Enhanced cell-surface display of a heterologous protein using SED1 anchoring system in SED1-disrupted Saccharomyces cerevisiae strain
Yeast displaying enzymes on the cell surface are used for developing whole-cell biocatalysts. High enzyme activity on the cell surface is required in certain applications such as direct ethanol production from lignocellulosic materials. However, the cell surface enzyme activity is limited by several...
Saved in:
Published in | Journal of bioscience and bioengineering Vol. 125; no. 3; pp. 306 - 310 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Japan
Elsevier B.V
01.03.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Yeast displaying enzymes on the cell surface are used for developing whole-cell biocatalysts. High enzyme activity on the cell surface is required in certain applications such as direct ethanol production from lignocellulosic materials. However, the cell surface enzyme activity is limited by several factors, one of which is the protein amount of the yeast cell wall. In this study, we attempted to improve the incorporation capacity of a displayed heterologous enzyme by disrupting a native cell-wall protein. β-Glucosidase (BGL1) from Aspergillus aculeatus was fused with Saccharomyces cerevisiae Sed1 and displayed on the cell surface of S. cerevisiae BY4741 strain and its SED1 disruptant. Sed1 is one of the most abundant stationary phase yeast cell wall protein. A time course analysis revealed that BGL1 activity of the control strain reached saturation after 48 h of cultivation. In contrast, the BGL1 activity of the SED1 disruptant increased until 72 h of cultivation and was 22% higher than that of the control strain. We also performed relative quantification of cell wall proteins of these strains by nanoscale ultra pressure liquid chromatography electrospray ionization quadrupole time-of-flight tandem mass spectrometry (nano-UPLC-MSE). The amount of the cell wall-associated BGL1 per unit dry cell-weight of the SED1 disruptant was 19% higher than that of the control strain. These results suggested that the incorporation capacity of the cell wall for BGL1 was increased by disruption of SED1. Disruption of SED1 would be a promising approach for improving display efficiency of heterologous protein fused with Sed1. |
---|---|
AbstractList | Yeast displaying enzymes on the cell surface are used for developing whole-cell biocatalysts. High enzyme activity on the cell surface is required in certain applications such as direct ethanol production from lignocellulosic materials. However, the cell surface enzyme activity is limited by several factors, one of which is the protein amount of the yeast cell wall. In this study, we attempted to improve the incorporation capacity of a displayed heterologous enzyme by disrupting a native cell-wall protein. β-Glucosidase (BGL1) from Aspergillus aculeatus was fused with Saccharomyces cerevisiae Sed1 and displayed on the cell surface of S. cerevisiae BY4741 strain and its SED1 disruptant. Sed1 is one of the most abundant stationary phase yeast cell wall protein. A time course analysis revealed that BGL1 activity of the control strain reached saturation after 48 h of cultivation. In contrast, the BGL1 activity of the SED1 disruptant increased until 72 h of cultivation and was 22% higher than that of the control strain. We also performed relative quantification of cell wall proteins of these strains by nanoscale ultra pressure liquid chromatography electrospray ionization quadrupole time-of-flight tandem mass spectrometry (nano-UPLC-MSE). The amount of the cell wall-associated BGL1 per unit dry cell-weight of the SED1 disruptant was 19% higher than that of the control strain. These results suggested that the incorporation capacity of the cell wall for BGL1 was increased by disruption of SED1. Disruption of SED1 would be a promising approach for improving display efficiency of heterologous protein fused with Sed1. Yeast displaying enzymes on the cell surface are used for developing whole-cell biocatalysts. High enzyme activity on the cell surface is required in certain applications such as direct ethanol production from lignocellulosic