Evaluating performance of existing computational models in predicting CD8+ T cell pathogenic epitopes and cancer neoantigens

Abstract T cell recognition of a cognate peptide–major histocompatibility complex (pMHC) presented on the surface of infected or malignant cells is of the utmost importance for mediating robust and long-term immune responses. Accurate predictions of cognate pMHC targets for T cell receptors would gr...

Full description

Saved in:
Bibliographic Details
Published inBriefings in bioinformatics Vol. 23; no. 3
Main Authors Buckley, Paul R, Lee, Chloe H, Ma, Ruichong, Woodhouse, Isaac, Woo, Jeongmin, Tsvetkov, Vasily O, Shcherbinin, Dmitrii S, Antanaviciute, Agne, Shughay, Mikhail, Rei, Margarida, Simmons, Alison, Koohy, Hashem
Format Journal Article
LanguageEnglish
Published England Oxford University Press 13.05.2022
Oxford Publishing Limited (England)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Abstract T cell recognition of a cognate peptide–major histocompatibility complex (pMHC) presented on the surface of infected or malignant cells is of the utmost importance for mediating robust and long-term immune responses. Accurate predictions of cognate pMHC targets for T cell receptors would greatly facilitate identification of vaccine targets for both pathogenic diseases and personalized cancer immunotherapies. Predicting immunogenic peptides therefore has been at the center of intensive research for the past decades but has proven challenging. Although numerous models have been proposed, performance of these models has not been systematically evaluated and their success rate in predicting epitopes in the context of human pathology has not been measured and compared. In this study, we evaluated the performance of several publicly available models, in identifying immunogenic CD8+ T cell targets in the context of pathogens and cancers. We found that for predicting immunogenic peptides from an emerging virus such as severe acute respiratory syndrome coronavirus 2, none of the models perform substantially better than random or offer considerable improvement beyond HLA ligand prediction. We also observed suboptimal performance for predicting cancer neoantigens. Through investigation of potential factors associated with ill performance of models, we highlight several data- and model-associated issues. In particular, we observed that cross-HLA variation in the distribution of immunogenic and non-immunogenic peptides in the training data of the models seems to substantially confound the predictions. We additionally compared key parameters associated with immunogenicity between pathogenic peptides and cancer neoantigens and observed evidence for differences in the thresholds of binding affinity and stability, which suggested the need to modulate different features in identifying immunogenic pathogen versus cancer peptides. Overall, we demonstrate that accurate and reliable predictions of immunogenic CD8+ T cell targets remain unsolved; thus, we hope our work will guide users and model developers regarding potential pitfalls and unsettled questions in existing immunogenicity predictors.
AbstractList T cell recognition of a cognate peptide-major histocompatibility complex (pMHC) presented on the surface of infected or malignant cells is of the utmost importance for mediating robust and long-term immune responses. Accurate predictions of cognate pMHC targets for T cell receptors would greatly facilitate identification of vaccine targets for both pathogenic diseases and personalized cancer immunotherapies. Predicting immunogenic peptides therefore has been at the center of intensive research for the past decades but has proven challenging. Although numerous models have been proposed, performance of these models has not been systematically evaluated and their success rate in predicting epitopes in the context of human pathology has not been measured and compared. In this study, we evaluated the performance of several publicly available models, in identifying immunogenic CD8+ T cell targets in the context of pathogens and cancers. We found that for predicting immunogenic peptides from an emerging virus such as severe acute respiratory syndrome coronavirus 2, none of the models perform substantially better than random or offer considerable improvement beyond HLA ligand prediction. We also observed suboptimal performance for predicting cancer neoantigens. Through investigation of potential factors associated with ill performance of models, we highlight several data- and model-associated issues. In particular, we observed that cross-HLA variation in the distribution of immunogenic and non-immunogenic peptides in the training data of the models seems to substantially confound the predictions. We additionally compared key parameters associated with immunogenicity between pathogenic peptides and cancer neoantigens and observed evidence for differences in the thresholds of binding affinity and stability, which suggested the need to modulate different features in identifying immunogenic pathogen versus cancer peptides. Overall, we demonstrate that accurate and reliable predictions of immunogenic CD8+ T cell targets remain unsolved; thus, we hope our work will guide users and model developers regarding potential pitfalls and unsettled questions in existing immunogenicity predictors.
Abstract T cell recognition of a cognate peptide–major histocompatibility complex (pMHC) presented on the surface of infected or malignant cells is of the utmost importance for mediating robust and long-term immune responses. Accurate predictions of cognate pMHC targets for T cell receptors would greatly facilitate identification of vaccine targets for both pathogenic diseases and personalized cancer immunotherapies. Predicting immunogenic peptides therefore has been at the center of intensive research for the past decades but has proven challenging. Although numerous models have been proposed, performance of these models has not been systematically evaluated and their success rate in predicting epitopes in the context of human pathology has not been measured and compared. In this study, we evaluated the performance of several publicly available models, in identifying immunogenic CD8+ T cell targets in the context of pathogens and cancers. We found that for predicting immunogenic peptides from an emerging virus such as severe acute respiratory syndrome coronavirus 2, none of the models perform substantially better than random or offer considerable improvement beyond HLA ligand prediction. We also observed suboptimal performance for predicting cancer neoantigens. Through investigation of potential factors associated with ill performance of models, we highlight several data- and model-associated issues. In particular, we observed that cross-HLA variation in the distribution of immunogenic and non-immunogenic peptides in the training data of the models seems to substantially confound the predictions. We additionally compared key parameters associated with immunogenicity between pathogenic peptides and cancer neoantigens and observed evidence for differences in the thresholds of binding affinity and stability, which suggested the need to modulate different features in identifying immunogenic pathogen versus cancer peptides. Overall, we demonstrate that accurate and reliable predictions of immunogenic CD8+ T cell targets remain unsolved; thus, we hope our work will guide users and model developers regarding potential pitfalls and unsettled questions in existing immunogenicity predictors.
