Heartbeat Time Series Classification With Support Vector Machines
In this study, heartbeat time series are classified using support vector machines (SVMs). Statistical methods and signal analysis techniques are used to extract features from the signals. The SVM classifier is favorably compared to other neural network-based classification approaches by performing l...
Saved in:
Published in | IEEE transactions on information technology in biomedicine Vol. 13; no. 4; pp. 512 - 518 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.07.2009
|
Subjects | |
Online Access | Get full text |
ISSN | 1089-7771 1558-0032 1558-0032 |
DOI | 10.1109/TITB.2008.2003323 |
Cover
Loading…
Abstract | In this study, heartbeat time series are classified using support vector machines (SVMs). Statistical methods and signal analysis techniques are used to extract features from the signals. The SVM classifier is favorably compared to other neural network-based classification approaches by performing leave-one-out cross validation. The performance of the SVM with respect to other state-of-the-art classifiers is also confirmed by the classification of signals presenting very low signal-to-noise ratio. Finally, the influence of the number of features to the classification rate was also investigated for two real datasets. The first dataset consists of long-term ECG recordings of young and elderly healthy subjects. The second dataset consists of long-term ECG recordings of normal subjects and subjects suffering from coronary artery disease. |
---|---|
AbstractList | In this study, heartbeat time series are classified using support vector machines (SVMs). Statistical methods and signal analysis techniques are used to extract features from the signals. The SVM classifier is favorably compared to other neural network-based classification approaches by performing leave-one-out cross validation. The performance of the SVM with respect to other state-of-the-art classifiers is also confirmed by the classification of signals presenting very low signal-to-noise ratio. Finally, the influence of the number of features to the classification rate was also investigated for two real datasets. The first dataset consists of long-term ECG recordings of young and elderly healthy subjects. The second dataset consists of long-term ECG recordings of normal subjects and subjects suffering from coronary artery disease.In this study, heartbeat time series are classified using support vector machines (SVMs). Statistical methods and signal analysis techniques are used to extract features from the signals. The SVM classifier is favorably compared to other neural network-based classification approaches by performing leave-one-out cross validation. The performance of the SVM with respect to other state-of-the-art classifiers is also confirmed by the classification of signals presenting very low signal-to-noise ratio. Finally, the influence of the number of features to the classification rate was also investigated for two real datasets. The first dataset consists of long-term ECG recordings of young and elderly healthy subjects. The second dataset consists of long-term ECG recordings of normal subjects and subjects suffering from coronary artery disease. In this study, heartbeat time series are classified