Dose-dependent reductions in plasma ceramides after anthocyanin supplementation are associated with improvements in plasma lipids and cholesterol efflux capacity in dyslipidemia: A randomized controlled trial
Plasma ceramides have been identified as novel risk factors for metabolic and cardiovascular diseases. We aimed to evaluate the effects of dietary anthocyanins on plasma ceramides and to disentangle whether the alterations in ceramides could be related with those in other cardiometabolic risk factor...
Saved in:
Published in | Clinical nutrition (Edinburgh, Scotland) Vol. 40; no. 4; pp. 1871 - 1878 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.04.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 0261-5614 1532-1983 1532-1983 |
DOI | 10.1016/j.clnu.2020.10.014 |
Cover
Loading…
Abstract | Plasma ceramides have been identified as novel risk factors for metabolic and cardiovascular diseases. We aimed to evaluate the effects of dietary anthocyanins on plasma ceramides and to disentangle whether the alterations in ceramides could be related with those in other cardiometabolic risk factors in the dyslipidemia.
In a randomized double-blinded placebo-controlled trial, 176 eligible dyslipidemia subjects were randomly assigned into four groups receiving placebo, 40, 80, or 320 mg/day anthocyanins, respectively for 12 weeks.
A total of 169 subjects completed the study. After 12-week intervention, dietary anthocyanins dose-dependently reduced plasma concentrations of all six ceramide species in the dyslipidemia subjects (all Ptrend values < 0.05). Specifically, 320 mg/day anthocyanins effectively lowered plasma N-palmitoylsphingosine (Cer 16:0, mean change: −28.3 ± 41.2 versus 2.9 ± 38.2, nmol/L, P = 0.018) and N-tetracosanoylsphingosine (Cer 24:0, mean change: −157.1 ± 493.9 versus 10.7 ± 439.9, nmol/L, P = 0.002) compared with the placebo. The declines in plasma Cer 16:0 and Cer 24:0 were significantly correlated with the decreases in plasma non-high-density lipoprotein cholesterol (nonHDL-C, Spearman's r = 0.32, P = 0.040 for Cer 16:0; Spearman's r = 0.35, P = 0.026 for Cer 24:0), apolipoprotein B (Spearman's r = 0.33, P = 0.031 for Cer 16:0; Spearman's r = 0.48, P = 0.002 for Cer 24:0), and total cholesterol (Spearman's r = 0.34, P = 0.026 for Cer 16:0; Spearman's r = 0.31, P = 0.042 for Cer 24:0) after 12-week 320 mg/day anthocyanin administration. Besides, we found that anthocyanins at 320 mg/day also markedly enhanced cholesterol efflux capacity in the dyslipidemia, the changes of which were positively associated with the reductions in Cer 16:0 (Spearman's r = 0.42, P = 0.006) independent of HDL-C and apolipoprotein A-I.
Reductions in plasma Cer 16:0 and Cer 18:0 after 12-week anthocyanin intervention were dose-dependently associated with improvements in plasma lipids and cholesterol efflux capacity in the dyslipidemia.
The study was registered at ClinicalTrials.gov with the identifier No. NCT03415503. |
---|---|
AbstractList | Plasma ceramides have been identified as novel risk factors for metabolic and cardiovascular diseases. We aimed to evaluate the effects of dietary anthocyanins on plasma ceramides and to disentangle whether the alterations in ceramides could be related with those in other cardiometabolic risk factors in the dyslipidemia.
In a randomized double-blinded placebo-controlled trial, 176 eligible dyslipidemia subjects were randomly assigned into four groups receiving placebo, 40, 80, or 320 mg/day anthocyanins, respectively for 12 weeks.
A total of 169 subjects completed the study. After 12-week intervention, dietary anthocyanins dose-dependently reduced plasma concentrations of all six ceramide species in the dyslipidemia subjects (all Ptrend values < 0.05). Specifically, 320 mg/day anthocyanins effectively lowered plasma N-palmitoylsphingosine (Cer 16:0, mean change: −28.3 ± 41.2 versus 2.9 ± 38.2, nmol/L, P = 0.018) and N-tetracosanoylsphingosine (Cer 24:0, mean change: −157.1 ± 493.9 versus 10.7 ± 439.9, nmol/L, P = 0.002) compared with the placebo. The declines in plasma Cer 16:0 and Cer 24:0 were significantly correlated with the decreases in plasma non-high-density lipoprotein cholesterol (nonHDL-C, Spearman's r = 0.32, P = 0.040 for Cer 16:0; Spearman's r = 0.35, P = 0.026 for Cer 24:0), apolipoprotein B (Spearman's r = 0.33, P = 0.031 for Cer 16:0; Spearman's r = 0.48, P = 0.002 for Cer 24:0), and total cholesterol (Spearman's r = 0.34, P = 0.026 for Cer 16:0; Spearman's r = 0.31, P = 0.042 for Cer 24:0) after 12-week 320 mg/day anthocyanin administration. Besides, we found that anthocyanins at 320 mg/day also markedly enhanced cholesterol efflux capacity in the dyslipidemia, the changes of which were positively associated with the reductions in Cer 16:0 (Spearman's r = 0.42, P = 0.006) independent of HDL-C and apolipoprotein A-I.
Reductions in plasma Cer 16:0 and Cer 18:0 after 12-week anthocyanin intervention were dose-dependently associated with improvements in plasma lipids and cholesterol efflux capacity in the dyslipidemia.
The study was registered at ClinicalTrials.gov with the identifier No. NCT03415503. Plasma ceramides have been identified as novel risk factors for metabolic and cardiovascular diseases. We aimed to evaluate the effects of dietary anthocyanins on plasma ceramides and to disentangle whether the alterations in ceramides could be related with those in other cardiometabolic risk factors in the dyslipidemia.In a randomized double-blinded placebo-controlled trial, 176 eligible dyslipidemia subjects were randomly assigned into four groups receiving placebo, 40, 80, or 320 mg/day anthocyanins, respectively for 12 weeks.A total of 169 subjects completed the study. After 12-week intervention, dietary anthocyanins dose-dependently reduced plasma concentrations of all six ceramide species in the dyslipidemia subjects (all Pₜᵣₑₙd values < 0.05). Specifically, 320 mg/day anthocyanins effectively lowered plasma N-palmitoylsphingosine (Cer 16:0, mean change: −28.3 ± 41.2 versus 2.9 ± 38.2, nmol/L, P = 0.018) and N-tetracosanoylsphingosine (Cer 24:0, mean change: −157.1 ± 493.9 versus 10.7 ± 439.9, nmol/L, P = 0.002) compared with the placebo. The declines in plasma Cer 16:0 and Cer 24:0 were significantly correlated with the decreases in plasma non-high-density lipoprotein cholesterol (nonHDL-C, Spearman's r = 0.32, P = 0.040 for Cer 16:0; Spearman's r = 0.35, P = 0.026 for Cer 24:0), apolipoprotein B (Spearman's r = 0.33, P = 0.031 for Cer 16:0; Spearman's r = 0.48, P = 0.002 for Cer 24:0), and total cholesterol (Spearman's r = 0.34, P = 0.026 for Cer 16:0; Spearman's r = 0.31, P = 0.042 for Cer 24:0) after 12-week 320 mg/day anthocyanin administration. Besides, we found that anthocyanins at 320 mg/day also markedly enhanced cholesterol efflux capacity in the dyslipidemia, the changes of which were positively associated with the reductions in Cer 16:0 (Spearman's r = 0.42, P = 0.006) independent of HDL-C and apolipoprotein A-I.Reductions in plasma Cer 16:0 and Cer 18:0 after 12-week anthocyanin intervention were dose-dependently associated with improvements in plasma lipids and cholesterol efflux capacity in the dyslipidemia.The study was registered at ClinicalTrials.gov with the identifier No. NCT03415503. Plasma ceramides have been identified as novel risk factors for metabolic and cardiovascular diseases. We