Enhanced cell-surface display of a heterologous protein using SED1 anchoring system in SED1-disrupted Saccharomyces cerevisiae strain

Yeast displaying enzymes on the cell surface are used for developing whole-cell biocatalysts. High enzyme activity on the cell surface is required in certain applications such as direct ethanol production from lignocellulosic materials. However, the cell surface enzyme activity is limited by several...

Full description

Saved in:
Bibliographic Details
Published inJournal of bioscience and bioengineering Vol. 125; no. 3; pp. 306 - 310
Main Authors Bamba, Takahiro, Inokuma, Kentaro, Hasunuma, Tomohisa, Kondo, Akihiko
Format Journal Article
LanguageEnglish
Published Japan Elsevier B.V 01.03.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Yeast displaying enzymes on the cell surface are used for developing whole-cell biocatalysts. High enzyme activity on the cell surface is required in certain applications such as direct ethanol production from lignocellulosic materials. However, the cell surface enzyme activity is limited by several factors, one of which is the protein amount of the yeast cell wall. In this study, we attempted to improve the incorporation capacity of a displayed heterologous enzyme by disrupting a native cell-wall protein. β-Glucosidase (BGL1) from Aspergillus aculeatus was fused with Saccharomyces cerevisiae Sed1 and displayed on the cell surface of S. cerevisiae BY4741 strain and its SED1 disruptant. Sed1 is one of the most abundant stationary phase yeast cell wall protein. A time course analysis revealed that BGL1 activity of the control strain reached saturation after 48 h of cultivation. In contrast, the BGL1 activity of the SED1 disruptant increased until 72 h of cultivation and was 22% higher than that of the control strain. We also performed relative quantification of cell wall proteins of these strains by nanoscale ultra pressure liquid chromatography electrospray ionization quadrupole time-of-flight tandem mass spectrometry (nano-UPLC-MSE). The amount of the cell wall-associated BGL1 per unit dry cell-weight of the SED1 disruptant was 19% higher than that of the control strain. These results suggested that the incorporation capacity of the cell wall for BGL1 was increased by disruption of SED1. Disruption of SED1 would be a promising approach for improving display efficiency of heterologous protein fused with Sed1.
AbstractList Yeast displaying enzymes on the cell surface are used for developing whole-cell biocatalysts. High enzyme activity on the cell surface is required in certain applications such as direct ethanol production from lignocellulosic materials. However, the cell surface enzyme activity is limited by several factors, one of which is the protein amount of the yeast cell wall. In this study, we attempted to improve the incorporation capacity of a displayed heterologous enzyme by disrupting a native cell-wall protein. β-Glucosidase (BGL1) from Aspergillus aculeatus was fused with Saccharomyces cerevisiae Sed1 and displayed on the cell surface of S. cerevisiae BY4741 strain and its SED1 disruptant. Sed1 is one of the most abundant stationary phase yeast cell wall protein. A time course analysis revealed that BGL1 activity of the control strain reached saturation after 48 h of cultivation. In contrast, the BGL1 activity of the SED1 disruptant increased until 72 h of cultivation and was 22% higher than that of the control strain. We also performed relative quantification of cell wall proteins of these strains by nanoscale ultra pressure liquid chromatography electrospray ionization quadrupole time-of-flight tandem mass spectrometry (nano-UPLC-MSE). The amount of the cell wall-associated BGL1 per unit dry cell-weight of the SED1 disruptant was 19% higher than that of the control strain. These results suggested that the incorporation capacity of the cell wall for BGL1 was increased by disruption of SED1. Disruption of SED1 would be a promising approach for improving display efficiency of heterologous protein fused with Sed1.
