Evaluation of calculation methods of mean skin temperature for use in thermal comfort study

A method was established to evaluate calculation methods of mean skin temperature, in order to find appropriate ones for use in human thermal comfort study. In this method three indexes, including reliability, sensitivity and number of measurement sites, were proposed. Under air temperatures of 21 °...

Full description

Saved in:
Bibliographic Details
Published inBuilding and environment Vol. 46; no. 2; pp. 478 - 488
Main Authors Liu, Weiwei, Lian, Zhiwei, Deng, Qihong, Liu, Yuanmou
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 01.02.2011
Elsevier
Subjects
Online AccessGet full text
ISSN0360-1323
1873-684X
DOI10.1016/j.buildenv.2010.08.011

Cover

Loading…
Abstract A method was established to evaluate calculation methods of mean skin temperature, in order to find appropriate ones for use in human thermal comfort study. In this method three indexes, including reliability, sensitivity and number of measurement sites, were proposed. Under air temperatures of 21 °C, 24 °C, 26 °C, and 29 °C, 22 subjects’ local skin temperatures (21 sites) and electrocardiograms were measured, and their thermal sensation and thermal comfort were inquired. Human heart rate variability indicated the physiological relation between mean skin temperature and ambient temperature for the sensitivity evaluation. Adopting the evaluation method, 26 types of mean skin temperature calculation methods were evaluated based on the experimental data. The results indicate that a calculation method of mean skin temperature with 10 sites is the most appropriate one, due to its high reliability, excellent sensitivity and fewer measuring sites. When it was applied to reflect thermal comfort, the performance was good.
AbstractList A method was established to evaluate calculation methods of mean skin temperature, in order to find appropriate ones for use in human thermal comfort study. In this method three indexes, including reliability, sensitivity and number of measurement sites, were proposed. Under air temperatures of 21aaAC, 24aaAC, 26aaAC, and 29aaAC, 22 subjects' local skin temperatures (21 sites) and electrocardiograms were measured, and their thermal sensation and thermal comfort were inquired. Human heart rate variability indicated the physiological relation between mean skin temperature and ambient temperature for the sensitivity evaluation. Adopting the evaluation method, 26 types of mean skin temperature calculation methods were evaluated based on the experimental data. The results indicate that a calculation method of mean skin temperature with 10 sites is the most appropriate one, due to its high reliability, excellent sensitivity and fewer measuring sites. When it was applied to reflect thermal comfort, the performance was good.
A method was established to evaluate calculation methods of mean skin temperature, in order to find appropriate ones for use in human thermal comfort study. In this method three indexes, including reliability, sensitivity and number of measurement sites, were proposed. Under air temperatures of 21 °C, 24 °C, 26 °C, and 29 °C, 22 subjects’ local skin temperatures (21 sites) and electrocardiograms were measured, and their thermal sensation and thermal comfort were inquired. Human heart rate variability indicated the physiological relation between mean skin temperature and ambient temperature for the sensitivity evaluation. Adopting the evaluation method, 26 types of mean skin temperature calculation methods were evaluated based on the experimental data. The results indicate that a calculation method of mean skin temperature with 10 sites is the most appropriate one, due to its high reliability, excellent sensitivity and fewer measuring sites. When it was applied to reflect thermal comfort, the performance was good.
A method was established to evaluate calculation methods of mean skin temperature, in order to find appropriate ones for use in human thermal comfort study. In this method three indexes, including reliability, sensitivity and number of measurement sites, were proposed. Under air temperatures of 21 °C, 24 °C, 26 °C, and 29 °C, 22 subjects’ local skin temperatures (21 sites) and electrocardiograms were measured, and their thermal sensation and thermal comfort were inquired. Human heart rate variability indicated the physiological relation between mean skin temperature and ambient temperature for the sensitivity evaluation. Adopting the evaluation method, 26 types of mean skin temperature calculation methods were evaluated based on the experimental data. The results indicate that a calculation method of mean skin temperature with 10 sites is the most appropriate one, due to its high reliability, excellent sensitivity and fewer measuring sites. When it was applied to reflect thermal comfort, the performance was good.