aimed to evaluate the effects of dietary anthocyanins on plasma ceramides and to disentangle whether the alterations in ceramides could be related with those in other cardiometabolic risk factors in the dyslipidemia. In a randomized double-blinded placebo-controlled trial, 176 eligible dyslipidemia subjects were randomly assigned into four groups receiving placebo, 40, 80, or 320 mg/day anthocyanins, respectively for 12 weeks. A total of 169 subjects completed the study. After 12-week intervention, dietary anthocyanins dose-dependently reduced plasma concentrations of all six ceramide species in the dyslipidemia subjects (all P values < 0.05). Specifically, 320 mg/day anthocyanins effectively lowered plasma N-palmitoylsphingosine (Cer 16:0, mean change: -28.3 ± 41.2 versus 2.9 ± 38.2, nmol/L, P = 0.018) and N-tetracosanoylsphingosine (Cer 24:0, mean change: -157.1 ± 493.9 versus 10.7 ± 439.9, nmol/L, P = 0.002) compared with the placebo. The declines in plasma Cer 16:0 and Cer 24:0 were significantly correlated with the decreases in plasma non-high-density lipoprotein cholesterol (nonHDL-C, Spearman's r = 0.32, P = 0.040 for Cer 16:0; Spearman's r = 0.35, P = 0.026 for Cer 24:0), apolipoprotein B (Spearman's r = 0.33, P = 0.031 for Cer 16:0; Spearman's r = 0.48, P = 0.002 for Cer 24:0), and total cholesterol (Spearman's r = 0.34, P = 0.026 for Cer 16:0; Spearman's r = 0.31, P = 0.042 for Cer 24:0) after 12-week 320 mg/day anthocyanin administration. Besides, we found that anthocyanins at 320 mg/day also markedly enhanced cholesterol efflux capacity in the dyslipidemia, the changes of which were positively associated with the reductions in Cer 16:0 (Spearman's r = 0.42, P = 0.006) independent of HDL-C and apolipoprotein A-I. Reductions in plasma Cer 16:0 and Cer 18:0 after 12-week anthocyanin intervention were dose-dependently associated with improvements in plasma lipids and cholesterol efflux capacity in the dyslipidemia. The study was registered at ClinicalTrials.gov with the identifier No. NCT03415503. Plasma ceramides have been identified as novel risk factors for metabolic and cardiovascular diseases. We aimed to evaluate the effects of dietary anthocyanins on plasma ceramides and to disentangle whether the alterations in ceramides could be related with those in other cardiometabolic risk factors in the dyslipidemia.BACKGROUND & AIMSPlasma ceramides have been identified as novel risk factors for metabolic and cardiovascular diseases. We aimed to evaluate the effects of dietary anthocyanins on plasma ceramides and to disentangle whether the alterations in ceramides could be related with those in other cardiometabolic risk factors in the dyslipidemia.In a randomized double-blinded placebo-controlled trial, 176 eligible dyslipidemia subjects were randomly assigned into four groups receiving placebo, 40, 80, or 320 mg/day anthocyanins, respectively for 12 weeks.METHODSIn a randomized double-blinded placebo-controlled trial, 176 eligible dyslipidemia subjects were randomly assigned into four groups receiving placebo, 40, 80, or 320 mg/day anthocyanins, respectively for 12 weeks.A total of 169 subjects completed the study. After 12-week intervention, dietary anthocyanins dose-dependently reduced plasma concentrations of all six ceramide species in the dyslipidemia subjects (all Ptrend values < 0.05). Specifically, 320 mg/day anthocyanins effectively lowered plasma N-palmitoylsphingosine (Cer 16:0, mean change: -28.3 ± 41.2 versus 2.9 ± 38.2, nmol/L, P = 0.018) and N-tetracosanoylsphingosine (Cer 24:0, mean change: -157.1 ± 493.9 versus 10.7 ± 439.9, nmol/L, P = 0.002) compared with the placebo. The declines in plasma Cer 16:0 and Cer 24:0 were significantly correlated with the decreases in plasma non-high-density lipoprotein cholesterol (nonHDL-C, Spearman's r = 0.32, P = 0.040 for Cer 16:0; Spearman's r = 0.35, P = 0.026 for Cer 24:0), apolipoprotein B (Spearman's r = 0.33, P = 0.031 for Cer 16:0; Spearman's r = 0.48, P = 0.002 for Cer 24:0), and total cholesterol (Spearman's r = 0.34, P = 0.026 for Cer 16:0; Spearman's r = 0.31, P = 0.042 for Cer 24:0) after 12-week 320 mg/day anthocyanin administration. Besides, we found that anthocyanins at 320 mg/day also markedly enhanced cholesterol efflux capacity in the dyslipidemia, the changes of which were positively associated with the reductions in Cer 16:0 (Spearman's r = 0.42, P = 0.006) independent of HDL-C and apolipoprotein A-I.RESULTSA total of 169 subjects completed the study. After 12-week intervention, dietary anthocyanins dose-dependently reduced plasma concentrations of all six ceramide species in the dyslipidemia subjects (all Ptrend values < 0.05). Specifically, 320 mg/day anthocyanins effectively lowered plasma N-palmitoylsphingosine (Cer 16:0, mean change: -28.3 ± 41.2 versus 2.9 ± 38.2, nmol/L, P = 0.018) and N-tetracosanoylsphingosine (Cer 24:0, mean change: -157.1 ± 493.9 versus 10.7 ± 439.9, nmol/L, P = 0.002) compared with the placebo. The declines in plasma Cer 16:0 and Cer 24:0 were significantly correlated with the decreases in plasma non-high-density lipoprotein cholesterol (nonHDL-C, Spearman's r = 0.32, P = 0.040 for Cer 16:0; Spearman's r = 0.35, P = 0.026 for Cer 24:0), apolipoprotein B (Spearman's r = 0.33, P = 0.031 for Cer 16:0; Spearman's r = 0.48, P = 0.002 for Cer 24:0), and total cholesterol (Spearman's r = 0.34, P = 0.026 for Cer 16:0; Spearman's r = 0.31, P = 0.042 for Cer 24:0) after 12-week 320 mg/day anthocyanin administration. Besides, we found that anthocyanins at 320 mg/day also markedly enhanced cholesterol efflux capacity in the dyslipidemia, the changes of which were positively associated with the reductions in Cer 16:0 (Spearman's r = 0.42, P = 0.006) independent of HDL-C and apolipoprotein A-I.Reductions in plasma Cer 16:0 and Cer 18:0 after 12-week anthocyanin intervention were dose-dependently associated with improvements in plasma lipids and cholesterol efflux capacity in the dyslipidemia.CONCLUSIONSReductions in plasma Cer 16:0 and Cer 18:0 after 12-week anthocyanin intervention were dose-dependently associated with improvements in plasma lipids and cholesterol efflux capacity in the dyslipidemia.The study was registered at ClinicalTrials.gov with the identifier No. NCT03415503.CLINICAL TRIAL REGISTRATIONThe study was registered at ClinicalTrials.gov with the identifier No. NCT03415503. |
Author | Zhao, Yimin Li, Kongyao Wang, Xu Tian, Zezhong Fan, Die Ma, Xilin Xu, Lin Yang, Yan Ling, Wenhua Gao, Xiaoli Xu, Huihui |
