Hydrogen sulfide alleviates 2,4-dichlorophenol toxicity and promotes its degradation in Phanerochaete chrysosporium
•H2S alleviated 2,4-DCP toxicity and improved its degradation by P. chrysosporium.•H2S shortened the time required for 2,4-DCP complete degradation.•H2S alleviated 2,4-DCP caused oxidative stress and improved cell viability. In this study, the H2S donor, sodium hydrosulfide (NaHS) was used to pretre...
Saved in:
Published in | Chemosphere (Oxford) Vol. 109; pp. 208 - 212 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Kidlington
Elsevier Ltd
01.08.2014
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •H2S alleviated 2,4-DCP toxicity and improved its degradation by P. chrysosporium.•H2S shortened the time required for 2,4-DCP complete degradation.•H2S alleviated 2,4-DCP caused oxidative stress and improved cell viability.
In this study, the H2S donor, sodium hydrosulfide (NaHS) was used to pretreat Phanerochaete chrysosporium in order to improve its ability to degrade 2,4-dichlorophenol (2,4-DCP). When pretreated with 100μM NaHS, P. chrysosporium was able to degrade 2,4-DCP completely in 24h, whereas the degradation efficiency of the untreated control was only 57%. The 2,4-DCP-induced oxidative stress was alleviated by NaHS, and the percentage of surviving cells increased by 32%. H2S or HS−, rather than other compounds derived from NaHS, were responsible for promoting 2,4-DCP degradation by P. chrysosporium. The results of this study suggest that H2S treatment is a potential strategy to alleviate environmental stress and improve the efficiency of the biological removal of pollutants from wastewater. |
---|---|
AbstractList | •H2S alleviated 2,4-DCP toxicity and improved its degradation by P. chrysosporium.•H2S shortened the time required for 2,4-DCP complete degradation.•H2S alleviated 2,4-DCP caused oxidative stress and improved cell viability.
In this study, the H2S donor, sodium hydrosulfide (NaHS) was used to pretreat Phanerochaete chrysosporium in order to improve its ability to degrade 2,4-dichlorophenol (2,4-DCP). When pretreated with 100μM NaHS, P. chrysosporium was able to degrade 2,4-DCP completely in 24h, whereas the degradation efficiency of the untreated control was only 57%. The 2,4-DCP-induced oxidative stress was alleviated by NaHS, and the percentage of surviving cells increased by 32%. H2S or HS−, rather than other compounds derived from NaHS, were responsible for promoting 2,4-DCP degradation by P. chrysosporium. The results of this study suggest that H2S treatment is a potential strategy to alleviate environmental stress and improve the efficiency of the biological removal of pollutants from wastewater. In this study, the H2S donor, sodium hydrosulfide (NaHS) was used to pretreat Phanerochaete chrysosporium in order to improve its ability to degrade 2,4-dichlorophenol (2,4-DCP). When pretreated with 100μM NaHS, P. chrysosporium was able to degrade 2,4-DCP completely in 24h, whereas the degradation efficiency of the untreated control was only 57%. The 2,4-DCP-induced oxidative stress was alleviated by NaHS, and the percentage of surviving cells increased by 32%. H2S or HS−, rather than other compounds derived from NaHS, were responsible for promoting 2,4-DCP degradation by P. chrysosporium. The results of this study suggest that H2S treatment is a potential strategy to alleviate environmental stress and improve the efficiency of the biological removal of pollutants from wastewater. In this study, the H2S donor, sodium hydrosulfide (NaHS) was used to pretreat Phanerochaete chrysosporium in order to improve its ability to degrade 2,4-dichlorophenol (2,4-DCP). When pretreated with 100μM NaHS, P. chrysosporium was able to degrade 2,4-DCP completely in 24h, whereas the degradation efficiency of the