materials. However, the cell surface enzyme activity is limited by several factors, one of which is the protein amount of the yeast cell wall. In this study, we attempted to improve the incorporation capacity of a displayed heterologous enzyme by disrupting a native cell-wall protein. β-Glucosidase (BGL1) from Aspergillus aculeatus was fused with Saccharomyces cerevisiae Sed1 and displayed on the cell surface of S. cerevisiae BY4741 strain and its SED1 disruptant. Sed1 is one of the most abundant stationary phase yeast cell wall protein. A time course analysis revealed that BGL1 activity of the control strain reached saturation after 48 h of cultivation. In contrast, the BGL1 activity of the SED1 disruptant increased until 72 h of cultivation and was 22% higher than that of the control strain. We also performed relative quantification of cell wall proteins of these strains by nanoscale ultra pressure liquid chromatography electrospray ionization quadrupole time-of-flight tandem mass spectrometry (nano-UPLC-MSE). The amount of the cell wall-associated BGL1 per unit dry cell-weight of the SED1 disruptant was 19% higher than that of the control strain. These results suggested that the incorporation capacity of the cell wall for BGL1 was increased by disruption of SED1. Disruption of SED1 would be a promising approach for improving display efficiency of heterologous protein fused with Sed1.Yeast displaying enzymes on the cell surface are used for developing whole-cell biocatalysts. High enzyme activity on the cell surface is required in certain applications such as direct ethanol production from lignocellulosic materials. However, the cell surface enzyme activity is limited by several factors, one of which is the protein amount of the yeast cell wall. In this study, we attempted to improve the incorporation capacity of a displayed heterologous enzyme by disrupting a native cell-wall protein. β-Glucosidase (BGL1) from Aspergillus aculeatus was fused with Saccharomyces cerevisiae Sed1 and displayed on the cell surface of S. cerevisiae BY4741 strain and its SED1 disruptant. Sed1 is one of the most abundant stationary phase yeast cell wall protein. A time course analysis revealed that BGL1 activity of the control strain reached saturation after 48 h of cultivation. In contrast, the BGL1 activity of the SED1 disruptant increased until 72 h of cultivation and was 22% higher than that of the control strain. We also performed relative quantification of cell wall proteins of these strains by nanoscale ultra pressure liquid chromatography electrospray ionization quadrupole time-of-flight tandem mass spectrometry (nano-UPLC-MSE). The amount of the cell wall-associated BGL1 per unit dry cell-weight of the SED1 disruptant was 19% higher than that of the control strain. These results suggested that the incorporation capacity of the cell wall for BGL1 was increased by disruption of SED1. Disruption of SED1 would be a promising approach for improving display efficiency of heterologous protein fused with Sed1. Yeast displaying enzymes on the cell surface are used for developing whole-cell biocatalysts. High enzyme activity on the cell surface is required in certain applications such as direct ethanol production from lignocellulosic materials. However, the cell surface enzyme activity is limited by several factors, one of which is the protein amount of the yeast cell wall. In this study, we attempted to improve the incorporation capacity of a displayed heterologous enzyme by disrupting a native cell-wall protein. β-Glucosidase (BGL1) from Aspergillus aculeatus was fused with Saccharomyces cerevisiae Sed1 and displayed on the cell surface of S. cerevisiae BY4741 strain and its SED1 disruptant. Sed1 is one of the most abundant stationary phase yeast cell wall protein. A time course analysis revealed that BGL1 activity of the control strain reached saturation after 48 h of cultivation. In contrast, the BGL1 activity of the SED1 disruptant increased until 72 h of cultivation and was 22% higher than that of the control strain. We also performed relative quantification of cell wall proteins of these strains by nanoscale ultra pressure