Author Liu, Weiwei
Liu, Yuanmou
Deng, Qihong
Lian, Zhiwei
Author_xml – sequence: 1
  givenname: Weiwei
  surname: Liu
  fullname: Liu, Weiwei
  email: wliu@mail.csu.edu.cn
  organization: School of Energy Science & Engineering, Central South University, Changsha, Hunan 410083, China
– sequence: 2
  givenname: Zhiwei
  surname: Lian
  fullname: Lian, Zhiwei
  email: zwlian@sjtu.edu.cn
  organization: Institute of Refrigeration & Cryogenics, Shanghai Jiao Tong University, 800 Road Dongchuan, Shanghai 200240, China
– sequence: 3
  givenname: Qihong
  surname: Deng
  fullname: Deng, Qihong
  organization: School of Energy Science & Engineering, Central South University, Changsha, Hunan 410083, China
– sequence: 4
  givenname: Yuanmou
  surname: Liu
  fullname: Liu, Yuanmou
  organization: College of Basic Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23377573$$DView record in Pascal Francis
BookMark eNqNkc1qGzEURkVJoY7bVyjalGQzjn5mpBnIoiEkbSDQTQuFLoQs3SFyNJIraQx5-8hxmkUXTVcXfZzvwtU5RkchBkDoIyUrSqg426zWs_MWwm7FSA1JvyKUvkEL2kveiL79eYQWhAvSUM74O3Sc84bU4sDbBfp1tdN-1sXFgOOIjfZm9ofnBOUu2ryPJ9AB53sXcIFpC0mXOQEeY8JzBryP7yBN2mMTp5oWnMtsH96jt6P2GT48zyX6cX31_fJrc_vty83lxW1j2paUhklt1sPaWtqP0vJOmEEPRAhmBYAZeqFHalk9bezACM2NYEMr7FpYK6Xgmi_RyWHvNsXfM-SiJpcNeK8DxDmrnlM6iLZrK3n6T5JKKSmtaPcfKOcda6lgFf30jOpcP3BMOhiX1Ta5SacHxTiXsqv4EokDZ1LMOcH4glCi9irVRv1RqfYqFelVVVmL538VjStPkkrSzr9e_3yoQ5Wwc5BUNg6CAesSmKJsdK-teAShj8G7
CODEN BUENDB
CitedBy_id crossref_primary_10_1016_j_rser_2023_114165
crossref_primary_10_1016_j_buildenv_2021_107857
crossref_primary_10_1016_j_buildenv_2018_03_023
crossref_primary_10_1016_j_buildenv_2025_112770
crossref_primary_10_1016_j_buildenv_2023_110902
crossref_primary_10_1016_j_buildenv_2019_106231
crossref_primary_10_1038_s41598_023_47880_5
crossref_primary_10_1016_j_buildenv_2022_109887
crossref_primary_10_1016_j_enbuild_2025_115371
crossref_primary_10_1016_j_buildenv_2024_112252
crossref_primary_10_1007_s12273_024_1182_x
crossref_primary_10_1016_j_buildenv_2024_112130
crossref_primary_10_1016_j_jtherbio_2013_03_001
crossref_primary_10_1177_0143624421994015
crossref_primary_10_1016_j_scs_2022_104169
crossref_primary_10_1016_j_enbuild_2021_111686
crossref_primary_10_1088_1757_899X_609_3_032002
crossref_primary_10_1016_j_buildenv_2018_11_017
crossref_primary_10_1016_j_buildenv_2025_112884
crossref_primary_10_1016_j_enbuild_2023_113746
crossref_primary_10_1016_j_enbuild_2023_113748
crossref_primary_10_1016_j_seta_2024_103918
crossref_primary_10_1016_j_enbuild_2025_115486
crossref_primary_10_1016_j_physbeh_2018_07_009
crossref_primary_10_1016_j_jobe_2023_106379
crossref_primary_10_1016_j_buildenv_2022_109538
crossref_primary_10_3390_pr11113063
crossref_primary_10_1016_j_jtherbio_2023_103774
crossref_primary_10_1007_s12273_022_0890_3
crossref_primary_10_1016_j_buildenv_2025_112871
crossref_primary_10_1088_1755_1315_696_1_012046
crossref_primary_10_1016_j_buildenv_2015_09_023
crossref_primary_10_1016_j_buildenv_2023_110008
crossref_primary_10_1016_j_buildenv_2019_04_004
crossref_primary_10_1016_j_buildenv_2021_108011
crossref_primary_10_1016_j_buildenv_2024_112039
crossref_primary_10_1016_j_proeng_2017_10_084
crossref_primary_10_1016_j_jobe_2022_104025
crossref_primary_10_1016_j_apergo_2023_104102
crossref_primary_10_3389_frsc_2021_730474
crossref_primary_10_1016_j_buildenv_2018_04_040
crossref_primary_10_1080_23328940_2016_1148938
crossref_primary_10_1007_s11771_011_0834_z
crossref_primary_10_1016_j_jtherbio_2019_102480
crossref_primary_10_1016_j_scs_2023_104564
crossref_primary_10_1016_j_enbuild_2021_111587
crossref_primary_10_3390_su131910638
crossref_primary_10_1007_s11771_022_5076_8
crossref_primary_10_1016_j_jtherbio_2022_103458
crossref_primary_10_1080_23328940_2022_2102375
crossref_primary_10_1016_j_buildenv_2024_111199
crossref_primary_10_1016_j_buildenv_2024_112288
crossref_primary_10_1016_j_enbuild_2023_113720
crossref_primary_10_1016_j_applthermaleng_2018_09_057
crossref_primary_10_3390_su16135704
crossref_primary_10_1080_23328940_2017_1379585
crossref_primary_10_1007_s42978_024_00309_5
crossref_primary_10_1111_ina_12941
crossref_primary_10_1016_j_biosystemseng_2021_12_006
crossref_primary_10_1111_j_1600_0668_2011_00747_x
crossref_primary_10_1051_e3sconf_202339601109
crossref_primary_10_1016_j_buildenv_2024_112338
crossref_primary_10_1016_j_enbenv_2022_06_002
crossref_primary_10_1016_j_jtherbio_2021_102995
crossref_primary_10_1016_j_buildenv_2024_111367
crossref_primary_10_1016_j_buildenv_2024_111488
crossref_primary_10_1016_j_enbuild_2015_12_039
crossref_primary_10_1016_j_buildenv_2021_107808
