Evaluation of calculation methods of mean skin temperature for use in thermal comfort study
A method was established to evaluate calculation methods of mean skin temperature, in order to find appropriate ones for use in human thermal comfort study. In this method three indexes, including reliability, sensitivity and number of measurement sites, were proposed. Under air temperatures of 21 °...
Saved in:
Published in | Building and environment Vol. 46; no. 2; pp. 478 - 488 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Kidlington
Elsevier Ltd
01.02.2011
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 0360-1323 1873-684X |
DOI | 10.1016/j.buildenv.2010.08.011 |
Cover
Loading…
Abstract | A method was established to evaluate calculation methods of mean skin temperature, in order to find appropriate ones for use in human thermal comfort study. In this method three indexes, including reliability, sensitivity and number of measurement sites, were proposed. Under air temperatures of 21 °C, 24 °C, 26 °C, and 29 °C, 22 subjects’ local skin temperatures (21 sites) and electrocardiograms were measured, and their thermal sensation and thermal comfort were inquired. Human heart rate variability indicated the physiological relation between mean skin temperature and ambient temperature for the sensitivity evaluation. Adopting the evaluation method, 26 types of mean skin temperature calculation methods were evaluated based on the experimental data. The results indicate that a calculation method of mean skin temperature with 10 sites is the most appropriate one, due to its high reliability, excellent sensitivity and fewer measuring sites. When it was applied to reflect thermal comfort, the performance was good. |
---|---|
AbstractList | A method was established to evaluate calculation methods of mean skin temperature, in order to find appropriate ones for use in human thermal comfort study. In this method three indexes, including reliability, sensitivity and number of measurement sites, were proposed. Under air temperatures of 21aaAC, 24aaAC, 26aaAC, and 29aaAC, 22 subjects' local skin temperatures (21 sites) and electrocardiograms were measured, and their thermal sensation and thermal comfort were inquired. Human heart rate variability indicated the physiological relation between mean skin temperature and ambient temperature for the sensitivity evaluation. Adopting the evaluation method, 26 types of mean skin temperature calculation methods were evaluated based on the experimental data. The results indicate that a calculation method of mean skin temperature with 10 sites is the most appropriate one, due to its high reliability, excellent sensitivity and fewer measuring sites. When it was applied to reflect thermal comfort, the performance was good. A method was established to evaluate calculation methods of mean skin temperature, in order to find appropriate ones for use in human thermal comfort study. In this method three indexes, including reliability, sensitivity and number of measurement sites, were proposed. Under air temperatures of 21 °C, 24 °C, 26 °C, and 29 °C, 22 subjects’ local skin temperatures (21 sites) and electrocardiograms were measured, and their thermal sensation and thermal comfort were inquired. Human heart rate variability indicated the physiological relation between mean skin temperature and ambient temperature for the sensitivity evaluation. Adopting the evaluation method, 26 types of mean skin temperature calculation methods were evaluated based on the experimental data. The results indicate that a calculation method of mean skin temperature with 10 sites is the most appropriate one, due to its high reliability, excellent sensitivity and fewer measuring sites. When it was applied to reflect thermal comfort, the performance was good. A method was established to evaluate calculation methods of mean skin temperature, in order to find appropriate ones for use in human thermal comfort study. In this method three indexes, including reliability, sensitivity and number of measurement sites, were proposed. Under air temperatures of 21 °C, 24 °C, 26 °C, and 29 °C, 22 subjects’ local skin temperatures (21 sites) and electrocardiograms were measured, and their thermal sensation and thermal comfort were inquired. Human heart rate variability indicated the physiological relation between mean skin temperature and ambient temperature for the sensitivity evaluation. Adopting the evaluation method, 26 types of mean skin temperature calculation methods were evaluated based on the experimental data. The results indicate that a calculation method of mean skin temperature with 10 sites is the most appropriate one, due to its high reliability, excellent sensitivity and fewer measuring sites. When it was applied to reflect thermal comfort, the performance was good. |