liquid chromatography electrospray ionization quadrupole time-of-flight tandem mass spectrometry (nano-UPLC-MSE). The amount of the cell wall-associated BGL1 per unit dry cell-weight of the SED1 disruptant was 19% higher than that of the control strain. These results suggested that the incorporation capacity of the cell wall for BGL1 was increased by disruption of SED1. Disruption of SED1 would be a promising approach for improving display efficiency of heterologous protein fused with Sed1. Yeast displaying enzymes on the cell surface are used for developing whole-cell biocatalysts. High enzyme activity on the cell surface is required in certain applications such as direct ethanol production from lignocellulosic materials. However, the cell surface enzyme activity is limited by several factors, one of which is the protein amount of the yeast cell wall. In this study, we attempted to improve the incorporation capacity of a displayed heterologous enzyme by disrupting a native cell-wall protein. β-Glucosidase (BGL1) from Aspergillus aculeatus was fused with Saccharomyces cerevisiae Sed1 and displayed on the cell surface of S. cerevisiae BY4741 strain and its SED1 disruptant. Sed1 is one of the most abundant stationary phase yeast cell wall protein. A time course analysis revealed that BGL1 activity of the control strain reached saturation after 48 h of cultivation. In contrast, the BGL1 activity of the SED1 disruptant increased until 72 h of cultivation and was 22% higher than that of the control strain. We also performed relative quantification of cell wall proteins of these strains by nanoscale ultra pressure liquid chromatography electrospray ionization quadrupole time-of-flight tandem mass spectrometry (nano-UPLC-MS ). The amount of the cell wall-associated BGL1 per unit dry cell-weight of the SED1 disruptant was 19% higher than that of the control strain. These results suggested that the incorporation capacity of the cell wall for BGL1 was increased by disruption of SED1. Disruption of SED1 would be a promising approach for improving display efficiency of heterologous protein fused with Sed1. |
Author | Kondo, Akihiko Bamba, Takahiro Hasunuma, Tomohisa Inokuma, Kentaro |
Author_xml | – sequence: 1 givenname: Takahiro surname: Bamba fullname: Bamba, Takahiro organization: Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan – sequence: 2 givenname: Kentaro surname: Inokuma fullname: Inokuma, Kentaro organization: Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan – sequence: 3 givenname: Tomohisa surname: Hasunuma fullname: Hasunuma, Tomohisa organization: Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan – sequence: 4 givenname: Akihiko surname: Kondo fullname: Kondo, Akihiko email: akondo@kobe-u.ac.jp organization: Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29175124$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkctuHCEQRZHlyK_kD6KIZTbdAZp-kEWkyJk8JEtZ2F4jmi48jLphArSl-QD_d0DjZJFFvOJR595S1b1Ep847QOgtJTUltPuwq3ej9VHXjNC-JqImtDlBF7ThfcU5o6flPoiK9qw5R5cx7kgGSU_P0DkTtG8p4xfoaeO2ymmYsIZ5ruIajNKAJxv3szpgb7DCW0gQ_Owf_BrxPvgE1uE1WveAbzdfKM76rQ_lGQ8xwYJzuRSq7BLWfcrmt0rrrQp-OWiIuVWARxutAhxTUNa9Rq-MmiO8eT6v0P3Xzd319-rm57cf159vKs05SRUzHTDRt-0w8ZGOfSPGAYAZQydO8q-AiWkzDJpxo9qRc061MUYZ05GmAdVcofdH3zzFrxVikouNZXDlIA8nGSHFh3X8RZSKTggm2mbI6LtndB0XmOQ-2EWFg_yz5QzwI6CDjzGA-YtQIkuYciePYcoSpiRC5jCz7OM_Mm2TSta7srT5JfGnoxjyPh8tBBm1hZK0DaCTnLz9v8Fvkga-zg |
CitedBy_id | crossref_primary_10_3389_fbioe_2021_794742 crossref_primary_10_1186_s12934_019_1133_x crossref_primary_10_3390_molecules24162879 crossref_primary_10_1016_j_biortech_2021_126263 crossref_primary_10_1007_s00253_021_11440_6 crossref_primary_10_1007_s00449_020_02484_5 crossref_primary_10_1016_j_biortech_2022_127105 crossref_primary_10_1080_07388551_2024_2385996 crossref_primary_10_1186_s12866_020_01928_y crossref_primary_10_1016_j_biotechadv_2021_107859 crossref_primary_10_1016_j_mec_2021_e00188 crossref_primary_10_1016_j_cogsc_2021_100584 crossref_primary_10_1002_aic_16629 crossref_primary_10_1007_s43393_022_00109_4 crossref_primary_10_1016_j_ymben_2019_11_004 crossref_primary_10_3389_fbioe_2022_1056804 crossref_primary_10_1016_j_copbio_2023_103030 |