Author Koohy, Hashem
Rei, Margarida
Simmons, Alison
Woodhouse, Isaac
Buckley, Paul R
Shughay, Mikhail
Woo, Jeongmin
Tsvetkov, Vasily O
Ma, Ruichong
Lee, Chloe H
Shcherbinin, Dmitrii S
Antanaviciute, Agne
AuthorAffiliation 10 Alan Turning Fellow, University of Oxford , Oxford, United Kingdom
8 Institute of Translational Medicine, Pirogov Russian National Research Medical University , Moscow, 117997, Russia
5 Centre for Immuno-Oncology, Nuffield Department of Medicine, University of Oxford , Oxford, United Kingdom
9 The Ludwig Institute for Cancer Research, Old Road Campus Research Building, University of Oxford , Oxford, United Kingdom
2 MRC WIMM Centre for Computational Biology, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford , Oxford, United Kingdom
7 Department of Genomics of Adaptive Immunity, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry , Moscow, 117997, Russia
3 Department of Neurosurgery, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, University of Oxford , Oxford, United Kingdom
6 Chief Scientific Officer, ImmunoMind Inc , Berkeley, CA, USA
1 MRC Human Immunology Unit, Medical Research Council
AuthorAffiliation_xml – name: 6 Chief Scientific Officer, ImmunoMind Inc , Berkeley, CA, USA
– name: 5 Centre for Immuno-Oncology, Nuffield Department of Medicine, University of Oxford , Oxford, United Kingdom
– name: 1 MRC Human Immunology Unit, Medical Research Council (MRC) Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine (WIMM), John Radcliffe Hospital, University of Oxford , Oxford, United Kingdom
– name: 8 Institute of Translational Medicine, Pirogov Russian National Research Medical University , Moscow, 117997, Russia
– name: 3 Department of Neurosurgery, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, University of Oxford , Oxford, United Kingdom
– name: 9 The Ludwig Institute for Cancer Research, Old Road Campus Research Building, University of Oxford , Oxford, United Kingdom
– name: 10 Alan Turning Fellow, University of Oxford , Oxford, United Kingdom
– name: 2 MRC WIMM Centre for Computational Biology, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford , Oxford, United Kingdom
– name: 4 Nuffield Department of Surgical Sciences, University of Oxford , Oxford, United Kingdom
– name: 7 Department of Genomics of Adaptive Immunity, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry , Moscow, 117997, Russia
Author_xml – sequence: 1
  givenname: Paul R
  surname: Buckley
  fullname: Buckley, Paul R
  email: paul.buckley@rdm.ox.ac.uk
  organization: MRC Human Immunology Unit, Medical Research Council (MRC) Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine (WIMM), John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
– sequence: 2
  givenname: Chloe H
  surname: Lee
  fullname: Lee, Chloe H
  email: chloehyun-jung.lee@rdm.ox.ac.uk
  organization: MRC Human Immunology Unit, Medical Research Council (MRC) Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine (WIMM), John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
– sequence: 3
  givenname: Ruichong
  surname: Ma
  fullname: Ma, Ruichong
  email: rui.ma@nds.ox.ac.uk
  organization: MRC Human Immunology Unit, Medical Research Council (MRC) Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine (WIMM), John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
– sequence: 4
  givenname: Isaac
  surname: Woodhouse
  fullname: Woodhouse, Isaac
  email: isaac.woodhouse@ndm.ox.ac.uk
  organization: Centre for Immuno-Oncology, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
– sequence: 5
  givenname: Jeongmin
  surname: Woo
  fullname: Woo, Jeongmin
  email: jeongmin.woo@rdm.ox.ac.uk
  organization: MRC Human Immunology Unit, Medical Research Council (MRC) Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine (WIMM), John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
– sequence: 6
  givenname: Vasily O
  surname: Tsvetkov
  fullname: Tsvetkov, Vasily O
  email: seaneuron@gmail.com
  organization: Chief Scientific Officer, ImmunoMind Inc, Berkeley, CA, USA
– sequence: 7
  givenname: Dmitrii S
  surname: Shcherbinin
  fullname: Shcherbinin, Dmitrii S
  email: amid.dima@gmail.com