Author | Liu, Weiwei Liu, Yuanmou Deng, Qihong Lian, Zhiwei |
Author_xml | – sequence: 1 givenname: Weiwei surname: Liu fullname: Liu, Weiwei email: wliu@mail.csu.edu.cn organization: School of Energy Science & Engineering, Central South University, Changsha, Hunan 410083, China – sequence: 2 givenname: Zhiwei surname: Lian fullname: Lian, Zhiwei email: zwlian@sjtu.edu.cn organization: Institute of Refrigeration & Cryogenics, Shanghai Jiao Tong University, 800 Road Dongchuan, Shanghai 200240, China – sequence: 3 givenname: Qihong surname: Deng fullname: Deng, Qihong organization: School of Energy Science & Engineering, Central South University, Changsha, Hunan 410083, China – sequence: 4 givenname: Yuanmou surname: Liu fullname: Liu, Yuanmou organization: College of Basic Medicine, Shanghai Jiao Tong University, Shanghai 200240, China |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23377573$$DView record in Pascal Francis |
BookMark | eNqNkc1qGzEURkVJoY7bVyjalGQzjn5mpBnIoiEkbSDQTQuFLoQs3SFyNJIraQx5-8hxmkUXTVcXfZzvwtU5RkchBkDoIyUrSqg426zWs_MWwm7FSA1JvyKUvkEL2kveiL79eYQWhAvSUM74O3Sc84bU4sDbBfp1tdN-1sXFgOOIjfZm9ofnBOUu2ryPJ9AB53sXcIFpC0mXOQEeY8JzBryP7yBN2mMTp5oWnMtsH96jt6P2GT48zyX6cX31_fJrc_vty83lxW1j2paUhklt1sPaWtqP0vJOmEEPRAhmBYAZeqFHalk9bezACM2NYEMr7FpYK6Xgmi_RyWHvNsXfM-SiJpcNeK8DxDmrnlM6iLZrK3n6T5JKKSmtaPcfKOcda6lgFf30jOpcP3BMOhiX1Ta5SacHxTiXsqv4EokDZ1LMOcH4glCi9irVRv1RqfYqFelVVVmL538VjStPkkrSzr9e_3yoQ5Wwc5BUNg6CAesSmKJsdK-teAShj8G7 |
CODEN | BUENDB |
CitedBy_id | crossref_primary_10_1016_j_rser_2023_114165 crossref_primary_10_1016_j_buildenv_2021_107857 crossref_primary_10_1016_j_buildenv_2018_03_023 crossref_primary_10_1016_j_buildenv_2025_112770 crossref_primary_10_1016_j_buildenv_2023_110902 crossref_primary_10_1016_j_buildenv_2019_106231 crossref_primary_10_1038_s41598_023_47880_5 crossref_primary_10_1016_j_buildenv_2022_109887 crossref_primary_10_1016_j_enbuild_2025_115371 crossref_primary_10_1016_j_buildenv_2024_112252 crossref_primary_10_1007_s12273_024_1182_x crossref_primary_10_1016_j_buildenv_2024_112130 crossref_primary_10_1016_j_jtherbio_2013_03_001 crossref_primary_10_1177_0143624421994015 crossref_primary_10_1016_j_scs_2022_104169 crossref_primary_10_1016_j_enbuild_2021_111686 crossref_primary_10_1088_1757_899X_609_3_032002 crossref_primary_10_1016_j_buildenv_2018_11_017 crossref_primary_10_1016_j_buildenv_2025_112884 crossref_primary_10_1016_j_enbuild_2023_113746 crossref_primary_10_1016_j_enbuild_2023_113748 crossref_primary_10_1016_j_seta_2024_103918 crossref_primary_10_1016_j_enbuild_2025_115486 crossref_primary_10_1016_j_physbeh_2018_07_009 crossref_primary_10_1016_j_jobe_2023_106379 crossref_primary_10_1016_j_buildenv_2022_109538 crossref_primary_10_3390_pr11113063 crossref_primary_10_1016_j_jtherbio_2023_103774 crossref_primary_10_1007_s12273_022_0890_3 crossref_primary_10_1016_j_buildenv_2025_112871 crossref_primary_10_1088_1755_1315_696_1_012046 crossref_primary_10_1016_j_buildenv_2015_09_023 crossref_primary_10_1016_j_buildenv_2023_110008 crossref_primary_10_1016_j_buildenv_2019_04_004 crossref_primary_10_1016_j_buildenv_2021_108011 crossref_primary_10_1016_j_buildenv_2024_112039 crossref_primary_10_1016_j_proeng_2017_10_084 crossref_primary_10_1016_j_jobe_2022_104025 crossref_primary_10_1016_j_apergo_2023_104102 crossref_primary_10_3389_frsc_2021_730474 crossref_primary_10_1016_j_buildenv_2018_04_040 crossref_primary_10_1080_23328940_2016_1148938 crossref_primary_10_1007_s11771_011_0834_z crossref_primary_10_1016_j_jtherbio_2019_102480 crossref_primary_10_1016_j_scs_2023_104564 crossref_primary_10_1016_j_enbuild_2021_111587 crossref_primary_10_3390_su131910638 crossref_primary_10_1007_s11771_022_5076_8 crossref_primary_10_1016_j_jtherbio_2022_103458 crossref_primary_10_1080_23328940_2022_2102375 crossref_primary_10_1016_j_buildenv_2024_111199 