crossref_primary_10_1016_j_buildenv_2021_107705
crossref_primary_10_1088_1757_899X_609_3_032048
crossref_primary_10_1016_j_buildenv_2025_112686
crossref_primary_10_1111_ina_13007
crossref_primary_10_1111_ina_12830
crossref_primary_10_1016_j_aei_2024_102449
crossref_primary_10_1016_j_enbuild_2018_09_016
crossref_primary_10_1016_j_jtherbio_2015_06_008
crossref_primary_10_1016_j_buildenv_2024_111810
crossref_primary_10_1016_j_buildenv_2021_108461
crossref_primary_10_1016_j_buildenv_2019_04_012
crossref_primary_10_1016_j_buildenv_2022_108882
crossref_primary_10_1016_j_buildenv_2024_112469
crossref_primary_10_1016_j_buildenv_2023_110540
crossref_primary_10_1016_j_enbuild_2024_113962
crossref_primary_10_1016_j_buildenv_2018_12_017
crossref_primary_10_1080_01426397_2020_1808956
crossref_primary_10_1016_j_buildenv_2011_10_009
crossref_primary_10_1016_j_jtherbio_2022_103276
crossref_primary_10_1016_j_buildenv_2022_109819
crossref_primary_10_1016_j_enbuild_2021_111554
crossref_primary_10_1016_j_buildenv_2023_110569
crossref_primary_10_1111_ina_13138
crossref_primary_10_1177_1420326X17692853
crossref_primary_10_1016_j_physbeh_2021_113350
crossref_primary_10_1016_j_buildenv_2023_110213
crossref_primary_10_1016_j_buildenv_2024_112359
crossref_primary_10_1016_j_jtherbio_2022_103389
crossref_primary_10_1016_j_buildenv_2024_111820
crossref_primary_10_1016_j_enbuild_2023_113771
crossref_primary_10_1016_j_buildenv_2024_112478
crossref_primary_10_1016_j_buildenv_2021_108454
crossref_primary_10_1016_j_buildenv_2021_108575
crossref_primary_10_1108_IJCST_03_2022_0047
crossref_primary_10_1016_j_buildenv_2019_106579
crossref_primary_10_3390_ijerph14101092
crossref_primary_10_1016_j_buildenv_2021_108338
crossref_primary_10_3390_app13084967
crossref_primary_10_1113_JP279537
crossref_primary_10_1007_s12273_020_0750_y
crossref_primary_10_1016_j_physbeh_2018_02_001
crossref_primary_10_1680_jensu_17_00003
crossref_primary_10_1016_j_buildenv_2025_112540
crossref_primary_10_1016_j_enbuild_2022_112137
crossref_primary_10_1016_j_autcon_2024_105811
crossref_primary_10_1016_j_enbuild_2017_09_057
crossref_primary_10_1016_j_enbuild_2024_114915
crossref_primary_10_1111_ina_12739
crossref_primary_10_1016_j_buildenv_2023_110566
crossref_primary_10_1016_j_buildenv_2024_111831
crossref_primary_10_1016_j_buildenv_2024_112247
crossref_primary_10_1016_j_enbuild_2020_110390
crossref_primary_10_1016_j_buildenv_2024_112480
crossref_primary_10_1016_j_csite_2023_103899
crossref_primary_10_1007_s13762_021_03210_8
crossref_primary_10_1016_j_jtherbio_2022_103254
crossref_primary_10_1016_j_compbiomed_2024_108262
crossref_primary_10_1007_s11771_022_5070_1
crossref_primary_10_1016_j_apergo_2021_103664
crossref_primary_10_1007_s43538_022_00146_6
crossref_primary_10_1111_ina_12984
crossref_primary_10_1016_j_buildenv_2023_110988
crossref_primary_10_1016_j_buildenv_2024_111689
crossref_primary_10_1016_j_buildenv_2025_112924
crossref_primary_10_1016_j_enbuild_2024_115256
crossref_primary_10_1016_j_jtherbio_2022_103401
crossref_primary_10_1016_j_apenergy_2023_121973
crossref_primary_10_1038_s41598_018_19239_8
crossref_primary_10_1016_j_physbeh_2016_02_018
crossref_primary_10_1088_1748_9326_abd130
crossref_primary_10_1177_1420326X14527975
crossref_primary_10_1016_j_energy_2019_01_113
crossref_primary_10_1016_j_buildenv_2014_08_006
crossref_primary_10_1016_j_jtherbio_2024_103884
crossref_primary_10_1016_j_scs_2019_101727
crossref_primary_10_1016_j_snb_2016_04_137
crossref_primary_10_1016_j_apenergy_2019_01_070
crossref_primary_10_1016_j_enbuild_2020_110497
crossref_primary_10_4028_www_scientific_net_AMM_339_691
crossref_primary_10_1016_j_enbuild_2019_06_007
crossref_primary_10_1016_j_jobe_2023_107874
crossref_primary_10_1016_j_apergo_2014_12_003
crossref_primary_10_1111_j_1600_0668_2012_00778_x
crossref_primary_10_1186_s40101_022_00308_x
crossref_primary_10_1111_ina_12755
crossref_primary_10_1016_j_buildenv_2018_05_025
crossref_primary_10_1016_j_buildenv_2023_110614
crossref_primary_10_1016_j_enbuild_2015_07_047
crossref_primary_10_1016_j_enbuild_2024_114970
crossref_primary_10_1016_j_buildenv_2024_111217
crossref_primary_10_1016_j_enbuild_2019_109594
crossref_primary_10_1016_j_energy_2023_127426
crossref_primary_10_1016_j_enbuild_2023_113345
crossref_primary_10_1016_j_buildenv_2021_108547
crossref_primary_10_1016_j_enbuild_2018_04_029
crossref_primary_10_1016_j_apenergy_2018_02_049
crossref_primary_10_1016_j_jobe_2024_108676
crossref_primary_10_1016_j_physbeh_2013_05_040
crossref_primary_10_1016_j_buildenv_2020_106744
crossref_primary_10_1016_j_buildenv_2025_112591
crossref_primary_10_1016_j_buildenv_2016_12_005
crossref_primary_10_1109_JSEN_2024_3432093
crossref_primary_10_1016_j_buildenv_2025_112594