Cites_doi | 10.1186/1471-2180-11-12 10.1128/AEM.70.2.1207-1212.2004 10.1186/1475-2859-9-32 10.1002/biot.200900292 10.1128/aem.63.2.615-620.1997 10.1007/s00253-008-1808-4 10.1093/infdis/jit131 10.1016/j.enzmictec.2012.03.005 10.1186/1475-2859-10-89 10.1002/bit.26008 10.1016/S1389-1723(00)80099-7 10.1021/jf000434d 10.1007/s00253-014-6250-1 10.1007/s00253-001-0900-9 10.1038/srep24550 10.1016/j.jbiosc.2009.11.003 10.1534/genetics.112.144485 10.1016/j.copbio.2010.12.006 10.1128/AEM.01687-09 10.1186/1754-6834-7-8 10.1016/j.bbalip.2006.05.015 10.1073/pnas.1209856109 10.1128/JB.180.13.3381-3387.1998 10.1263/jbb.105.622 10.1007/BF00318659 |
ContentType | Journal Article |
Copyright | 2017 The Society for Biotechnology, Japan Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2017 The Society for Biotechnology, Japan – notice: Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.jbiosc.2017.09.013 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1347-4421 |
EndPage | 310 |
ExternalDocumentID | 29175124 10_1016_j_jbiosc_2017_09_013 S138917231730720X |
Genre | Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 29K 2WC 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ AAAJQ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARKO AAXUO ABFNM ABFRF ABGSF ABJNI ABMAC ABNUV ABUDA ABXDB ABYKQ ACDAQ ACGFO ACGFS ACIWK ACPRK ACRLP ADBBV ADEWK ADEZE ADMUD ADUVX AEBSH AEFWE AEHWI AEKER AENEX AFKWA AFTJW AFXIZ AGEKW AGHFR AGRDE AGUBO AGYEJ AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CJTIS CS3 D-I DOVZS DU5 E3Z EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W KOM LUGTX M41 MO0 N9A O-L O9- OAUVE OK1 OZT P-8 P-9 PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SSG SSI SSU SSZ T5K TKC TR2 UNMZH XFK Y6R ~G- ~KM AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c440t-2f6e297558d4b1b739b8ee2ff1d405589ed2cf88c24fa5b4441cfffaff6033ea3 |
IEDL.DBID | .~1 |
ISSN | 1389-1723 1347-4421 |
IngestDate | Fri Jul 11 07:17:40 EDT 2025 Fri Jul 11 11:56:51 EDT 2025 Wed Feb 19 02:42:23 EST 2025 Tue Jul 01 02:45:30 EDT 2025 Thu Apr 24 22:50:11 EDT 2025 Fri Feb 23 02:24:11 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | SED1 β-Glucosidase Aspergillus aculeatus Saccharomyces cerevisiae Cell surface display Mass spectrometry |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c440t-2f6e297558d4b1b739b8ee2ff1d405589ed2cf88c24fa5b4441cfffaff6033ea3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 29175124 |
PQID | 1969929538 |
PQPubID | 23479 |
PageCount | 5 |
ParticipantIDs | proquest_miscellaneous_2000558264 proquest_miscellaneous_1969929538 pubmed_primary_29175124 crossref_primary_10_1016_j_jbiosc_2017_09_013 crossref_citationtrail_10_1016_j_jbiosc_2017_09_013 elsevier_sciencedirect_doi_10_1016_j_jbiosc_2017_09_013 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-03-01 |
PublicationDateYYYYMMDD | 2018-03-01 |
PublicationDate_xml | – month: 03 year: 2018 text: 2018-03-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Japan |
PublicationPlace_xml | – name: Japan |
PublicationTitle | Journal of bioscience and bioengineering |
PublicationTitleAlternate | J Biosci Bioeng |
PublicationYear | 2018 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Kutty, England, Kovacs (bib16) 2013; 208 Fukuda, Tsuchiya, Makishima, Tsuchiyama, Mulchandani, Kuroda, Ueda, Suye (bib21) 2010; 5 Chen, Yang, Kuo (bib15) 1992; 21 Kuroda, Matsui, Higuchi, Kotaka, Sahara, Hata, Ueda (bib19) 2009; 82 Inokuma, Yoshida, Ishii, Hasunuma, Kondo (bib13) 2015; 99 Decker, Visser, Schreier (bib25) 2000; 48 Yamakawa, Yamada, Tanaka, Ogino, Kondo (bib8) 2012; 50 Kotaka, Bando, Kaya, Kato-Murai, Kuroda, Sahara, Hata, Kondo, Ueda (bib2) 2008; 105 Fujita, Ito, Ueda, Fukuda, Kondo (bib1) 2004; 70 Pacheco, Slade, Seyffert, Santos, Castro, Silva, Santos, Santos, Farias, Carvalho, other 8 authors (bib17) 2011; 11 Shimoi, Kitagaki, Ohmori, Iimura, Ito (bib14) 1998; 180 Wen, Sun, Zhao (bib3) 2010; 76 Pittet, Conzelmann (bib10) 2007; 1771 Goyal, Tsai, Madan, DaSilva, Chen (bib5) 2011; 10 Orlean (bib24) 2012; 192 Kotaka, Sahara, Kuroda, Kondo, Ueda, Hata (bib20) 2010; 109 Van der Vaart, te Biesebeke, Chapman, Toschka, Klis, Verrips (bib11) 