crossref_primary_10_1016_j_buildenv_2024_112288 crossref_primary_10_1016_j_enbuild_2023_113720 crossref_primary_10_1016_j_applthermaleng_2018_09_057 crossref_primary_10_3390_su16135704 crossref_primary_10_1080_23328940_2017_1379585 crossref_primary_10_1007_s42978_024_00309_5 crossref_primary_10_1111_ina_12941 crossref_primary_10_1016_j_biosystemseng_2021_12_006 crossref_primary_10_1111_j_1600_0668_2011_00747_x crossref_primary_10_1051_e3sconf_202339601109 crossref_primary_10_1016_j_buildenv_2024_112338 crossref_primary_10_1016_j_enbenv_2022_06_002 crossref_primary_10_1016_j_jtherbio_2021_102995 crossref_primary_10_1016_j_buildenv_2024_111367 crossref_primary_10_1016_j_buildenv_2024_111488 crossref_primary_10_1016_j_enbuild_2015_12_039 crossref_primary_10_1016_j_buildenv_2021_107808 crossref_primary_10_1016_j_buildenv_2021_107705 crossref_primary_10_1088_1757_899X_609_3_032048 crossref_primary_10_1016_j_buildenv_2025_112686 crossref_primary_10_1111_ina_13007 crossref_primary_10_1111_ina_12830 crossref_primary_10_1016_j_aei_2024_102449 crossref_primary_10_1016_j_enbuild_2018_09_016 crossref_primary_10_1016_j_jtherbio_2015_06_008 crossref_primary_10_1016_j_buildenv_2024_111810 crossref_primary_10_1016_j_buildenv_2021_108461 crossref_primary_10_1016_j_buildenv_2019_04_012 crossref_primary_10_1016_j_buildenv_2022_108882 crossref_primary_10_1016_j_buildenv_2024_112469 crossref_primary_10_1016_j_buildenv_2023_110540 crossref_primary_10_1016_j_enbuild_2024_113962 crossref_primary_10_1016_j_buildenv_2018_12_017 crossref_primary_10_1080_01426397_2020_1808956 crossref_primary_10_1016_j_buildenv_2011_10_009 crossref_primary_10_1016_j_jtherbio_2022_103276 crossref_primary_10_1016_j_buildenv_2022_109819 crossref_primary_10_1016_j_enbuild_2021_111554 crossref_primary_10_1016_j_buildenv_2023_110569 crossref_primary_10_1111_ina_13138 crossref_primary_10_1177_1420326X17692853 crossref_primary_10_1016_j_physbeh_2021_113350 crossref_primary_10_1016_j_buildenv_2023_110213 crossref_primary_10_1016_j_buildenv_2024_112359 crossref_primary_10_1016_j_jtherbio_2022_103389 crossref_primary_10_1016_j_buildenv_2024_111820 crossref_primary_10_1016_j_enbuild_2023_113771 crossref_primary_10_1016_j_buildenv_2024_112478 crossref_primary_10_1016_j_buildenv_2021_108454 crossref_primary_10_1016_j_buildenv_2021_108575 crossref_primary_10_1108_IJCST_03_2022_0047 crossref_primary_10_1016_j_buildenv_2019_106579 crossref_primary_10_3390_ijerph14101092 crossref_primary_10_1016_j_buildenv_2021_108338 crossref_primary_10_3390_app13084967 crossref_primary_10_1113_JP279537 crossref_primary_10_1007_s12273_020_0750_y crossref_primary_10_1016_j_physbeh_2018_02_001 crossref_primary_10_1680_jensu_17_00003 crossref_primary_10_1016_j_buildenv_2025_112540 crossref_primary_10_1016_j_enbuild_2022_112137 crossref_primary_10_1016_j_autcon_2024_105811 crossref_primary_10_1016_j_enbuild_2017_09_057 crossref_primary_10_1016_j_enbuild_2024_114915 crossref_primary_10_1111_ina_12739 crossref_primary_10_1016_j_buildenv_2023_110566 crossref_primary_10_1016_j_buildenv_2024_111831 crossref_primary_10_1016_j_buildenv_2024_112247 crossref_primary_10_1016_j_enbuild_2020_110390 crossref_primary_10_1016_j_buildenv_2024_112480 crossref_primary_10_1016_j_csite_2023_103899 crossref_primary_10_1007_s13762_021_03210_8 crossref_primary_10_1016_j_jtherbio_2022_103254 crossref_primary_10_1016_j_compbiomed_2024_108262 crossref_primary_10_1007_s11771_022_5070_1 crossref_primary_10_1016_j_apergo_2021_103664 crossref_primary_10_1007_s43538_022_00146_6 crossref_primary_10_1111_ina_12984 crossref_primary_10_1016_j_buildenv_2023_110988 crossref_primary_10_1016_j_buildenv_2024_111689 crossref_primary_10_1016_j_buildenv_2025_112924 crossref_primary_10_1016_j_enbuild_2024_115256 crossref_primary_10_1016_j_jtherbio_2022_103401 crossref_primary_10_1016_j_apenergy_2023_121973 crossref_primary_10_1038_s41598_018_19239_8 crossref_primary_10_1016_j_physbeh_2016_02_018 crossref_primary_10_1088_1748_9326_abd130 crossref_primary_10_1177_1420326X14527975 crossref_primary_10_1016_j_energy_2019_01_113 crossref_primary_10_1016_j_buildenv_2014_08_006 crossref_primary_10_1016_j_jtherbio_2024_103884 crossref_primary_10_1016_j_scs_2019_101727 crossref_primary_10_1016_j_snb_2016_04_137 crossref_primary_10_1016_j_apenergy_2019_01_070 crossref_primary_10_1016_j_enbuild_2020_110497 