Yeast displaying enzymes on the cell surface are used for developing whole-cell biocatalysts. High enzyme activity on the cell surface is required in certain applications such as direct ethanol production from lignocellulosic materials. However, the cell surface enzyme activity is limited by several factors, one of which is the protein amount of the yeast cell wall. In this study, we attempted to improve the incorporation capacity of a displayed heterologous enzyme by disrupting a native cell-wall protein. β-Glucosidase (BGL1) from Aspergillus aculeatus was fused with Saccharomyces cerevisiae Sed1 and displayed on the cell surface of S. cerevisiae BY4741 strain and its SED1 disruptant. Sed1 is one of the most abundant stationary phase yeast cell wall protein. A time course analysis revealed that BGL1 activity of the control strain reached saturation after 48 h of cultivation. In contrast, the BGL1 activity of the SED1 disruptant increased until 72 h of cultivation and was 22% higher than that of the control strain. We also performed relative quantification of cell wall proteins of these strains by nanoscale ultra pressure liquid chromatography electrospray ionization quadrupole time-of-flight tandem mass spectrometry (nano-UPLC-MSE). The amount of the cell wall-associated BGL1 per unit dry cell-weight of the SED1 disruptant was 19% higher than that of the control strain. These results suggested that the incorporation capacity of the cell wall for BGL1 was increased by disruption of SED1. Disruption of SED1 would be a promising approach for improving display efficiency of heterologous protein fused with Sed1.Yeast displaying enzymes on the cell surface are used for developing whole-cell biocatalysts. High enzyme activity on the cell surface is required in certain applications such as direct ethanol production from lignocellulosic materials. However, the cell surface enzyme activity is limited by several factors, one of which is the protein amount of the yeast cell wall. In this study, we attempted to improve the incorporation capacity of a displayed heterologous enzyme by disrupting a native cell-wall protein. β-Glucosidase (BGL1) from Aspergillus aculeatus was fused with Saccharomyces cerevisiae Sed1 and displayed on the cell surface of S. cerevisiae BY4741 strain and its SED1 disruptant. Sed1 is one of the most abundant stationary phase yeast cell wall protein. A time course analysis revealed that BGL1 activity of the control strain reached saturation after 48 h of cultivation. In contrast, the BGL1 activity of the SED1 disruptant increased until 72 h of cultivation and was 22% higher than that of the control strain. We also performed relative quantification of cell wall proteins of these strains by nanoscale ultra pressure liquid chromatography electrospray ionization quadrupole time-of-flight tandem mass spectrometry (nano-UPLC-MSE). The amount of the cell wall-associated BGL1 per unit dry cell-weight of the SED1 disruptant was 19% higher than that of the control strain. These results suggested that the incorporation capacity of the cell wall for BGL1 was increased by disruption of SED1. Disruption of SED1 would be a promising approach for improving display efficiency of heterologous protein fused with Sed1.
Yeast displaying enzymes on the cell surface are used for developing whole-cell biocatalysts. High enzyme activity on the cell surface is required in certain applications such as direct ethanol production from lignocellulosic materials. However, the cell surface enzyme activity is limited by several factors, one of which is the protein amount of the yeast cell wall. In this study, we attempted to improve the incorporation capacity of a displayed heterologous enzyme by disrupting a native cell-wall protein. β-Glucosidase (BGL1) from Aspergillus aculeatus was fused with Saccharomyces cerevisiae Sed1 and displayed on the cell surface of S. cerevisiae BY4741 strain and its SED1 disruptant. Sed1 is one of the most abundant stationary phase yeast cell wall protein. A time course analysis revealed that BGL1 activity of the control strain reached saturation after 48 h of cultivation. In contrast, the BGL1 activity of the SED1 disruptant increased until 72 h of cultivation and was 22% higher than that of the control strain. We also performed relative quantification of cell wall proteins of these strains by nanoscale ultra pressure liquid chromatography electrospray ionization quadrupole time-of-flight tandem mass spectrometry (nano-UPLC-MSE). The amount of the cell wall-associated BGL1 per unit dry cell-weight of the SED1 disruptant was 19% higher than that of the control strain. These results suggested that the incorporation capacity of the cell wall for BGL1 was increased by disruption of SED1. Disruption of SED1 would be a promising approach for improving display efficiency of heterologous protein fused with Sed1.
Yeast displaying enzymes on the cell surface are used for developing whole-cell biocatalysts. High enzyme activity on the cell surface is required in certain applications such as direct ethanol production from lignocellulosic materials. However, the cell surface enzyme activity is limited by several factors, one of which is the protein amount of the yeast cell wall. In this study, we attempted to improve the incorporation capacity of a displayed heterologous enzyme by disrupting a native cell-wall protein. β-Glucosidase (BGL1) from Aspergillus aculeatus was fused with Saccharomyces cerevisiae Sed1 and displayed on the cell surface of S. cerevisiae BY4741 strain and its SED1 disruptant. Sed1 is one of the most abundant stationary phase yeast cell wall protein. A time course analysis revealed that BGL1 activity of the control strain reached saturation after 48 h of cultivation. In contrast, the BGL1 activity of the SED1 disruptant increased until 72 h of cultivation and was 22% higher than that of the control strain. We also performed relative quantification of cell wall proteins of these strains by nanoscale ultra pressure liquid chromatography electrospray ionization quadrupole time-of-flight tandem mass spectrometry (nano-UPLC-MS ). The amount of the cell wall-associated BGL1 per unit dry cell-weight of the SED1 disruptant was 19% higher than that of the control strain. These results suggested that the incorporation capacity of the cell wall for BGL1 was increased by disruption of SED1. Disruption of SED1 would be a promising approach for improving display efficiency of heterologous protein fused with Sed1.