untreated control was only 57%. The 2,4-DCP-induced oxidative stress was alleviated by NaHS, and the percentage of surviving cells increased by 32%. H2S or HS(-), rather than other compounds derived from NaHS, were responsible for promoting 2,4-DCP degradation by P. chrysosporium. The results of this study suggest that H2S treatment is a potential strategy to alleviate environmental stress and improve the efficiency of the biological removal of pollutants from wastewater. In this study, the H2S donor, sodium hydrosulfide (NaHS) was used to pretreat Phanerochaete chrysosporium in order to improve its ability to degrade 2,4-dichlorophenol (2,4-DCP). When pretreated with 100μM NaHS, P. chrysosporium was able to degrade 2,4-DCP completely in 24h, whereas the degradation efficiency of the untreated control was only 57%. The 2,4-DCP-induced oxidative stress was alleviated by NaHS, and the percentage of surviving cells increased by 32%. H2S or HS(-), rather than other compounds derived from NaHS, were responsible for promoting 2,4-DCP degradation by P. chrysosporium. The results of this study suggest that H2S treatment is a potential strategy to alleviate environmental stress and improve the efficiency of the biological removal of pollutants from wastewater.In this study, the H2S donor, sodium hydrosulfide (NaHS) was used to pretreat Phanerochaete chrysosporium in order to improve its ability to degrade 2,4-dichlorophenol (2,4-DCP). When pretreated with 100μM NaHS, P. chrysosporium was able to degrade 2,4-DCP completely in 24h, whereas the degradation efficiency of the untreated control was only 57%. The 2,4-DCP-induced oxidative stress was alleviated by NaHS, and the percentage of surviving cells increased by 32%. H2S or HS(-), rather than other compounds derived from NaHS, were responsible for promoting 2,4-DCP degradation by P. chrysosporium. The results of this study suggest that H2S treatment is a potential strategy to alleviate environmental stress and improve the efficiency of the biological removal of pollutants from wastewater. |
Author | Lu, Lunhui Chen, Ming Zeng, Guangming Hu, Xinjiang Guo, Zhi Shang, Cui Zuo, Yanan Chen, Guiqiu Yan, Ming Chen, Anwei Zhang, Chang |
Author_xml | – sequence: 1 givenname: Anwei surname: Chen fullname: Chen, Anwei – sequence: 2 givenname: Guangming surname: Zeng fullname: Zeng, Guangming email: zgming@hnu.edu.cn – sequence: 3 givenname: Guiqiu surname: Chen fullname: Chen, Guiqiu email: gqchen@hnu.edu.cn – sequence: 4 givenname: Chang surname: Zhang fullname: Zhang, Chang – sequence: 5 givenname: Ming surname: Yan fullname: Yan, Ming – sequence: 6 givenname: Cui surname: Shang fullname: Shang, Cui – sequence: 7 givenname: Xinjiang surname: Hu fullname: Hu, Xinjiang – sequence: 8 givenname: Lunhui surname: Lu fullname: Lu, Lunhui – sequence: 9 givenname: Ming surname: Chen fullname: Chen, Ming – sequence: 10 givenname: Zhi surname: Guo fullname: Guo, Zhi – sequence: 11 givenname: Yanan surname: Zuo fullname: Zuo, Yanan |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28509245$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/24530160$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkUGP0zAQhS20iO0W_gIKByQOJNhxnDgnhCpgkVaCA5wt1x5vXDl2sZ0V_fe4tCsQp57sw_fezLx3g6588IDQK4Ibgkn_bteoCeaQ9hNEaFpMugaTBvfjE7QifBhr0o78Cq0w7ljdM8qu0U1KO4yLmI3P0HXbMVr-eIXS7UHHcA--SoszVkMlnYMHKzOkqn3b1dqqyYUYyiwfXJXDL6tsPlTS62ofwxyOoM2p0nAfpZbZBl9ZX32bpIcY1CQhQ6WmeEhl4RDtMj9HT410CV6c3zX68enj981tfff185fNh7tadR3ONZUtG6gu5_Vcc0J70xsNHd3SgTNNiGkZhhbaHmPdjQPdluP01mADmA5Gj3SN3px8y54_F0hZzDYpcK5sFpYkCKd9zzjnF6Alr5FRPnQFfXlGl-0MWuyjnWU8iMdMC_D6DMikpDNRemXTX44zPB7hNXp_4lQMKUUwogT7J78cpXWCYHFsW-zEP22LY9sCE1HaLg7jfw6PQy7Rbk5aKA08WIgiKQtegbYRVBY62AtcfgNmVc0p |
CODEN | CMSHAF |