1997; 63 Kondo, Shigechi, Abe, Uyama, Matsumoto, Takahashi, Ueda, Tanaka, Kishimoto, Fukuda (bib9) 2002; 58 Ueda, Tanaka (bib7) 2000; 90 Inokuma, Bamba, Ishii, Ito, Hasunuma, Kondo (bib18) 2016; 113 Liu, Ho, Sasaki, den Haan, Inokuma, Ogino, van Zyl, Hasunuma, Kondo (bib23) 2016; 6 Yamada, Taniguchi, Tanaka, Ogino, Fukuda, Kondo (bib4) 2010; 9 Inokuma, Hasunuma, Kondo (bib12) 2014; 7 Fan, Zhang, Yu, Xue, Tan (bib6) 2012; 109 Kuroda, Ueda (bib22) 2011; 22 Wen (10.1016/j.jbiosc.2017.09.013_bib3) 2010; 76 Yamada (10.1016/j.jbiosc.2017.09.013_bib4) 2010; 9 Goyal (10.1016/j.jbiosc.2017.09.013_bib5) 2011; 10 Ueda (10.1016/j.jbiosc.2017.09.013_bib7) 2000; 90 Kondo (10.1016/j.jbiosc.2017.09.013_bib9) 2002; 58 Orlean (10.1016/j.jbiosc.2017.09.013_bib24) 2012; 192 Inokuma (10.1016/j.jbiosc.2017.09.013_bib13) 2015; 99 Fukuda (10.1016/j.jbiosc.2017.09.013_bib21) 2010; 5 Inokuma (10.1016/j.jbiosc.2017.09.013_bib18) 2016; 113 Kotaka (10.1016/j.jbiosc.2017.09.013_bib20) 2010; 109 Van der Vaart (10.1016/j.jbiosc.2017.09.013_bib11) 1997; 63 Kutty (10.1016/j.jbiosc.2017.09.013_bib16) 2013; 208 Fujita (10.1016/j.jbiosc.2017.09.013_bib1) 2004; 70 Yamakawa (10.1016/j.jbiosc.2017.09.013_bib8) 2012; 50 Pacheco (10.1016/j.jbiosc.2017.09.013_bib17) 2011; 11 Kuroda (10.1016/j.jbiosc.2017.09.013_bib22) 2011; 22 Shimoi (10.1016/j.jbiosc.2017.09.013_bib14) 1998; 180 Kuroda (10.1016/j.jbiosc.2017.09.013_bib19) 2009; 82 Decker (10.1016/j.jbiosc.2017.09.013_bib25) 2000; 48 Kotaka (10.1016/j.jbiosc.2017.09.013_bib2) 2008; 105 Fan (10.1016/j.jbiosc.2017.09.013_bib6) 2012; 109 Chen (10.1016/j.jbiosc.2017.09.013_bib15) 1992; 21 Liu (10.1016/j.jbiosc.2017.09.013_bib23) 2016; 6 Pittet (10.1016/j.jbiosc.2017.09.013_bib10) 2007; 1771 Inokuma (10.1016/j.jbiosc.2017.09.013_bib12) 2014; 7 |
References_xml | – volume: 9 start-page: 32 year: 2010 ident: bib4 article-title: Cocktail δ-integration: a novel method to construct cellulolytic enzyme expression ratio-optimized yeast strains publication-title: Microb. Cell Fact. – volume: 1771 start-page: 405 year: 2007 end-page: 420 ident: bib10 article-title: Biosynthesis and function of GPI proteins in the yeast publication-title: Biochim. Biophys. Acta – volume: 90 start-page: 125 year: 2000 end-page: 136 ident: bib7 article-title: Cell surface engineering of yeast: construction of arming yeast with biocatalyst publication-title: J. Biosci. Bioeng. – volume: 105 start-page: 622 year: 2008 end-page: 627 ident: bib2 article-title: Direct ethanol production from barley β-glucan by sake yeast displaying publication-title: J. Biosci. Bioeng. – volume: 21 start-page: 83 year: 1992 end-page: 84 ident: bib15 article-title: One-step transformation of yeast in stationary phase publication-title: Curr. Genet. – volume: 99 start-page: 1655 year: 2015 end-page: 1663 ident: bib13 article-title: Efficient co-displaying and artificial ratio control of α-amylase and glucoamylase on the yeast cell surface by using combinations of different anchoring domains publication-title: Appl. Microbiol. Biotechnol. – volume: 208 start-page: 170 year: 2013 end-page: 179 ident: bib16 article-title: Expression of publication-title: J. Infect. Dis. – volume: 48 start-page: 4929 year: 2000 end-page: 4936 ident: bib25 article-title: -Glucosidases from five black publication-title: J. Agric. Food Chem. – volume: 58 start-page: 291 year: 2002 end-page: 296 ident: bib9 article-title: High-level ethanol production from starch by a flocculent publication-title: Appl. Microbiol. Biotechnol. – volume: 10 start-page: 89 year: 2011 ident: bib5 article-title: Simultaneous cell growth and ethanol production from cellulose by an engineered yeast consortium displaying a functional mini-cellulosome publication-title: Microb. Cell Fact. – volume: 180 start-page: 3381 year: 1998 end-page: 3387 ident: bib14 article-title: Sed1p is a major cell wall protein of publication-title: J. Bacteriol. – volume: 76 start-page: 1251 year: 2010 end-page: 1260 ident: bib3 article-title: Yeast surface display of trifunctional minicellulosomes for simultaneous saccharification and fermentation of cellulose to ethanol publication-title: Appl. Environ. Microbiol. – volume: 109 