  organization: Department of Genomics of Adaptive Immunity, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997, Russia
– sequence: 8
  givenname: Agne
  surname: Antanaviciute
  fullname: Antanaviciute, Agne
  email: agne.antanaviciute@ndm.ox.ac.uk
  organization: MRC Human Immunology Unit, Medical Research Council (MRC) Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine (WIMM), John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
– sequence: 9
  givenname: Mikhail
  surname: Shughay
  fullname: Shughay, Mikhail
  email: Mikail.shugay@gmail.com
  organization: Department of Genomics of Adaptive Immunity, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997, Russia
– sequence: 10
  givenname: Margarida
  surname: Rei
  fullname: Rei, Margarida
  email: margarida.rei@ludwig.ox.ac.uk
  organization: The Ludwig Institute for Cancer Research, Old Road Campus Research Building, University of Oxford, Oxford, United Kingdom
– sequence: 11
  givenname: Alison
  surname: Simmons
  fullname: Simmons, Alison
  email: Alison.simmons@ndm.ox.ac.uk
  organization: MRC Human Immunology Unit, Medical Research Council (MRC) Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine (WIMM), John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
– sequence: 12
  givenname: Hashem
  orcidid: 0000-0002-3640-7043
  surname: Koohy
  fullname: Koohy, Hashem
  email: hashem.koohy@rdm.ox.ac.uk
  organization: MRC Human Immunology Unit, Medical Research Council (MRC) Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine (WIMM), John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35471658$$D View this record in MEDLINE/PubMed
BookMark eNp90UtrFTEYBuAgFXvRlXsJCCKUaSeZXGY2ghyrFQrd1HXI5ZvTlJlkTGaKgj_eTM-xWBeuEpKHl-9yjA5CDIDQa1Kfkbprzo0358ZoSxh5ho4Ik7JiNWcH613IijPRHKLjnO_qmtayJS_QYcOZJIK3R-jXxb0eFj37sMUTpD6mUQcLOPYYfvj88G7jOC1zMTHoAY_RwZCxD3hK4Lx9IJtP7Sm-wRaGAU96vo1bCN5imPwcJ8hYB4ftGpxwgKjD7AvIL9HzXg8ZXu3PE_Tt88XN5rK6uv7ydfPxqrKM1XPFjJNGdkB5SwhlTrieG-kc9MIZMLbRbQ-8FoI2Pe0oaygFIWVrBBdNw2xzgj7scqfFjOAshDnpQU3Jjzr9VFF79fQn-Fu1jfeqI0RQIkvA-31Ait8XyLMafV6b1aWbJSsqOOeClkkX-vYfeheXVAa3KskZk4J0RZ3ulE0x5wT9YzGkVutWVdmq2m-16Dd_1_9o_6yxgHc7EJfpv0m_AcCjr7U
CitedBy_id crossref_primary_10_1038_s41746_024_01043_6
crossref_primary_10_1093_bib_bbad171
crossref_primary_10_1186_s12929_022_00866_3
crossref_primary_10_1038_s41541_023_00795_8
crossref_primary_10_1038_s41577_023_00835_3
crossref_primary_10_1016_j_immuni_2023_09_002
crossref_primary_10_1016_j_immuno_2023_100030
crossref_primary_10_1016_j_smim_2023_101725
crossref_primary_10_1016_j_smim_2022_101708
crossref_primary_10_1016_j_semcancer_2023_02_007
crossref_primary_10_1186_s13073_023_01225_z
crossref_primary_10_1136_jitc_2023_007073
crossref_primary_10_1093_bib_bbad116
crossref_primary_10_7554_eLife_85126
crossref_primary_10_3389_fimmu_2023_1094236
crossref_primary_10_1093_immadv_ltad005
crossref_primary_10_3389_fimmu_2024_1394003
crossref_primary_10_1038_s41586_023_06834_7
Cites_doi 10.1038/s41577-020-0391-5
10.1038/s41596-019-0170-6
10.1371/journal.pone.0118432
10.4049/jimmunol.1600582
10.1152/advan.00066.2013
10.1038/s41592-020-0867-z
10.3389/fimmu.2019.00827
10.1016/j.immuni.2011.07.010
10.3389/fimmu.2020.565096
10.1007/s00251-014-0779-0
10.1371/journal.pcbi.1007757
10.1016/j.cell.2020.09.015
10.4049/jimmunol.1302101
10.1073/pnas.2100542118
10.1002/ijc.29118
10.1371/journal.pcbi.1003266
10.3389/fimmu.2019.02559
10.1007/s00262-017-2001-3
10.1038/nature24473
10.1016/j.cels.2019.08.009
10.1093/nar/gkaa379
10.1371/journal.pcbi.1005725
10.1038/s41589-020-0610-1
10.1038/nature14001
10.1084/jem.20190179
10.1038/nprot.2006.121
10.3389/fimmu.2019.02047
10.4049/jimmunol.1600808
10.1186/s13073-018-0577-7
10.3389/fimmu.2020.00027
10.1093/nar/gkz452
10.3389/fimmu.2020.579480
10.3389/fimmu.2017.01566
10.1093/nar/gkr859
10.1073/pnas.1815239116
ContentType Journal Article
Copyright The Author(s) 2022. Published by Oxford University Press. 2022
The Author(s) 2022. Published by Oxford University Press.
Copyright_xml – notice: The Author(s) 2022. Published by Oxford University Press. 2022
– notice: The Author(s) 2022. Published by Oxford University Press.
DBID TOX
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QO
7SC
8FD
FR3
JQ2
K9.