CitedBy_id | crossref_primary_10_1002_jpln_201700262 crossref_primary_10_1063_1_4921313 crossref_primary_10_1016_j_chemosphere_2019_02_190 crossref_primary_10_1016_j_jhazmat_2021_126017 crossref_primary_10_1016_j_jhazmat_2021_125526 crossref_primary_10_1007_s10854_019_01032_6 crossref_primary_10_1016_j_chemosphere_2020_128741 crossref_primary_10_1007_s00253_021_11461_1 crossref_primary_10_1007_s12010_015_1896_4 crossref_primary_10_1016_j_ecoenv_2018_03_071 crossref_primary_10_1039_C5RA09821A crossref_primary_10_1007_s11356_019_07468_x crossref_primary_10_1016_j_cej_2017_07_009 crossref_primary_10_1016_j_micres_2021_126943 crossref_primary_10_1039_C6EN00156D crossref_primary_10_1039_C4RA10637G crossref_primary_10_1016_j_jhazmat_2022_128253 crossref_primary_10_1007_s13738_021_02205_z crossref_primary_10_1039_C4RA10797G crossref_primary_10_1016_j_enmm_2024_100974 crossref_primary_10_1016_j_scitotenv_2021_146132 crossref_primary_10_1016_j_chemosphere_2019_124418 crossref_primary_10_1016_j_ibiod_2020_104965 crossref_primary_10_3390_catal9110891 crossref_primary_10_1080_0144235X_2017_1301030 crossref_primary_10_1016_j_jhazmat_2019_121917 crossref_primary_10_1016_j_chemosphere_2018_10_113 crossref_primary_10_1039_C8EW00562A crossref_primary_10_1039_C8RA09962F crossref_primary_10_1016_j_jes_2015_04_033 crossref_primary_10_1016_j_watcyc_2020_12_001 |
Cites_doi | 10.1016/j.biortech.2009.05.022 10.1021/tx300455k 10.1016/j.chemosphere.2008.12.045 10.1021/es301006j 10.1111/j.1744-7909.2008.00769.x 10.1111/pce.12073 10.1111/j.1744-7909.2010.00946.x 10.1007/BF00738547 10.1091/mbc.e07-06-0610 10.1016/j.chemosphere.2007.01.039 10.1016/j.scitotenv.2003.09.015 10.1146/annurev-pharmtox-010510-100505 10.1016/j.enzmictec.2006.02.006 10.1016/j.ibiod.2006.06.024 10.1016/j.procbio.2005.11.019 10.1007/s00253-011-3313-4 10.1111/j.1399-3054.2006.00638.x 10.1016/S0032-9592(03)00307-8 10.1016/j.biortech.2010.04.062 10.1016/j.chemosphere.2007.05.026 10.1016/j.biortech.2005.11.031 10.1016/j.chemosphere.2011.04.033 10.1016/j.bbrc.2010.11.113 |
ContentType | Journal Article |
Copyright | 2014 Elsevier Ltd 2015 INIST-CNRS Copyright © 2014 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2014 Elsevier Ltd – notice: 2015 INIST-CNRS – notice: Copyright © 2014 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.chemosphere.2014.01.069 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Ecology Applied Sciences |
EISSN | 1879-1298 |
EndPage | 212 |
ExternalDocumentID | 24530160 28509245 10_1016_j_chemosphere_2014_01_069 S0045653514001350 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29B 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABFRF ABFYP ABJNI ABLST ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACRLP ADBBV ADEZE ADMUD AEBSH AEFWE AEKER AENEX AFFNX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMA HMC HVGLF HZ~ H~9 IHE J1W K-O KCYFY KOM LY3 LY9 M41 MO0 MVM N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SCC SCU SDF SDG SDP SEN SEP SES SEW SPCBC SSJ SSZ T5K TWZ WH7 WUQ XPP Y6R ZCG ZMT ZXP ~02 ~G- ~KM AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADXHL AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH IQODW CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c440t-3a2573d20168d8136f6fde43b3785d11f250e2e2600d4973b165dbf0fe037fd93 |
IEDL.DBID | .~1 |
ISSN | 0045-6535 1879-1298 |
IngestDate | Fri Jul 11 02:02:26 EDT 2025 Fri Jul 11 06:09:04 EDT 2025 Thu Apr 03 06:58:08 EDT 2025 Wed Apr 02 07:15:04 EDT 2025 Tue Jul 01 00:45:06 EDT 2025 Thu Apr 24 23:09:32 EDT 2025 Fri Feb 23 02:27:07 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Hydrogen sulfide Degradation 2,4-Dichlorophenol Phanerochaete chrysosporium Oxidative stress Hydrogen Sulfides Pollutant behavior Halophenols Toxicity Tolerance Sodium Hydrogensulfides Chemical degradation Basidiomycota Fungi Waste water purification Degradation product |
