_9LJHXjVzuNJL_-LzfurlcnZucDRSqP9UnI_nBmEaAvWn_-7wBbk3PDk6NIej44Nn5D6Lt23S7bdtsj67mYcdhEszeJ50lJKvd20UvwHaFys3
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELaqVEJcEKggAgV8KByQVvF6_doDQm23UUMhqhBFlTgYvxaqkqS0iRB_rb-u411vSCQEp153LXt3PDP-xh5_g9BOXovC5MRnLGcuY4bLzNIyz4QtglV5TYmKl5M_jMXhCXt3yk830HV3FyamVXY-sXHUfubiHvkgAmPGY_w9qFNaxHE1fHvxM4sVpOJJa1dOo1WRo_D7F4RvV29GFcz1S0qHB5_2D7NUYSBzjJF5FvmnGPeeCllQY70sDXhvUThZS0eFV5TVsgzEmtp6J6QnqoafoM4V0AGNFSPA_W9KiIpID23uHYyPPy53eCioOgQ77aXAoijJYGLOAywZkfNlbRlsqgWsQ9xV2tJmqRveR_cSRsW7rVI9QBthuoW-xGy9dNWqedVST-DRCqcnBgSMm2MBXKXaPTiWDQWIj1tqdHw2xQA5cTofwtVsAn0-RCe3IrdHqDedTcNjhIO1xDOubGEBzFlprII-jM8DD9R42kevO0Fpl2jLY_WMHxrClyhVvSLVPtpZNr5o2Tr-3mwvSnzZJFJsNw9ml990slhtDPwCCcLmyjLOVclcWVjqwAU6G5Tto-1uvnSy-yv9R0v76FU7h2ujVGefd5tRzuffNXwNZ-I_DReThQbQBrD9yb8HfIHugEHo96Px0VN0l8bUmyYVbhv15peL8Ayw09w-T0qK0dfbtosbc6wwyQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Explainable+Artificial+Intelligence+for+Human+Decision+Support+System+in+the+Medical+Domain&rft.jtitle=Machine+learning+and+knowledge+extraction&rft.au=Knapic%2C+Samanta&rft.au=Malhi%2C+Avleen&rft.au=Saluja%2C+Rohit&rft.au=Framling%2C+Kary&rft.date=2021-09-01&rft.issn=2504-4990&rft.eissn=2504-4990&rft.volume=3&rft.issue=3&rft.spage=740&rft_id=info:doi/10.3390%2Fmake3030037&rft.externalDocID=oai_DiVA_org_kth_303546
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2504-4990&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2504-4990&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2504-4990&client=summon