Author Kondo, Akihiko
Bamba, Takahiro
Hasunuma, Tomohisa
Inokuma, Kentaro
Author_xml – sequence: 1
  givenname: Takahiro
  surname: Bamba
  fullname: Bamba, Takahiro
  organization: Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
– sequence: 2
  givenname: Kentaro
  surname: Inokuma
  fullname: Inokuma, Kentaro
  organization: Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
– sequence: 3
  givenname: Tomohisa
  surname: Hasunuma
  fullname: Hasunuma, Tomohisa
  organization: Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
– sequence: 4
  givenname: Akihiko
  surname: Kondo
  fullname: Kondo, Akihiko
  email: akondo@kobe-u.ac.jp
  organization: Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29175124$$D View this record in MEDLINE/PubMed
BookMark eNqFkctuHCEQRZHlyK_kD6KIZTbdAZp-kEWkyJk8JEtZ2F4jmi48jLphArSl-QD_d0DjZJFFvOJR595S1b1Ep847QOgtJTUltPuwq3ej9VHXjNC-JqImtDlBF7ThfcU5o6flPoiK9qw5R5cx7kgGSU_P0DkTtG8p4xfoaeO2ymmYsIZ5ruIajNKAJxv3szpgb7DCW0gQ_Owf_BrxPvgE1uE1WveAbzdfKM76rQ_lGQ8xwYJzuRSq7BLWfcrmt0rrrQp-OWiIuVWARxutAhxTUNa9Rq-MmiO8eT6v0P3Xzd319-rm57cf159vKs05SRUzHTDRt-0w8ZGOfSPGAYAZQydO8q-AiWkzDJpxo9qRc061MUYZ05GmAdVcofdH3zzFrxVikouNZXDlIA8nGSHFh3X8RZSKTggm2mbI6LtndB0XmOQ-2EWFg_yz5QzwI6CDjzGA-YtQIkuYciePYcoSpiRC5jCz7OM_Mm2TSta7srT5JfGnoxjyPh8tBBm1hZK0DaCTnLz9v8Fvkga-zg
CitedBy_id crossref_primary_10_3389_fbioe_2021_794742
crossref_primary_10_1186_s12934_019_1133_x
crossref_primary_10_3390_molecules24162879
crossref_primary_10_1016_j_biortech_2021_126263
crossref_primary_10_1007_s00253_021_11440_6
crossref_primary_10_1007_s00449_020_02484_5
crossref_primary_10_1016_j_biortech_2022_127105
crossref_primary_10_1080_07388551_2024_2385996
crossref_primary_10_1186_s12866_020_01928_y
crossref_primary_10_1016_j_biotechadv_2021_107859
crossref_primary_10_1016_j_mec_2021_e00188
crossref_primary_10_1016_j_cogsc_2021_100584
crossref_primary_10_1002_aic_16629
crossref_primary_10_1007_s43393_022_00109_4
crossref_primary_10_1016_j_ymben_2019_11_004
crossref_primary_10_3389_fbioe_2022_1056804
crossref_primary_10_1016_j_copbio_2023_103030
Cites_doi 10.1186/1471-2180-11-12
10.1128/AEM.70.2.1207-1212.2004
10.1186/1475-2859-9-32
10.1002/biot.200900292
10.1128/aem.63.2.615-620.1997
10.1007/s00253-008-1808-4
10.1093/infdis/jit131
10.1016/j.enzmictec.2012.03.005
10.1186/1475-2859-10-89
10.1002/bit.26008
10.1016/S1389-1723(00)80099-7
10.1021/jf000434d
10.1007/s00253-014-6250-1
10.1007/s00253-001-0900-9
10.1038/srep24550
10.1016/j.jbiosc.2009.11.003
10.1534/genetics.112.144485
10.1016/j.copbio.2010.12.006
10.1128/AEM.01687-09
10.1186/1754-6834-7-8
10.1016/j.bbalip.2006.05.015
10.1073/pnas.1209856109
10.1128/JB.180.13.3381-3387.1998
10.1263/jbb.105.622
10.1007/BF00318659
ContentType Journal Article
Copyright 2017 The Society for Biotechnology, Japan
Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2017 The Society for Biotechnology, Japan
– notice: Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1016/j.jbiosc.2017.09.013
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
MEDLINE - Academic

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1347-4421
EndPage 310
ExternalDocumentID 29175124
10_1016_j_jbiosc_2017_09_013
S138917231730720X
Genre Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
29K
2WC
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
AAAJQ
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARKO
AAXUO
ABFNM
ABFRF
ABGSF
ABJNI
ABMAC
ABNUV
ABUDA
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIWK
ACPRK
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADUVX
AEBSH
AEFWE
AEHWI
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGEKW
AGHFR
AGRDE
AGUBO
AGYEJ
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CJTIS
CS3
D-I
DOVZS
DU5
E3Z
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
KOM
LUGTX
M41
MO0
N9A
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SSG