Language | English |
License | CC BY 4.0 Copyright © 2014 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c440t-3a2573d20168d8136f6fde43b3785d11f250e2e2600d4973b165dbf0fe037fd93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 24530160 |
PQID | 1530953874 |
PQPubID | 23479 |
PageCount | 5 |
ParticipantIDs | proquest_miscellaneous_1836658889 proquest_miscellaneous_1530953874 pubmed_primary_24530160 pascalfrancis_primary_28509245 crossref_citationtrail_10_1016_j_chemosphere_2014_01_069 crossref_primary_10_1016_j_chemosphere_2014_01_069 elsevier_sciencedirect_doi_10_1016_j_chemosphere_2014_01_069 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-08-01 |
PublicationDateYYYYMMDD | 2014-08-01 |
PublicationDate_xml | – month: 08 year: 2014 text: 2014-08-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Kidlington |
PublicationPlace_xml | – name: Kidlington – name: England |
PublicationTitle | Chemosphere (Oxford) |
PublicationTitleAlternate | Chemosphere |
PublicationYear | 2014 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Dazy, Masfaraud, Férard (b0025) 2009; 75 Ziagova, Liakopoulou-Kyriakides (b0120) 2007; 68 Zeng, Chen, Chen, Hu, Guan, Shang, Lu, Zou (b0105) 2012; 46 Matafonova, Shirapova, Zimmer, Giffhorn, Batoev, Kohring (b0065) 2006; 2006 Quan, Shi, Liu, Wang, Qian (b0070) 2004; 39 Zhang, Hu, Hu, He, Wang, Luo (b0110) 2008; 50 Li, Rose, Moore (b0050) 2011; 51 Jin, Zha, Xu, Wang, Kumaran (b0035) 2011; 84 ATSDR (b0005) 1999 Chen, Zeng, Chen, Fan, Zou, Li, Hu, Long (b0015) 2011; 91 Kirk, Schultz, Connors, Lorenz, Zeikus (b0040) 1978; 117 Yu, Li, Wang, Zhan, Shao (b0100) 2011; 404 Lisjak, Teklic, Wilson, Whiteman, Hancock (b0055) 2013; 36 Ramírez, Gómez, Aroca, Cantero (b0075) 2009; 100 Lei, Yin, Li (b0045) 2006; 127 Chang, Chang, Chen (b0010) 2007; 98 Zhang, Tan, Hu, Wang, Luo, Jones (b0115) 2010; 52 Schüller, Mamnun, Wolfger, Rockwell, Thorner, Kuchler (b0080) 2007; 18 Czaplicka (b0020) 2004; 322 Luo, Wu, Wei, Chen, Tsai, Ho, Lin, Yang, Lin (b0060) 2013; 26 Zilouei, Guieysse, Mattiasson (b0125) 2006; 41 Wang, Liu, Zhang, Gong, Sun, Gao (b0095) 2007; 69 USEPA, 1981. Priority pollutant list. 40 CFR 423, Appendix A. US environmental protection agency, Washington, DC. Díaz, Lopes, Pérez, Fdz-Polanco (b0030) 2010; 101 Stoilova, Krastanova, Stanchev, Daniel, Gerginova, Alexieva (b0085) 2006; 39 Li (10.1016/j.chemosphere.2014.01.069_b0050) 2011; 51 Schüller (10.1016/j.chemosphere.2014.01.069_b0080) 2007; 18 Wang (10.1016/j.chemosphere.2014.01.069_b0095) 2007; 69 Chang (10.1016/j.chemosphere.2014.01.069_b0010) 2007; 98 Matafonova (10.1016/j.chemosphere.2014.01.069_b0065) 2006; 2006 Lei (10.1016/j.chemosphere.2014.01.069_b0045) 2006; 127 Ramírez (10.1016/j.chemosphere.2014.01.069_b0075) 2009; 100 Luo (10.1016/j.chemosphere.2014.01.069_b0060) 2013; 26 Díaz (10.1016/j.chemosphere.2014.01.069_b0030) 2010; 101 Czaplicka (10.1016/j.chemosphere.2014.01.069_b0020) 2004; 322 Zilouei (10.1016/j.chemosphere.2014.01.069_b0125) 2006; 41 Ziagova (10.1016/j.chemosphere.2014.01.069_b0120) 2007; 68 Zeng (10.1016/j.chemosphere.2014.01.069_b0105) 2012; 46 Lisjak (10.1016/j.chemosphere.2014.01.069_b0055) 2013; 36 Kirk (10.1016/j.chemosphere.2014.01.069_b0040) 1978; 117 Zhang (10.1016/j.chemosphere.2014.01.069_b0110) 2008; 50 ATSDR (10.1016/j.chemosphere.2014.01.069_b0005) 1999 10.1016/j.chemosphere.2014.01.069_b0090 Jin (10.1016/j.chemosphere.2014.01.069_b0035) 2011; 84 Yu (10.1016/j.chemosphere.2014.01.069_b0100) 2011; 404 Zhang (10.1016/j.chemosphere.2014.01.069_b0115) 2010; 52 Quan (10.1016/j.chemosphere.2014.01.069_b0070) 2004; 39 Stoilova (10.1016/j.chemosphere.2014.01.069_b0085) 2006; 39 Dazy (10.1016/j.chemosphere.2014.01.069_b0025) 2009; 75 Chen (10.1016/j.chemosphere.2014.01.069_b0015) 2011; 91 |
