Heartbeat Time Series Classification With Support Vector Machines

In this study, heartbeat time series are classified using support vector machines (SVMs). Statistical methods and signal analysis techniques are used to extract features from the signals. The SVM classifier is favorably compared to other neural network-based classification approaches by performing l...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on information technology in biomedicine Vol. 13; no. 4; pp. 512 - 518
Main Authors Kampouraki, A., Manis, G., Nikou, C.
Format Journal Article
LanguageEnglish
Published United States IEEE 01.07.2009
Subjects
Online AccessGet full text
ISSN1089-7771
1558-0032
1558-0032
DOI10.1109/TITB.2008.2003323

Cover

Loading…
Abstract In this study, heartbeat time series are classified using support vector machines (SVMs). Statistical methods and signal analysis techniques are used to extract features from the signals. The SVM classifier is favorably compared to other neural network-based classification approaches by performing leave-one-out cross validation. The performance of the SVM with respect to other state-of-the-art classifiers is also confirmed by the classification of signals presenting very low signal-to-noise ratio. Finally, the influence of the number of features to the classification rate was also investigated for two real datasets. The first dataset consists of long-term ECG recordings of young and elderly healthy subjects. The second dataset consists of long-term ECG recordings of normal subjects and subjects suffering from coronary artery disease.
AbstractList In this study, heartbeat time series are classified using support vector machines (SVMs). Statistical methods and signal analysis techniques are used to extract features from the signals. The SVM classifier is favorably compared to other neural network-based classification approaches by performing leave-one-out cross validation. The performance of the SVM with respect to other state-of-the-art classifiers is also confirmed by the classification of signals presenting very low signal-to-noise ratio. Finally, the influence of the number of features to the classification rate was also investigated for two real datasets. The first dataset consists of long-term ECG recordings of young and elderly healthy subjects. The second dataset consists of long-term ECG recordings of normal subjects and subjects suffering from coronary artery disease.In this study, heartbeat time series are classified using support vector machines (SVMs). Statistical methods and signal analysis techniques are used to extract features from the signals. The SVM classifier is favorably compared to other neural network-based classification approaches by performing leave-one-out cross validation. The performance of the SVM with respect to other state-of-the-art classifiers is also confirmed by the classification of signals presenting very low signal-to-noise ratio. Finally, the influence of the number of features to the classification rate was also investigated for two real datasets. The first dataset consists of long-term ECG recordings of young and elderly healthy subjects. The second dataset consists of long-term ECG recordings of normal subjects and subjects suffering from coronary artery disease.
In this study, heartbeat time series are classified using support vector machines (SVMs). Statistical methods and signal analysis techniques are used to extract features from the signals. The SVM classifier is favorably compared to other neural network-based classification approaches by performing leave-one-out cross validation. The performance of the SVM with respect to other state-of-the-art classifiers is also confirmed by the classification of signals presenting very low signal-to-noise ratio. Finally, the influence of the number of features to the classification rate was also investigated for two real datasets. The first dataset consists of long-term ECG recordings of young and elderly healthy subjects. The second dataset consists of long-term ECG recordings of normal subjects and subjects suffering from coronary artery disease.
Author Kampouraki, A.
Manis, G.
Nikou, C.
Author_xml – sequence: 1
  givenname: A.
  surname: Kampouraki
  fullname: Kampouraki, A.
  organization: Dept. of Comput. Sci., Univ. of Ioannina, Ioannina, Greece
– sequence: 2
  givenname: G.
  surname: Manis
  fullname: Manis, G.
  organization: Dept. of Comput. Sci., Univ. of Ioannina, Ioannina, Greece
– sequence: 3
  givenname: C.
  surname: Nikou
  fullname: Nikou, C.