crossref_primary_10_1111_ina_12523
crossref_primary_10_1111_ina_12644
crossref_primary_10_1016_j_enbuild_2023_113459
crossref_primary_10_1016_j_envres_2020_110091
crossref_primary_10_1007_s12217_021_09891_7
crossref_primary_10_3390_ijerph22030387
crossref_primary_10_1016_j_buildenv_2018_06_052
crossref_primary_10_1016_j_buildenv_2024_112315
crossref_primary_10_1016_j_enbuild_2024_114022
crossref_primary_10_1016_j_buildenv_2023_110891
crossref_primary_10_1016_j_buildenv_2018_05_018
crossref_primary_10_1016_j_buildenv_2024_111462
crossref_primary_10_1016_j_enbuild_2022_112683
crossref_primary_10_1016_j_enbuild_2022_112681
crossref_primary_10_1249_MSS_0000000000001756
crossref_primary_10_1016_j_enbuild_2023_112918
crossref_primary_10_1016_j_promfg_2015_07_893
crossref_primary_10_3390_ijerph17010020
crossref_primary_10_1007_s12273_025_1249_3
crossref_primary_10_1155_2024_5781565
crossref_primary_10_1016_j_jobe_2023_107609
crossref_primary_10_1016_j_buildenv_2022_109478
crossref_primary_10_1016_j_enbuild_2019_109450
crossref_primary_10_1016_j_enbuild_2025_115425
crossref_primary_10_1016_j_buildenv_2024_111231
crossref_primary_10_1152_japplphysiol_00379_2019
crossref_primary_10_1016_j_buildenv_2018_06_049
crossref_primary_10_1016_j_enbuild_2024_114031
crossref_primary_10_1080_09613218_2017_1299996
crossref_primary_10_1111_ina_13073
crossref_primary_10_1016_j_csite_2024_105656
crossref_primary_10_1002_advs_202104426
crossref_primary_10_1016_j_enbuild_2022_111894
crossref_primary_10_1016_j_buildenv_2020_106961
crossref_primary_10_1016_j_scitotenv_2024_175323
crossref_primary_10_1016_j_isci_2021_102825
crossref_primary_10_1051_e3sconf_202235603018
crossref_primary_10_1016_j_buildenv_2016_09_005
crossref_primary_10_1016_j_buildenv_2016_12_020
crossref_primary_10_1016_j_scitotenv_2023_168756
crossref_primary_10_1051_e3sconf_202235603019
crossref_primary_10_2298_TSCI210108277W
crossref_primary_10_1016_j_buildenv_2025_112605
crossref_primary_10_3390_en15030936
crossref_primary_10_1016_j_jtherbio_2023_103600
crossref_primary_10_1007_s12273_021_0876_6
crossref_primary_10_1016_j_buildenv_2023_110277
crossref_primary_10_1016_j_buildenv_2024_112296
crossref_primary_10_1016_j_csite_2023_102974
crossref_primary_10_1016_j_enbenv_2023_02_002
crossref_primary_10_1177_1420326X13504317
crossref_primary_10_1016_j_buildenv_2020_107486
crossref_primary_10_1016_j_buildenv_2019_106387
crossref_primary_10_1016_j_jtherbio_2013_06_006
crossref_primary_10_1016_j_buildenv_2020_107363
crossref_primary_10_3390_app9071375
crossref_primary_10_1016_j_enbuild_2023_112856
crossref_primary_10_1016_j_jtherbio_2019_02_013
crossref_primary_10_1016_j_csite_2023_102749
crossref_primary_10_1016_j_buildenv_2022_109454
crossref_primary_10_1016_j_enbuild_2024_115188
crossref_primary_10_1016_j_buildenv_2024_111532
crossref_primary_10_1016_j_scs_2019_101899
crossref_primary_10_1002_adma_202308575
crossref_primary_10_1016_j_csite_2024_105038
crossref_primary_10_1016_j_scitotenv_2016_05_172
crossref_primary_10_1016_j_enbuild_2021_111360
crossref_primary_10_1016_j_buildenv_2019_106292
crossref_primary_10_1016_j_enbuild_2022_112404
crossref_primary_10_3390_app122312105
crossref_primary_10_1016_j_compag_2021_106363
crossref_primary_10_1016_j_rser_2022_113015
crossref_primary_10_1177_1420326X221135315
crossref_primary_10_1177_1420326X231159801
crossref_primary_10_1016_j_buildenv_2019_106174
crossref_primary_10_1016_j_buildenv_2023_111019
crossref_primary_10_1016_j_buildenv_2022_109780
crossref_primary_10_1007_s11771_022_5074_x
crossref_primary_10_1038_nclimate2741
crossref_primary_10_1016_j_buildenv_2022_109540
crossref_primary_10_1016_j_buildenv_2023_110058
crossref_primary_10_1016_j_buildenv_2023_110730
crossref_primary_10_1016_j_buildenv_2024_111302
crossref_primary_10_1016_j_buildenv_2023_111149
crossref_primary_10_1016_j_jtherbio_2017_08_002
crossref_primary_10_1007_s12206_021_0832_5
crossref_primary_10_1016_j_rser_2017_10_053
crossref_primary_10_1016_j_buildenv_2024_112075
crossref_primary_10_1016_j_buildenv_2020_106937
crossref_primary_10_1016_j_scitotenv_2023_164491
crossref_primary_10_3390_buildings12122234
crossref_primary_10_1016_j_buildenv_2020_106936
crossref_primary_10_1016_j_buildenv_2023_110291
crossref_primary_10_3390_buildings12101572
crossref_primary_10_1016_j_jobe_2019_101013
crossref_primary_10_1016_j_buildenv_2016_12_038
crossref_primary_10_1016_j_buildenv_2020_107108
crossref_primary_10_1016_j_scitotenv_2017_10_208
crossref_primary_10_1016_j_buildenv_2019_106287
crossref_primary_10_1080_10789669_2012_744927
crossref_primary_10_1007_s12273_021_0843_2
crossref_primary_10_1016_j_buildenv_2013_05_020
crossref_primary_10_1016_j_buildenv_2019_106163
crossref_primary_10_1016_j_buildenv_2019_106284