start-page: 442 year: 2010 end-page: 446 ident: bib20 article-title: Enhancement of β-glucosidase activity on the cell-surface of sake yeast by disruption of publication-title: J. Biosci. Bioeng. – volume: 113 start-page: 2358 year: 2016 end-page: 2366 ident: bib18 article-title: Enhanced cell-surface display and secretory production of cellulolytic enzymes with publication-title: Biotechnol. Bioeng. – volume: 11 start-page: 12 year: 2011 ident: bib17 article-title: A combined approach for comparative exoproteome analysis of publication-title: BMC Microbiol. – volume: 70 start-page: 1207 year: 2004 end-page: 1212 ident: bib1 article-title: Synergistic saccharification, and direct fermentation to ethanol, of amorphous cellulose by use of an engineered yeast strain codisplaying three types of cellulolytic enzyme publication-title: Appl. Environ. Microbiol. – volume: 192 start-page: 775 year: 2012 end-page: 818 ident: bib24 article-title: Architecture and biosynthesis of the publication-title: Genetics – volume: 5 start-page: 515 year: 2010 end-page: 519 ident: bib21 article-title: Organophosphorus compound detection on a cell chip with yeast coexpressing hydrolase and eGFP publication-title: Biotechnol. J. – volume: 22 start-page: 427 year: 2011 end-page: 433 ident: bib22 article-title: Molecular design of the microbial cell surface toward the recovery of metal ions publication-title: Curr. Opin. Biotechnol. – volume: 6 start-page: 24550 year: 2016 ident: bib23 article-title: Engineering of a novel cellulose-adherent cellulolytic publication-title: Sci. Rep. – volume: 82 start-page: 713 year: 2009 end-page: 719 ident: bib19 article-title: Enhancement of display efficiency in yeast display system by vector engineering and gene disruption publication-title: Appl. Microbiol. Biotechnol. – volume: 63 start-page: 615 year: 1997 end-page: 620 ident: bib11 article-title: Comparison of cell wall proteins of publication-title: Appl. Environ. Microbiol. – volume: 109 start-page: 13260 year: 2012 end-page: 13265 ident: bib6 article-title: Self-surface assembly of cellulosomes with two miniscaffoldins on publication-title: Proc. Natl. Acad. Sci. USA – volume: 50 start-page: 343 year: 2012 end-page: 347 ident: bib8 article-title: Repeated fermentation from raw starch using publication-title: Enzyme Microb. Technol. – volume: 7 start-page: 8 year: 2014 ident: bib12 article-title: Efficient yeast cell-surface display of exo- and endo-cellulase using the publication-title: Biotechnol. Biofuels – volume: 11 start-page: 12 year: 2011 ident: 10.1016/j.jbiosc.2017.09.013_bib17 article-title: A combined approach for comparative exoproteome analysis of Corynebacterium pseudotuberculosis publication-title: BMC Microbiol. doi: 10.1186/1471-2180-11-12 – volume: 70 start-page: 1207 year: 2004 ident: 10.1016/j.jbiosc.2017.09.013_bib1 article-title: Synergistic saccharification, and direct fermentation to ethanol, of amorphous cellulose by use of an engineered yeast strain codisplaying three types of cellulolytic enzyme publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.70.2.1207-1212.2004 – volume: 9 start-page: 32 year: 2010 ident: 10.1016/j.jbiosc.2017.09.013_bib4 article-title: Cocktail δ-integration: a novel method to construct cellulolytic enzyme expression ratio-optimized yeast strains publication-title: Microb. Cell Fact. doi: 10.1186/1475-2859-9-32 – volume: 5 start-page: 515 year: 2010 ident: 10.1016/j.jbiosc.2017.09.013_bib21 article-title: Organophosphorus compound detection on a cell chip with yeast coexpressing hydrolase and eGFP publication-title: Biotechnol. J. doi: 10.1002/biot.200900292 – volume: 63 start-page: 615 year: 1997 ident: 10.1016/j.jbiosc.2017.09.013_bib11 article-title: Comparison of cell wall proteins of Saccharomyces cerevisiae as anchors for cell surface expression of heterologous proteins publication-title: Appl. Environ. Microbiol. doi: 10.1128/aem.63.2.615-620.1997 – volume: 82 start-page: 713 year: 2009 ident: 10.1016/j.jbiosc.2017.09.013_bib19 article-title: Enhancement of display efficiency in yeast display system by vector engineering and gene disruption publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-008-1808-4 – volume: 208 start-page: 170 year: 2013 ident: 10.1016/j.jbiosc.2017.09.013_bib16 article-title: Expression of Pneumocystis jirovecii major surface glycoprotein in Saccharomyces cerevisiae publication-title: J. Infect. Dis. doi: 10.1093/infdis/jit131 – volume: 50 start-page: 343 year: 2012 ident: 10.1016/j.jbiosc.2017.09.013_bib8 article-title: Repeated fermentation from raw starch using Saccharomyces cerevisiae displaying both glucoamylase and α-amylase publication-title: Enzyme Microb. Technol. doi: 10.1016/j.enzmictec.2012.03.005 – volume: 10 start-page: 89 year: 2011 ident: 10.1016/j.jbiosc.2017.09.013_bib5 article-title: Simultaneous cell growth and ethanol production from cellulose by an engineered yeast consortium displaying a functional mini-cellulosome publication-title: Microb. Cell Fact. doi: 10.1186/1475-2859-10-89 – volume: 113 start-page: 2358 year: 2016 ident: 10.1016/j.jbiosc.2017.09.013_bib18 article-title: Enhanced cell-surface display and secretory production of cellulolytic enzymes with Saccharomyces cerevisiae Sed1 signal peptide publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.26008 – volume: 90 start-page: 125 year: 2000 ident: 10.1016/j.jbiosc.2017.09.013_bib7 article-title: Cell surface engineering of yeast: construction of arming yeast with biocatalyst publication-title: J. Biosci. Bioeng. doi: 10.1016/S1389-1723(00)80099-7 – volume: 48 start-page: 4929 year: 2000 ident: 10.1016/j.jbiosc.2017.09.013_bib25 article-title: β-Glucosidases from five black Aspergillus species: study of their physico-chemical and biocatalytic properties publication-title: J. Agric. Food Chem. doi: 10.1021/jf000434d – volume: 99 start-page: 1655 year: 2015 ident: 10.1016/j.jbiosc.2017.09.013_bib13 article-title: Efficient co-displaying and artificial ratio control of α-amylase and glucoamylase on the yeast cell surface by using combinations of different anchoring domains publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-014-6250-1 – volume: 58 start-page: 291 year: 2002 ident: 10.1016/j.jbiosc.2017.09.013_bib9 article-title: High-level ethanol production from starch by a flocculent Saccharomyces cerevisiae strain displaying cell-surface glucoamylase publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-001-0900-9 – volume: 6 start-page: 24550 year: 2016 ident: 10.1016/j.jbiosc.2017.09.013_bib23 article-title: Engineering of a novel cellulose-adherent cellulolytic Saccharomyces cerevisiae for cellulosic biofuel production publication-title: Sci. Rep. doi: 10.1038/srep24550 – volume: 109 start-page: 442 year: 2010 ident: 10.1016/j.jbiosc.2017.09.013_bib20 article-title: Enhancement of β-glucosidase activity on the cell-surface of sake yeast by disruption of SED1 publication-title: J. Biosci. Bioeng. doi: 10.1016/j.jbiosc.2009.11.003 – volume: 192 start-page: 775 year: 2012 ident: 10.1016/j.jbiosc.2017.09.013_bib24 article-title: Architecture and biosynthesis of the Saccharomyces cerevisiae cell wall publication-title: Genetics doi: 10.1534/genetics.112.144485 – volume: 22 start-page: 427 year: 2011 ident: 10.1016/j.jbiosc.2017.09.013_bib22 article-title: Molecular design of the microbial cell surface toward the recovery of metal ions publication-title: Curr. Opin. Biotechnol. doi: 10.1016/j.copbio.2010.12.006 – volume: 76 start-page: 1251 year: 2010 ident: 10.1016/j.jbiosc.2017.09.013_bib3 article-title: Yeast surface display of trifunctional minicellulosomes for simultaneous saccharification and fermentation of cellulose to ethanol publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.01687-09 – volume: 7 start-page: 8 year: 2014 ident: 10.1016/j.jbiosc.2017.09.013_bib12 article-title: Efficient yeast cell-surface display of exo- and endo-cellulase using the SED1 anchoring region and its original promoter publication-title: Biotechnol. Biofuels doi: 10.1186/1754-6834-7-8 – volume: 1771 start-page: 405 year: 2007 ident: 10.1016/j.jbiosc.2017.09.013_bib10 article-title: Biosynthesis and function of GPI proteins in the yeast Saccharomyces cerevisiae publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbalip.2006.05.015 – volume: 109 start-page: 13260 