References_xml | – volume: 26 start-page: 662 year: 2013 end-page: 673 ident: b0060 article-title: Cadmium-based quantum dot induced autophagy formation for cell survival via oxidative stress publication-title: Chem. Res. Toxicol. – volume: 69 start-page: 769 year: 2007 end-page: 775 ident: b0095 article-title: Aerobic granulation for 2,4-dichlorophenol biodegradation in a sequencing batch reactor publication-title: Chemosphere – volume: 117 start-page: 277 year: 1978 end-page: 285 ident: b0040 article-title: Influence of culture parameters on lignin metabolism by publication-title: Arch. Microbiol. – volume: 101 start-page: 7724 year: 2010 end-page: 7730 ident: b0030 article-title: Performance evaluation of oxygen, air and nitrate for the microaerobic removal of hydrogen sulphide in biogas from sludge digestion publication-title: Bioresour. Technol. – volume: 127 start-page: 182 year: 2006 end-page: 191 ident: b0045 article-title: Differences in some morphological, physiological, and biochemical responses to drought stress in two contrasting populations of publication-title: Physiol. Plantarum – volume: 2006 start-page: 209 year: 2006 end-page: 212 ident: b0065 article-title: Degradation of 2,4-dichlorophenol by publication-title: Int. Biodeterior. Biodegr. – volume: 84 start-page: 1506 year: 2011 end-page: 1511 ident: b0035 article-title: Derivation of aquatic predicted no-effect concentration (PNEC) for 2,4-dichlorophenol: comparing native species data with non-native species data publication-title: Chemosphere – volume: 322 start-page: 21 year: 2004 end-page: 39 ident: b0020 article-title: Sources and transformations of chlorophenols in the natural environment publication-title: Sci. Total Environ. – volume: 50 start-page: 1518 year: 2008 end-page: 1529 ident: b0110 article-title: Hydrogen sulfide promotes wheat seed germination and alleviates oxidative damage against copper stress publication-title: J. Integr. Plant Biol. – volume: 75 start-page: 297 year: 2009 end-page: 302 ident: b0025 article-title: Induction of oxidative stress biomarkers associated with heavy metal stress in publication-title: Chemosphere – reference: USEPA, 1981. Priority pollutant list. 40 CFR 423, Appendix A. US environmental protection agency, Washington, DC. – volume: 41 start-page: 1083 year: 2006 end-page: 1089 ident: b0125 article-title: Biological degradation of chlorophenols in packed-bed bioreactors using mixed bacterial consortia publication-title: Process Biochem. – volume: 36 start-page: 1607 year: 2013 end-page: 1616 ident: b0055 article-title: Hydrogen sulfide: environmental factor or signaling molecule? publication-title: Plant Cell Environ. – volume: 91 start-page: 811 year: 2011 end-page: 821 ident: b0015 article-title: Simultaneous cadmium removal and 2,4-dichlorophenol degradation from aqueous solutions by publication-title: Appl. Microbiol. Biotechnol. – volume: 68 start-page: 921 year: 2007 end-page: 927 ident: b0120 article-title: Kinetics of 2,4-dichlorophenol and 4-Cl-m-cresol degradation by publication-title: Chemosphere – volume: 98 start-page: 478 year: 2007 end-page: 483 ident: b0010 article-title: A method for controlling hydrogen sulfide in water by adding solid phase oxygen publication-title: Bioresour. Technol. – volume: 18 start-page: 4932 year: 2007 end-page: 4944 ident: b0080 article-title: Membrane-active compounds activate the transcription factors Pdr1 and Pdr3 connecting pleiotropic drug resistance and membrane lipid homeostasis in publication-title: Mol. Biol. Cell – volume: 52 start-page: 556 year: 2010 end-page: 567 ident: b0115 article-title: Hydrogen sulfide alleviates aluminum toxicity in germinating wheat seedlings publication-title: J. Integr. Plant Biol. – volume: 39 start-page: 1036 year: 2006 end-page: 1041 ident: b0085 