crossref_primary_10_1016_j_enbenv_2024_03_002
crossref_primary_10_3390_buildings14113519
crossref_primary_10_1016_j_buildenv_2022_109677
crossref_primary_10_1016_j_buildenv_2022_109798
crossref_primary_10_1016_j_enbuild_2023_112950
crossref_primary_10_1016_j_jobe_2021_103484
crossref_primary_10_1152_japplphysiol_00992_2018
crossref_primary_10_1016_j_jobe_2022_104632
crossref_primary_10_1016_j_infrared_2015_02_007
crossref_primary_10_1016_j_buildenv_2021_108727
crossref_primary_10_1016_j_enbuild_2025_115581
crossref_primary_10_1080_09613218_2020_1836950
Cites_doi 10.1080/10789669.2008.10391001
10.1016/0002-9149(91)90355-O
10.1007/BF01208486
10.1016/0002-9149(87)90795-8
10.1016/S0169-8141(97)00009-7
10.1016/j.buildenv.2006.06.030
10.1016/S0378-7788(02)00017-8
10.1016/S0753-3322(05)80016-2
10.1007/s00421-008-0718-6
10.1093/oxfordjournals.eurheartj.a059428
10.1016/j.jtherbio.2004.08.024
10.1007/s004840050056
10.1016/0013-9351(69)90037-1
10.1152/jappl.1969.26.5.616
10.1111/j.1600-0668.1993.t01-1-00004.x
10.1016/S0306-4565(99)00039-X
10.1016/0360-1323(93)90016-V
10.1016/0022-0736(92)90105-9
ContentType Journal Article
Copyright 2010 Elsevier Ltd
2015 INIST-CNRS
Copyright_xml – notice: 2010 Elsevier Ltd
– notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7S9
L.6
7SU
8FD
C1K
F28
FR3
KR7
7ST
SOI
DOI 10.1016/j.buildenv.2010.08.011
DatabaseName CrossRef
Pascal-Francis
AGRICOLA
AGRICOLA - Academic
Environmental Engineering Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Civil Engineering Abstracts
Environment Abstracts
Environment Abstracts
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Environmental Engineering Abstracts
Environmental Sciences and Pollution Management
Environment Abstracts
DatabaseTitleList Civil Engineering Abstracts
Environment Abstracts

AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
EISSN 1873-684X
EndPage 488
ExternalDocumentID 23377573
10_1016_j_buildenv_2010_08_011
S0360132310002647
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
23N
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AHJVU
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMC
HVGLF
HZ~
IHE
J1W
JARJE
JJJVA
KCYFY
KOM
LY6
LY7
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SAC
SDF
SDG
SDP
SEN
SES
SET
SEW
SPC
SPCBC
SSJ
SSR
SST
SSZ
T5K
VH1
WUQ
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
EFKBS
IQODW
7S9
L.6
7SU
8FD
C1K
F28
FR3
KR7
7ST
SOI
ID FETCH-LOGICAL-c440t-27acb9bdd18f7d356c9a90662d6eec986af1d2201f5ec6a3c62946db6dd7763a3
IEDL.DBID .~1
ISSN 0360-1323
IngestDate Fri Jul 11 11:50:35 EDT 2025
Mon Jul 21 09:41:17 EDT 2025
Mon Jul 21 11:22:41 EDT 2025
Mon Jul 21 09:17:12 EDT 2025
Tue Jul 01 00:24:33 EDT 2025
Thu Apr 24 23:11:54 EDT 2025
Fri Feb 23 02:35:03 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Thermal comfort
Sensitivity
Mean skin temperature
Heart rate variability
Heart rate
Experimental result
Variability
Skin
Experimental study
Computing method
Medium temperature
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c440t-27acb9bdd18f7d356c9a90662d6eec986af1d2201f5ec6a3c62946db6dd7763a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1733524162
PQPubID 24069
PageCount 11
ParticipantIDs proquest_miscellaneous_831196454
proquest_miscellaneous_1777116455
proquest_miscellaneous_1733524162
pascalfrancis_primary_23377573
crossref_primary_10_1016_j_buildenv_2010_08_011
crossref_citationtrail_10_1016_j_buildenv_2010_08_011
elsevier_sciencedirect_doi_10_1016_j_buildenv_2010_08_011
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-02-01
PublicationDateYYYYMMDD 2011-02-01
PublicationDate_xml – month: 02
  year: 2011
  text: 2011-02-01
  day: 01
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle Building and environment
PublicationYear 2011
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References ISO 9920 (bib24) 1992
Bulcao, Frank, Raja, Tran, Goldstein (bib5) 2000; 25
de Dear, Ring, Fanger (bib9) 1993; 3
Elmar, Jan, Gerd (bib11) 2002; 75
Kataoka, Yoshida (bib12) 2005; 59
Lu (bib17) 2000
Choi, Miki, Sagawa (bib20) 1997; 41
Malik, Farrell, Cripps, Camm (bib15) 1992; 10
Hasebe, Iriki, Takahasi (bib7) 1995; 38
Kleiger, Miller, Bigger, Moss (bib13) 1987; 59
Liu, Lian, Liu (bib18) 2008; 103
Hoppe (bib4) 2002; 34
Olesen (bib27) 1984
ASHRAE (bib1) 2001
Yao, Lian, Liu, Jiang (bib26) 2008; 14
Kleiger, Bigger, Bosner, Chung, Cook (bib14) 1991; 68
Huizenga, Zhang, Arens, Wang (bib8) 2004; 29
Myers, Workman, Birkett, Ferguson, Kienzle (bib16) 1992; 25
Fanger (bib3) 1972
Zhao (bib10) 2007; 42
Gagge, Stolwijk, Salting (bib6) 1969; 2
Lee, Cho, Yun, Lee (bib21) 1998; 22
Zhang H. Human thermal sensation and comfort in transient and non-uniform thermal environments (PhD thesis). University of California, Berkeley, 2003.