using support vector machines (SVMs). Statistical methods and signal analysis techniques are used to extract features from the signals. The SVM classifier is favorably compared to other neural network-based classification approaches by performing leave-one-out cross validation. The performance of the SVM with respect to other state-of-the-art classifiers is also confirmed by the classification of signals presenting very low signal-to-noise ratio. Finally, the influence of the number of features to the classification rate was also investigated for two real datasets. The first dataset consists of long-term ECG recordings of young and elderly healthy subjects. The second dataset consists of long-term ECG recordings of normal subjects and subjects suffering from coronary artery disease. |
Author | Kampouraki, A. Manis, G. Nikou, C. |
Author_xml | – sequence: 1 givenname: A. surname: Kampouraki fullname: Kampouraki, A. organization: Dept. of Comput. Sci., Univ. of Ioannina, Ioannina, Greece – sequence: 2 givenname: G. surname: Manis fullname: Manis, G. organization: Dept. of Comput. Sci., Univ. of Ioannina, Ioannina, Greece – sequence: 3 givenname: C. surname: Nikou fullname: Nikou, C. organization: Dept. of Comput. Sci., Univ. of Ioannina, Ioannina, Greece |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/19273030$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkUtPwzAQhC0E4v0DEBLKCU6BdWzHzhEqXhKIQyM4Wq67EUZpUmz3wL_HoaUHDsBlvZa-WY1m9shm13dIyBGFc0qhuqjv66vzAkANg7GCbZBdKoTK06_YTDuoKpdS0h2yF8IbAOWCsm2yQ6tCMmCwSy7v0Pg4QROz2s0wG6N3GLJRa0JwjbMmur7LXlx8zcaL-bz3MXtGG3ufPRr76joMB2SrMW3Aw9W7T-qb63p0lz883d6PLh9yyznEvJBNUwluLeVlmZwgKpCMSVlOsAJqJUyEmHLTAKKFSik6FaVQ0rASLK_YPjlbnp37_n2BIeqZCxbb1nTYL4JWpZRcUsUTeforWUpeKkgR_QUynmyof4AFpSl8GEyerMDFZIZTPfduZvyH_s47AXIJWN-H4LHR1sWvjKM3rtUU9NCsHprVQ7N61WxS0h_K9fFfNMdLjUPENc-FUowz9gn-jKs7 |
CODEN | ITIBFX |
CitedBy_id | crossref_primary_10_1007_s11517_018_1914_0 crossref_primary_10_1016_j_imu_2021_100729 crossref_primary_10_3390_sym12050866 crossref_primary_10_1109_JIOT_2019_2946593 crossref_primary_10_3390_s21155007 crossref_primary_10_1002_acs_3926 crossref_primary_10_1109_JBHI_2021_3069007 crossref_primary_10_4018_IJKBO_2020040104 crossref_primary_10_1038_s41591_020_0870_z crossref_primary_10_1142_S0219519414500663 crossref_primary_10_1109_TITB_2012_2212448 crossref_primary_10_1016_j_bea_2021_100013 crossref_primary_10_1080_10255842_2020_1768534 crossref_primary_10_1007_s10489_024_05672_y crossref_primary_10_3390_s20174861 crossref_primary_10_1007_s10489_023_04642_0 crossref_primary_10_1007_s10618_018_00608_w crossref_primary_10_1109_TCSI_2018_2848647 crossref_primary_10_1007_s10115_019_01389_4 crossref_primary_10_1109_TSP_2011_2173685 crossref_primary_10_1038_s41598_021_94363_6 crossref_primary_10_1016_j_compbiomed_2019_103346 crossref_primary_10_3934_math_2024805 crossref_primary_10_1016_j_procs_2022_09_177 crossref_primary_10_1007_s11265_010_0480_y crossref_primary_10_1016_j_bspc_2014_10_013 crossref_primary_10_1587_transcom_2017CQP0007 crossref_primary_10_1109_TITB_2010_2048922 crossref_primary_10_1007_s11063_022_10944_0 crossref_primary_10_1038_s41598_019_42516_z crossref_primary_10_1007_s10916_016_0651_x crossref_primary_10_1155_2012_145926 crossref_primary_10_1186_s12938_017_0322_2 