SSI
SSU
SSZ
T5K
TKC
TR2
UNMZH
XFK
Y6R
~G-
~KM
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c440t-2f6e297558d4b1b739b8ee2ff1d405589ed2cf88c24fa5b4441cfffaff6033ea3
IEDL.DBID .~1
ISSN 1389-1723
1347-4421
IngestDate Fri Jul 11 07:17:40 EDT 2025
Fri Jul 11 11:56:51 EDT 2025
Wed Feb 19 02:42:23 EST 2025
Tue Jul 01 02:45:30 EDT 2025
Thu Apr 24 22:50:11 EDT 2025
Fri Feb 23 02:24:11 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords SED1
β-Glucosidase
Aspergillus aculeatus
Saccharomyces cerevisiae
Cell surface display
Mass spectrometry
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c440t-2f6e297558d4b1b739b8ee2ff1d405589ed2cf88c24fa5b4441cfffaff6033ea3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 29175124
PQID 1969929538
PQPubID 23479
PageCount 5
ParticipantIDs proquest_miscellaneous_2000558264
proquest_miscellaneous_1969929538
pubmed_primary_29175124
crossref_primary_10_1016_j_jbiosc_2017_09_013
crossref_citationtrail_10_1016_j_jbiosc_2017_09_013
elsevier_sciencedirect_doi_10_1016_j_jbiosc_2017_09_013
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-03-01
PublicationDateYYYYMMDD 2018-03-01
PublicationDate_xml – month: 03
  year: 2018
  text: 2018-03-01
  day: 01
PublicationDecade 2010
PublicationPlace Japan
PublicationPlace_xml – name: Japan
PublicationTitle Journal of bioscience and bioengineering
PublicationTitleAlternate J Biosci Bioeng
PublicationYear 2018
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Kutty, England, Kovacs (bib16) 2013; 208
Fukuda, Tsuchiya, Makishima, Tsuchiyama, Mulchandani, Kuroda, Ueda, Suye (bib21) 2010; 5
Chen, Yang, Kuo (bib15) 1992; 21
Kuroda, Matsui, Higuchi, Kotaka, Sahara, Hata, Ueda (bib19) 2009; 82
Inokuma, Yoshida, Ishii, Hasunuma, Kondo (bib13) 2015; 99
Decker, Visser, Schreier (bib25) 2000; 48
Yamakawa, Yamada, Tanaka, Ogino, Kondo (bib8) 2012; 50
Kotaka, Bando, Kaya, Kato-Murai, Kuroda, Sahara, Hata, Kondo, Ueda (bib2) 2008; 105
Fujita, Ito, Ueda, Fukuda, Kondo (bib1) 2004; 70
Pacheco, Slade, Seyffert, Santos, Castro, Silva, Santos, Santos, Farias, Carvalho, other 8 authors (bib17) 2011; 11
Shimoi, Kitagaki, Ohmori, Iimura, Ito (bib14) 1998; 180
Wen, Sun, Zhao (bib3) 2010; 76
Pittet, Conzelmann (bib10) 2007; 1771
Goyal, Tsai, Madan, DaSilva, Chen (bib5) 2011; 10
Orlean (bib24) 2012; 192
Kotaka, Sahara, Kuroda, Kondo, Ueda, Hata (bib20) 2010; 109
Van der Vaart, te Biesebeke, Chapman, Toschka, Klis, Verrips (bib11) 1997; 63
Kondo, Shigechi, Abe, Uyama, Matsumoto, Takahashi, Ueda, Tanaka, Kishimoto, Fukuda (bib9) 2002; 58
Ueda, Tanaka (bib7) 2000; 90
Inokuma, Bamba, Ishii, Ito, Hasunuma, Kondo (bib18) 2016; 113
Liu, Ho, Sasaki, den Haan, Inokuma, Ogino, van Zyl, Hasunuma, Kondo (bib23) 2016; 6
Yamada, Taniguchi, Tanaka, Ogino, Fukuda, Kondo (bib4) 2010; 9
Inokuma, Hasunuma, Kondo (bib12) 2014; 7
Fan, Zhang, Yu, Xue, Tan (bib6) 2012; 109
Kuroda, Ueda (bib22) 2011; 22
Wen (10.1016/j.jbiosc.2017.09.013_bib3) 2010; 76
Yamada (10.1016/j.jbiosc.2017.09.013_bib4) 2010; 9
Goyal (10.1016/j.jbiosc.2017.09.013_bib5) 2011; 10
Ueda (10.1016/j.jbiosc.2017.09.013_bib7) 2000; 90
Kondo (10.1016/j.jbiosc.2017.09.013_bib9) 2002; 58
Orlean (10.1016/j.jbiosc.2017.09.013_bib24) 2012; 192
Inokuma (10.1016/j.jbiosc.2017.09.013_bib13) 2015; 99
Fukuda (10.1016/j.jbiosc.2017.09.013_bib21) 2010; 5
Inokuma (10.1016/j.jbiosc.2017.09.013_bib18) 2016; 113
Kotaka (10.1016/j.jbiosc.2017.09.013_bib20) 2010; 109
Van der Vaart (10.1016/j.jbiosc.2017.09.013_bib11) 1997; 63
Kutty (10.1016/j.jbiosc.2017.09.013_bib16) 2013; 208
Fujita (10.1016/j.jbiosc.2017.09.013_bib1) 2004; 70
Yamakawa (10.1016/j.jbiosc.2017.09.013_bib8) 2012; 50
Pacheco (10.1016/j.jbiosc.2017.09.013_bib17) 2011; 11
Kuroda (10.1016/j.jbiosc.2017.09.013_bib22) 2011; 22
Shimoi (10.1016/j.jbiosc.2017.09.013_bib14) 1998; 180