  organization: Dept. of Comput. Sci., Univ. of Ioannina, Ioannina, Greece
BackLink https://www.ncbi.nlm.nih.gov/pubmed/19273030$$D View this record in MEDLINE/PubMed
BookMark eNqNkUtPwzAQhC0E4v0DEBLKCU6BdWzHzhEqXhKIQyM4Wq67EUZpUmz3wL_HoaUHDsBlvZa-WY1m9shm13dIyBGFc0qhuqjv66vzAkANg7GCbZBdKoTK06_YTDuoKpdS0h2yF8IbAOWCsm2yQ6tCMmCwSy7v0Pg4QROz2s0wG6N3GLJRa0JwjbMmur7LXlx8zcaL-bz3MXtGG3ufPRr76joMB2SrMW3Aw9W7T-qb63p0lz883d6PLh9yyznEvJBNUwluLeVlmZwgKpCMSVlOsAJqJUyEmHLTAKKFSik6FaVQ0rASLK_YPjlbnp37_n2BIeqZCxbb1nTYL4JWpZRcUsUTeforWUpeKkgR_QUynmyof4AFpSl8GEyerMDFZIZTPfduZvyH_s47AXIJWN-H4LHR1sWvjKM3rtUU9NCsHprVQ7N61WxS0h_K9fFfNMdLjUPENc-FUowz9gn-jKs7
CODEN ITIBFX
CitedBy_id crossref_primary_10_1007_s11517_018_1914_0
crossref_primary_10_1016_j_imu_2021_100729
crossref_primary_10_3390_sym12050866
crossref_primary_10_1109_JIOT_2019_2946593
crossref_primary_10_3390_s21155007
crossref_primary_10_1002_acs_3926
crossref_primary_10_1109_JBHI_2021_3069007
crossref_primary_10_4018_IJKBO_2020040104
crossref_primary_10_1038_s41591_020_0870_z
crossref_primary_10_1142_S0219519414500663
crossref_primary_10_1109_TITB_2012_2212448
crossref_primary_10_1016_j_bea_2021_100013
crossref_primary_10_1080_10255842_2020_1768534
crossref_primary_10_1007_s10489_024_05672_y
crossref_primary_10_3390_s20174861
crossref_primary_10_1007_s10489_023_04642_0
crossref_primary_10_1007_s10618_018_00608_w
crossref_primary_10_1109_TCSI_2018_2848647
crossref_primary_10_1007_s10115_019_01389_4
crossref_primary_10_1109_TSP_2011_2173685
crossref_primary_10_1038_s41598_021_94363_6
crossref_primary_10_1016_j_compbiomed_2019_103346
crossref_primary_10_3934_math_2024805
crossref_primary_10_1016_j_procs_2022_09_177
crossref_primary_10_1007_s11265_010_0480_y
crossref_primary_10_1016_j_bspc_2014_10_013
crossref_primary_10_1587_transcom_2017CQP0007
crossref_primary_10_1109_TITB_2010_2048922
crossref_primary_10_1007_s11063_022_10944_0
crossref_primary_10_1038_s41598_019_42516_z
crossref_primary_10_1007_s10916_016_0651_x
crossref_primary_10_1155_2012_145926
crossref_primary_10_1186_s12938_017_0322_2
crossref_primary_10_1109_TBME_2015_2405134
crossref_primary_10_1016_j_bspc_2017_09_032
crossref_primary_10_1038_s41597_019_0206_3
crossref_primary_10_4015_S1016237219500467
crossref_primary_10_1093_ehjdh_ztab058
crossref_primary_10_1109_MCI_2009_935309
crossref_primary_10_1109_TBME_2012_2213597
crossref_primary_10_1016_j_engappai_2012_09_019
crossref_primary_10_1142_S1469026816500218
crossref_primary_10_3182_20120215_3_AT_3016_00009
crossref_primary_10_1113_JP278773
crossref_primary_10_1016_j_procs_2018_05_045
crossref_primary_10_1016_j_eswa_2012_01_093
crossref_primary_10_1109_TITB_2012_2188812
crossref_primary_10_1007_s10618_016_0473_y
crossref_primary_10_1109_TCYB_2020_3034755
crossref_primary_10_1007_s13534_013_0096_9
crossref_primary_10_1109_TITB_2012_2195188
crossref_primary_10_1007_s44258_024_00043_1
crossref_primary_10_1007_s00521_021_06159_4
crossref_primary_10_1016_j_bspc_2018_08_026
crossref_primary_10_1016_j_sbspro_2013_02_078