crossref_primary_10_4028_www_scientific_net_AMM_339_691 crossref_primary_10_1016_j_enbuild_2019_06_007 crossref_primary_10_1016_j_jobe_2023_107874 crossref_primary_10_1016_j_apergo_2014_12_003 crossref_primary_10_1111_j_1600_0668_2012_00778_x crossref_primary_10_1186_s40101_022_00308_x crossref_primary_10_1111_ina_12755 crossref_primary_10_1016_j_buildenv_2018_05_025 crossref_primary_10_1016_j_buildenv_2023_110614 crossref_primary_10_1016_j_enbuild_2015_07_047 crossref_primary_10_1016_j_enbuild_2024_114970 crossref_primary_10_1016_j_buildenv_2024_111217 crossref_primary_10_1016_j_enbuild_2019_109594 crossref_primary_10_1016_j_energy_2023_127426 crossref_primary_10_1016_j_enbuild_2023_113345 crossref_primary_10_1016_j_buildenv_2021_108547 crossref_primary_10_1016_j_enbuild_2018_04_029 crossref_primary_10_1016_j_apenergy_2018_02_049 crossref_primary_10_1016_j_jobe_2024_108676 crossref_primary_10_1016_j_physbeh_2013_05_040 crossref_primary_10_1016_j_buildenv_2020_106744 crossref_primary_10_1016_j_buildenv_2025_112591 crossref_primary_10_1016_j_buildenv_2016_12_005 crossref_primary_10_1109_JSEN_2024_3432093 crossref_primary_10_1016_j_buildenv_2025_112594 crossref_primary_10_1111_ina_12523 crossref_primary_10_1111_ina_12644 crossref_primary_10_1016_j_enbuild_2023_113459 crossref_primary_10_1016_j_envres_2020_110091 crossref_primary_10_1007_s12217_021_09891_7 crossref_primary_10_3390_ijerph22030387 crossref_primary_10_1016_j_buildenv_2018_06_052 crossref_primary_10_1016_j_buildenv_2024_112315 crossref_primary_10_1016_j_enbuild_2024_114022 crossref_primary_10_1016_j_buildenv_2023_110891 crossref_primary_10_1016_j_buildenv_2018_05_018 crossref_primary_10_1016_j_buildenv_2024_111462 crossref_primary_10_1016_j_enbuild_2022_112683 crossref_primary_10_1016_j_enbuild_2022_112681 crossref_primary_10_1249_MSS_0000000000001756 crossref_primary_10_1016_j_enbuild_2023_112918 crossref_primary_10_1016_j_promfg_2015_07_893 crossref_primary_10_3390_ijerph17010020 crossref_primary_10_1007_s12273_025_1249_3 crossref_primary_10_1155_2024_5781565 crossref_primary_10_1016_j_jobe_2023_107609 crossref_primary_10_1016_j_buildenv_2022_109478 crossref_primary_10_1016_j_enbuild_2019_109450 crossref_primary_10_1016_j_enbuild_2025_115425 crossref_primary_10_1016_j_buildenv_2024_111231 crossref_primary_10_1152_japplphysiol_00379_2019 crossref_primary_10_1016_j_buildenv_2018_06_049 crossref_primary_10_1016_j_enbuild_2024_114031 crossref_primary_10_1080_09613218_2017_1299996 crossref_primary_10_1111_ina_13073 crossref_primary_10_1016_j_csite_2024_105656 crossref_primary_10_1002_advs_202104426 crossref_primary_10_1016_j_enbuild_2022_111894 crossref_primary_10_1016_j_buildenv_2020_106961 crossref_primary_10_1016_j_scitotenv_2024_175323 crossref_primary_10_1016_j_isci_2021_102825 crossref_primary_10_1051_e3sconf_202235603018 crossref_primary_10_1016_j_buildenv_2016_09_005 crossref_primary_10_1016_j_buildenv_2016_12_020 crossref_primary_10_1016_j_scitotenv_2023_168756 crossref_primary_10_1051_e3sconf_202235603019 crossref_primary_10_2298_TSCI210108277W crossref_primary_10_1016_j_buildenv_2025_112605 crossref_primary_10_3390_en15030936 crossref_primary_10_1016_j_jtherbio_2023_103600 crossref_primary_10_1007_s12273_021_0876_6 crossref_primary_10_1016_j_buildenv_2023_110277 crossref_primary_10_1016_j_buildenv_2024_112296 crossref_primary_10_1016_j_csite_2023_102974 crossref_primary_10_1016_j_enbenv_2023_02_002 crossref_primary_10_1177_1420326X13504317 crossref_primary_10_1016_j_buildenv_2020_107486 crossref_primary_10_1016_j_buildenv_2019_106387 crossref_primary_10_1016_j_jtherbio_2013_06_006 crossref_primary_10_1016_j_buildenv_2020_107363 crossref_primary_10_3390_app9071375 crossref_primary_10_1016_j_enbuild_2023_112856 crossref_primary_10_1016_j_jtherbio_2019_02_013 crossref_primary_10_1016_j_csite_2023_102749 crossref_primary_10_1016_j_buildenv_2022_109454 crossref_primary_10_1016_j_enbuild_2024_115188 crossref_primary_10_1016_j_buildenv_2024_111532 crossref_primary_10_1016_j_scs_2019_101899 crossref_primary_10_1002_adma_202308575 crossref_primary_10_1016_j_csite_2024_105038 crossref_primary_10_1016_j_scitotenv_2016_05_172 crossref_primary_10_1016_j_enbuild_2021_111360 crossref_primary_10_1016_j_buildenv_2019_106292 crossref_primary_10_1016_j_enbuild_2022_112404 crossref_primary_10_3390_app122312105 crossref_primary_10_1016_j_compag_2021_106363 