Kuroda (10.1016/j.jbiosc.2017.09.013_bib19) 2009; 82
Decker (10.1016/j.jbiosc.2017.09.013_bib25) 2000; 48
Kotaka (10.1016/j.jbiosc.2017.09.013_bib2) 2008; 105
Fan (10.1016/j.jbiosc.2017.09.013_bib6) 2012; 109
Chen (10.1016/j.jbiosc.2017.09.013_bib15) 1992; 21
Liu (10.1016/j.jbiosc.2017.09.013_bib23) 2016; 6
Pittet (10.1016/j.jbiosc.2017.09.013_bib10) 2007; 1771
Inokuma (10.1016/j.jbiosc.2017.09.013_bib12) 2014; 7
References_xml – volume: 9
  start-page: 32
  year: 2010
  ident: bib4
  article-title: Cocktail δ-integration: a novel method to construct cellulolytic enzyme expression ratio-optimized yeast strains
  publication-title: Microb. Cell Fact.
– volume: 1771
  start-page: 405
  year: 2007
  end-page: 420
  ident: bib10
  article-title: Biosynthesis and function of GPI proteins in the yeast
  publication-title: Biochim. Biophys. Acta
– volume: 90
  start-page: 125
  year: 2000
  end-page: 136
  ident: bib7
  article-title: Cell surface engineering of yeast: construction of arming yeast with biocatalyst
  publication-title: J. Biosci. Bioeng.
– volume: 105
  start-page: 622
  year: 2008
  end-page: 627
  ident: bib2
  article-title: Direct ethanol production from barley β-glucan by sake yeast displaying
  publication-title: J. Biosci. Bioeng.
– volume: 21
  start-page: 83
  year: 1992
  end-page: 84
  ident: bib15
  article-title: One-step transformation of yeast in stationary phase
  publication-title: Curr. Genet.
– volume: 99
  start-page: 1655
  year: 2015
  end-page: 1663
  ident: bib13
  article-title: Efficient co-displaying and artificial ratio control of α-amylase and glucoamylase on the yeast cell surface by using combinations of different anchoring domains
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 208
  start-page: 170
  year: 2013
  end-page: 179
  ident: bib16
  article-title: Expression of
  publication-title: J. Infect. Dis.
– volume: 48
  start-page: 4929
  year: 2000
  end-page: 4936
  ident: bib25
  article-title: -Glucosidases from five black
  publication-title: J. Agric. Food Chem.
– volume: 58
  start-page: 291
  year: 2002
  end-page: 296
  ident: bib9
  article-title: High-level ethanol production from starch by a flocculent
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 10
  start-page: 89
  year: 2011
  ident: bib5
  article-title: Simultaneous cell growth and ethanol production from cellulose by an engineered yeast consortium displaying a functional mini-cellulosome
  publication-title: Microb. Cell Fact.
– volume: 180
  start-page: 3381
  year: 1998
  end-page: 3387
  ident: bib14
  article-title: Sed1p is a major cell wall protein of
  publication-title: J. Bacteriol.
– volume: 76
  start-page: 1251
  year: 2010
  end-page: 1260
  ident: bib3
  article-title: Yeast surface display of trifunctional minicellulosomes for simultaneous saccharification and fermentation of cellulose to ethanol
  publication-title: Appl. Environ. Microbiol.
– volume: 109
  start-page: 442
  year: 2010
  end-page: 446
  ident: bib20
  article-title: Enhancement of β-glucosidase activity on the cell-surface of sake yeast by disruption of
  publication-title: J. Biosci. Bioeng.
– volume: 113
  start-page: 2358
  year: 2016
  end-page: 2366
  ident: bib18
  article-title: Enhanced cell-surface display and secretory production of cellulolytic enzymes with
  publication-title: Biotechnol. Bioeng.
– volume: 11
  start-page: 12
  year: 2011
  ident: bib17
  article-title: A combined approach for comparative exoproteome analysis of
  publication-title: BMC Microbiol.
– volume: 70
  start-page: 1207
  year: 2004
  end-page: 1212
  ident: bib1
  article-title: Synergistic saccharification, and direct fermentation to ethanol, of amorphous cellulose by use of an engineered yeast strain codisplaying three types of cellulolytic enzyme
  publication-title: Appl. Environ. Microbiol.