crossref_primary_10_1088_1361_6579_ac010e
crossref_primary_10_1260_2040_2295_4_4_465
crossref_primary_10_1016_j_compag_2022_107556
crossref_primary_10_1016_j_heliyon_2023_e22778
crossref_primary_10_1016_j_ins_2015_08_008
crossref_primary_10_1007_s11042_021_11562_z
crossref_primary_10_1016_j_bbe_2020_08_001
crossref_primary_10_1007_s00484_019_01714_0
crossref_primary_10_1016_j_apenergy_2022_118752
crossref_primary_10_1016_j_bspc_2013_06_004
crossref_primary_10_1007_s10115_022_01784_4
crossref_primary_10_1016_j_compbiomed_2020_104095
crossref_primary_10_1080_13682199_2016_1159815
crossref_primary_10_1109_ACCESS_2022_3207765
crossref_primary_10_1177_1460458217717636
crossref_primary_10_1109_ACCESS_2018_2887354
crossref_primary_10_1016_j_ifacol_2021_04_193
crossref_primary_10_1109_TITB_2011_2119410
crossref_primary_10_1016_j_compbiomed_2011_04_003
crossref_primary_10_2196_32656
crossref_primary_10_1007_s10845_020_01591_0
crossref_primary_10_1186_1475_925X_9_41
crossref_primary_10_1016_j_neucom_2019_10_113
crossref_primary_10_1109_ACCESS_2019_2911555
crossref_primary_10_7232_JKIIE_2023_49_1_015
crossref_primary_10_14778_3401960_3401973
crossref_primary_10_1109_ACCESS_2021_3074967
crossref_primary_10_1016_j_cmpb_2013_05_022
crossref_primary_10_1016_j_bspc_2021_102835
crossref_primary_10_1016_j_neucom_2012_09_008
crossref_primary_10_1007_s12652_023_04745_z
crossref_primary_10_1007_s11704_015_4478_2
crossref_primary_10_1016_j_knosys_2013_09_015
crossref_primary_10_32604_cmc_2023_039936
crossref_primary_10_1016_j_engappai_2019_103262
crossref_primary_10_1007_s11042_021_11528_1
crossref_primary_10_1007_s10618_024_01068_1
crossref_primary_10_1109_TKDE_2012_223
crossref_primary_10_1109_TKDE_2020_3018376
crossref_primary_10_1016_j_ijmedinf_2016_09_005
crossref_primary_10_3109_03091902_2015_1063721
crossref_primary_10_1007_s00521_018_3814_5
crossref_primary_10_3390_computers8010021
crossref_primary_10_1016_j_cmpb_2014_06_014
crossref_primary_10_1002_cpe_5776
crossref_primary_10_1016_j_ijmedinf_2017_10_008
crossref_primary_10_1016_j_bspc_2020_102310
crossref_primary_10_1016_j_compbiomed_2021_104367
crossref_primary_10_1109_TITB_2009_2030025
crossref_primary_10_1007_s10994_023_06502_x
crossref_primary_10_1007_s10462_021_09999_7
crossref_primary_10_1007_s13042_020_01171_x
crossref_primary_10_1109_TPAMI_2020_2986319
Cites_doi 10.1109/TITB.2005.847169
10.1109/TITB.2005.855526
10.1109/IEMBS.1998.747071
10.1109/TBME.2004.824138
10.1109/TBME.1985.325532
10.1109/10.775408
10.1109/IEMBS.2006.260550
10.1093/oxfordjournals.eurheartj.a014868
10.1109/TBME.2006.872814
10.1109/10.855925
10.1109/5.58325
10.1109/TITB.2006.879600
10.1017/CBO9780511801389
10.1109/TBME.2004.827827
10.1109/TBME.2005.859779
10.1016/S0933-3657(98)00058-X
10.1109/TBME.2005.845241
10.1109/TBME.2005.844023
10.1109/10.918600
10.1109/TMI.2006.875437
10.1109/TPAMI.2002.1046177
10.1109/34.683777
10.1109/TSMCB.2004.827391
10.1109/TBME.2005.859809
10.1016/j.compbiomed.2006.06.008
10.1142/S0218001403002460