crossref_primary_10_1016_j_rser_2022_113015 crossref_primary_10_1177_1420326X221135315 crossref_primary_10_1177_1420326X231159801 crossref_primary_10_1016_j_buildenv_2019_106174 crossref_primary_10_1016_j_buildenv_2023_111019 crossref_primary_10_1016_j_buildenv_2022_109780 crossref_primary_10_1007_s11771_022_5074_x crossref_primary_10_1038_nclimate2741 crossref_primary_10_1016_j_buildenv_2022_109540 crossref_primary_10_1016_j_buildenv_2023_110058 crossref_primary_10_1016_j_buildenv_2023_110730 crossref_primary_10_1016_j_buildenv_2024_111302 crossref_primary_10_1016_j_buildenv_2023_111149 crossref_primary_10_1016_j_jtherbio_2017_08_002 crossref_primary_10_1007_s12206_021_0832_5 crossref_primary_10_1016_j_rser_2017_10_053 crossref_primary_10_1016_j_buildenv_2024_112075 crossref_primary_10_1016_j_buildenv_2020_106937 crossref_primary_10_1016_j_scitotenv_2023_164491 crossref_primary_10_3390_buildings12122234 crossref_primary_10_1016_j_buildenv_2020_106936 crossref_primary_10_1016_j_buildenv_2023_110291 crossref_primary_10_3390_buildings12101572 crossref_primary_10_1016_j_jobe_2019_101013 crossref_primary_10_1016_j_buildenv_2016_12_038 crossref_primary_10_1016_j_buildenv_2020_107108 crossref_primary_10_1016_j_scitotenv_2017_10_208 crossref_primary_10_1016_j_buildenv_2019_106287 crossref_primary_10_1080_10789669_2012_744927 crossref_primary_10_1007_s12273_021_0843_2 crossref_primary_10_1016_j_buildenv_2013_05_020 crossref_primary_10_1016_j_buildenv_2019_106163 crossref_primary_10_1016_j_buildenv_2019_106284 crossref_primary_10_1016_j_enbenv_2024_03_002 crossref_primary_10_3390_buildings14113519 crossref_primary_10_1016_j_buildenv_2022_109677 crossref_primary_10_1016_j_buildenv_2022_109798 crossref_primary_10_1016_j_enbuild_2023_112950 crossref_primary_10_1016_j_jobe_2021_103484 crossref_primary_10_1152_japplphysiol_00992_2018 crossref_primary_10_1016_j_jobe_2022_104632 crossref_primary_10_1016_j_infrared_2015_02_007 crossref_primary_10_1016_j_buildenv_2021_108727 crossref_primary_10_1016_j_enbuild_2025_115581 crossref_primary_10_1080_09613218_2020_1836950 |
Cites_doi | 10.1080/10789669.2008.10391001 10.1016/0002-9149(91)90355-O 10.1007/BF01208486 10.1016/0002-9149(87)90795-8 10.1016/S0169-8141(97)00009-7 10.1016/j.buildenv.2006.06.030 10.1016/S0378-7788(02)00017-8 10.1016/S0753-3322(05)80016-2 10.1007/s00421-008-0718-6 10.1093/oxfordjournals.eurheartj.a059428 10.1016/j.jtherbio.2004.08.024 10.1007/s004840050056 10.1016/0013-9351(69)90037-1 10.1152/jappl.1969.26.5.616 10.1111/j.1600-0668.1993.t01-1-00004.x 10.1016/S0306-4565(99)00039-X 10.1016/0360-1323(93)90016-V 10.1016/0022-0736(92)90105-9 |
ContentType | Journal Article |
Copyright | 2010 Elsevier Ltd 2015 INIST-CNRS |
Copyright_xml | – notice: 2010 Elsevier Ltd – notice: 2015 INIST-CNRS |
DBID | AAYXX CITATION IQODW 7S9 L.6 7SU 8FD C1K F28 FR3 KR7 7ST SOI |
DOI | 10.1016/j.buildenv.2010.08.011 |
DatabaseName | CrossRef Pascal-Francis AGRICOLA AGRICOLA - Academic Environmental Engineering Abstracts Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Civil Engineering Abstracts Environment Abstracts Environment Abstracts |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic Civil Engineering Abstracts Engineering Research Database Technology Research Database ANTE: Abstracts in New Technology & Engineering Environmental Engineering Abstracts Environmental Sciences and Pollution Management Environment Abstracts |
DatabaseTitleList | Civil Engineering Abstracts Environment Abstracts AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Applied Sciences |
EISSN | 1873-684X |
EndPage | 488 |
ExternalDocumentID | 23377573 10_1016_j_buildenv_2010_08_011 S0360132310002647 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 23N 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AAQXK AARJD AAXUO ABFNM ABFYP ABJNI ABLST ABMAC ABXDB ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFRAH AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHIDL AHJVU AI. AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BJAXD BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMC HVGLF HZ~ IHE J1W JARJE JJJVA KCYFY KOM LY6 LY7 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 R2- RIG RNS ROL RPZ SAC SDF SDG SDP SEN SES SET SEW SPC SPCBC SSJ SSR SST SSZ T5K VH1 WUQ ZMT ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH EFKBS IQODW 7S9 L.6 7SU 8FD C1K F28 FR3 KR7 7ST SOI |