L7M
L~C
L~D
P64
RC3
7X8
5PM
DOI 10.1093/bib/bbac141
DatabaseName Oxford Journals Open Access Collection
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Advanced Technologies Database with Aerospace
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList MEDLINE

CrossRef
Genetics Abstracts

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: TOX
  name: Open Access: Oxford University Press Open Journals
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1477-4054
ExternalDocumentID 10_1093_bib_bbac141
35471658
10.1093/bib/bbac141
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Medical Research Council
  grantid: MC_UU_12010/7
– fundername: Medical Research Council
  grantid: MR/S036377/1
– fundername: Medical Research Council
  grantid: MC_PC_MR/S025952/1
– fundername: Medical Research Council
  grantid: MC_UU_00008/7
– fundername: Medical Research Council
  grantid: MC_UU_12010/3
– fundername: ;
  grantid: MC_UU_12010/3
– fundername: ;
  grantid: 075-15-2020-807
GroupedDBID ---
-E4
.2P
.I3
0R~
1TH
23N
2WC
36B
4.4
48X
53G
5GY
5VS
6J9
70D
8VB
AAHBH
AAIJN
AAIMJ
AAJKP
AAJQQ
AAMDB
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AASNB
AAUQX
AAVAP
AAVLN
ABDBF
ABEUO
ABIXL
ABJNI
ABNKS
ABPTD
ABQLI
ABQTQ
ABWST
ABXVV
ABZBJ
ACGFO
ACGFS
ACGOD
ACIWK
ACPRK
ACUFI
ACYTK
ADBBV
ADEYI
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADOCK
ADPDF
ADQBN
ADRDM
ADRIX
ADRTK
ADVEK
ADYVW
ADZTZ
ADZXQ
AECKG
AEGPL
AEGXH
AEJOX
AEKKA
AEKSI
AELWJ
AEMDU
AEMOZ
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AFXEN
AGINJ
AGKEF
AGQXC
AGSYK
AHMBA
AHXPO
AIAGR
AIJHB
AJEEA
AJEUX
AKHUL
AKVCP
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
APIBT
APWMN
ARIXL
AXUDD
AYOIW
AZVOD
BAWUL
BAYMD
BCRHZ
BEYMZ
BHONS
BQDIO
BQUQU
BSWAC
BTQHN
C1A
C45
CAG
CDBKE
COF
CS3
CZ4
DAKXR
DIK
DILTD
DU5
D~K
E3Z
EAD
EAP
EAS
EBA
EBC
EBD
EBR
EBS
EBU
EE~
EJD
EMB
EMK
EMOBN
EST
ESX
F5P
F9B
FHSFR
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GX1
H13
H5~
HAR
HW0
HZ~
IOX
J21
K1G
KBUDW
KOP
KSI
KSN
M-Z
M49
MK~
ML0
N9A
NGC
NLBLG
NMDNZ
NOMLY
NU-
O0~
O9-
OAWHX
ODMLO
OJQWA
OK1
OVD
OVEED
P2P
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
QWB
RD5
ROX
RPM
RUSNO
RW1
RXO
SV3
TEORI
TH9
TJP
TLC
TOX
TR2
TUS
W8F
WOQ
X7H
YAYTL
YKOAZ
YXANX
ZKX
ZL0
~91
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QO
7SC
8FD
FR3
JQ2
K9.
L7M
L~C
L~D
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c440t-4bd7b79e2581124d6df5b7ddef6dbebc3a8fe506623f2924322e6778b656334c3
IEDL.DBID RPM
ISSN 1467-5463
IngestDate Tue Sep 17 21:26:17 EDT 2024
Tue Aug 27 04:57:07 EDT 2024
Thu Oct 10 19:24:44 EDT 2024
Fri Aug 23 00:54:33 EDT 2024
Wed Oct 16 00:40:11 EDT 2024
Wed Aug 28 03:19:23 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords cancer neoantigen
peptide immunogenicity
CD8 T-cell target
peptide presentation
immunotherapy
T-cell response
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
The Author(s) 2022. Published by Oxford University Press.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c440t-4bd7b79e2581124d6df5b7ddef6dbebc3a8fe506623f2924322e6778b656334c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Paul R. Buckley, Chloe H. Lee and Ruichong Ma authors contributed equally to this work.