10.1109/72.914517
10.1109/TBME.2005.845228
10.1016/S0933-3657(98)00055-4
10.1109/72.329697
10.1111/j.1469-8986.1997.tb02140.x
10.1109/TNN.2004.837780
10.1007/BF00994018
10.1109/TMI.2002.806569
10.1109/TBME.2004.826698
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
FR3
P64
7SC
7SP
7U5
F28
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TITB.2008.2003323
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
ANTE: Abstracts in New Technology & Engineering
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Engineering Research Database
Technology Research Database

Engineering Research Database
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1558-0032
EndPage 518
ExternalDocumentID 19273030
10_1109_TITB_2008_2003323
4588343
Genre orig-research
Journal Article
GroupedDBID ---
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAJGR
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TN5
VH1
AAYXX
CITATION
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
FR3
P64
7SC
7SP
7U5
F28
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c440t-27ff954cc1466001ee80733776be901c70b55d4af0eec09881d56587a360c493
IEDL.DBID RIE
ISSN 1089-7771
1558-0032
IngestDate Thu Jul 10 23:39:32 EDT 2025
Fri Jul 11 05:52:22 EDT 2025
Fri Jul 11 13:10:10 EDT 2025
Fri Jul 11 11:48:42 EDT 2025
Thu Apr 03 07:01:39 EDT 2025
Tue Jul 01 03:30:29 EDT 2025
Thu Apr 24 22:52:07 EDT 2025
Tue Aug 26 16:47:41 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c440t-27ff954cc1466001ee80733776be901c70b55d4af0eec09881d56587a360c493
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
PMID 19273030
PQID 21132309
PQPubID 23462
PageCount 7
ParticipantIDs proquest_miscellaneous_21132309
proquest_miscellaneous_34988800
crossref_citationtrail_10_1109_TITB_2008_2003323
ieee_primary_4588343
pubmed_primary_19273030
crossref_primary_10_1109_TITB_2008_2003323
proquest_miscellaneous_867747184
proquest_miscellaneous_67468000
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2009-07-01
PublicationDateYYYYMMDD 2009-07-01
PublicationDate_xml – month: 07
  year: 2009
  text: 2009-07-01
  day: 01
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle IEEE transactions on information technology in biomedicine
PublicationTitleAbbrev TITB
PublicationTitleAlternate IEEE Trans Inf Technol Biomed
PublicationYear 2009
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref34
ref15
manis (ref41) 2004
ref36
ref14
ref31
ref30
ref33
ref11
ref32
ref10
ref1
ref39
ref17
ref19
alexandridi (ref12) 2003
kampouraki (ref35) 2006
vapnik (ref18) 1998
iyengar (ref43) 1996; 271
ref24
ref45
ref23
ref26
ref25
ref20
ref42
schlkopf (ref37) 1999
ref22
ref44
ref21
goldberger (ref16) 2000; 101
ref28
ref27
ref29
ref8
ref7
teich (ref2) 2001
kondor (ref38) 2003
ref9
ref3
ref6
ref5
ref40
kamath (ref4) 1993; 21
References_xml – ident: ref29
  doi: 10.1109/TITB.2005.847169
– ident: ref30
  doi: 10.1109/TITB.2005.855526
– start-page: 159
  year: 2001
  ident: ref2
  publication-title: Nonlinear Biomedical Signal Processing vol II