Author_xml | – sequence: 1 givenname: Yimin orcidid: 0000-0002-6146-9860 surname: Zhao fullname: Zhao, Yimin organization: School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, Guangdong, China – sequence: 2 givenname: Huihui surname: Xu fullname: Xu, Huihui organization: Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, Sun Yat-sen University, Guangzhou, Guangdong, China – sequence: 3 givenname: Zezhong surname: Tian fullname: Tian, Zezhong organization: School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, Guangdong, China – sequence: 4 givenname: Xu orcidid: 0000-0002-2921-2037 surname: Wang fullname: Wang, Xu organization: Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, Sun Yat-sen University, Guangzhou, Guangdong, China – sequence: 5 givenname: Lin surname: Xu fullname: Xu, Lin organization: School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, Guangdong, China – sequence: 6 givenname: Kongyao surname: Li fullname: Li, Kongyao organization: School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, Guangdong, China – sequence: 7 givenname: Xiaoli orcidid: 0000-0002-2591-2503 surname: Gao fullname: Gao, Xiaoli organization: School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, Guangdong, China – sequence: 8 givenname: Die surname: Fan fullname: Fan, Die organization: Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, Sun Yat-sen University, Guangzhou, Guangdong, China – sequence: 9 givenname: Xilin surname: Ma fullname: Ma, Xilin organization: School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, Guangdong, China – sequence: 10 givenname: Wenhua surname: Ling fullname: Ling, Wenhua organization: Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, Sun Yat-sen University, Guangzhou, Guangdong, China – sequence: 11 givenname: Yan surname: Yang fullname: Yang, Yan email: yangyan3@mail.sysu.edu.cn organization: School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, Guangdong, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33131908$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkktv1DAQgC1URLeFP8AB-cglix95Vlyq8pQqcYGz5dgTrRfHDrbTEn4lPwlntyDUQ-E01uj7xvbMnKET5x0g9JySLSW0frXfKuvmLSNsTWwJLR-hDa04K2jX8hO0IaymRVXT8hSdxbgnhFS8aZ-gU84ppx1pN-jnGx-h0DCB0-ASDqBnlYx3ERuHJyvjKLGCIEejIWI5JAhYurTzapEuI3GeJgtjduWqYRkAyxi9MjKBxrcm7bAZp-BvDtDfZa2ZjM41ncZq5y3EXNtbDMNg5-9YyUkqk5ZV0Es8wDAaeYEvcciOH82PfIHyLmXL5mMKRtqn6PEgbYRnd_EcfXn39vPVh-L60_uPV5fXhSpLkopS1jWrdMkbmSOrOa36HkrNO01Bt5rWPeugo33fcEWVgkEx3jbQD5rplhN-jl4e6-avfZvz28VoogJrpQM_R8HKrmVV0zXNf6BV3VZ119UZfXGHzv0IWkzBjDIs4vfAMsCOgAo-xgDDH4QSsW6F2It1K8S6FWsub0WW2ntSbuxhXClIYx9WXx9VyL28MRBEVAacAm0CqCS0Nw_rF_d0ZY0zStqvsPxL_gVra-zb |
CitedBy_id | crossref_primary_10_1016_j_jlr_2024_100726 crossref_primary_10_3390_molecules26092632 crossref_primary_10_4103_jrms_jrms_187_22 crossref_primary_10_1016_j_nurpra_2023_104838 crossref_primary_10_26599_FSHW_2022_9250053 crossref_primary_10_3389_fsufs_2022_867897 crossref_primary_10_3390_metabo11070417 crossref_primary_10_1016_j_atherosclerosis_2022_12_006 crossref_primary_10_3390_ijms23158344 crossref_primary_10_1007_s12602_023_10134_x crossref_primary_10_1039_D2FO03824B crossref_primary_10_1161_ATVBAHA_124_320998 crossref_primary_10_1186_s13098_023_01075_0 crossref_primary_10_3389_fcvm_2024_1372055 crossref_primary_10_3390_nu15010229 crossref_primary_10_1002_ptr_7850 crossref_primary_10_1016_j_fochx_2022_100334 crossref_primary_10_3389_fnut_2021_747884 crossref_primary_10_3390_nu15030703 crossref_primary_10_1007_s42770_024_01576_8 crossref_primary_10_3390_ijms23052634 |
Cites_doi | 10.1016/j.jacl.2020.01.005 10.1152/ajpendo.00560.2019 10.1007/s00125-018-4590-6 10.1016/j.tem.2017.03.005 10.1074/jbc.M305193200 10.1016/j.plipres.2019.04.001 10.3945/ajcn.2009.27814 10.1007/s00216-016-9425-z 10.1016/j.redox.2020.101474 10.1016/j.tem.2015.07.006 10.1093/ajcn/81.5.1012 10.1172/JCI76738 10.1093/eurheartj/ehz387 10.1210/jc.2013-2845 10.3945/ajcn.116.133132 10.1161/CIRCRESAHA.112.266502 10.1016/j.phymed.2017.11.008 10.3945/an.115.009233 10.1053/j.gastro.2016.08.057 10.2337/db16-0663 10.1126/science.aav3722 10.1038/nm977 10.1074/jbc.M611230200 10.1172/JCI870 10.1021/jf060300l 10.1373/clinchem.2011.167361 10.1093/eurheartj/ehw148 10.1016/j.clnu.2018.06.979 10.1161/CIRCULATIONAHA.116.024261 10.3945/an.116.014852 10.1074/jbc.M211126200 10.2337/dc18-0071 10.2337/db08-1228 10.1210/jc.2014-4348 10.1210/jc.2013-2559 10.1016/j.diabet.2017.04.003 10.1002/mnfr.201900876 10.1093/ajcn/nqy083 10.1093/carcin/bgi371 10.1016/j.atherosclerosis.2013.01.041 10.1186/1476-511X-8-19 10.1161/CIRCRESAHA.109.194613 10.1161/ATVBAHA.118.311927 10.1093/advances/nmz065 10.1038/ncomms10166 10.1210/jc.2014-1665 10.2337/db09-1293 10.1016/j.metabol.2006.09.021 10.1161/CIRCULATIONAHA.112.122408 10.1194/jlr.D018051 10.1055/s-2007-981540 |
ContentType | Journal Article |
Copyright | 2020 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism Copyright © 2020 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved. |
Copyright_xml | – notice: 2020 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism – notice: Copyright © 2020 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved. |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.clnu.2020.10.014 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Diet & Clinical Nutrition |
EISSN | 1532-1983 |
EndPage | 1878 |
ExternalDocumentID | 33131908 10_1016_j_clnu_2020_10_014 S0261561420305422 |
Genre | Journal Article |
GroupedDBID | --- --K --M .1- .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29B 4.4 457 4G. 53G 5GY 5VS 6PF 7-5 71M 8P~ 9JM AABNK AAEDT AAEDW AAHBH AAIKJ AAKOC AALRI AAOAW AAQXK AATTM AAWTL AAXKI AAXUO AAYWO ABBQC ABJNI ABLJU ABMAC ABMZM ABWVN ABXDB ACDAQ ACGFS ACIEU ACJTP ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADHUB ADMUD ADNMO ADVLN AEBSH AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPUW AFRHN AFTJW AFXBA AFXIZ AGCQF AGHFR AGQPQ AGUBO AGYEJ AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CAG COF CS3 DU5 E.L EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HDZ HMK HMO HVGLF HZ~ IHE J1W KOM LZ1 M29 M2W M41 MO0 N9A O-L O9- OAUVE OC. ON0 OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SAE SCC SDF SDG SEL SES SEW SNG SNH SPCBC SSH SSZ T5K UAP UHS UV1 WUQ Z5R ZGI ~G- AACTN AAIAV AAQFI ABLVK ABYKQ AFCTW AFKWA AISVY AJBFU AJOXV AMFUW EFLBG LCYCR NAHTW RIG AAYXX AGRNS CITATION NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c440t-4a6625d437a62526315bbe4d39d1ed8d16b29e91bb73c1ccefc2387ebfd2d8303 |
IEDL.DBID | .~1 |
ISSN | 0261-5614 1532-1983 |
IngestDate | Fri Jul 11 11:15:58 EDT 2025 Fri Jul 11 03:09:30 EDT 2025 Wed Feb 19 02:28:52 EST 2025 Thu Apr 24 23:11:30 EDT 2025 Tue Jul 01 00:55:26 EDT 2025 Fri Feb 23 02:45:42 EST 2024 Tue Aug 26 17:16:32 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Anthocyanin Ceramide Lipoprotein Metabolism Cholesterol Dyslipidemia |
Language | English |
License | Copyright © 2020 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c440t-4a6625d437a62526315bbe4d39d1ed8d16b29e91bb73c1ccefc2387ebfd2d8303 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Undefined-3 |
ORCID | 0000-0002-2921-2037 0000-0002-6146-9860 0000-0002-2591-2503 |
PMID | 33131908 |
PQID | 2456856996 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2498257977 proquest_miscellaneous_2456856996 pubmed_primary_33131908 crossref_primary_10_1016_j_clnu_2020_10_014 crossref_citationtrail_10_1016_j_clnu_2020_10_014 elsevier_sciencedirect_doi_10_1016_j_clnu_2020_10_014 elsevier_clinicalkey_doi_10_1016_j_clnu_2020_10_014 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2021 2021-04-00 2021-Apr 20210401 |
PublicationDateYYYYMMDD | 2021-04-01 |
PublicationDate_xml | – month: 04 year: 2021 text: April 2021 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Clinical nutrition (Edinburgh, Scotland) |
PublicationTitleAlternate | Clin Nutr |