ORCID 0000-0002-3640-7043
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9116217/
PMID 35471658
PQID 2675447619
PQPubID 26846
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9116217
proquest_miscellaneous_2655562463
proquest_journals_2675447619
crossref_primary_10_1093_bib_bbac141
pubmed_primary_35471658
oup_primary_10_1093_bib_bbac141
PublicationCentury 2000
PublicationDate 2022-05-13
PublicationDateYYYYMMDD 2022-05-13
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-05-13
  day: 13
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle Briefings in bioinformatics
PublicationTitleAlternate Brief Bioinform
PublicationYear 2022
Publisher Oxford University Press
Oxford Publishing Limited (England)
Publisher_xml – name: Oxford University Press
– name: Oxford Publishing Limited (England)
References Bassani-Sternberg (2022051813181822600_ref7) 2017; 13
Joglekar (2022051813181822600_ref10) 2021; 18
Luksza (2022051813181822600_ref16) 2017; 551
Wu (2022051813181822600_ref34) 2019; 10
Ali (2022051813181822600_ref39) 2019; 14
Pogorelyy (2022051813181822600_ref12) 2018; 10
Reynisson (2022051813181822600_ref6) 2020; 48
Devlin (2022051813181822600_ref23) 2020; 16
Croft (2022051813181822600_ref24) 2019; 116
Paul (2022051813181822600_ref36) 2013; 191
Schmidt (2022051813181822600_ref19) 2021; 2
Riley (2022051813181822600_ref18) 2019; 10
Karnaukhov (2022051813181822600_ref5) 2021
Bjerregaard (2022051813181822600_ref17) 2017; 8
Pickett (2022051813181822600_ref30) 2012; 40
Capietto (2022051813181822600_ref20) 2020
Zhang (2022051813181822600_ref1) 2011; 35
Li (2022051813181822600_ref15) 2021; 00
Bassani-Sternberg (2022051813181822600_ref4) 2016; 197
Lee (2022051813181822600_ref8) 2020; 11
Gao (2022051813181822600_ref26) 2020
Wells (2022051813181822600_ref3) 2020; 183
Paludan (2022051813181822600_ref9) 2020; 21
Saito (2022051813181822600_ref33) 2015; 10
Pennock (2022051813181822600_ref2) 2013; 37
Rodenko (2022051813181822600_ref40) 2006; 1
Bjerregaard (2022051813181822600_ref37) 2017; 66
Richman (2022051813181822600_ref22) 2019; 9
Paul (2022051813181822600_ref25) 2020; 16
Lee (2022051813181822600_ref28) 2020; 11
Buckley (2022051813181822600_ref27) 2022; 0
Roudko (2022051813181822600_ref31) 2020; 11
Ogishi (2022051813181822600_ref11) 2019; 10
Trolle (2022051813181822600_ref13) 2014; 66
Chen (2022051813181822600_ref38) 2015; 136
Rasmussen (2022051813181822600_ref41) 2016; 197
Lee (2022051813181822600_ref21) 2021; 3–4
Koncz (2022051813181822600_ref35) 2021; 118
Dhanda (2022051813181822600_ref29) 2019; 47
Yadav (2022051813181822600_ref32) 2014; 515
Calis (2022051813181822600_ref14) 2013; 9
References_xml – volume: 21
  start-page: 137
  year: 2020
  ident: 2022051813181822600_ref9
  article-title: Constitutive immune mechanisms: mediators of host defence and immune regulation
  publication-title: Nat Rev Immunol
  doi: 10.1038/s41577-020-0391-5
  contributor:
    fullname: Paludan
– volume: 14
  start-page: 1926
  year: 2019
  ident: 2022051813181822600_ref39
  article-title: Induction of neoantigen-reactive T cells from healthy donors
  publication-title: Nat Protoc
  doi: 10.1038/s41596-019-0170-6
  contributor:
    fullname: Ali
– volume: 10
  year: 2015
  ident: 2022051813181822600_ref33
  article-title: The precision-recall plot is more informative than the ROC plot when evaluating binary classifiers on imbalanced datasets
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0118432
  contributor:
    fullname: Saito
– volume: 197
  start-page: 1517
  year: 2016
  ident: 2022051813181822600_ref41
  article-title: Pan-specific prediction of peptide–MHC class I complex stability, a correlate of T cell immunogenicity
  publication-title: J Immunol
  doi: 10.4049/jimmunol.1600582
  contributor:
    fullname: Rasmussen
– volume: 37
  start-page: 273
  year: 2013
  ident: 2022051813181822600_ref2
  article-title: T cell responses: naive to memory and everything in between
  publication-title: Adv Physiol Educ
  doi: 10.1152/advan.00066.2013
  contributor:
    fullname: Pennock
– volume: 18
  start-page: 873
  year: 2021
  ident: 2022051813181822600_ref10
  article-title: T cell antigen discovery
  publication-title: Nat Methods
  doi: 10.1038/s41592-020-0867-z
  contributor:
    fullname: Joglekar
– volume: 10
  year: 2019
  ident: 2022051813181822600_ref11
  article-title: Quantitative prediction of the landscape of T cell epitope immunogenicity in sequence space
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2019.00827
  contributor:
    fullname: Ogishi
– volume: 0
  year: 2022
  ident: 2022051813181822600_ref27
  article-title: HLA-dependent variation in SARS-CoV-2 CD8+ T cell cross-reactivity with human coronaviruses
  publication-title: Immunology
  contributor:
    fullname: Buckley
– volume: 35
  start-page: 161
  year: 2011
  ident: 2022051813181822600_ref1
  article-title: CD8+ T cells: foot soldiers of the immune system
  publication-title: Immunity
  doi: 10.1016/j.immuni.2011.07.010
  contributor:
    fullname: Zhang
– volume: 11
  year: 2020
  ident: 2022051813181822600_ref8
  article-title: Predicting cross-reactivity and antigen specificity of T cell receptors
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2020.565096
  contributor:
    fullname: Lee
– volume: 66
  start-page: 449
  year: 2014
  ident: 2022051813181822600_ref13
  article-title: NetTepi: an integrated method for the prediction of T cell epitopes
  publication-title: Immunogenetics
  doi: 10.1007/s00251-014-0779-0
  contributor:
    fullname: Trolle
– volume: 3–4
  year: 2021
  ident: 2022051813181822600_ref21
  article-title: To what extent does MHC binding translate to immunogenicity in humans?