crossref_primary_10_1109_TBME_2015_2405134 crossref_primary_10_1016_j_bspc_2017_09_032 crossref_primary_10_1038_s41597_019_0206_3 crossref_primary_10_4015_S1016237219500467 crossref_primary_10_1093_ehjdh_ztab058 crossref_primary_10_1109_MCI_2009_935309 crossref_primary_10_1109_TBME_2012_2213597 crossref_primary_10_1016_j_engappai_2012_09_019 crossref_primary_10_1142_S1469026816500218 crossref_primary_10_3182_20120215_3_AT_3016_00009 crossref_primary_10_1113_JP278773 crossref_primary_10_1016_j_procs_2018_05_045 crossref_primary_10_1016_j_eswa_2012_01_093 crossref_primary_10_1109_TITB_2012_2188812 crossref_primary_10_1007_s10618_016_0473_y crossref_primary_10_1109_TCYB_2020_3034755 crossref_primary_10_1007_s13534_013_0096_9 crossref_primary_10_1109_TITB_2012_2195188 crossref_primary_10_1007_s44258_024_00043_1 crossref_primary_10_1007_s00521_021_06159_4 crossref_primary_10_1016_j_bspc_2018_08_026 crossref_primary_10_1016_j_sbspro_2013_02_078 crossref_primary_10_1088_1361_6579_ac010e crossref_primary_10_1260_2040_2295_4_4_465 crossref_primary_10_1016_j_compag_2022_107556 crossref_primary_10_1016_j_heliyon_2023_e22778 crossref_primary_10_1016_j_ins_2015_08_008 crossref_primary_10_1007_s11042_021_11562_z crossref_primary_10_1016_j_bbe_2020_08_001 crossref_primary_10_1007_s00484_019_01714_0 crossref_primary_10_1016_j_apenergy_2022_118752 crossref_primary_10_1016_j_bspc_2013_06_004 crossref_primary_10_1007_s10115_022_01784_4 crossref_primary_10_1016_j_compbiomed_2020_104095 crossref_primary_10_1080_13682199_2016_1159815 crossref_primary_10_1109_ACCESS_2022_3207765 crossref_primary_10_1177_1460458217717636 crossref_primary_10_1109_ACCESS_2018_2887354 crossref_primary_10_1016_j_ifacol_2021_04_193 crossref_primary_10_1109_TITB_2011_2119410 crossref_primary_10_1016_j_compbiomed_2011_04_003 crossref_primary_10_2196_32656 crossref_primary_10_1007_s10845_020_01591_0 crossref_primary_10_1186_1475_925X_9_41 crossref_primary_10_1016_j_neucom_2019_10_113 crossref_primary_10_1109_ACCESS_2019_2911555 crossref_primary_10_7232_JKIIE_2023_49_1_015 crossref_primary_10_14778_3401960_3401973 crossref_primary_10_1109_ACCESS_2021_3074967 crossref_primary_10_1016_j_cmpb_2013_05_022 crossref_primary_10_1016_j_bspc_2021_102835 crossref_primary_10_1016_j_neucom_2012_09_008 crossref_primary_10_1007_s12652_023_04745_z crossref_primary_10_1007_s11704_015_4478_2 crossref_primary_10_1016_j_knosys_2013_09_015 crossref_primary_10_32604_cmc_2023_039936 crossref_primary_10_1016_j_engappai_2019_103262 crossref_primary_10_1007_s11042_021_11528_1 crossref_primary_10_1007_s10618_024_01068_1 crossref_primary_10_1109_TKDE_2012_223 crossref_primary_10_1109_TKDE_2020_3018376 crossref_primary_10_1016_j_ijmedinf_2016_09_005 crossref_primary_10_3109_03091902_2015_1063721 crossref_primary_10_1007_s00521_018_3814_5 crossref_primary_10_3390_computers8010021 crossref_primary_10_1016_j_cmpb_2014_06_014 crossref_primary_10_1002_cpe_5776 crossref_primary_10_1016_j_ijmedinf_2017_10_008 crossref_primary_10_1016_j_bspc_2020_102310 crossref_primary_10_1016_j_compbiomed_2021_104367 crossref_primary_10_1109_TITB_2009_2030025 crossref_primary_10_1007_s10994_023_06502_x crossref_primary_10_1007_s10462_021_09999_7 crossref_primary_10_1007_s13042_020_01171_x crossref_primary_10_1109_TPAMI_2020_2986319 |