PublicationYear | 2021 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Göggel, Winoto-Morbach, Vielhaber, Imai, Lindner, Brade (bib35) 2004; 10 Hilvo, Salonurmi, Havulinna, Kauhanen, Pedersen, Tell (bib5) 2018; 61 Rienks, Barbaresko, Oluwagbemigun, Schmid, Nöthlings (bib16) 2018; 108 Zhu, Huang, Zhang, Wang, Liu, Sun (bib19) 2014; 99 Ng, Ooi, Watts, Chan, Meikle, Barrett (bib8) 2015; 100 Jiang, Xie, Li, Zhang, Nichols, Krausz (bib39) 2015; 125 Zhang, Xu, Zhao, Wang, Pang, Li (bib18) 2020; 32 Dekker, Baker, Naples, Samsoondar, Zhang, Qiu (bib31) 2013; 228 Daneshzad, Shab-Bidar, Mohammadpour, Djafarian (bib53) 2019; 38 Cassidy, Bertoia, Chiuve, Flint, Forman, Rimm (bib15) 2016; 104 Jeong, Schissel, Tabas, Pownall, Tall, Jiang (bib30) 1998; 101 Lankinen, Schwab, Kolehmainen, Paananen, Nygren, Seppänen-Laakso (bib32) 2015; 146 Jiang, Xie, Lv, Li, Krausz, Shi (bib40) 2015; 6 Wang, Toledo, Hruby, Rosner, Willett, Sun (bib11) 2017; 135 Wang, Zhu, Zhao, Jiao, Lei, Chen (bib29) 2018; 38 Gonzalez, Jiang, Patterson (bib38) 2016; 151 Kauhanen, Sysi-Aho, Koistinen, Laaksonen, Sinisalo, Ekroos (bib23) 2016; 408 Luukkonen, Sädevirta, Zhou, Kayser, Ali, Ahonen (bib12) 2018; 41 Zhu, Xia, Yang, Liu, Li, Hao (bib54) 2011; 57 Tarasov, Ekroos, Suoniemi, Kauhanen, Sylvänne, Hurme (bib26) 2014; 99 Iqbal, Walsh, Hammad, Hussain (bib27) 2017; 28 Fang, Pyne, Pyne (bib7) 2019; 74 Hilvo, Meikle, Pedersen, Tell, Dhar, Brenner (bib1) 2020; 41 Marathe, Zimmerman, McIntyre (bib33) 2003; 278 Ng, Ooi, Watts, Chan, Weir, Meikle (bib50) 2014; 99 Moussavi, Assi, Gómez-Muñoz, Salh (bib37) 2006; 27 Xie, Jiang, Shi, Gao, Sun, Sun (bib41) 2017; 66 Chaurasia, Summers (bib6) 2015; 26 Fretts, Jensen, Hoofnagle, McKnight, Howard, Umans (bib4) 2020; 150 Laaksonen, Ekroos, Sysi-Aho, Hilvo, Vihervaara, Kauhanen (bib2) 2016; 37 Xu, Xie, Zhang, Pang, Li, Wang (bib55) 2020 Qin, Xia, Ma, Hao, Liu, Mou (bib20) 2009; 90 Nagao, Takahashi, Hanada, Kioka, Matsuo, Ueda (bib46) 2007; 282 Wallace, Giusti (bib51) 2015; 6 Witting, Maiorano, Davidson (bib45) 2003; 278 Marmillot, Patel, Lakshman (bib44) 2007; 56 Chaurasia, Tippetts, Mayoral Monibas, Liu, Li, Wang (bib10) 2019; 365 Mantovani, Bonapace, Lunardi, Salgarello, Dugo, Gori (bib24) 2018; 38 Sankaranarayanan, Kellner-Weibel, de la Llera-Moya, Phillips, Asztalos, Bittman (bib25) 2011; 52 Wang, Xia, Yan, Li, Wang, Xu (bib43) 2012; 111 Detopoulou, Nomikos, Fragopoulou, Panagiotakos, Pitsavos, Stefanadis (bib34) 2009; 8 Zhang, Ho (bib21) 2009; 18 Croyal, Kaabia, León, Ramin-Mangata, Baty, Fall (bib49) 2018; 44 Cassidy, Mukamal, Liu, Franz, Eliassen, Rimm (bib14) 2013; 127 Haus, Kashyap, Kasumov, Zhang, Kelly, Defronzo (bib48) 2009; 58 Wang, Liu, Ji, Liu, Xu, Guo (bib28) 2020; 64 Yang, Ling, Du, Chen, Li, Deng (bib17) 2017; 8 Mantovani, Dugo (bib3) 2020; 14 Ussher, Koves, Cadete, Zhang, Jaswal, Swyrd (bib9) 2010; 59 Cheng, Kozubek, Ohlsson, Sternby, Duan (bib36) 2007; 73 Yang, Shu, Jin, Zhang, Li, Li (bib22) 2005; 81 Liu, Huan, Chakraborty, Zhang, Lu, Kuo (bib47) 2009; 105 Wu, Beecher, Holden, Haytowitz, Gebhardt, Prior (bib13) 2006; 54 Morissette, Kropp, Songpadith, Junges Moreira, Costa, Mariné-Casadó (bib42) 2020; 318 Kalt, Cassidy, Howard, Krikorian, Stull, Tremblay (bib52) 2020; 11 Daneshzad (10.1016/j.clnu.2020.10.014_bib53) 2019; 38 Haus (10.1016/j.clnu.2020.10.014_bib48) 2009; 58 Mantovani (10.1016/j.clnu.2020.10.014_bib3) 2020; 14 Detopoulou (10.1016/j.clnu.2020.10.014_bib34) 2009; 8 Morissette (10.1016/j.clnu.2020.10.014_bib42) 2020; 318 Fretts (10.1016/j.clnu.2020.10.014_bib4) 2020; 150 Marmillot (10.1016/j.clnu.2020.10.014_bib44) 2007; 56 Hilvo (10.1016/j.clnu.2020.10.014_bib1) 2020; 41 Kalt (10.1016/j.clnu.2020.10.014_bib52) 2020; 11 Sankaranarayanan (10.1016/j.clnu.2020.10.014_bib25) 2011; 52 Wallace (10.1016/j.clnu.2020.10.014_bib51) 2015; 6 Zhang (10.1016/j.clnu.2020.10.014_bib18) 2020; 32 Gonzalez (10.1016/j.clnu.2020.10.014_bib38) 2016; 151 Fang (10.1016/j.clnu.2020.10.014_bib7) 2019; 74 Chaurasia (10.1016/j.clnu.2020.10.014_bib6) 2015; 26 Xu (10.1016/j.clnu.2020.10.014_bib55) 2020 Tarasov (10.1016/j.clnu.2020.10.014_bib26) 2014; 99 Ng (10.1016/j.clnu.2020.10.014_bib8) 2015; 100 Luukkonen (10.1016/j.clnu.2020.10.014_bib12) 2018; 41 Cassidy (10.1016/j.clnu.2020.10.014_bib15) 2016; 104 Jiang (10.1016/j.clnu.2020.10.014_bib40) 2015; 6 Lankinen (10.1016/j.clnu.2020.10.014_bib32) 2015; 146 Zhang (10.1016/j.clnu.2020.10.014_bib21) 2009; 18 Zhu (10.1016/j.clnu.2020.10.014_bib54) 2011; 57 Mantovani (10.1016/j.clnu.2020.10.014_bib24) 2018; 38 Marathe (10.1016/j.clnu.2020.10.014_bib33) 2003; 278 Qin (10.1016/j.clnu.2020.10.014_bib20) 2009; 90 Nagao (10.1016/j.clnu.2020.10.014_bib46) 2007; 282 Wang (10.1016/j.clnu.2020.10.014_bib43) 2012; 111 Laaksonen (10.1016/j.clnu.2020.10.014_bib2) 2016; 37 Cheng (10.1016/j.clnu.2020.10.014_bib36) 2007; 73 Xie (10.1016/j.clnu.2020.10.014_bib41) 2017; 66 Ussher (10.1016/j.clnu.2020.10.014_bib9) 2010; 59 Göggel (10.1016/j.clnu.2020.10.014_bib35) 2004; 10 Yang (10.1016/j.clnu.2020.10.014_bib22) 2005; 81 Yang (10.1016/j.clnu.2020.10.014_bib17) 2017; 8 Witting (10.1016/j.clnu.2020.10.014_bib45) 2003; 278 Chaurasia (10.1016/j.clnu.2020.10.014_bib10) 2019; 365 Kauhanen (10.1016/j.clnu.2020.10.014_bib23) 2016; 408 Croyal (10.1016/j.clnu.2020.10.014_bib49) 2018; 44 Wu (10.1016/j.clnu.2020.10.014_bib13) 2006; 54 Ng (10.1016/j.clnu.2020.10.014_bib50) 2014; 99 Liu (10.1016/j.clnu.2020.10.014_bib47) 2009; 105 Jeong (10.1016/j.clnu.2020.10.014_bib30) 1998; 101 Moussavi (10.1016/j.clnu.2020.10.014_bib37) 2006; 27 Wang (10.1016/j.clnu.2020.10.014_bib28) 2020; 64 Hilvo (10.1016/j.clnu.2020.10.014_bib5) 2018; 61 Dekker (10.1016/j.clnu.2020.10.014_bib31) 2013; 228 Wang (10.1016/j.clnu.2020.10.014_bib11) 2017; 135 Zhu (10.1016/j.clnu.2020.10.014_bib19) 2014; 99 Jiang (10.1016/j.clnu.2020.10.014_bib39) 2015; 125 Iqbal (10.1016/j.clnu.2020.10.014_bib27) 2017; 28 Rienks (10.1016/j.clnu.2020.10.014_bib16) 2018; 108 Wang (10.1016/j.clnu.2020.10.014_bib29) 2018; 38 Cassidy (10.1016/j.clnu.2020.10.014_bib14) 2013; 127 |
References_xml | – volume: 28 start-page: 506 year: 2017 end-page: 518 ident: bib27 article-title: Sphingolipids and lipoproteins in health and metabolic disorders publication-title: TEM (Trends Endocrinol Metab) – volume: 146 start-page: 662 year: 2015 end-page: 672 ident: bib32 article-title: A healthy nordic diet alters the plasma lipidomic profile in adults with features of metabolic syndrome in a multicenter randomized dietary intervention publication-title: J Nutr – volume: 18 start-page: 240 year: 2009 end-page: 250 ident: bib21 article-title: Validity and reproducibility of a food frequency Questionnaire among Chinese women in Guangdong province publication-title: Asia Pac J Clin Nutr – volume: 14 start-page: 176 year: 2020 end-page: 185 ident: bib3 article-title: Ceramides and risk of major adverse cardiovascular events: a meta-analysis of longitudinal studies publication-title: J Clin Lipidol – volume: 81 start-page: 1012 year: 2005 end-page: 1017 ident: bib22 article-title: Longitudinal study of soy food intake and blood pressure among middle-aged and elderly Chinese women publication-title: Am J Clin Nutr – volume: 10 start-page: 155 year: 2004 end-page: 160 ident: bib35 article-title: PAF-mediated pulmonary edema: a new role for acid sphingomyelinase and ceramide publication-title: Nat Med – volume: 365 start-page: 386 year: 2019 end-page: 392 ident: bib10 article-title: Targeting a ceramide double bond improves insulin resistance and hepatic steatosis publication-title: Science – volume: 101 start-page: 905 year: 1998 end-page: 912 ident: bib30 article-title: Increased sphingomyelin content of plasma lipoproteins in apolipoprotein E knockout mice reflects combined production