article-title: Biodegradation of high amounts of phenol, catechol, 2,4-dichlorophenol and 2,6-dimethoxyphenol by publication-title: Enzyme Microb. Technol. – volume: 39 start-page: 1701 year: 2004 end-page: 1707 ident: b0070 article-title: Removal of 2,4-dichlorophenol in a conventional activated sludge system through bioaugmentation publication-title: Process Biochem. – volume: 404 start-page: 6 year: 2011 end-page: 9 ident: b0100 article-title: Hydrogen sulfide as an effective and specific novel therapy for acute carbon monoxide poisoning publication-title: Biochem. Biophys. Res. Commun. – volume: 51 start-page: 169 year: 2011 end-page: 187 ident: b0050 article-title: Hydrogen sulfide and cell signaling publication-title: Annu. Rev. Pharmacol. Toxicol. – volume: 100 start-page: 4989 year: 2009 end-page: 4995 ident: b0075 article-title: Removal of hydrogen sulfide by immobilized publication-title: Bioresour. Technol. – year: 1999 ident: b0005 article-title: Agency for Toxic Substances and Disease Registry, Toxicological Profile for Hlorophenols – volume: 46 start-page: 7818 year: 2012 end-page: 7825 ident: b0105 article-title: Responses of publication-title: Environ. Sci. Technol. – volume: 100 start-page: 4989 year: 2009 ident: 10.1016/j.chemosphere.2014.01.069_b0075 article-title: Removal of hydrogen sulfide by immobilized Thiobacillus thioparus in a biotrickling filter packed with polyurethane foam publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2009.05.022 – volume: 26 start-page: 662 year: 2013 ident: 10.1016/j.chemosphere.2014.01.069_b0060 article-title: Cadmium-based quantum dot induced autophagy formation for cell survival via oxidative stress publication-title: Chem. Res. Toxicol. doi: 10.1021/tx300455k – volume: 75 start-page: 297 year: 2009 ident: 10.1016/j.chemosphere.2014.01.069_b0025 article-title: Induction of oxidative stress biomarkers associated with heavy metal stress in Fontinalis antipyretica Hedw publication-title: Chemosphere doi: 10.1016/j.chemosphere.2008.12.045 – volume: 46 start-page: 7818 year: 2012 ident: 10.1016/j.chemosphere.2014.01.069_b0105 article-title: Responses of Phanerochaete chrysosporium to toxic pollutants: Physiological flux, oxidative stress, and detoxification publication-title: Environ. Sci. Technol. doi: 10.1021/es301006j – volume: 50 start-page: 1518 year: 2008 ident: 10.1016/j.chemosphere.2014.01.069_b0110 article-title: Hydrogen sulfide promotes wheat seed germination and alleviates oxidative damage against copper stress publication-title: J. Integr. Plant Biol. doi: 10.1111/j.1744-7909.2008.00769.x – volume: 36 start-page: 1607 year: 2013 ident: 10.1016/j.chemosphere.2014.01.069_b0055 article-title: Hydrogen sulfide: environmental factor or signaling molecule? publication-title: Plant Cell Environ. doi: 10.1111/pce.12073 – volume: 52 start-page: 556 year: 2010 ident: 10.1016/j.chemosphere.2014.01.069_b0115 article-title: Hydrogen sulfide alleviates aluminum toxicity in germinating wheat seedlings publication-title: J. Integr. Plant Biol. doi: 10.1111/j.1744-7909.2010.00946.x – volume: 117 start-page: 277 year: 1978 ident: 10.1016/j.chemosphere.2014.01.069_b0040 article-title: Influence of culture parameters on lignin metabolism by Phanerochaete chrysosporium publication-title: Arch. Microbiol. doi: 10.1007/BF00738547 – volume: 18 start-page: 4932 year: 2007 ident: 10.1016/j.chemosphere.2014.01.069_b0080 article-title: Membrane-active compounds activate the transcription factors Pdr1 and Pdr3 connecting pleiotropic drug resistance and membrane lipid homeostasis in Saccharomyces cerevisiae publication-title: Mol. Biol. Cell doi: 10.1091/mbc.e07-06-0610 – volume: 68 start-page: 921 year: 2007 ident: 10.1016/j.chemosphere.2014.01.069_b0120 article-title: Kinetics of 2,4-dichlorophenol