  publication-title: ImmunoInformatics
  contributor:
    fullname: Lee
– volume: 16
  year: 2020
  ident: 2022051813181822600_ref25
  article-title: Benchmarking predictions of MHC class I restricted T cell epitopes in a comprehensively studied model system
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1007757
  contributor:
    fullname: Paul
– volume: 183
  year: 2020
  ident: 2022051813181822600_ref3
  article-title: Key parameters of tumor epitope immunogenicity revealed through a consortium approach improve Neoantigen prediction
  publication-title: Cell
  doi: 10.1016/j.cell.2020.09.015
  contributor:
    fullname: Wells
– year: 2021
  ident: 2022051813181822600_ref5
  article-title: HLA binding of self-peptides is biased towards proteins with specific molecular functions
  publication-title: bioRxiv
  contributor:
    fullname: Karnaukhov
– volume: 191
  start-page: 5831
  year: 2013
  ident: 2022051813181822600_ref36
  article-title: HLA class I alleles are associated with peptide-binding repertoires of different size, affinity, and immunogenicity
  publication-title: J Immunol
  doi: 10.4049/jimmunol.1302101
  contributor:
    fullname: Paul
– volume: 00
  start-page: 1
  year: 2021
  ident: 2022051813181822600_ref15
  article-title: DeepImmuno: deep learning-empowered prediction and generation of immunogenic peptides for T-cell immunity
  publication-title: Brief Bioinform
  contributor:
    fullname: Li
– volume: 118
  year: 2021
  ident: 2022051813181822600_ref35
  article-title: Self-mediated positive selection of T cells sets an obstacle to the recognition of nonself
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.2100542118
  contributor:
    fullname: Koncz
– year: 2020
  ident: 2022051813181822600_ref26
  article-title: Predicting the immunogenicity of T cell epitopes: from HIV to SARS-CoV-2
  publication-title: bioRxiv
  contributor:
    fullname: Gao
– volume: 136
  start-page: E590
  year: 2015
  ident: 2022051813181822600_ref38
  article-title: NY-ESO-1 specific antibody and cellular responses in melanoma patients primed with NY-ESO-1 protein in ISCOMATRIX and boosted with recombinant NY-ESO-1 fowlpox virus
  publication-title: Int J Cancer
  doi: 10.1002/ijc.29118
  contributor:
    fullname: Chen
– volume: 9
  year: 2013
  ident: 2022051813181822600_ref14
  article-title: Properties of MHC class I presented peptides that enhance immunogenicity
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1003266
  contributor:
    fullname: Calis
– volume: 10
  start-page: 2559
  year: 2019
  ident: 2022051813181822600_ref34
  article-title: DeepHLApan: a deep learning approach for Neoantigen prediction considering both HLA-peptide binding and immunogenicity
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2019.02559
  contributor:
    fullname: Wu
– volume: 66
  start-page: 1123
  year: 2017
  ident: 2022051813181822600_ref37
  article-title: MuPeXI: prediction of neo-epitopes from tumor sequencing data
  publication-title: Cancer Immunol Immunother
  doi: 10.1007/s00262-017-2001-3
  contributor:
    fullname: Bjerregaard
– volume: 551
  start-page: 517
  year: 2017
  ident: 2022051813181822600_ref16
  article-title: A neoantigen fitness model predicts tumour response to checkpoint blockade immunotherapy
  publication-title: Nature
  doi: 10.1038/nature24473
  contributor:
    fullname: Luksza
– volume: 9
  start-page: 375
  year: 2019
  ident: 2022051813181822600_ref22
  article-title: Neoantigen dissimilarity to the self-proteome predicts immunogenicity and response to immune checkpoint blockade in brief
  publication-title: Cell Systems
  doi: 10.1016/j.cels.2019.08.009
  contributor:
    fullname: Richman
– volume: 48
  start-page: W449
  year: 2020
  ident: 2022051813181822600_ref6
  article-title: NetMHCpan-4.1 and NetMHCIIpan-4.0: improved predictions of MHC antigen presentation by concurrent motif deconvolution and integration of MS MHC eluted ligand data
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkaa379
  contributor:
    fullname: Reynisson
– volume: 13
  year: 2017
  ident: 2022051813181822600_ref7
  article-title: Deciphering HLA-I motifs across HLA peptidomes improves neo-antigen predictions and identifies allostery regulating HLA specificity