and catabolic defects and enhances reactivity with mammalian sphingomyelinase publication-title: J Clin Invest – volume: 282 start-page: 14868 year: 2007 end-page: 14874 ident: bib46 article-title: Enhanced apoA-I-dependent cholesterol efflux by ABCA1 from sphingomyelin-deficient Chinese hamster ovary cells publication-title: J Biol Chem – volume: 8 start-page: 684 year: 2017 end-page: 693 ident: bib17 article-title: Effects of anthocyanins on cardiometabolic health: a systematic review and meta-analysis of randomized controlled trials publication-title: Adv Nutr – volume: 37 start-page: 1967 year: 2016 end-page: 1976 ident: bib2 article-title: Plasma ceramides predict cardiovascular death in patients with stable coronary artery disease and acute coronary syndromes beyond LDL-cholesterol publication-title: Eur Heart J – volume: 41 start-page: 1732 year: 2018 end-page: 1739 ident: bib12 article-title: Saturated fat is more metabolically harmful for the human liver than unsaturated fat or simple sugars publication-title: Diabetes Care – volume: 105 start-page: 295 year: 2009 end-page: 303 ident: bib47 article-title: Macrophage sphingomyelin synthase 2 deficiency decreases atherosclerosis in mice publication-title: Circ Res – volume: 54 start-page: 4069 year: 2006 end-page: 4075 ident: bib13 article-title: Concentrations of anthocyanins in common foods in the United States and estimation of normal consumption publication-title: J Agric Food Chem – volume: 99 start-page: E2335 year: 2014 end-page: E2340 ident: bib50 article-title: Dose-dependent effects of rosuvastatin on the plasma sphingolipidome and phospholipidome in the metabolic syndrome publication-title: J Clin Endocrinol Metabol – volume: 38 start-page: 98 year: 2018 end-page: 106 ident: bib29 article-title: Cranberry anthocyanin as an herbal medicine lowers plasma cholesterol by increasing excretion of fecal sterols publication-title: Phytomedicine – volume: 26 start-page: 538 year: 2015 end-page: 550 ident: bib6 article-title: Ceramides - lipotoxic inducers of metabolic disorders publication-title: TEM (Trends Endocrinol Metab) – volume: 66 start-page: 613 year: 2017 end-page: 626 ident: bib41 article-title: An intestinal farnesoid X receptor-ceramide signaling Axis modulates hepatic gluconeogenesis in mice publication-title: Diabetes – volume: 6 start-page: 620 year: 2015 end-page: 622 ident: bib51 article-title: Anthocyanins publication-title: Adv Nutr. – volume: 32 start-page: 101474 year: 2020 ident: bib18 article-title: Anthocyanin supplementation improves anti-oxidative and anti-inflammatory capacity in a dose-response manner in subjects with dyslipidemia publication-title: Redox Biol – volume: 52 start-page: 2332 year: 2011 end-page: 2340 ident: bib25 article-title: A sensitive assay for ABCA1-mediated cholesterol efflux using BODIPY-cholesterol publication-title: J Lipid Res – volume: 74 start-page: 145 year: 2019 end-page: 159 ident: bib7 article-title: Ceramide and sphingosine 1-phosphate in adipose dysfunction publication-title: Prog Lipid Res – volume: 38 start-page: 1153 year: 2019 end-page: 1165 ident: bib53 article-title: Effect of anthocyanin supplementation on cardio-metabolic biomarkers: a systematic review and meta-analysis of randomized controlled trials publication-title: Clin Nutr – volume: 318 year: 2020 ident: bib42 article-title: Blueberry proanthocyanidins and anthocyanins improve metabolic health through a gut microbiota-dependent mechanism in diet-induced obese mice publication-title: Am J Physiol Endocrinol Metab – year: 2020 ident: bib55 article-title: Anthocyanin supplementation at different doses improves cholesterol efflux capacity in subjects with dyslipidemia-a randomized controlled trial publication-title: Eur J Clin Nutr – volume: 100 start-page: 2497 year: 2015 end-page: 2501 ident: bib8 article-title: Association of plasma ceramides and sphingomyelin with VLDL apoB-100 fractional catabolic rate before and after rosuvastatin treatment publication-title: J Clin Endocrinol Metabol – volume: 228 start-page: 98 year: 2013 end-page: 109 ident: bib31 article-title: Inhibition of sphingolipid synthesis improves dyslipidemia in the diet-induced hamster model of insulin resistance: evidence for the role of sphingosine and sphinganine in hepatic VLDL-apoB100 overproduction publication-title: Atherosclerosis – volume: 6 start-page: 10166 year: 2015 ident: bib40 article-title: Intestine-selective farnesoid X receptor inhibition improves obesity-related metabolic dysfunction publication-title: Nat Commun – volume: 57 start-page: 1524 year: 2011 end-page: 1533 ident: bib54 article-title: Purified anthocyanin supplementation improves endothelial function via NO-cGMP activation in hypercholesterolemic individuals publication-title: Clin Chem – volume: 135 start-page: 2028 year: 2017 end-page: 2040 ident: bib11 article-title: Plasma Ceramides, Mediterranean Diet, and Incident Cardiovascular Disease in the PREDIMED Trial (Prevención con Dieta Mediterránea) publication-title: Circulation – volume: 150 start-page: 1214 year: 2020 end-page: 1222 ident: bib4 article-title: Plasma ceramide species are associated with diabetes risk in participants of the strong heart study publication-title: J Nutr – volume: 44 start-page: 143 year: 2018 end-page: 149 ident: bib49 article-title: Fenofibrate decreases plasma ceramide in type 2 diabetes patients: a novel marker of CVD? publication-title: Diabetes Metab – volume: 278 start-page: 40121 year: 2003 end-page: 40127 ident: bib45 article-title: Ceramide enhances cholesterol efflux to apolipoprotein A-I by increasing the cell surface presence of ATP-binding cassette transporter A1 publication-title: J Biol Chem – volume: 61 start-page: 1424 year: 2018 end-page: 1434 ident: bib5 article-title: Ceramide stearic to palmitic acid ratio predicts incident diabetes publication-title: Diabetologia – volume: 151 start-page: 845 year: 2016 end-page: 859 ident: bib38 article-title: An intestinal microbiota-farnesoid X receptor Axis modulates metabolic disease publication-title: Gastroenterology – volume: 278 start-page: 3937 year: 2003 end-page: 3947 ident: bib33 article-title: Platelet-activating factor acetylhydrolase, and not paraoxonase-1, is the oxidized phospholipid hydrolase of high density lipoprotein particles publication-title: J Biol Chem – volume: 11 start-page: 224 year: 2020 end-page: 236 ident: bib52 article-title: Recent research on the health benefits of blueberries and their anthocyanins publication-title: Adv Nutr – volume: 125 start-page: 386 year: 2015 end-page: 402 ident: bib39 article-title: Intestinal farnesoid X receptor signaling promotes nonalcoholic fatty liver disease publication-title: J Clin Invest – volume: 41 start-page: 371 year: 2020 end-page: 380 ident: bib1 article-title: Development and validation of a ceramide- and phospholipid-based cardiovascular risk estimation score for coronary artery disease patients publication-title: Eur Heart J – volume: 8 start-page: 19 year: 2009 ident: bib34 article-title: Lipoprotein-associated phospholipase A2 (Lp-PLA2) activity, platelet-activating factor acetylhydrolase (PAF-AH) in leukocytes and body composition in healthy adults publication-title: Lipids Health Dis – volume: 27 start-page: 1636 year: 2006 end-page: 1644 ident: bib37 article-title: Curcumin mediates ceramide generation via