ID | FETCH-LOGICAL-c440t-27acb9bdd18f7d356c9a90662d6eec986af1d2201f5ec6a3c62946db6dd7763a3 |
IEDL.DBID | .~1 |
ISSN | 0360-1323 |
IngestDate | Fri Jul 11 11:50:35 EDT 2025 Mon Jul 21 09:41:17 EDT 2025 Mon Jul 21 11:22:41 EDT 2025 Mon Jul 21 09:17:12 EDT 2025 Tue Jul 01 00:24:33 EDT 2025 Thu Apr 24 23:11:54 EDT 2025 Fri Feb 23 02:35:03 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Thermal comfort Sensitivity Mean skin temperature Heart rate variability Heart rate Experimental result Variability Skin Experimental study Computing method Medium temperature |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c440t-27acb9bdd18f7d356c9a90662d6eec986af1d2201f5ec6a3c62946db6dd7763a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1733524162 |
PQPubID | 24069 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_831196454 proquest_miscellaneous_1777116455 proquest_miscellaneous_1733524162 pascalfrancis_primary_23377573 crossref_primary_10_1016_j_buildenv_2010_08_011 crossref_citationtrail_10_1016_j_buildenv_2010_08_011 elsevier_sciencedirect_doi_10_1016_j_buildenv_2010_08_011 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-02-01 |
PublicationDateYYYYMMDD | 2011-02-01 |
PublicationDate_xml | – month: 02 year: 2011 text: 2011-02-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Kidlington |
PublicationPlace_xml | – name: Kidlington |
PublicationTitle | Building and environment |
PublicationYear | 2011 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | ISO 9920 (bib24) 1992 Bulcao, Frank, Raja, Tran, Goldstein (bib5) 2000; 25 de Dear, Ring, Fanger (bib9) 1993; 3 Elmar, Jan, Gerd (bib11) 2002; 75 Kataoka, Yoshida (bib12) 2005; 59 Lu (bib17) 2000 Choi, Miki, Sagawa (bib20) 1997; 41 Malik, Farrell, Cripps, Camm (bib15) 1992; 10 Hasebe, Iriki, Takahasi (bib7) 1995; 38 Kleiger, Miller, Bigger, Moss (bib13) 1987; 59 Liu, Lian, Liu (bib18) 2008; 103 Hoppe (bib4) 2002; 34 Olesen (bib27) 1984 ASHRAE (bib1) 2001 Yao, Lian, Liu, Jiang (bib26) 2008; 14 Kleiger, Bigger, Bosner, Chung, Cook (bib14) 1991; 68 Huizenga, Zhang, Arens, Wang (bib8) 2004; 29 Myers, Workman, Birkett, Ferguson, Kienzle (bib16) 1992; 25 Fanger (bib3) 1972 Zhao (bib10) 2007; 42 Gagge, Stolwijk, Salting (bib6) 1969; 2 Lee, Cho, Yun, Lee (bib21) 1998; 22 Zhang H. Human thermal sensation and comfort in transient and non-uniform thermal environments (PhD thesis). University of California, Berkeley, 2003. Ouyang (bib23) 1985 Mayer (bib2) 1993; 28 Mitchell, Wyndham (bib19) 1969; 26 ISO 9886 (bib22) 1992 de Dear (10.1016/j.buildenv.2010.08.011_bib9) 1993; 3 Zhao (10.1016/j.buildenv.2010.08.011_bib10) 2007; 42 Hoppe (10.1016/j.buildenv.2010.08.011_bib4) 2002; 34 Mayer (10.1016/j.buildenv.2010.08.011_bib2) 1993; 28 Hasebe (10.1016/j.buildenv.2010.08.011_bib7) 1995; 38 Gagge (10.1016/j.buildenv.2010.08.011_bib6) 1969; 2 Fanger (10.1016/j.buildenv.2010.08.011_bib3) 1972 Lu (10.1016/j.buildenv.2010.08.011_bib17) 2000 Huizenga (10.1016/j.buildenv.2010.08.011_bib8) 2004; 29 Kleiger (10.1016/j.buildenv.2010.08.011_bib14) 1991; 68 Liu (10.1016/j.buildenv.2010.08.011_bib18) 2008; 103 Kleiger (10.1016/j.buildenv.2010.08.011_bib13) 1987; 59 Ouyang (10.1016/j.buildenv.2010.08.011_bib23) 1985 Olesen (10.1016/j.buildenv.2010.08.011_bib27) 1984 Choi (10.1016/j.buildenv.2010.08.011_bib20) 1997; 41 Elmar (10.1016/j.buildenv.2010.08.011_bib11) 2002; 75 10.1016/j.buildenv.2010.08.011_bib25 ISO 9920 (10.1016/j.buildenv.2010.08.011_bib24) 1992 Myers (10.1016/j.buildenv.2010.08.011_bib16) 1992; 25 Kataoka (10.1016/j.buildenv.2010.08.011_bib12) 2005; 59 ASHRAE (10.1016/j.buildenv.2010.08.011_bib1) 2001 Mitchell (10.1016/j.buildenv.2010.08.011_bib19) 1969; 26 Bulcao (10.1016/j.buildenv.2010.08.011_bib5) 2000; 25 Lee (10.1016/j.buildenv.2010.08.011_bib21) 1998; 22 Yao (10.1016/j.buildenv.2010.08.011_bib26) 2008; 14 Malik (10.1016/j.buildenv.2010.08.011_bib15) 1992; 10 ISO 9886 (10.1016/j.buildenv.2010.08.011_bib22) 1992 |