and 4-Cl-m-cresol degradation by Pseudomonas sp. cultures in the presence of glucose publication-title: Chemosphere doi: 10.1016/j.chemosphere.2007.01.039 – ident: 10.1016/j.chemosphere.2014.01.069_b0090 – volume: 322 start-page: 21 year: 2004 ident: 10.1016/j.chemosphere.2014.01.069_b0020 article-title: Sources and transformations of chlorophenols in the natural environment publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2003.09.015 – volume: 51 start-page: 169 year: 2011 ident: 10.1016/j.chemosphere.2014.01.069_b0050 article-title: Hydrogen sulfide and cell signaling publication-title: Annu. Rev. Pharmacol. Toxicol. doi: 10.1146/annurev-pharmtox-010510-100505 – volume: 39 start-page: 1036 year: 2006 ident: 10.1016/j.chemosphere.2014.01.069_b0085 article-title: Biodegradation of high amounts of phenol, catechol, 2,4-dichlorophenol and 2,6-dimethoxyphenol by Aspergillus awamori cells publication-title: Enzyme Microb. Technol. doi: 10.1016/j.enzmictec.2006.02.006 – volume: 2006 start-page: 209 year: 2006 ident: 10.1016/j.chemosphere.2014.01.069_b0065 article-title: Degradation of 2,4-dichlorophenol by Bacillus sp. isolated from an aeration pond in the Baikalsk pulp and paper mill (Russia) publication-title: Int. Biodeterior. Biodegr. doi: 10.1016/j.ibiod.2006.06.024 – year: 1999 ident: 10.1016/j.chemosphere.2014.01.069_b0005 – volume: 41 start-page: 1083 year: 2006 ident: 10.1016/j.chemosphere.2014.01.069_b0125 article-title: Biological degradation of chlorophenols in packed-bed bioreactors using mixed bacterial consortia publication-title: Process Biochem. doi: 10.1016/j.procbio.2005.11.019 – volume: 91 start-page: 811 year: 2011 ident: 10.1016/j.chemosphere.2014.01.069_b0015 article-title: Simultaneous cadmium removal and 2,4-dichlorophenol degradation from aqueous solutions by Phanerochaete chrysosporium publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-011-3313-4 – volume: 127 start-page: 182 year: 2006 ident: 10.1016/j.chemosphere.2014.01.069_b0045 article-title: Differences in some morphological, physiological, and biochemical responses to drought stress in two contrasting populations of Populus przewalskii publication-title: Physiol. Plantarum doi: 10.1111/j.1399-3054.2006.00638.x – volume: 39 start-page: 1701 year: 2004 ident: 10.1016/j.chemosphere.2014.01.069_b0070 article-title: Removal of 2,4-dichlorophenol in a conventional activated sludge system through bioaugmentation publication-title: Process Biochem. doi: 10.1016/S0032-9592(03)00307-8 – volume: 101 start-page: 7724 year: 2010 ident: 10.1016/j.chemosphere.2014.01.069_b0030 article-title: Performance evaluation of oxygen, air and nitrate for the microaerobic removal of hydrogen sulphide in biogas from sludge digestion publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2010.04.062 – volume: 69 start-page: 769 year: 2007 ident: 10.1016/j.chemosphere.2014.01.069_b0095 article-title: Aerobic granulation for 2,4-dichlorophenol biodegradation in a sequencing batch reactor publication-title: Chemosphere doi: 10.1016/j.chemosphere.2007.05.026 – volume: 98 start-page: 478 year: 2007 ident: 10.1016/j.chemosphere.2014.01.069_b0010 article-title: A method for controlling hydrogen sulfide in water by adding solid phase oxygen publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2005.11.031 – volume: 84 start-page: 1506 year: 2011 ident: 10.1016/j.chemosphere.2014.01.069_b0035 article-title: Derivation of aquatic predicted no-effect concentration (PNEC) for 2,4-dichlorophenol: comparing native species data with non-native species data publication-title: Chemosphere doi: 10.1016/j.chemosphere.2011.04.033 – volume: 404 start-page: 6 year: 2011 ident: 10.1016/j.chemosphere.2014.01.069_b0100 article-title: Hydrogen sulfide as an effective and specific novel therapy for acute carbon monoxide poisoning publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2010.11.113 |