the de novo pathway in colon cancer cells publication-title: Carcinogenesis – volume: 104 start-page: 587 year: 2016 end-page: 594 ident: bib15 article-title: Habitual intake of anthocyanins and flavanones and risk of cardiovascular disease in men publication-title: Am J Clin Nutr – volume: 408 start-page: 3475 year: 2016 end-page: 3483 ident: bib23 article-title: Development and validation of a high-throughput LC-MS/MS assay for routine measurement of molecular ceramides publication-title: Anal Bioanal Chem – volume: 56 start-page: 251 year: 2007 end-page: 259 ident: bib44 article-title: Reverse cholesterol transport is regulated by varying fatty acyl chain saturation and sphingomyelin content in reconstituted high-density lipoproteins publication-title: Metab Clin Exp – volume: 58 start-page: 337 year: 2009 end-page: 343 ident: bib48 article-title: Plasma ceramides are elevated in obese subjects with type 2 diabetes and correlate with the severity of insulin resistance publication-title: Diabetes – volume: 108 start-page: 49 year: 2018 end-page: 61 ident: bib16 article-title: Polyphenol exposure and risk of type 2 diabetes: dose-response meta-analyses and systematic review of prospective cohort studies publication-title: Am J Clin Nutr – volume: 90 start-page: 485 year: 2009 end-page: 492 ident: bib20 article-title: Anthocyanin supplementation improves serum LDL- and HDL-cholesterol concentrations associated with the inhibition of cholesteryl ester transfer protein in dyslipidemic subjects publication-title: Am J Clin Nutr – volume: 127 start-page: 188 year: 2013 end-page: 196 ident: bib14 article-title: High anthocyanin intake is associated with a reduced risk of myocardial infarction in young and middle-aged women publication-title: Circulation – volume: 111 start-page: 967 year: 2012 end-page: 981 ident: bib43 article-title: Gut microbiota metabolism of anthocyanin promotes reverse cholesterol transport in mice via repressing miRNA-10b publication-title: Circ Res – volume: 99 start-page: E45 year: 2014 end-page: E52 ident: bib26 article-title: Molecular lipids identify cardiovascular risk and are efficiently lowered by simvastatin and PCSK9 deficiency publication-title: J Clin Endocrinol Metabol – volume: 99 start-page: 561 year: 2014 end-page: 569 ident: bib19 article-title: Anthocyanin supplementation improves HDL-associated paraoxonase 1 activity and enhances cholesterol efflux capacity in subjects with hypercholesterolemia publication-title: J Clin Endocrinol Metabol – volume: 64 year: 2020 ident: bib28 article-title: Dietary supplementation of black rice anthocyanin extract regulates cholesterol metabolism and improves gut microbiota dysbiosis in C57BL/6J mice fed a high-fat and cholesterol diet publication-title: Mol Nutr Food Res – volume: 38 start-page: 2854 year: 2018 end-page: 2861 ident: bib24 article-title: Association of plasma ceramides with myocardial perfusion in patients with coronary artery disease undergoing stress myocardial perfusion scintigraphy publication-title: Arterioscler Thromb Vasc Biol – volume: 73 start-page: 725 year: 2007 end-page: 730 ident: bib36 article-title: Curcumin decreases acid sphingomyelinase activity in colon cancer Caco-2 cells publication-title: Planta Med – volume: 59 start-page: 2453 year: 2010 end-page: 2464 ident: bib9 article-title: Inhibition of de novo ceramide synthesis reverses diet-induced insulin resistance and enhances whole-body oxygen consumption publication-title: Diabetes – volume: 14 start-page: 176 issue: 2 year: 2020 ident: 10.1016/j.clnu.2020.10.014_bib3 article-title: Ceramides and risk of major adverse cardiovascular events: a meta-analysis of longitudinal studies publication-title: J Clin Lipidol doi: 10.1016/j.jacl.2020.01.005 – volume: 318 issue: 6 year: 2020 ident: 10.1016/j.clnu.2020.10.014_bib42 article-title: Blueberry proanthocyanidins and anthocyanins improve metabolic health through a gut microbiota-dependent mechanism in diet-induced obese mice publication-title: Am J Physiol Endocrinol Metab doi: 10.1152/ajpendo.00560.2019 – volume: 61 start-page: 1424 issue: 6 year: 2018 ident: 10.1016/j.clnu.2020.10.014_bib5 article-title: Ceramide stearic to palmitic acid ratio predicts incident diabetes publication-title: Diabetologia doi: 10.1007/s00125-018-4590-6 – volume: 146 start-page: 662 issue: 4 year: 2015 ident: 10.1016/j.clnu.2020.10.014_bib32 article-title: A healthy nordic diet alters the plasma lipidomic profile in adults with features of metabolic syndrome in a multicenter randomized dietary intervention publication-title: J Nutr – volume: 28 start-page: 506 issue: 7 year: 2017 ident: 10.1016/j.clnu.2020.10.014_bib27 article-title: Sphingolipids and lipoproteins in health and metabolic disorders publication-title: TEM (Trends Endocrinol Metab) doi: 10.1016/j.tem.2017.03.005 – volume: 278 start-page: 40121 issue: 41 year: 2003 ident: 10.1016/j.clnu.2020.10.014_bib45 article-title: Ceramide enhances cholesterol efflux to apolipoprotein A-I by increasing the cell surface presence of ATP-binding cassette transporter A1 publication-title: J Biol Chem doi: 10.1074/jbc.M305193200 – volume: 74 start-page: 145 year: 2019 ident: 10.1016/j.clnu.2020.10.014_bib7 article-title: Ceramide and sphingosine 1-phosphate in adipose dysfunction publication-title: Prog Lipid Res doi: 10.1016/j.plipres.2019.04.001 – volume: 90 start-page: 485 issue: 3 year: 2009 ident: 10.1016/j.clnu.2020.10.014_bib20 article-title: Anthocyanin supplementation improves serum LDL- and HDL-cholesterol concentrations associated with the inhibition of cholesteryl ester transfer protein in dyslipidemic subjects publication-title: Am J Clin Nutr doi: 10.3945/ajcn.2009.27814 – volume: 408 start-page: 3475 issue: 13 year: 2016 ident: 10.1016/j.clnu.2020.10.014_bib23 article-title: Development and validation of a high-throughput LC-MS/MS assay for routine measurement of molecular ceramides publication-title: Anal Bioanal Chem doi: 10.1007/s00216-016-9425-z – volume: 32 start-page: 101474 year: 2020 ident: 10.1016/j.clnu.2020.10.014_bib18 article-title: Anthocyanin supplementation improves anti-oxidative and anti-inflammatory capacity in a dose-response manner in subjects with dyslipidemia publication-title: Redox Biol doi: 10.1016/j.redox.2020.101474 – volume: 26 start-page: 538 issue: 10 year: 2015 ident: 10.1016/j.clnu.2020.10.014_bib6 article-title: Ceramides - lipotoxic inducers of metabolic disorders publication-title: TEM (Trends Endocrinol Metab) doi: 10.1016/j.tem.2015.07.006 – volume: 81 start-page: 1012 issue: 5 year: 2005 ident: 10.1016/j.clnu.2020.10.014_bib22 article-title: Longitudinal study of soy food intake and blood pressure among middle-aged and elderly Chinese women publication-title: Am J Clin Nutr doi: 10.1093/ajcn/81.5.1012 – volume: 125 start-page: 386 issue: 1 year: 2015 ident: 10.1016/j.clnu.2020.10.014_bib39 article-title: Intestinal farnesoid X receptor signaling promotes nonalcoholic fatty liver disease publication-title: J Clin Invest doi: 10.1172/JCI76738 – volume: 41 start-page: 371 issue: 3 year: 2020 ident: 10.1016/j.clnu.2020.10.014_bib1 article-title: Development and validation of a ceramide- and phospholipid-based cardiovascular risk estimation score for coronary artery disease patients publication-title: Eur Heart J doi: 10.1093/eurheartj/ehz387 – volume: 150 start-page: 1214 issue: 5 