References_xml | – volume: 59 start-page: S92 year: 2005 end-page: S99 ident: bib12 article-title: The change of hemodynamics and heart rate variability on bathing by the gap of water temperature publication-title: Biomedicine & Pharmacotherapy – volume: 26 start-page: 616 year: 1969 end-page: 622 ident: bib19 article-title: Comparison of weighting formula for calculating mean skin temperature publication-title: Journal of Applied Physiology – year: 1992 ident: bib22 article-title: Evaluation of thermal strain by physiological measurements – reference: Zhang H. Human thermal sensation and comfort in transient and non-uniform thermal environments (PhD thesis). University of California, Berkeley, 2003. – volume: 25 start-page: 147 year: 2000 end-page: 150 ident: bib5 article-title: Relative contribution of core and skin temperatures to thermal comfort in humans publication-title: Journal of Thermal Biology – volume: 42 start-page: 3926 year: 2007 end-page: 3932 ident: bib10 article-title: Investigation of transient thermal environments publication-title: Building and Environment – volume: 68 start-page: 626 year: 1991 end-page: 630 ident: bib14 article-title: Stability over time of variables measuring heart rate variability in normal subjects publication-title: American Journal of Cardiology – volume: 34 start-page: 661 year: 2002 end-page: 665 ident: bib4 article-title: Different aspects of assessing indoor and outdoor thermal comfort publication-title: Energy and Buildings – volume: 14 start-page: 161 year: 2008 end-page: 174 ident: bib26 article-title: Measurement methods of mean skin temperatures for the PMV model publication-title: HVAC&R Research – volume: 10 start-page: 1060 year: 1992 end-page: 1074 ident: bib15 article-title: Heart rate variability in relation to prognosis after myocardial infarction: selection of optimal processing techniques publication-title: European Heart Journal – volume: 28 start-page: 399 year: 1993 end-page: 403 ident: bib2 article-title: Objective criteria for thermal comfort publication-title: Building and Environment – volume: 2 start-page: 209 year: 1969 end-page: 229 ident: bib6 article-title: Comfort and thermal sensations and associated physiological responses during exercise at various ambient temperatures publication-title: Environment Research – volume: 75 start-page: 251 year: 2002 end-page: 259 ident: bib11 article-title: Heart rate variability a noninvasive approach to measure stress in calves and cows publication-title: Physiology & Behavior – volume: 59 start-page: 256 year: 1987 end-page: 262 ident: bib13 article-title: Decreased heart rate variability and its association with increased mortality after acute myocardial infarction publication-title: American Journal of Cardiology – volume: 3 start-page: 181 year: 1993 end-page: 192 ident: bib9 article-title: Thermal sensations resulting from sudden ambient temperature changes publication-title: Indoor Air – volume: 22 start-page: 207 year: 1998 end-page: 216 ident: bib21 article-title: Development of a temperature control procedure for a room air-conditioner using the concept of just noticeable difference (JND) in thermal sensation publication-title: International Journal of Industrial Ergonomics – year: 1985 ident: bib23 article-title: Clothes hygiene – volume: 29 start-page: 549 year: 2004 end-page: 558 ident: bib8 article-title: Skin and core temperature response to partial- and whole-body heating and cooling publication-title: Journal of Thermal Biology – volume: 38 start-page: 116 year: 1995 end-page: 121 ident: bib7 article-title: Usefulness of R–R interval and its variability in evaluation of thermal comfort publication-title: International Journal of Biometeorol – volume: 103 start-page: 361 year: 2008 end-page: 436 ident: bib18 article-title: Heart rate variability at different thermal comfort levels publication-title: European Journal of Applied Physiology – year: 1992 ident: bib24 article-title: Thermal environment – estimation of the thermal characteristics of a clothing ensemble – volume: 25 start-page: 214 year: 1992 end-page: 219 ident: bib16 article-title: Problems in measuring heart rate variability of patients with congestive heart failure publication-title: Journal of Electrocardiology – year: 2000 ident: bib17 article-title: Medical neurobiology – volume: 41 start-page: 68 year: 1997 end-page: 75 ident: bib20 article-title: Evaluation of mean skin temperature formulas by infrared thermography publication-title: International Journal of Biometeorol – year: 2001 ident: bib1 article-title: Thermal comfort. ASHRAE handbook: fundamentals – year: 1984 ident: bib27 article-title: How many sites are necessary to estimate a