year: 2012 ident: 10.1016/j.jbiosc.2017.09.013_bib6 article-title: Self-surface assembly of cellulosomes with two miniscaffoldins on Saccharomyces cerevisiae for cellulosic ethanol production publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1209856109 – volume: 180 start-page: 3381 year: 1998 ident: 10.1016/j.jbiosc.2017.09.013_bib14 article-title: Sed1p is a major cell wall protein of Saccharomyces cerevisiae in the stationary phase and is involved in lytic enzyme resistance publication-title: J. Bacteriol. doi: 10.1128/JB.180.13.3381-3387.1998 – volume: 105 start-page: 622 year: 2008 ident: 10.1016/j.jbiosc.2017.09.013_bib2 article-title: Direct ethanol production from barley β-glucan by sake yeast displaying Aspergillus oryzae β-glucosidase and endoglucanase publication-title: J. Biosci. Bioeng. doi: 10.1263/jbb.105.622 – volume: 21 start-page: 83 year: 1992 ident: 10.1016/j.jbiosc.2017.09.013_bib15 article-title: One-step transformation of yeast in stationary phase publication-title: Curr. Genet. doi: 10.1007/BF00318659 |
SSID | ssj0017071 |
Score | 2.2994895 |
Snippet | Yeast displaying enzymes on the cell surface are used for developing whole-cell biocatalysts. High enzyme activity on the cell surface is required in certain... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 306 |
SubjectTerms | Aspergillus aculeatus beta-glucosidase biocatalysts Cell surface display cell walls enzyme activity ethanol production ionization lignocellulose liquid chromatography Mass spectrometry Saccharomyces cerevisiae SED1 structural proteins tandem mass spectrometry yeasts β-Glucosidase |
Title | Enhanced cell-surface display of a heterologous protein using SED1 anchoring system in SED1-disrupted Saccharomyces cerevisiae strain |
URI | https://dx.doi.org/10.1016/j.jbiosc.2017.09.013 https://www.ncbi.nlm.nih.gov/pubmed/29175124 https://www.proquest.com/docview/1969929538 https://www.proquest.com/docview/2000558264 |
Volume | 125 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT9swFLcQE9IuiPGxlW3ISFxNE8eJ0yNiRWXVOFAQvVm2Y69BkFb9OPSy2_7vvecklXaokDhFie3Y8u_l-ffi954JuZAWWDEofhYZ4ZnQ2jDDdcTAcohcKr3PLMY7_7rLBo_i5zgd75DrNhYG3Sob3V_r9KCtmyfdZja7s7LsjsIWmwR-AkIqeTTGCHYhUcov_2zcPKDLxujKewxrt-Fzwcfr2ZTTBSYyjGXIdhon25anbfQzLEM3B2S_4Y_0qh7iJ7LjqkOyV58ouT4if_vVJOzpU_wjzxarudfW0aJczF70mk491XSCHjBYH4x-GvI0lBVF__ffdNT_EVNoPwluebRO80yhGAsYvGW-mgFFpSNtMVxr-roGNQNdzUOMunZ0EY6cOCaPN_2H6wFrTlpgVohoybjPHIbYpnkhTGxk0jO5c9z7uABCl-Y9V3Dr89xy4XVqBHAo673XAGWUJE4nJ2S3mlbuC6GZNmmmpYuzggMaiQb7yuUm1ZLbLCviDknaCVa2SUOOQ3tRrb_Zs6phUQiLinoKYOkQtmk1q9NwvFFfttip_8RJwUrxRsvzFmoFXxqCpSsHgChMJARkElaI7XUw8AnmC1hmh3yu5WQzXg7SCvRKnL57bF_JR7jLaxe4b2R3OV-578CJluYsCP0Z-XB1Oxzc4XV4_zT8B-rADz8 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwEB4tixBcEG_K00hwNE0cJ04PHBDbVZd9XLor9WZsx6ZZLUnVtEK9cOMX8QcZO0klDtVKSHuN7WQyY4-_kb8ZA7wXBlExOn4aae4oV0pTzVREMXKIbCqcy4zPdz49yyYX_Ossne3Bnz4XxtMqO9_f-vTgrbsnw06bw0VZDqfhiE0gPsFJKlg065iVx3bzE-O25tPRARr5A2OH4_MvE9pdLUAN59GKMpdZn1Oa5gXXsRbJSOfWMufiAhFMmo9swYzLc8O4U6nmCBqMc06h7FGSWJXge2_BbY7uwl-b8PHXlleC_9hFefmIevH6fL1AKrvUZd34yomxCOVV42TXfrgL74Z97_AB3O8AK_nc6uQh7NnqEdxpr7DcPIbf42oeSATEHwHQZr10ylhSlM3iSm1I7Ygic0-58f3rdUNCYYiyIp5w_51MxwcxwfHzwAMkbV1pgs2-geJblusFYmIyVcbnh9U_NujX8FPLkBSvLGnCHRdP4OJG9P8U9qu6ss-BZEqnmRI2zgrG0VsqDOhsrlMlmMmyIh5A0itYmq7uuRftSvYEt0vZmkV6s8hoJNEsA6DbUYu27sc1_UVvO_nP_JW4NV0z8l1vaolL2xtLVRYNIn3lIkSvOMd29_GZVqgvhLUDeNbOk628DJcH4jn-4r9lewt3J-enJ_Lk6Oz4JdzDlrzl372C_dVybV8jIFvpN2EBEPh20yvuL79QSqI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+cell-surface+display+of+a+heterologous+protein+using+SED1+anchoring+system+in+SED1-disrupted+Saccharomyces+cerevisiae+strain&rft.jtitle=Journal+of+bioscience+and+bioengineering&rft.au=Bamba%2C+Takahiro&rft.au=Inokuma%2C+Kentaro&rft.au=Hasunuma%2C+Tomohisa&rft.au=Kondo%2C+Akihiko&rft.date=2018-03-01&rft.eissn=1347-4421&rft.volume=125&rft.issue=3&rft.spage=306&rft_id=info:doi/10.1016%2Fj.jbiosc.2017.09.013&rft_id=info%3Apmid%2F29175124&rft.externalDocID=29175124 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1389-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1389-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1389-1723&client=summon |