year: 2020 ident: 10.1016/j.clnu.2020.10.014_bib4 article-title: Plasma ceramide species are associated with diabetes risk in participants of the strong heart study publication-title: J Nutr – volume: 99 start-page: 561 issue: 2 year: 2014 ident: 10.1016/j.clnu.2020.10.014_bib19 article-title: Anthocyanin supplementation improves HDL-associated paraoxonase 1 activity and enhances cholesterol efflux capacity in subjects with hypercholesterolemia publication-title: J Clin Endocrinol Metabol doi: 10.1210/jc.2013-2845 – volume: 104 start-page: 587 issue: 3 year: 2016 ident: 10.1016/j.clnu.2020.10.014_bib15 article-title: Habitual intake of anthocyanins and flavanones and risk of cardiovascular disease in men publication-title: Am J Clin Nutr doi: 10.3945/ajcn.116.133132 – volume: 111 start-page: 967 issue: 8 year: 2012 ident: 10.1016/j.clnu.2020.10.014_bib43 article-title: Gut microbiota metabolism of anthocyanin promotes reverse cholesterol transport in mice via repressing miRNA-10b publication-title: Circ Res doi: 10.1161/CIRCRESAHA.112.266502 – volume: 38 start-page: 98 year: 2018 ident: 10.1016/j.clnu.2020.10.014_bib29 article-title: Cranberry anthocyanin as an herbal medicine lowers plasma cholesterol by increasing excretion of fecal sterols publication-title: Phytomedicine doi: 10.1016/j.phymed.2017.11.008 – volume: 6 start-page: 620 issue: 5 year: 2015 ident: 10.1016/j.clnu.2020.10.014_bib51 article-title: Anthocyanins publication-title: Adv Nutr. doi: 10.3945/an.115.009233 – volume: 151 start-page: 845 issue: 5 year: 2016 ident: 10.1016/j.clnu.2020.10.014_bib38 article-title: An intestinal microbiota-farnesoid X receptor Axis modulates metabolic disease publication-title: Gastroenterology doi: 10.1053/j.gastro.2016.08.057 – volume: 66 start-page: 613 issue: 3 year: 2017 ident: 10.1016/j.clnu.2020.10.014_bib41 article-title: An intestinal farnesoid X receptor-ceramide signaling Axis modulates hepatic gluconeogenesis in mice publication-title: Diabetes doi: 10.2337/db16-0663 – volume: 365 start-page: 386 issue: 6451 year: 2019 ident: 10.1016/j.clnu.2020.10.014_bib10 article-title: Targeting a ceramide double bond improves insulin resistance and hepatic steatosis publication-title: Science doi: 10.1126/science.aav3722 – volume: 18 start-page: 240 issue: 2 year: 2009 ident: 10.1016/j.clnu.2020.10.014_bib21 article-title: Validity and reproducibility of a food frequency Questionnaire among Chinese women in Guangdong province publication-title: Asia Pac J Clin Nutr – year: 2020 ident: 10.1016/j.clnu.2020.10.014_bib55 article-title: Anthocyanin supplementation at different doses improves cholesterol efflux capacity in subjects with dyslipidemia-a randomized controlled trial publication-title: Eur J Clin Nutr – volume: 10 start-page: 155 issue: 2 year: 2004 ident: 10.1016/j.clnu.2020.10.014_bib35 article-title: PAF-mediated pulmonary edema: a new role for acid sphingomyelinase and ceramide publication-title: Nat Med doi: 10.1038/nm977 – volume: 282 start-page: 14868 issue: 20 year: 2007 ident: 10.1016/j.clnu.2020.10.014_bib46 article-title: Enhanced apoA-I-dependent cholesterol efflux by ABCA1 from sphingomyelin-deficient Chinese hamster ovary cells publication-title: J Biol Chem doi: 10.1074/jbc.M611230200 – volume: 101 start-page: 905 issue: 4 year: 1998 ident: 10.1016/j.clnu.2020.10.014_bib30 article-title: Increased sphingomyelin content of plasma lipoproteins in apolipoprotein E knockout mice reflects combined production and catabolic defects and enhances reactivity with mammalian sphingomyelinase publication-title: J Clin Invest doi: 10.1172/JCI870 – volume: 54 start-page: 4069 issue: 11 year: 2006 ident: 10.1016/j.clnu.2020.10.014_bib13 article-title: Concentrations of anthocyanins in common foods in the United States and estimation of normal consumption publication-title: J Agric Food Chem doi: 10.1021/jf060300l – volume: 57 start-page: 1524 issue: 11 year: 2011 ident: 10.1016/j.clnu.2020.10.014_bib54 article-title: Purified anthocyanin supplementation improves endothelial function via NO-cGMP activation in hypercholesterolemic individuals publication-title: Clin Chem doi: 10.1373/clinchem.2011.167361 – volume: 37 start-page: 1967 issue: 25 year: 2016 ident: 10.1016/j.clnu.2020.10.014_bib2 article-title: Plasma ceramides predict cardiovascular death in patients with stable coronary artery disease and acute coronary syndromes beyond LDL-cholesterol publication-title: Eur Heart J doi: 10.1093/eurheartj/ehw148 – volume: 38 start-page: 1153 issue: 3 year: 2019 ident: 10.1016/j.clnu.2020.10.014_bib53 article-title: Effect of anthocyanin supplementation on cardio-metabolic biomarkers: a systematic review and meta-analysis of randomized controlled trials publication-title: Clin Nutr doi: 10.1016/j.clnu.2018.06.979 – volume: 135 start-page: 2028 issue: 21 year: 2017 ident: 10.1016/j.clnu.2020.10.014_bib11 article-title: Plasma Ceramides, Mediterranean Diet, and Incident Cardiovascular Disease in the PREDIMED Trial (Prevención con Dieta Mediterránea) publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.116.024261 – volume: 8 start-page: 684 issue: 5 year: 2017 ident: 10.1016/j.clnu.2020.10.014_bib17 article-title: Effects of anthocyanins on cardiometabolic health: a systematic review and meta-analysis of randomized controlled trials publication-title: Adv Nutr doi: 10.3945/an.116.014852 – volume: 278 start-page: 3937 issue: 6 year: 2003 ident: 10.1016/j.clnu.2020.10.014_bib33 article-title: Platelet-activating factor acetylhydrolase, and not paraoxonase-1, is the oxidized phospholipid hydrolase of high density lipoprotein particles publication-title: J Biol Chem doi: 10.1074/jbc.M211126200 – volume: 41 start-page: 1732 issue: 8 year: 2018 ident: 10.1016/j.clnu.2020.10.014_bib12 article-title: Saturated fat is more metabolically harmful for the human liver than unsaturated fat or simple sugars publication-title: Diabetes Care doi: 10.2337/dc18-0071 – volume: 58 start-page: 337 issue: 2 year: 2009 ident: 10.1016/j.clnu.2020.10.014_bib48 article-title: Plasma ceramides are elevated in obese subjects with type 2 diabetes and correlate with the severity of insulin resistance publication-title: Diabetes doi: 10.2337/db08-1228 – volume: 100 start-page: 2497 issue: 6 year: 2015 ident: 10.1016/j.clnu.2020.10.014_bib8 article-title: Association of plasma ceramides and sphingomyelin with VLDL apoB-100 fractional catabolic rate before and after rosuvastatin treatment publication-title: J Clin Endocrinol Metabol doi: 10.1210/jc.2014-4348 – volume: 99 start-page: E45 issue: 1 year: 2014 ident: 10.1016/j.clnu.2020.10.014_bib26 article-title: Molecular lipids identify cardiovascular risk and are efficiently lowered by simvastatin and PCSK9 deficiency publication-title: J Clin Endocrinol Metabol doi: 10.1210/jc.2013-2559 – volume: 44 start-page: 143 issue: 2 year: 2018 ident: 10.1016/j.clnu.2020.10.014_bib49 article-title: Fenofibrate decreases plasma ceramide in type 2 diabetes patients: a novel marker of CVD? publication-title: Diabetes Metab doi: 10.1016/j.diabet.2017.04.003 – volume: 64 issue: 8 year: 2020 ident: 10.1016/j.clnu.2020.10.014_bib28 article-title: Dietary supplementation of black rice anthocyanin extract regulates cholesterol metabolism and improves gut microbiota dysbiosis in C57BL/6J mice fed a high-fat and cholesterol diet publication-title: Mol Nutr Food