– volume: 192
  start-page: 775
  year: 2012
  end-page: 818
  ident: bib24
  article-title: Architecture and biosynthesis of the
  publication-title: Genetics
– volume: 5
  start-page: 515
  year: 2010
  end-page: 519
  ident: bib21
  article-title: Organophosphorus compound detection on a cell chip with yeast coexpressing hydrolase and eGFP
  publication-title: Biotechnol. J.
– volume: 22
  start-page: 427
  year: 2011
  end-page: 433
  ident: bib22
  article-title: Molecular design of the microbial cell surface toward the recovery of metal ions
  publication-title: Curr. Opin. Biotechnol.
– volume: 6
  start-page: 24550
  year: 2016
  ident: bib23
  article-title: Engineering of a novel cellulose-adherent cellulolytic
  publication-title: Sci. Rep.
– volume: 82
  start-page: 713
  year: 2009
  end-page: 719
  ident: bib19
  article-title: Enhancement of display efficiency in yeast display system by vector engineering and gene disruption
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 63
  start-page: 615
  year: 1997
  end-page: 620
  ident: bib11
  article-title: Comparison of cell wall proteins of
  publication-title: Appl. Environ. Microbiol.
– volume: 109
  start-page: 13260
  year: 2012
  end-page: 13265
  ident: bib6
  article-title: Self-surface assembly of cellulosomes with two miniscaffoldins on
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 50
  start-page: 343
  year: 2012
  end-page: 347
  ident: bib8
  article-title: Repeated fermentation from raw starch using
  publication-title: Enzyme Microb. Technol.
– volume: 7
  start-page: 8
  year: 2014
  ident: bib12
  article-title: Efficient yeast cell-surface display of exo- and endo-cellulase using the
  publication-title: Biotechnol. Biofuels
– volume: 11
  start-page: 12
  year: 2011
  ident: 10.1016/j.jbiosc.2017.09.013_bib17
  article-title: A combined approach for comparative exoproteome analysis of Corynebacterium pseudotuberculosis
  publication-title: BMC Microbiol.
  doi: 10.1186/1471-2180-11-12
– volume: 70
  start-page: 1207
  year: 2004
  ident: 10.1016/j.jbiosc.2017.09.013_bib1
  article-title: Synergistic saccharification, and direct fermentation to ethanol, of amorphous cellulose by use of an engineered yeast strain codisplaying three types of cellulolytic enzyme
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.70.2.1207-1212.2004
– volume: 9
  start-page: 32
  year: 2010
  ident: 10.1016/j.jbiosc.2017.09.013_bib4
  article-title: Cocktail δ-integration: a novel method to construct cellulolytic enzyme expression ratio-optimized yeast strains
  publication-title: Microb. Cell Fact.
  doi: 10.1186/1475-2859-9-32
– volume: 5
  start-page: 515
  year: 2010
  ident: 10.1016/j.jbiosc.2017.09.013_bib21
  article-title: Organophosphorus compound detection on a cell chip with yeast coexpressing hydrolase and eGFP
  publication-title: Biotechnol. J.
  doi: 10.1002/biot.200900292
– volume: 63
  start-page: 615
  year: 1997
  ident: 10.1016/j.jbiosc.2017.09.013_bib11
  article-title: Comparison of cell wall proteins of Saccharomyces cerevisiae as anchors for cell surface expression of heterologous proteins
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/aem.63.2.615-620.1997
– volume: 82
  start-page: 713
  year: 2009
  ident: 10.1016/j.jbiosc.2017.09.013_bib19
  article-title: Enhancement of display efficiency in yeast display system by vector engineering and gene disruption
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-008-1808-4
– volume: 208
  start-page: 170
  year: 2013
  ident: 10.1016/j.jbiosc.2017.09.013_bib16
  article-title: Expression of Pneumocystis jirovecii major surface glycoprotein in Saccharomyces cerevisiae
  publication-title: J. Infect. Dis.
  doi: 10.1093/infdis/jit131
– volume: 50
  start-page: 343
  year: 2012
  ident: 10.1016/j.jbiosc.2017.09.013_bib8
  article-title: Repeated fermentation from raw starch using Saccharomyces cerevisiae displaying both glucoamylase and α-amylase
  publication-title: Enzyme Microb. Technol.
  doi: 10.1016/j.enzmictec.2012.03.005
– volume: 10
  start-page: 89
  year: 2011
  ident: 10.1016/j.jbiosc.2017.09.013_bib5
  article-title: Simultaneous cell growth and ethanol production from cellulose by an engineered yeast consortium displaying a functional mini-cellulosome
  publication-title: Microb. Cell Fact.