Ouyang (bib23) 1985
Mayer (bib2) 1993; 28
Mitchell, Wyndham (bib19) 1969; 26
ISO 9886 (bib22) 1992
de Dear (10.1016/j.buildenv.2010.08.011_bib9) 1993; 3
Zhao (10.1016/j.buildenv.2010.08.011_bib10) 2007; 42
Hoppe (10.1016/j.buildenv.2010.08.011_bib4) 2002; 34
Mayer (10.1016/j.buildenv.2010.08.011_bib2) 1993; 28
Hasebe (10.1016/j.buildenv.2010.08.011_bib7) 1995; 38
Gagge (10.1016/j.buildenv.2010.08.011_bib6) 1969; 2
Fanger (10.1016/j.buildenv.2010.08.011_bib3) 1972
Lu (10.1016/j.buildenv.2010.08.011_bib17) 2000
Huizenga (10.1016/j.buildenv.2010.08.011_bib8) 2004; 29
Kleiger (10.1016/j.buildenv.2010.08.011_bib14) 1991; 68
Liu (10.1016/j.buildenv.2010.08.011_bib18) 2008; 103
Kleiger (10.1016/j.buildenv.2010.08.011_bib13) 1987; 59
Ouyang (10.1016/j.buildenv.2010.08.011_bib23) 1985
Olesen (10.1016/j.buildenv.2010.08.011_bib27) 1984
Choi (10.1016/j.buildenv.2010.08.011_bib20) 1997; 41
Elmar (10.1016/j.buildenv.2010.08.011_bib11) 2002; 75
10.1016/j.buildenv.2010.08.011_bib25
ISO 9920 (10.1016/j.buildenv.2010.08.011_bib24) 1992
Myers (10.1016/j.buildenv.2010.08.011_bib16) 1992; 25
Kataoka (10.1016/j.buildenv.2010.08.011_bib12) 2005; 59
ASHRAE (10.1016/j.buildenv.2010.08.011_bib1) 2001
Mitchell (10.1016/j.buildenv.2010.08.011_bib19) 1969; 26
Bulcao (10.1016/j.buildenv.2010.08.011_bib5) 2000; 25
Lee (10.1016/j.buildenv.2010.08.011_bib21) 1998; 22
Yao (10.1016/j.buildenv.2010.08.011_bib26) 2008; 14
Malik (10.1016/j.buildenv.2010.08.011_bib15) 1992; 10
ISO 9886 (10.1016/j.buildenv.2010.08.011_bib22) 1992
References_xml – volume: 59
  start-page: S92
  year: 2005
  end-page: S99
  ident: bib12
  article-title: The change of hemodynamics and heart rate variability on bathing by the gap of water temperature
  publication-title: Biomedicine & Pharmacotherapy
– volume: 26
  start-page: 616
  year: 1969
  end-page: 622
  ident: bib19
  article-title: Comparison of weighting formula for calculating mean skin temperature
  publication-title: Journal of Applied Physiology
– year: 1992
  ident: bib22
  article-title: Evaluation of thermal strain by physiological measurements
– reference: Zhang H. Human thermal sensation and comfort in transient and non-uniform thermal environments (PhD thesis). University of California, Berkeley, 2003.
– volume: 25
  start-page: 147
  year: 2000
  end-page: 150
  ident: bib5
  article-title: Relative contribution of core and skin temperatures to thermal comfort in humans
  publication-title: Journal of Thermal Biology
– volume: 42
  start-page: 3926
  year: 2007
  end-page: 3932
  ident: bib10
  article-title: Investigation of transient thermal environments
  publication-title: Building and Environment
– volume: 68
  start-page: 626
  year: 1991
  end-page: 630
  ident: bib14
  article-title: Stability over time of variables measuring heart rate variability in normal subjects
  publication-title: American Journal of Cardiology
– volume: 34
  start-page: 661
  year: 2002
  end-page: 665
  ident: bib4
  article-title: Different aspects of assessing indoor and outdoor thermal comfort
  publication-title: Energy and Buildings
– volume: 14
  start-page: 161
  year: 2008
  end-page: 174
  ident: bib26
  article-title: Measurement methods of mean skin temperatures for the PMV model
  publication-title: HVAC&R Research
– volume: 10
  start-page: 1060
  year: 1992
  end-page: 1074
  ident: bib15
  article-title: Heart rate variability in relation to prognosis after myocardial infarction: selection of optimal processing techniques
  publication-title: European Heart Journal
– volume: 28
  start-page: 399
  year: 1993
  end-page: 403
  ident: bib2
  article-title: Objective criteria for thermal comfort
  publication-title: Building and Environment
– volume: 2
  start-page: 209
  year: 1969
  end-page: 229
  ident: bib6
  article-title: Comfort and thermal sensations and associated physiological responses during exercise at various ambient temperatures
  publication-title: Environment Research
– volume: 75
  start-page: 251
  year: 2002
  end-page: 259
  ident: bib11
  article-title: Heart rate variability a noninvasive approach to measure stress in calves and cows
  publication-title: Physiology & Behavior
– volume: 59
  start-page: 256
  year: 1987
  end-page: 262
  ident: bib13
  article-title: Decreased heart rate variability and its association with increased mortality after acute myocardial infarction
  publication-title: American Journal of Cardiology
– volume: 3
  start-page: 181
  year: 1993
  end-page: 192
  ident: bib9
  article-title: Thermal sensations resulting from sudden ambient temperature changes
  publication-title: Indoor Air
– volume: 22
  start-page: 207
  year: 1998
  end-page: 216
  ident: bib21
  article-title: Development of a temperature control procedure for a room air-conditioner using the concept of just noticeable difference (JND) in thermal sensation
  publication-title: International Journal of Industrial Ergonomics
– year: 1985
  ident: bib23
  article-title: Clothes hygiene
– volume: 29
  start-page: 549
  year: 2004
  end-page: 558