– ident: ref42
  doi: 10.1109/IEMBS.1998.747071
– ident: ref33
  doi: 10.1109/TBME.2004.824138
– start-page: 9
  year: 2006
  ident: ref35
  article-title: classification of heart rate signals using support vector machines
  publication-title: Proc BioSignal Conf
– start-page: 361
  year: 2003
  ident: ref38
  article-title: a kernel between sets of vectors
  publication-title: Proc 20th Int Conf Mach Learn (ICML)
– ident: ref40
  doi: 10.1109/TBME.1985.325532
– ident: ref5
  doi: 10.1109/10.775408
– volume: 21
  start-page: 245
  year: 1993
  ident: ref4
  article-title: power spectral analysis of hrv: a noninvasive signature of cardiac autonomic functions
  publication-title: Crit Rev Biomed Eng
– ident: ref36
  doi: 10.1109/IEMBS.2006.260550
– year: 2004
  ident: ref41
  article-title: prediction techniques and hrv analysis
  publication-title: Medicon Health Telematics
– year: 1998
  ident: ref18
  publication-title: Statistical Learning Theory
– ident: ref1
  doi: 10.1093/oxfordjournals.eurheartj.a014868
– ident: ref34
  doi: 10.1109/TBME.2006.872814
– ident: ref10
  doi: 10.1109/10.855925
– ident: ref44
  doi: 10.1109/5.58325
– ident: ref26
  doi: 10.1109/TITB.2006.879600
– ident: ref15
  doi: 10.1017/CBO9780511801389
– ident: ref27
  doi: 10.1109/TBME.2004.827827
– ident: ref8
  doi: 10.1109/TBME.2005.859779
– ident: ref13
  doi: 10.1016/S0933-3657(98)00058-X
– volume: 271
  start-page: 1078
  year: 1996
  ident: ref43
  article-title: age-related alterations in the fractal scaling of cardiac interbeat interval dynamics
  publication-title: Amer J Physiol
– ident: ref25
  doi: 10.1109/TBME.2005.845241
– ident: ref7
  doi: 10.1109/TBME.2005.844023
– ident: ref31
  doi: 10.1109/10.918600
– ident: ref32
  doi: 10.1109/TMI.2006.875437
– ident: ref21
  doi: 10.1109/TPAMI.2002.1046177
– year: 2003
  ident: ref12
  article-title: neural networks and fuzzy logic approximation and prediction for hrv analysis
  publication-title: Eur Symp Intell Technol Hybrid Syst Implement Smart Adapt Syst
– ident: ref22
  doi: 10.1109/34.683777
– ident: ref24
  doi: 10.1109/TSMCB.2004.827391
– ident: ref6
  doi: 10.1109/TBME.2005.859809
– ident: ref17
  doi: 10.1016/j.compbiomed.2006.06.008
– ident: ref19
  doi: 10.1142/S0218001403002460
– ident: ref39
  doi: 10.1109/72.914517
– ident: ref9
  doi: 10.1109/TBME.2005.845228
– volume: 101
  start-page: 215e
  year: 2000
  ident: ref16
  article-title: physiobank, physiotoolkit, and physionet: components of a new research resource for complex physiologic signals
– ident: ref11
  doi: 10.1016/S0933-3657(98)00055-4
– ident: ref45
  doi: 10.1109/72.329697
– ident: ref3
  doi: 10.1111/j.1469-8986.1997.tb02140.x
– ident: ref23
  doi: 10.1109/TNN.2004.837780
– ident: ref14
  doi: 10.1007/BF00994018
– ident: ref20
  doi: 10.1109/TMI.2002.806569
– year: 1999
  ident: ref37
  publication-title: Advances in Kernel Methods Support Vector Learning
– ident: ref28
  doi: 10.1109/TBME.2004.826698
SSID ssj0014513
Score 2.351141