  doi: 10.1186/1475-2859-10-89
– volume: 113
  start-page: 2358
  year: 2016
  ident: 10.1016/j.jbiosc.2017.09.013_bib18
  article-title: Enhanced cell-surface display and secretory production of cellulolytic enzymes with Saccharomyces cerevisiae Sed1 signal peptide
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.26008
– volume: 90
  start-page: 125
  year: 2000
  ident: 10.1016/j.jbiosc.2017.09.013_bib7
  article-title: Cell surface engineering of yeast: construction of arming yeast with biocatalyst
  publication-title: J. Biosci. Bioeng.
  doi: 10.1016/S1389-1723(00)80099-7
– volume: 48
  start-page: 4929
  year: 2000
  ident: 10.1016/j.jbiosc.2017.09.013_bib25
  article-title: β-Glucosidases from five black Aspergillus species: study of their physico-chemical and biocatalytic properties
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf000434d
– volume: 99
  start-page: 1655
  year: 2015
  ident: 10.1016/j.jbiosc.2017.09.013_bib13
  article-title: Efficient co-displaying and artificial ratio control of α-amylase and glucoamylase on the yeast cell surface by using combinations of different anchoring domains
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-014-6250-1
– volume: 58
  start-page: 291
  year: 2002
  ident: 10.1016/j.jbiosc.2017.09.013_bib9
  article-title: High-level ethanol production from starch by a flocculent Saccharomyces cerevisiae strain displaying cell-surface glucoamylase
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-001-0900-9
– volume: 6
  start-page: 24550
  year: 2016
  ident: 10.1016/j.jbiosc.2017.09.013_bib23
  article-title: Engineering of a novel cellulose-adherent cellulolytic Saccharomyces cerevisiae for cellulosic biofuel production
  publication-title: Sci. Rep.
  doi: 10.1038/srep24550
– volume: 109
  start-page: 442
  year: 2010
  ident: 10.1016/j.jbiosc.2017.09.013_bib20
  article-title: Enhancement of β-glucosidase activity on the cell-surface of sake yeast by disruption of SED1
  publication-title: J. Biosci. Bioeng.
  doi: 10.1016/j.jbiosc.2009.11.003
– volume: 192
  start-page: 775
  year: 2012
  ident: 10.1016/j.jbiosc.2017.09.013_bib24
  article-title: Architecture and biosynthesis of the Saccharomyces cerevisiae cell wall
  publication-title: Genetics
  doi: 10.1534/genetics.112.144485
– volume: 22
  start-page: 427
  year: 2011
  ident: 10.1016/j.jbiosc.2017.09.013_bib22
  article-title: Molecular design of the microbial cell surface toward the recovery of metal ions
  publication-title: Curr. Opin. Biotechnol.
  doi: 10.1016/j.copbio.2010.12.006
– volume: 76
  start-page: 1251
  year: 2010
  ident: 10.1016/j.jbiosc.2017.09.013_bib3
  article-title: Yeast surface display of trifunctional minicellulosomes for simultaneous saccharification and fermentation of cellulose to ethanol
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.01687-09
– volume: 7
  start-page: 8
  year: 2014
  ident: 10.1016/j.jbiosc.2017.09.013_bib12
  article-title: Efficient yeast cell-surface display of exo- and endo-cellulase using the SED1 anchoring region and its original promoter
  publication-title: Biotechnol. Biofuels
  doi: 10.1186/1754-6834-7-8
– volume: 1771
  start-page: 405
  year: 2007
  ident: 10.1016/j.jbiosc.2017.09.013_bib10
  article-title: Biosynthesis and function of GPI proteins in the yeast Saccharomyces cerevisiae
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbalip.2006.05.015
– volume: 109
  start-page: 13260
  year: 2012
  ident: 10.1016/j.jbiosc.2017.09.013_bib6
  article-title: Self-surface assembly of cellulosomes with two miniscaffoldins on Saccharomyces cerevisiae for cellulosic ethanol production
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1209856109
– volume: 180
  start-page: 3381
  year: 1998
  ident: 10.1016/j.jbiosc.2017.09.013_bib14
  article-title: Sed1p is a major cell wall protein of Saccharomyces cerevisiae in the stationary phase and is involved in lytic enzyme resistance
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.180.13.3381-3387.1998
– volume: 105
  start-page: 622
  year: 2008
  ident: 10.1016/j.jbiosc.2017.09.013_bib2
  article-title: Direct ethanol production from barley β-glucan by sake yeast displaying Aspergillus oryzae β-glucosidase and endoglucanase
  publication-title: J. Biosci. Bioeng.
  doi: 10.1263/jbb.105.622
– volume: 21
  start-page: 83
  year: 1992
  ident: 10.1016/j.jbiosc.2017.09.013_bib15
  article-title: One-step transformation of yeast in stationary phase
  publication-title: Curr. Genet.