Cites_doi | 10.1109/TITB.2005.847169 10.1109/TITB.2005.855526 10.1109/IEMBS.1998.747071 10.1109/TBME.2004.824138 10.1109/TBME.1985.325532 10.1109/10.775408 10.1109/IEMBS.2006.260550 10.1093/oxfordjournals.eurheartj.a014868 10.1109/TBME.2006.872814 10.1109/10.855925 10.1109/5.58325 10.1109/TITB.2006.879600 10.1017/CBO9780511801389 10.1109/TBME.2004.827827 10.1109/TBME.2005.859779 10.1016/S0933-3657(98)00058-X 10.1109/TBME.2005.845241 10.1109/TBME.2005.844023 10.1109/10.918600 10.1109/TMI.2006.875437 10.1109/TPAMI.2002.1046177 10.1109/34.683777 10.1109/TSMCB.2004.827391 10.1109/TBME.2005.859809 10.1016/j.compbiomed.2006.06.008 10.1142/S0218001403002460 10.1109/72.914517 10.1109/TBME.2005.845228 10.1016/S0933-3657(98)00055-4 10.1109/72.329697 10.1111/j.1469-8986.1997.tb02140.x 10.1109/TNN.2004.837780 10.1007/BF00994018 10.1109/TMI.2002.806569 10.1109/TBME.2004.826698 |
ContentType | Journal Article |
DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 8FD FR3 P64 7SC 7SP 7U5 F28 JQ2 L7M L~C L~D 7X8 |
DOI | 10.1109/TITB.2008.2003323 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Electronics & Communications Abstracts Solid State and Superconductivity Abstracts ANTE: Abstracts in New Technology & Engineering ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Engineering Research Database Technology Research Database Engineering Research Database MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE/IET Electronic Library (IEL) (UW System Shared) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering |
EISSN | 1558-0032 |
EndPage | 518 |
ExternalDocumentID | 19273030 10_1109_TITB_2008_2003323 4588343 |
Genre | orig-research Journal Article |
GroupedDBID | --- -~X .DC 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E AAJGR AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS AETIX AGQYO AGSQL AHBIQ AI. AIBXA ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TN5 VH1 AAYXX CITATION RIG CGR CUY CVF ECM EIF NPM 7QO 8FD FR3 P64 7SC 7SP 7U5 F28 JQ2 L7M L~C L~D 7X8 |
ID | FETCH-LOGICAL-c440t-27ff954cc1466001ee80733776be901c70b55d4af0eec09881d56587a360c493 |
IEDL.DBID | RIE |
ISSN | 1089-7771 1558-0032 |
IngestDate | Thu Jul 10 23:39:32 EDT 2025 Fri Jul 11 05:52:22 EDT 2025 Fri Jul 11 13:10:10 EDT 2025 Fri Jul 11 11:48:42 EDT 2025 Thu Apr 03 07:01:39 EDT 2025 Tue Jul 01 03:30:29 EDT 2025 Thu Apr 24 22:52:07 EDT 2025 Tue Aug 26 16:47:41 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c440t-27ff954cc1466001ee80733776be901c70b55d4af0eec09881d56587a360c493 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
PMID | 19273030 |
PQID | 21132309 |
PQPubID | 23462 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_21132309 proquest_miscellaneous_34988800 crossref_citationtrail_10_1109_TITB_2008_2003323 ieee_primary_4588343 pubmed_primary_19273030 crossref_primary_10_1109_TITB_2008_2003323 proquest_miscellaneous_867747184 proquest_miscellaneous_67468000 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2009-07-01 |
PublicationDateYYYYMMDD | 2009-07-01 |
PublicationDate_xml | – month: 07 year: 2009 text: 2009-07-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | IEEE transactions on information technology in biomedicine |
PublicationTitleAbbrev | TITB |
PublicationTitleAlternate | IEEE Trans Inf Technol Biomed |
PublicationYear | 2009 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