SSID | ssj0001659 |
Score | 2.2922149 |
Snippet | •H2S alleviated 2,4-DCP toxicity and improved its degradation by P. chrysosporium.•H2S shortened the time required for 2,4-DCP complete degradation.•H2S... In this study, the H2S donor, sodium hydrosulfide (NaHS) was used to pretreat Phanerochaete chrysosporium in order to improve its ability to degrade... |
SourceID | proquest pubmed pascalfrancis crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 208 |
SubjectTerms | 2,4-Dichlorophenol Applied sciences Biodegradation, Environmental Chlorophenols - chemistry Chlorophenols - metabolism Chlorophenols - toxicity Degradation Exact sciences and technology General purification processes Hydrogen sulfide Hydrogen Sulfide - chemistry oxidative stress Oxidative Stress - drug effects Phanerochaete - drug effects Phanerochaete - metabolism Phanerochaete chrysosporium pollutants Pollution Sulfides - chemistry toxicity wastewater Wastewaters Water Pollutants, Chemical - chemistry Water Pollutants, Chemical - metabolism Water Pollutants, Chemical - toxicity Water treatment and pollution |
Title | Hydrogen sulfide alleviates 2,4-dichlorophenol toxicity and promotes its degradation in Phanerochaete chrysosporium |
URI | https://dx.doi.org/10.1016/j.chemosphere.2014.01.069 https://www.ncbi.nlm.nih.gov/pubmed/24530160 https://www.proquest.com/docview/1530953874 https://www.proquest.com/docview/1836658889 |
Volume | 109 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEBYhpQ8opU1f28eiQI91Y1myLEMvYUnYthB6aCA3YevBOmzsZe0t3Ut_e2dkO9tAWwI92kiWPTOa-QaPviHknQFY7AtpI8QTkKCgH8yZi7K8ZKZgyEAX2D7P5PxcfL5IL_bIbDwLg2WVg-_vfXrw1sOdo0GaR6uqwjO-iEawEh1xTMjbhcjQyj_83JV5MJn2EFikEY6-Rw53NV4gl6umxfP7yJjJRGDwxNrnP8eoh6uiBcn5vuXF3zFpiE2nj8mjAVTS4_69n5A9Vx-Q-7Oxl9sBuXsSyKm3T0k739p1A1ZD283SV9ZRbKbyvULISZP3IrKVWUAOj3QDdbOkXfOjMoDUaVFbugq1ezCw6lpqkWai78hEq5p-XRS1w_5bBcBwahbrbdtgylxtrp6R89OTb7N5NDReiIwQcRfxAjYytyARqaxiXHrprRO85JlKLWMecJNLHHLbW5FnvAQh29LH3sU88zbnz8l-3dTuJaGpyUwRxjjIjbwsLZPGpUXueWkEtxOiRlFrM7CSY3OMpR7Lzy71b1rSqCUdMw1ampDkeuqqp-a4zaSPoz71DTvTEEJuM316wwauF04UIK9EpBNyOBqFBh3j3xeQfrNpNYQW5PZTmfjHGMUlQEKlYKEXvUXtVhDwACbjV__3Ba_JA7zqaxjfkP1uvXFvAVd15TRsnCm5c_zpy_zsFzOKJUE |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9RAFD6UilYQ0XrpeqlT0DdjM5nJZUEfpLZsbS0-tNC3MZkLm7JNlk1W3Rf_lH_Qc3LpWlApSF-TGSaZ7-Sc75Az3wF4qZEWuzQyHvEJTFDIDw659eJhxnXKSYGuUfs8ikYn8uNpeLoCP_uzMFRW2fn-1qc33rq7st3t5vY0z-mML7ERqkQnHhP6XWXlgV18w7yterf_AUF-FQR7u8c7I69rLeBpKf3aEymaqjAY_aLEJFxELnLGSpGJOAkN5w6ZgQ0sqbcbOYxFxqPQZM531hexM6TAhH7_hkR3QW0T3vxY1pXgyJZzy9Cjx7sFW8uiMgTivKxIMIAkOrlsJEOp2PrPQfHONK0QKtf22Pg7CW6C4d49uNuxWPa-3aj7sGKLdVjb6ZvHrcPN3UYNe_EAqtHCzEo0U1bNJy43llH3lq85cVwWvJaeyfV4Us5I36AoJ6wuv-caUwOWFoZNm2JBHJjXFTOka9G2gGJ5wT6P08JSw68UeT_T49miKilHz-fnD-HkWuB4BKtFWdgNYKGOddqMsZiMuSgzPNI2TIdOZFoKM4Ck32qlOxl06sYxUX2925n6DSVFKCmfK0RpAMHF1GmrBXKVSW97PNUlw1YYs64yffOSDVwsHCRI9QIZDmCrNwqFGNPvHtz9cl4pjGUkJpjE8h9jEhEhB00SXOhxa1HLFdC6SX_wyf-9wQtYGx1_OlSH-0cHT-E23WkLKJ_Baj2b2-dI6upss_mIGHy57q_2F6qjX3M |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hydrogen+sulfide+alleviates+2%2C4-dichlorophenol+toxicity+and+promotes+its+degradation+in+Phanerochaete+chrysosporium&rft.jtitle=Chemosphere+%28Oxford%29&rft.au=Chen%2C+Anwei&rft.au=Zeng%2C+Guangming&rft.au=Chen%2C+Guiqiu&rft.au=Zhang%2C+Chang&rft.date=2014-08-01&rft.issn=0045-6535&rft.volume=109&rft.spage=208&rft.epage=212&rft_id=info:doi/10.1016%2Fj.chemosphere.2014.01.069&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_chemosphere_2014_01_069 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-6535&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-6535&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-6535&client=summon |