  doi: 10.1007/BF00318659
SSID ssj0017071
Score 2.2994895
Snippet Yeast displaying enzymes on the cell surface are used for developing whole-cell biocatalysts. High enzyme activity on the cell surface is required in certain...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 306
SubjectTerms Aspergillus aculeatus
beta-glucosidase
biocatalysts
Cell surface display
cell walls
enzyme activity
ethanol production
ionization
lignocellulose
liquid chromatography
Mass spectrometry
Saccharomyces cerevisiae
SED1
structural proteins
tandem mass spectrometry
yeasts
β-Glucosidase
Title Enhanced cell-surface display of a heterologous protein using SED1 anchoring system in SED1-disrupted Saccharomyces cerevisiae strain
URI https://dx.doi.org/10.1016/j.jbiosc.2017.09.013
https://www.ncbi.nlm.nih.gov/pubmed/29175124
https://www.proquest.com/docview/1969929538
https://www.proquest.com/docview/2000558264
Volume 125
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT9swFLcQE9IuiPGxlW3ISFxNE8eJ0yNiRWXVOFAQvVm2Y69BkFb9OPSy2_7vvecklXaokDhFie3Y8u_l-ffi954JuZAWWDEofhYZ4ZnQ2jDDdcTAcohcKr3PLMY7_7rLBo_i5zgd75DrNhYG3Sob3V_r9KCtmyfdZja7s7LsjsIWmwR-AkIqeTTGCHYhUcov_2zcPKDLxujKewxrt-Fzwcfr2ZTTBSYyjGXIdhon25anbfQzLEM3B2S_4Y_0qh7iJ7LjqkOyV58ouT4if_vVJOzpU_wjzxarudfW0aJczF70mk491XSCHjBYH4x-GvI0lBVF__ffdNT_EVNoPwluebRO80yhGAsYvGW-mgFFpSNtMVxr-roGNQNdzUOMunZ0EY6cOCaPN_2H6wFrTlpgVohoybjPHIbYpnkhTGxk0jO5c9z7uABCl-Y9V3Dr89xy4XVqBHAo673XAGWUJE4nJ2S3mlbuC6GZNmmmpYuzggMaiQb7yuUm1ZLbLCviDknaCVa2SUOOQ3tRrb_Zs6phUQiLinoKYOkQtmk1q9NwvFFfttip_8RJwUrxRsvzFmoFXxqCpSsHgChMJARkElaI7XUw8AnmC1hmh3yu5WQzXg7SCvRKnL57bF_JR7jLaxe4b2R3OV-578CJluYsCP0Z-XB1Oxzc4XV4_zT8B-rADz8
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwEB4tixBcEG_K00hwNE0cJ04PHBDbVZd9XLor9WZsx6ZZLUnVtEK9cOMX8QcZO0klDtVKSHuN7WQyY4-_kb8ZA7wXBlExOn4aae4oV0pTzVREMXKIbCqcy4zPdz49yyYX_Ossne3Bnz4XxtMqO9_f-vTgrbsnw06bw0VZDqfhiE0gPsFJKlg065iVx3bzE-O25tPRARr5A2OH4_MvE9pdLUAN59GKMpdZn1Oa5gXXsRbJSOfWMufiAhFMmo9swYzLc8O4U6nmCBqMc06h7FGSWJXge2_BbY7uwl-b8PHXlleC_9hFefmIevH6fL1AKrvUZd34yomxCOVV42TXfrgL74Z97_AB3O8AK_nc6uQh7NnqEdxpr7DcPIbf42oeSATEHwHQZr10ylhSlM3iSm1I7Ygic0-58f3rdUNCYYiyIp5w_51MxwcxwfHzwAMkbV1pgs2-geJblusFYmIyVcbnh9U_NujX8FPLkBSvLGnCHRdP4OJG9P8U9qu6ss-BZEqnmRI2zgrG0VsqDOhsrlMlmMmyIh5A0itYmq7uuRftSvYEt0vZmkV6s8hoJNEsA6DbUYu27sc1_UVvO_nP_JW4NV0z8l1vaolL2xtLVRYNIn3lIkSvOMd29_GZVqgvhLUDeNbOk628DJcH4jn-4r9lewt3J-enJ_Lk6Oz4JdzDlrzl372C_dVybV8jIFvpN2EBEPh20yvuL79QSqI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+cell-surface+display+of+a+heterologous+protein+using+SED1+anchoring+system+in+SED1-disrupted+Saccharomyces+cerevisiae+strain&rft.jtitle=Journal+of+bioscience+and+bioengineering&rft.au=Bamba%2C+Takahiro&rft.au=Inokuma%2C+Kentaro&rft.au=Hasunuma%2C+Tomohisa&rft.au=Kondo%2C+Akihiko&rft.date=2018-03-01&rft.eissn=1347-4421&rft.volume=125&rft.issue=3&rft.spage=306&rft_id=info:doi/10.1016%2Fj.jbiosc.2017.09.013&rft_id=info%3Apmid%2F29175124&rft.externalDocID=29175124
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1389-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1389-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1389-1723&client=summon