References | ref13 ref34 ref15 manis (ref41) 2004 ref36 ref14 ref31 ref30 ref33 ref11 ref32 ref10 ref1 ref39 ref17 ref19 alexandridi (ref12) 2003 kampouraki (ref35) 2006 vapnik (ref18) 1998 iyengar (ref43) 1996; 271 ref24 ref45 ref23 ref26 ref25 ref20 ref42 schlkopf (ref37) 1999 ref22 ref44 ref21 goldberger (ref16) 2000; 101 ref28 ref27 ref29 ref8 ref7 teich (ref2) 2001 kondor (ref38) 2003 ref9 ref3 ref6 ref5 ref40 kamath (ref4) 1993; 21 |
References_xml | – ident: ref29 doi: 10.1109/TITB.2005.847169 – ident: ref30 doi: 10.1109/TITB.2005.855526 – start-page: 159 year: 2001 ident: ref2 publication-title: Nonlinear Biomedical Signal Processing vol II – ident: ref42 doi: 10.1109/IEMBS.1998.747071 – ident: ref33 doi: 10.1109/TBME.2004.824138 – start-page: 9 year: 2006 ident: ref35 article-title: classification of heart rate signals using support vector machines publication-title: Proc BioSignal Conf – start-page: 361 year: 2003 ident: ref38 article-title: a kernel between sets of vectors publication-title: Proc 20th Int Conf Mach Learn (ICML) – ident: ref40 doi: 10.1109/TBME.1985.325532 – ident: ref5 doi: 10.1109/10.775408 – volume: 21 start-page: 245 year: 1993 ident: ref4 article-title: power spectral analysis of hrv: a noninvasive signature of cardiac autonomic functions publication-title: Crit Rev Biomed Eng – ident: ref36 doi: 10.1109/IEMBS.2006.260550 – year: 2004 ident: ref41 article-title: prediction techniques and hrv analysis publication-title: Medicon Health Telematics – year: 1998 ident: ref18 publication-title: Statistical Learning Theory – ident: ref1 doi: 10.1093/oxfordjournals.eurheartj.a014868 – ident: ref34 doi: 10.1109/TBME.2006.872814 – ident: ref10 doi: 10.1109/10.855925 – ident: ref44 doi: 10.1109/5.58325 – ident: ref26 doi: 10.1109/TITB.2006.879600 – ident: ref15 doi: 10.1017/CBO9780511801389 – ident: ref27 doi: 10.1109/TBME.2004.827827 – ident: ref8 doi: 10.1109/TBME.2005.859779 – ident: ref13 doi: 10.1016/S0933-3657(98)00058-X – volume: 271 start-page: 1078 year: 1996 ident: ref43 article-title: age-related alterations in the fractal scaling of cardiac interbeat interval dynamics publication-title: Amer J Physiol – ident: ref25 doi: 10.1109/TBME.2005.845241 – ident: ref7 doi: 10.1109/TBME.2005.844023 – ident: ref31 doi: 10.1109/10.918600 – ident: ref32 doi: 10.1109/TMI.2006.875437 – ident: ref21 doi: 10.1109/TPAMI.2002.1046177 – year: 2003 ident: ref12 article-title: neural networks and fuzzy logic approximation and prediction for hrv analysis publication-title: Eur Symp Intell Technol Hybrid Syst Implement Smart Adapt Syst – ident: ref22 doi: 10.1109/34.683777 – ident: ref24 doi: 10.1109/TSMCB.2004.827391 – ident: ref6 doi: 10.1109/TBME.2005.859809 – ident: ref17 doi: 10.1016/j.compbiomed.2006.06.008 – ident: ref19 doi: 10.1142/S0218001403002460 – ident: ref39 doi: 10.1109/72.914517 – ident: ref9 doi: 10.1109/TBME.2005.845228 – volume: 101 start-page: 215e year: 2000 ident: ref16 article-title: physiobank, physiotoolkit, and physionet: components of a new research resource for complex physiologic signals – ident: ref11 doi: 10.1016/S0933-3657(98)00055-4 – ident: ref45 doi: 10.1109/72.329697 – ident: ref3 doi: 10.1111/j.1469-8986.1997.tb02140.x – ident: ref23 doi: 10.1109/TNN.2004.837780 – ident: ref14 doi: 10.1007/BF00994018 – ident: ref20 doi: 10.1109/TMI.2002.806569 – year: 1999 ident: ref37 publication-title: Advances in Kernel Methods Support Vector Learning – ident: ref28 doi: 10.1109/TBME.2004.826698 |