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1005725
  contributor:
    fullname: Bassani-Sternberg
– volume: 16
  start-page: 1269
  year: 2020
  ident: 2022051813181822600_ref23
  article-title: Structural dissimilarity from self drives neoepitope escape from immune tolerance
  publication-title: Nat Chem Biol
  doi: 10.1038/s41589-020-0610-1
  contributor:
    fullname: Devlin
– volume: 515
  start-page: 572
  year: 2014
  ident: 2022051813181822600_ref32
  article-title: Predicting immunogenic tumour mutations by combining mass spectrometry and exome sequencing
  publication-title: Nature
  doi: 10.1038/nature14001
  contributor:
    fullname: Yadav
– volume: 2
  year: 2021
  ident: 2022051813181822600_ref19
  article-title: Prediction of neo-epitope immunogenicity reveals TCR recognition determinants and provides insight into immunoediting
  publication-title: Cell Rep Med
  contributor:
    fullname: Schmidt
– volume-title: J Exp Med
  year: 2020
  ident: 2022051813181822600_ref20
  article-title: Mutation position is an important determinant for predicting cancer neoantigens
  doi: 10.1084/jem.20190179
  contributor:
    fullname: Capietto
– volume: 1
  start-page: 1120
  year: 2006
  ident: 2022051813181822600_ref40
  article-title: Generation of peptide-MHC class I complexes through UV-mediated ligand exchange
  publication-title: Nat Protoc
  doi: 10.1038/nprot.2006.121
  contributor:
    fullname: Rodenko
– volume: 10
  start-page: 2047
  year: 2019
  ident: 2022051813181822600_ref18
  article-title: Structure based prediction of neoantigen immunogenicity
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2019.02047
  contributor:
    fullname: Riley
– volume: 197
  start-page: 2492
  year: 2016
  ident: 2022051813181822600_ref4
  article-title: Unsupervised HLA peptidome deconvolution improves ligand prediction accuracy and predicts cooperative effects in peptide–HLA interactions
  publication-title: J Immunol
  doi: 10.4049/jimmunol.1600808
  contributor:
    fullname: Bassani-Sternberg
– volume: 10
  start-page: 1
  year: 2018
  ident: 2022051813181822600_ref12
  article-title: Exploring the pre-immune landscape of antigen-specific T cells
  publication-title: Genome Med
  doi: 10.1186/s13073-018-0577-7
  contributor:
    fullname: Pogorelyy
– volume: 11
  start-page: 27
  year: 2020
  ident: 2022051813181822600_ref31
  article-title: Computational prediction and validation of tumor-associated neoantigens
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2020.00027
  contributor:
    fullname: Roudko
– volume: 47
  start-page: W502
  year: 2019
  ident: 2022051813181822600_ref29
  article-title: IEDB-AR: immune epitope database - analysis resource in 2019
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkz452
  contributor:
    fullname: Dhanda
– volume: 11
  start-page: 2878
  year: 2020
  ident: 2022051813181822600_ref28
  article-title: Potential CD8+ T cell Cross-reactivity against SARS-CoV-2 conferred by other coronavirus strains
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2020.579480
  contributor:
    fullname: Lee
– volume: 8
  start-page: 1566
  year: 2017
  ident: 2022051813181822600_ref17
  article-title: An analysis of natural T cell responses to predicted tumor neoepitopes
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2017.01566
  contributor:
    fullname: Bjerregaard
– volume: 40
  start-page: 593
  year: 2012
  ident: 2022051813181822600_ref30
  article-title: ViPR: an open bioinformatics database and analysis resource for virology research
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkr859
  contributor:
    fullname: Pickett
– volume: 116
  start-page: 3112
  year: 2019
  ident: 2022051813181822600_ref24
  article-title: Most viral peptides displayed by class I MHC on infected cells are immunogenic
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1815239116
  contributor:
    fullname: Croft
SSID ssj0020781
Score 2.46965
Snippet Abstract T cell recognition of a cognate peptide–major histocompatibility complex (pMHC) presented on the surface of infected or malignant cells is of the...
T cell recognition of a cognate peptide-major histocompatibility complex (pMHC) presented on the surface of infected or malignant cells is of the utmost...