  ident: bib8
  article-title: Skin and core temperature response to partial- and whole-body heating and cooling
  publication-title: Journal of Thermal Biology
– volume: 38
  start-page: 116
  year: 1995
  end-page: 121
  ident: bib7
  article-title: Usefulness of R–R interval and its variability in evaluation of thermal comfort
  publication-title: International Journal of Biometeorol
– volume: 103
  start-page: 361
  year: 2008
  end-page: 436
  ident: bib18
  article-title: Heart rate variability at different thermal comfort levels
  publication-title: European Journal of Applied Physiology
– year: 1992
  ident: bib24
  article-title: Thermal environment – estimation of the thermal characteristics of a clothing ensemble
– volume: 25
  start-page: 214
  year: 1992
  end-page: 219
  ident: bib16
  article-title: Problems in measuring heart rate variability of patients with congestive heart failure
  publication-title: Journal of Electrocardiology
– year: 2000
  ident: bib17
  article-title: Medical neurobiology
– volume: 41
  start-page: 68
  year: 1997
  end-page: 75
  ident: bib20
  article-title: Evaluation of mean skin temperature formulas by infrared thermography
  publication-title: International Journal of Biometeorol
– year: 2001
  ident: bib1
  article-title: Thermal comfort. ASHRAE handbook: fundamentals
– year: 1984
  ident: bib27
  article-title: How many sites are necessary to estimate a mean skin temperature
– year: 1972
  ident: bib3
  article-title: Thermal comfort
– year: 1985
  ident: 10.1016/j.buildenv.2010.08.011_bib23
– volume: 14
  start-page: 161
  issue: 2
  year: 2008
  ident: 10.1016/j.buildenv.2010.08.011_bib26
  article-title: Measurement methods of mean skin temperatures for the PMV model
  publication-title: HVAC&R Research
  doi: 10.1080/10789669.2008.10391001
– volume: 68
  start-page: 626
  year: 1991
  ident: 10.1016/j.buildenv.2010.08.011_bib14
  article-title: Stability over time of variables measuring heart rate variability in normal subjects
  publication-title: American Journal of Cardiology
  doi: 10.1016/0002-9149(91)90355-O
– volume: 38
  start-page: 116
  year: 1995
  ident: 10.1016/j.buildenv.2010.08.011_bib7
  article-title: Usefulness of R–R interval and its variability in evaluation of thermal comfort
  publication-title: International Journal of Biometeorol
  doi: 10.1007/BF01208486
– volume: 59
  start-page: 256
  year: 1987
  ident: 10.1016/j.buildenv.2010.08.011_bib13
  article-title: Decreased heart rate variability and its association with increased mortality after acute myocardial infarction
  publication-title: American Journal of Cardiology
  doi: 10.1016/0002-9149(87)90795-8
– ident: 10.1016/j.buildenv.2010.08.011_bib25
– year: 1984
  ident: 10.1016/j.buildenv.2010.08.011_bib27
– volume: 22
  start-page: 207
  year: 1998
  ident: 10.1016/j.buildenv.2010.08.011_bib21
  article-title: Development of a temperature control procedure for a room air-conditioner using the concept of just noticeable difference (JND) in thermal sensation
  publication-title: International Journal of Industrial Ergonomics
  doi: 10.1016/S0169-8141(97)00009-7
– volume: 42
  start-page: 3926
  year: 2007
  ident: 10.1016/j.buildenv.2010.08.011_bib10
  article-title: Investigation of transient thermal environments
  publication-title: Building and Environment
  doi: 10.1016/j.buildenv.2006.06.030
– volume: 34
  start-page: 661
  year: 2002
  ident: 10.1016/j.buildenv.2010.08.011_bib4
  article-title: Different aspects of assessing indoor and outdoor thermal comfort
  publication-title: Energy and Buildings
  doi: 10.1016/S0378-7788(02)00017-8
– volume: 59
  start-page: S92
  year: 2005
  ident: 10.1016/j.buildenv.2010.08.011_bib12
  article-title: The change of hemodynamics and heart rate variability on bathing by the gap of water temperature
  publication-title: Biomedicine & Pharmacotherapy
  doi: 10.1016/S0753-3322(05)80016-2
– volume: 103
  start-page: 361
  year: 2008
  ident: 10.1016/j.buildenv.2010.08.011_bib18
  article-title: Heart rate variability at different thermal comfort levels
  publication-title: European Journal of Applied Physiology
  doi: 10.1007/s00421-008-0718-6
– year: 1992
  ident: 10.1016/j.buildenv.2010.08.011_bib24
– volume: 10
  start-page: 1060
  year: 1992
  ident: 10.1016/j.buildenv.2010.08.011_bib15
  article-title: Heart rate variability in relation to prognosis after myocardial infarction: selection of optimal processing techniques
  publication-title: European Heart Journal
  doi: 10.1093/oxfordjournals.eurheartj.a059428
– volume: 29
  start-page: 549
  year: 2004
  ident: 10.1016/j.buildenv.2010.08.011_bib8
  article-title: Skin and core temperature response to partial- and whole-body heating and cooling
  publication-title: Journal of Thermal Biology
  doi: 10.1016/j.jtherbio.2004.08.024
– year: 2001
  ident: 10.1016/j.buildenv.2010.08.011_bib1
– volume: 75
  start-page: 251
  year: 2002
  ident: 10.1016/j.buildenv.2010.08.011_bib11
  article-title: Heart rate variability a noninvasive approach to measure stress in calves and cows