SSID | ssj0014513 |
Score | 2.351141 |
Snippet | In this study, heartbeat time series are classified using support vector machines (SVMs). Statistical methods and signal analysis techniques are used to... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 512 |
SubjectTerms | Adult Aged Aged, 80 and over Algorithms Artificial Intelligence Coronary Artery Disease - physiopathology Electrocardiography Feature extraction Heart beat Heart Rate - physiology heart rate variability (HRV) heartbeat time series Humans Male Models, Statistical Neural networks Senior citizens Signal analysis Signal Processing, Computer-Assisted Signal to noise ratio Statistical analysis support vector machine (SVM) Support vector machine classification Support vector machines |
Title | Heartbeat Time Series Classification With Support Vector Machines |
URI | https://ieeexplore.ieee.org/document/4588343 https://www.ncbi.nlm.nih.gov/pubmed/19273030 https://www.proquest.com/docview/21132309 https://www.proquest.com/docview/34988800 https://www.proquest.com/docview/67468000 https://www.proquest.com/docview/867747184 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9tAEB4FDggOpUBbAgX2wKmqw9pee73HgEBppXAKj5uVXY_VCpRUxLn01zOz3gRUkYqbD2Np9jG73-x8MwNwGitdu0qRfdvCRMrmSUQoX0bajpVJdOGsL7s4vM4HN-rnfXbfge_LXBhE9OQz7PGnj-VXUzfnp7IzzqpMVboGa-S4tblay4iByuJApjeEGHUcIpixNGejH6PzljXJTKw08b1zSJHUc59fXUe-v8pqqOmvnKttGC6UbZkmD715Y3vu7z91HN87mo_wIWBP0W83yw50cLILW68qEu7CxjDE2vegPyAjaCyd1YLzRAS_o-FM-C6azC_ySyrufje_BLcGJRgvbn0IQAw9QRNnn2B0dTm6GESh4ULklJJNlOi6Nplyjo5PBkKIBfd01Dq3SLjBaWmzrFLjWiI6aQrCuoQHCz1Oc-mUST_D-mQ6wX0QVZXYGuPEKZ2yy1hYI1PHHBwuCIdxF-Ri2ksXipFzT4zH0jsl0pS8aG2PzLBoXfi2_OVPW4njf8J7POFLwTDXXThZrG1JZsSxkfEEp_NZSX4w_SbNagnSvKDDTq6WyLXKSYAkxAoJLh7IaEB14Uu7s16GEjbkwduaH8JmG8diovBXWG-e5nhEcKixx94OngHd9ADD |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB71IdFyoNAHLFDqAydEtk7ixPGxIKptaXoKpbdo7UzUqtUuYrMXfj0zjnepUBdxy2EijT0e-7PnmxmA97HSrWsU-bctTKRsnkSE8mWk7ViZRBfO-rKL5WU--qbOr7PrNfi4zIVBRE8-wyF_-lh-M3Vzfio75qzKVKXrsJlxMm6frbWMGagsDnR6Q5hRxyGGGUtzXJ1Vn3reJHOx0sR3zyFVUs9-fnAg-Q4rq8GmP3ROd6BcqNtzTe6G884O3a-_Kjn-73iew7OAPsVJv1xewBpOduHpg5qEu_CkDNH2PTgZkRt0lnZrwZkigl_ScCZ8H01mGHmjiu-33Y3g5qAE5MWVDwKI0lM0cbYP1emX6vMoCi0XIqeU7KJEt63JlHO0gTIUQiy4q6PWuUVCDk5Lm2WNGrcS0UlTENolRFjocZpLp0x6ABuT6QRfgWiaxLYYJ07plC-NhTUydczC4ZJwGA9ALqa9dqEcOXfFuK_9tUSamo3Wd8kMRhvAh-UvP_paHP8S3uMJXwqGuR7A0cK2NTkSR0fGE5zOZzXdhOk3aVZLkOYFbXdytUSuVU4CJCFWSHD5QMYDagAv-5X1ZyhhQb5-XPMj2BpV5UV9cXb59Q1s91Etpg2_hY3u5xwPCRx19p33id9kIwQL |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Heartbeat+Time+Series+Classification+With+Support+Vector+Machines&rft.jtitle=IEEE+transactions+on+information+technology+in+biomedicine&rft.au=Kampouraki%2C+A&rft.au=Manis%2C+G&rft.au=Nikou%2C+C&rft.date=2009-07-01&rft.issn=1089-7771&rft.volume=13&rft.issue=4&rft.spage=512&rft.epage=518&rft_id=info:doi/10.1109%2FTITB.2008.2003323&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-7771&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-7771&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-7771&client=summon |