T cell recognition of a cognate peptide–major histocompatibility complex (pMHC) presented on the surface of infected or malignant cells is of the utmost...
SourceID pubmedcentral
proquest
crossref
pubmed
oup
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
SubjectTerms Cancer
Cancer immunotherapy
CD8 antigen
CD8-Positive T-Lymphocytes - metabolism
Cell recognition
Computer applications
Computer Simulation
Context
Coronaviruses
COVID-19
Epitopes
Epitopes, T-Lymphocyte
Histocompatibility antigen HLA
Human pathology
Humans
Immunogenicity
Lymphocytes
Lymphocytes T
Major histocompatibility complex
Mathematical models
Neoantigens
Neoplasms
Pathogens
Peptides
Performance evaluation
Performance prediction
Predictions
Problem Solving Protocol
Severe acute respiratory syndrome
Severe acute respiratory syndrome coronavirus 2
T cell receptors
Vaccines
Viral diseases
Viruses
Title Evaluating performance of existing computational models in predicting CD8+ T cell pathogenic epitopes and cancer neoantigens
URI https://www.ncbi.nlm.nih.gov/pubmed/35471658
https://www.proquest.com/docview/2675447619
https://search.proquest.com/docview/2655562463
https://pubmed.ncbi.nlm.nih.gov/PMC9116217
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b9swED7kgQJdijzaRs2LBboViiqRlOQxcWIEAZJmcABvgvlQIyCmBdsZCvTH506iHLtDhiwaJFISeHfkd-TddwA_tORCG5GH0sR5KKQRYV4mJpR5GccZ-SBttMVdev0gbkZytAGyy4Vpgva1qs7c0-TMVY9NbGU90VEXJxbd3_bRQFOE0tEmbGacdy6697KIvaZNKcpC4nr3SXnouUeqUpFSYx0LKhDDJU7MKdV6X1mR1rLcVsDm_zGTK4vQYAc-efTIztu_3IUN6_bgQ1tP8u8-_Lvy3N3uD6tfMwLYtGTEeNnc100ZB78FyJpCOHNWOVbP6MimadK_zH-yIaM9fUYVi6eoZJVmtkbrr-2cjZ1hml48Y85OUTTE6Dn_DA-Dq2H_OvTlFUItxK9FKJTJVNazicwRdAmTmlKqDKe7MjXKKs3HeWklMcTzMkE3DU3fEt2cQgjIUcL8C2y5qbMHwJTs6UTHvIx5KnqIhHFhtBLBghEW--gAlcIPcVG3LBpFe_rNCxRK4YUSwCkO_9stjjrRFN7Y5kWSEosf7ccE8H35GM2ExmmMA_FMbaREqIf6EMDXVpLL73SKEEC2JuNlA6LgXn-CmtlQcXtN_PbunofwMaGECuKD5UewtZg922OEOQt1AtvnF5cXg5NGvfE6_D16AcWnAOM
link.rule.ids 230,315,733,786,790,891,1611,27955,27956,53825,53827
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB6VIgSXllep20IXiRtyjL27tnOs0lYB2opDinqzsg9TC7qx8ji04sczY6_TpAckuGbXjuz5Zvcb78w3AB-05EIbkYfSxHkopBFhXiYmlHkZxxnFIG22xUU6vBRfruTVBsiuFqZJ2teq6rlfNz1XXTe5lfWNjro8sejb-QAdNEUqHT2Cx-ivieyCdB9nkX5NW1SUhaT27svyMHaPVKUipcY6FtQihktcmlPq9r6yJ63Vua3QzYdZkyvb0Ok2fO8eoM0--dlbzFVP3z3QdvznJ3wOW56YsqN2-AVsWPcSnrStKm9fwe8TLwvufrD6vtiATUpGYprN77rpEOG_LrKmx86MVY7VUzoNaqYMjvOPbMTouIBRM-QJ4rfSzNa4sNR2xsbOME03njJnJ2h1EgudvYbL05PRYBj6zg2hFuLTPBTKZCrr20TmyOeESU0pVYYraZkaZZXm47y0ksTneZlgBIiriiUlO4XskiN4-A5suomzu8CU7OtEx7yMeSr6SLJxz7USeYgRFq_RAeLN266oW4GOoj1Y5wVau_DWDuAQ7fr3GQedzQvvx7MiSUkgkD71BPB-OYweSO9pjC9iQXOkRBaJQAvgTQuR5f90CAsgWwPPcgKpe6-PICQalW8Pgb3_vvIQng5H52fF2eeLr_vwLKG6DZKd5QewOZ8u7FtkU3P1rvGdP5qcIEY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5BEYgL5VlCCzUSN5QNie0ke6y2XZVX1UMrVVyi9atEtN5oHwcQP56ZxNnu9sCh13icKJlv7Jl45huAD1pyoY0oY2nSMhbSiLh0mYll6dK0oBiky7Y4yY_PxZcLebHW6qtN2teqHvir64Gvf7a5lc21Tvo8seT0-wgNNEdXOmmMS-7DA7TZrOgD9RBrEYdNV1hUxMT4HkrzMH5PVK0SpSY6FdQmhktcnnPq-L62L23Uuq25nLczJ9e2ovE2_OhfostA-TVYLtRA_7nF73int3wKT4KDyg46kWdwz_rn8LBrWfn7Bfw9CvTg_pI1N0UHbOoYkWq213XbKSL8ZWRtr505qz1rZnQq1IqMDsuP7IzRsQGjpshTxHGtmW1wgWnsnE28YZpuPGPeTlH7RBo6fwnn46Oz0XEcOjjEWohPi1goU6hiaDNZol8nTG6cVAWuqC43yirNJ6WzkkjoucswEsTVxRKjnUIvkyOI-CvY8lNvXwNTcqgznXKX8lwM0dnGvddK9EeMsDhHR4i7oL-q6Yg6qu6AnVeo8SpoPIJ91O3_JfZ6vVfBnudVlhNRIP3yieD9ahgtkb7TBD_EkmSkRG8SwRbBTgeT1XN6lEVQbABoJUAs35sjCIuW7TvA4M2dZ-7Do9PDcfXt88nXXXicUfkGsc_yPdhazJb2LTpVC_WuNZ9_jKEixg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluating+performance+of+existing+computational+models+in+predicting+CD8%2B+T+cell+pathogenic+epitopes+and+cancer+neoantigens&rft.jtitle=Briefings+in+bioinformatics&rft.au=Buckley%2C+Paul+R&rft.au=Lee%2C+Chloe+H&rft.au=Ma%2C+Ruichong&rft.au=Woodhouse%2C+Isaac&rft.date=2022-05-13&rft.pub=Oxford+University+Press&rft.issn=1467-5463&rft.eissn=1477-4054&rft.volume=23&rft.issue=3&rft_id=info:doi/10.1093%2Fbib%2Fbbac141&rft.externalDocID=10.1093%2Fbib%2Fbbac141
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1467-5463&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1467-5463&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1467-5463&client=summon