  publication-title: Physiology & Behavior
– volume: 41
  start-page: 68
  year: 1997
  ident: 10.1016/j.buildenv.2010.08.011_bib20
  article-title: Evaluation of mean skin temperature formulas by infrared thermography
  publication-title: International Journal of Biometeorol
  doi: 10.1007/s004840050056
– volume: 2
  start-page: 209
  year: 1969
  ident: 10.1016/j.buildenv.2010.08.011_bib6
  article-title: Comfort and thermal sensations and associated physiological responses during exercise at various ambient temperatures
  publication-title: Environment Research
  doi: 10.1016/0013-9351(69)90037-1
– volume: 26
  start-page: 616
  year: 1969
  ident: 10.1016/j.buildenv.2010.08.011_bib19
  article-title: Comparison of weighting formula for calculating mean skin temperature
  publication-title: Journal of Applied Physiology
  doi: 10.1152/jappl.1969.26.5.616
– volume: 3
  start-page: 181
  year: 1993
  ident: 10.1016/j.buildenv.2010.08.011_bib9
  article-title: Thermal sensations resulting from sudden ambient temperature changes
  publication-title: Indoor Air
  doi: 10.1111/j.1600-0668.1993.t01-1-00004.x
– year: 2000
  ident: 10.1016/j.buildenv.2010.08.011_bib17
– volume: 25
  start-page: 147
  year: 2000
  ident: 10.1016/j.buildenv.2010.08.011_bib5
  article-title: Relative contribution of core and skin temperatures to thermal comfort in humans
  publication-title: Journal of Thermal Biology
  doi: 10.1016/S0306-4565(99)00039-X
– year: 1992
  ident: 10.1016/j.buildenv.2010.08.011_bib22
– volume: 28
  start-page: 399
  year: 1993
  ident: 10.1016/j.buildenv.2010.08.011_bib2
  article-title: Objective criteria for thermal comfort
  publication-title: Building and Environment
  doi: 10.1016/0360-1323(93)90016-V
– volume: 25
  start-page: 214
  year: 1992
  ident: 10.1016/j.buildenv.2010.08.011_bib16
  article-title: Problems in measuring heart rate variability of patients with congestive heart failure
  publication-title: Journal of Electrocardiology
  doi: 10.1016/0022-0736(92)90105-9
– year: 1972
  ident: 10.1016/j.buildenv.2010.08.011_bib3
SSID ssj0016934
Score 2.4665198
Snippet A method was established to evaluate calculation methods of mean skin temperature, in order to find appropriate ones for use in human thermal comfort study. In...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 478
SubjectTerms air temperature
Ambient temperature
Applied sciences
Building insulation
Buildings
Buildings. Public works
Computation methods. Tables. Charts
electrocardiography
Exact sciences and technology
External envelopes
Heart rate
Heart rate variability
Human
humans
Mathematical analysis
Mean skin temperature
sensation
Sensitivity
Skin temperature
Structural analysis. Stresses
Thermal comfort
Title Evaluation of calculation methods of mean skin temperature for use in thermal comfort study
URI https://dx.doi.org/10.1016/j.buildenv.2010.08.011
https://www.proquest.com/docview/1733524162
https://www.proquest.com/docview/1777116455
https://www.proquest.com/docview/831196454
Volume 46
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEBYhvbSU0CfdJllU6NW7q7d1DCFh29Jc2kCgByFLMt008S71bo797Z2x5SUhpDnUx0GyrRlpZiTNfEPIx9pLjpanKJX2BXjEsKQq64taCO61iKWvcaP49UzPz-XnC3WxQ46HXBgMq8y6v9fpnbbOlGnm5nS1WEy_ge7Fi4LuhBrMOmaUS2lwlk_-bMM8EGskQ0jNCmx9K0v4clJh6enU3OQQr3IyY-whA_V85VtgW93Xu7inujt7dPqC7GVHkh71__qS7KTmFXl2C17wNflxsoXypsuawmtDLtZF-8LRLZKvk29o-2vRUISpyhjLFHxZumkTRfJP1N5XFFgE1DXtEGnfkPPTk-_H8yIXUyiClLN1wY0Pla1iZGVtolA6WG8R_j3qlIItNQglcuBDrVLQXgTNrdSx0jEa0EFevCW7zbJJ7whlwdooOQ8etzOKeQmPLsEVkrbiPoyIGjjoQkYax4IXV24IKbt0A-cdct5hJUzGRmS67bfqsTYe7WEHAbk7s8aBQXi07_iORLef5EIYo4wYkQ-DiB2sObxI8U1ablrHDGaqgSvL_9XGGAZ7UaVGhD7QphQM8dCUfP8f49gnT_tzbgyxOSC769-bdAiO0roadythTJ4cffoyP_sLLr4UQg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxEB7RcGhRVfUp0gd1pV6XxO_1ESFQKJBLQULqwfLaXjWUbqJu0t9fT9YbgSrKoXscefYxs56HPf4G4HPtBEPPU5RSuSJFxGlKVcYVNefMKR5KV2OieD5Vk0vx5UpebcFhfxYGyyqz7e9s-tpaZ8ooS3O0mM1GX5PtxY2C9Qp1cuv6EWwjOpUcwPbByelkutlMUIZnFKlxgQy3Dgpf71fYfTo2v3OVV7k_pvQ-H_V04dokubprefGX9V67pOPn8CzHkuSge90XsBWbl7BzC2HwFXw72qB5k3lN0m197tdFut7RLZJ_RteQ9sesIYhUlWGWSQpnyaqNBMnf0YDfkCSlRF2SNSjta7g8Pro4nBS5n0LhhRgvC6adr0wVAi1rHbhU3jiDCPBBxehNqZJeAktyqGX0ynGvmBEqVCoEncyQ429g0MybuAuEemOCYMw7zGgkdSJdqkzRkDAVc34Ispeg9RlsHHte3Ni-quza9pK3KHmLzTApHcJow7fo4DYe5DC9guydH8cmn_Ag794djW4eyTjXWmo-hE-9im2adriX4po4X7WWajyslqJZ9q8xWtOUjko5BHLPmJJThEST4u1_fMdHeDy5OD-zZyfT03fwpFv2xoqb9zBY_lrFDyluWlZ7eV78AZJkFvM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluation+of+calculation+methods+of+mean+skin+temperature+for+use+in+thermal+comfort+study&rft.jtitle=Building+and+environment&rft.au=Liu%2C+Weiwei&rft.au=Lian%2C+Zhiwei&rft.au=Deng%2C+Qihong&rft.au=Liu%2C+Yuanmou&rft.date=2011-02-01&rft.issn=0360-1323&rft.volume=46&rft.issue=2&rft.spage=478&rft.epage=488&rft_id=info:doi/10.1016%2Fj.buildenv.2010.08.011&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-1323&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-1323&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-1323&client=summon