Res doi: 10.1002/mnfr.201900876 – volume: 108 start-page: 49 issue: 1 year: 2018 ident: 10.1016/j.clnu.2020.10.014_bib16 article-title: Polyphenol exposure and risk of type 2 diabetes: dose-response meta-analyses and systematic review of prospective cohort studies publication-title: Am J Clin Nutr doi: 10.1093/ajcn/nqy083 – volume: 27 start-page: 1636 issue: 8 year: 2006 ident: 10.1016/j.clnu.2020.10.014_bib37 article-title: Curcumin mediates ceramide generation via the de novo pathway in colon cancer cells publication-title: Carcinogenesis doi: 10.1093/carcin/bgi371 – volume: 228 start-page: 98 issue: 1 year: 2013 ident: 10.1016/j.clnu.2020.10.014_bib31 article-title: Inhibition of sphingolipid synthesis improves dyslipidemia in the diet-induced hamster model of insulin resistance: evidence for the role of sphingosine and sphinganine in hepatic VLDL-apoB100 overproduction publication-title: Atherosclerosis doi: 10.1016/j.atherosclerosis.2013.01.041 – volume: 8 start-page: 19 year: 2009 ident: 10.1016/j.clnu.2020.10.014_bib34 article-title: Lipoprotein-associated phospholipase A2 (Lp-PLA2) activity, platelet-activating factor acetylhydrolase (PAF-AH) in leukocytes and body composition in healthy adults publication-title: Lipids Health Dis doi: 10.1186/1476-511X-8-19 – volume: 105 start-page: 295 issue: 3 year: 2009 ident: 10.1016/j.clnu.2020.10.014_bib47 article-title: Macrophage sphingomyelin synthase 2 deficiency decreases atherosclerosis in mice publication-title: Circ Res doi: 10.1161/CIRCRESAHA.109.194613 – volume: 38 start-page: 2854 issue: 12 year: 2018 ident: 10.1016/j.clnu.2020.10.014_bib24 article-title: Association of plasma ceramides with myocardial perfusion in patients with coronary artery disease undergoing stress myocardial perfusion scintigraphy publication-title: Arterioscler Thromb Vasc Biol doi: 10.1161/ATVBAHA.118.311927 – volume: 11 start-page: 224 issue: 2 year: 2020 ident: 10.1016/j.clnu.2020.10.014_bib52 article-title: Recent research on the health benefits of blueberries and their anthocyanins publication-title: Adv Nutr doi: 10.1093/advances/nmz065 – volume: 6 start-page: 10166 year: 2015 ident: 10.1016/j.clnu.2020.10.014_bib40 article-title: Intestine-selective farnesoid X receptor inhibition improves obesity-related metabolic dysfunction publication-title: Nat Commun doi: 10.1038/ncomms10166 – volume: 99 start-page: E2335 issue: 11 year: 2014 ident: 10.1016/j.clnu.2020.10.014_bib50 article-title: Dose-dependent effects of rosuvastatin on the plasma sphingolipidome and phospholipidome in the metabolic syndrome publication-title: J Clin Endocrinol Metabol doi: 10.1210/jc.2014-1665 – volume: 59 start-page: 2453 issue: 10 year: 2010 ident: 10.1016/j.clnu.2020.10.014_bib9 article-title: Inhibition of de novo ceramide synthesis reverses diet-induced insulin resistance and enhances whole-body oxygen consumption publication-title: Diabetes doi: 10.2337/db09-1293 – volume: 56 start-page: 251 issue: 2 year: 2007 ident: 10.1016/j.clnu.2020.10.014_bib44 article-title: Reverse cholesterol transport is regulated by varying fatty acyl chain saturation and sphingomyelin content in reconstituted high-density lipoproteins publication-title: Metab Clin Exp doi: 10.1016/j.metabol.2006.09.021 – volume: 127 start-page: 188 issue: 2 year: 2013 ident: 10.1016/j.clnu.2020.10.014_bib14 article-title: High anthocyanin intake is associated with a reduced risk of myocardial infarction in young and middle-aged women publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.112.122408 – volume: 52 start-page: 2332 issue: 12 year: 2011 ident: 10.1016/j.clnu.2020.10.014_bib25 article-title: A sensitive assay for ABCA1-mediated cholesterol efflux using BODIPY-cholesterol publication-title: J Lipid Res doi: 10.1194/jlr.D018051 – volume: 73 start-page: 725 issue: 8 year: 2007 ident: 10.1016/j.clnu.2020.10.014_bib36 article-title: Curcumin decreases acid sphingomyelinase activity in colon cancer Caco-2 cells publication-title: Planta Med doi: 10.1055/s-2007-981540 |
SSID | ssj0005378 |
Score | 2.423731 |
Snippet | Plasma ceramides have been identified as novel risk factors for metabolic and cardiovascular diseases. We aimed to evaluate the effects of dietary anthocyanins... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1871 |
SubjectTerms | Anthocyanin anthocyanins apolipoprotein B blood lipids cardiovascular diseases Ceramide ceramides Cholesterol clinical nutrition Dyslipidemia hyperlipidemia Lipoprotein Metabolism placebos randomized clinical trials risk factors |
Title | Dose-dependent reductions in plasma ceramides after anthocyanin supplementation are associated with improvements in plasma lipids and cholesterol efflux capacity in dyslipidemia: A randomized controlled trial |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0261561420305422 https://dx.doi.org/10.1016/j.clnu.2020.10.014 https://www.ncbi.nlm.nih.gov/pubmed/33131908 https://www.proquest.com/docview/2456856996 https://www.proquest.com/docview/2498257977 |
Volume | 40 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhhdJLadPX9hFUKL0UZ1eW7JV7W5KGbUv20gZyM3qMwcHrXfYBTQ_9jf1JnZHlJT1kCz3ZiBm_ZjwPafQNY--0tib1QieqsiZRXmeJzQqXGKONlIV02tF8x8Usn16qL1fZ1QE77ffCUFlltP2dTQ_WOo4M49ccLut6-I2yB8KxTElnVUp2mNDrUKdPft0q85CdNaZ5FqKOG2e6Gi_XtFvMEVMaOBkJdZdzuiv4DE7o_BF7GKNHPuke8DE7gPaIDc5q2PD3PEJ8NnzWI-wfsfsXce38Cft9tlhD0je93fAVgbYGreN1y5cYRc8Nd7Ay89rDmofm4dwQtoC7MS2SrKkBaFdsTmzcrICbKF3wnGZ0eR3mKALR7cs29bL2eM3WczK3AZ1h0XCoqmb7gzt02A6zAWLwN-tADPPafOQTjq7UL-b1T7xBrKpv8DT0GnnKLs8_fT-dJrGfQ-KUGm0SZXLMtrySY4PHNJcisxaUl4UX4LUXuU0LKIS1Y-mEc1A5DCjGYCufeo2-9hk7bBctvGActM0NqJGzmO4pV1mCrRPg_MhDrjIxYKIXZOki2Dn13GjKvqrtuiThlyR8GkPhD9iHHc-yg_rYSy17_Sj7Taxodkv0RHu5sh3XX2r-T763vQqW-P_Too5pYbFdl7RwrbMc09Z9NIVG04yh_oA97_R394ZSCrTCI_3yP5_sFXuQUplPKGZ6zQ43qy28wThtY4_Dj3jM7k0-f53O_gDjrEMD |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF5VqQRcEJRXeC4S4oJMst61s-YWtVQpbXKhlXqz9jGWjBwnykOi_Ep-EjP2OsChQeIUa7XjOJnxNzO7s98w9k5ra2IvdKQKayLldRLZJHORMdpImUmnHa13TGfp5Ep9uU6uD9hxdxaGyioD9reY3qB1GBmEf3OwLMvBV8oeiMcyJptVMeLwIbFTqR47HJ-dT2a_Kz1kC8i01EIC4exMW-blqnqLaWJMAx-HQt3mn26LPxs_dPqA3Q8BJB-3z_iQHUB9xPonJWz4ex5YPis-60j2j9idadg-f8R-nizWEHV9bzd8RbytjeHxsuZLDKTnhjtYmXnpYc2b_uHcEL2AuzE1TllTD9C23pzEuFkBN0HB4Dkt6vKyWaZoJv1526pclh7vWXtOiNsQNCwqDkVRbb9zhz7bYUJAAv5m3UyGeWk-8TFHb-oX8_IHfkEorK_wsmk38phdnX6-PJ5EoaVD5JQabiJlUky4vJIjg59xKkViLSgvMy_Aay9SG2eQCWtH0gnnoHAYU4zAFj72Gt3tE9arFzU8Yxy0TQ2oobOY8SlXWGKuE-D80EOqEtFnolNk7gLfObXdqPKusO1bTsrPSfk0hsrvsw87mWXL9rF3tuzsI-_OsSLy5uiM9kolO6m_LP2fcm87E8wRAmhfx9Sw2K5z2rvWSYqZ6745mUZ0xmi_z5629rv7hVIKBOKhfv6fT_aG3Z1cTi_yi7PZ-Qt2L6aqn6a26SXrbVZbeIVh28a-Dq_lL8PLRbQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dose-dependent+reductions+in+plasma+ceramides+after+anthocyanin+supplementation+are+associated+with+improvements+in+plasma+lipids+and+cholesterol+efflux+capacity+in+dyslipidemia%3A+A+randomized+controlled+trial&rft.jtitle=Clinical+nutrition+%28Edinburgh%2C+Scotland%29&rft.au=Zhao%2C+Yimin&rft.au=Xu%2C+Huihui&rft.au=Tian%2C+Zezhong&rft.au=Wang%2C+Xu&rft.date=2021-04-01&rft.issn=0261-5614&rft.volume=40&rft.issue=4+p.1871-1878&rft.spage=1871&rft.epage=1878&rft_id=info:doi/10.1016%2Fj.clnu.2020.10.014&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0261-5614&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0261-5614&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0261-5614&client=summon |