Snippet In this study, heartbeat time series are classified using support vector machines (SVMs). Statistical methods and signal analysis techniques are used to...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 512
SubjectTerms Adult
Aged
Aged, 80 and over
Algorithms
Artificial Intelligence
Coronary Artery Disease - physiopathology
Electrocardiography
Feature extraction
Heart beat
Heart Rate - physiology
heart rate variability (HRV)
heartbeat time series
Humans
Male
Models, Statistical
Neural networks
Senior citizens
Signal analysis
Signal Processing, Computer-Assisted
Signal to noise ratio
Statistical analysis
support vector machine (SVM)
Support vector machine classification
Support vector machines
Title Heartbeat Time Series Classification With Support Vector Machines
URI https://ieeexplore.ieee.org/document/4588343
https://www.ncbi.nlm.nih.gov/pubmed/19273030
https://www.proquest.com/docview/21132309
https://www.proquest.com/docview/34988800
https://www.proquest.com/docview/67468000
https://www.proquest.com/docview/867747184
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9tAEB4FDggOpUBbAgX2wKmqw9pee73HgEBppXAKj5uVXY_VCpRUxLn01zOz3gRUkYqbD2Np9jG73-x8MwNwGitdu0qRfdvCRMrmSUQoX0bajpVJdOGsL7s4vM4HN-rnfXbfge_LXBhE9OQz7PGnj-VXUzfnp7IzzqpMVboGa-S4tblay4iByuJApjeEGHUcIpixNGejH6PzljXJTKw08b1zSJHUc59fXUe-v8pqqOmvnKttGC6UbZkmD715Y3vu7z91HN87mo_wIWBP0W83yw50cLILW68qEu7CxjDE2vegPyAjaCyd1YLzRAS_o-FM-C6azC_ySyrufje_BLcGJRgvbn0IQAw9QRNnn2B0dTm6GESh4ULklJJNlOi6Nplyjo5PBkKIBfd01Dq3SLjBaWmzrFLjWiI6aQrCuoQHCz1Oc-mUST_D-mQ6wX0QVZXYGuPEKZ2yy1hYI1PHHBwuCIdxF-Ri2ksXipFzT4zH0jsl0pS8aG2PzLBoXfi2_OVPW4njf8J7POFLwTDXXThZrG1JZsSxkfEEp_NZSX4w_SbNagnSvKDDTq6WyLXKSYAkxAoJLh7IaEB14Uu7s16GEjbkwduaH8JmG8diovBXWG-e5nhEcKixx94OngHd9ADD
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB71IdFyoNAHLFDqAydEtk7ixPGxIKptaXoKpbdo7UzUqtUuYrMXfj0zjnepUBdxy2EijT0e-7PnmxmA97HSrWsU-bctTKRsnkSE8mWk7ViZRBfO-rKL5WU--qbOr7PrNfi4zIVBRE8-wyF_-lh-M3Vzfio75qzKVKXrsJlxMm6frbWMGagsDnR6Q5hRxyGGGUtzXJ1Vn3reJHOx0sR3zyFVUs9-fnAg-Q4rq8GmP3ROd6BcqNtzTe6G884O3a-_Kjn-73iew7OAPsVJv1xewBpOduHpg5qEu_CkDNH2PTgZkRt0lnZrwZkigl_ScCZ8H01mGHmjiu-33Y3g5qAE5MWVDwKI0lM0cbYP1emX6vMoCi0XIqeU7KJEt63JlHO0gTIUQiy4q6PWuUVCDk5Lm2WNGrcS0UlTENolRFjocZpLp0x6ABuT6QRfgWiaxLYYJ07plC-NhTUydczC4ZJwGA9ALqa9dqEcOXfFuK_9tUSamo3Wd8kMRhvAh-UvP_paHP8S3uMJXwqGuR7A0cK2NTkSR0fGE5zOZzXdhOk3aVZLkOYFbXdytUSuVU4CJCFWSHD5QMYDagAv-5X1ZyhhQb5-XPMj2BpV5UV9cXb59Q1s91Etpg2_hY3u5xwPCRx19p33id9kIwQL
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Heartbeat+Time+Series+Classification+With+Support+Vector+Machines&rft.jtitle=IEEE+transactions+on+information+technology+in+biomedicine&rft.au=Kampouraki%2C+A&rft.au=Manis%2C+G&rft.au=Nikou%2C+C&rft.date=2009-07-01&rft.issn=1089-7771&rft.volume=13&rft.issue=4&rft.spage=512&rft.epage=518&rft_id=info:doi/10.1109%2FTITB.2008.2003323&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-7771&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-7771&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-7771&client=summon