mean skin temperature – year: 1972 ident: bib3 article-title: Thermal comfort – year: 1985 ident: 10.1016/j.buildenv.2010.08.011_bib23 – volume: 14 start-page: 161 issue: 2 year: 2008 ident: 10.1016/j.buildenv.2010.08.011_bib26 article-title: Measurement methods of mean skin temperatures for the PMV model publication-title: HVAC&R Research doi: 10.1080/10789669.2008.10391001 – volume: 68 start-page: 626 year: 1991 ident: 10.1016/j.buildenv.2010.08.011_bib14 article-title: Stability over time of variables measuring heart rate variability in normal subjects publication-title: American Journal of Cardiology doi: 10.1016/0002-9149(91)90355-O – volume: 38 start-page: 116 year: 1995 ident: 10.1016/j.buildenv.2010.08.011_bib7 article-title: Usefulness of R–R interval and its variability in evaluation of thermal comfort publication-title: International Journal of Biometeorol doi: 10.1007/BF01208486 – volume: 59 start-page: 256 year: 1987 ident: 10.1016/j.buildenv.2010.08.011_bib13 article-title: Decreased heart rate variability and its association with increased mortality after acute myocardial infarction publication-title: American Journal of Cardiology doi: 10.1016/0002-9149(87)90795-8 – ident: 10.1016/j.buildenv.2010.08.011_bib25 – year: 1984 ident: 10.1016/j.buildenv.2010.08.011_bib27 – volume: 22 start-page: 207 year: 1998 ident: 10.1016/j.buildenv.2010.08.011_bib21 article-title: Development of a temperature control procedure for a room air-conditioner using the concept of just noticeable difference (JND) in thermal sensation publication-title: International Journal of Industrial Ergonomics doi: 10.1016/S0169-8141(97)00009-7 – volume: 42 start-page: 3926 year: 2007 ident: 10.1016/j.buildenv.2010.08.011_bib10 article-title: Investigation of transient thermal environments publication-title: Building and Environment doi: 10.1016/j.buildenv.2006.06.030 – volume: 34 start-page: 661 year: 2002 ident: 10.1016/j.buildenv.2010.08.011_bib4 article-title: Different aspects of assessing indoor and outdoor thermal comfort publication-title: Energy and Buildings doi: 10.1016/S0378-7788(02)00017-8 – volume: 59 start-page: S92 year: 2005 ident: 10.1016/j.buildenv.2010.08.011_bib12 article-title: The change of hemodynamics and heart rate variability on bathing by the gap of water temperature publication-title: Biomedicine & Pharmacotherapy doi: 10.1016/S0753-3322(05)80016-2 – volume: 103 start-page: 361 year: 2008 ident: 10.1016/j.buildenv.2010.08.011_bib18 article-title: Heart rate variability at different thermal comfort levels publication-title: European Journal of Applied Physiology doi: 10.1007/s00421-008-0718-6 – year: 1992 ident: 10.1016/j.buildenv.2010.08.011_bib24 – volume: 10 start-page: 1060 year: 1992 ident: 10.1016/j.buildenv.2010.08.011_bib15 article-title: Heart rate variability in relation to prognosis after myocardial infarction: selection of optimal processing techniques publication-title: European Heart Journal doi: 10.1093/oxfordjournals.eurheartj.a059428 – volume: 29 start-page: 549 year: 2004 ident: 10.1016/j.buildenv.2010.08.011_bib8 article-title: Skin and core temperature response to partial- and whole-body heating and cooling publication-title: Journal of Thermal Biology doi: 10.1016/j.jtherbio.2004.08.024 – year: 2001 ident: 10.1016/j.buildenv.2010.08.011_bib1 – volume: 75 start-page: 251 year: 2002 ident: 10.1016/j.buildenv.2010.08.011_bib11 article-title: Heart rate variability a noninvasive approach to measure stress in calves and cows publication-title: Physiology & Behavior – volume: 41 start-page: 68 year: 1997 ident: 10.1016/j.buildenv.2010.08.011_bib20 article-title: Evaluation of mean skin temperature formulas by infrared thermography publication-title: International Journal of Biometeorol doi: 10.1007/s004840050056 – volume: 2 start-page: 209 year: 1969 ident: 10.1016/j.buildenv.2010.08.011_bib6 article-title: Comfort and thermal sensations and associated physiological responses during exercise at various ambient temperatures publication-title: Environment Research doi: 10.1016/0013-9351(69)90037-1 – volume: 26 start-page: 616 year: 1969 ident: 10.1016/j.buildenv.2010.08.011_bib19 article-title: Comparison of weighting formula for calculating mean skin temperature publication-title: Journal of Applied Physiology doi: 10.1152/jappl.1969.26.5.616 – volume: 3 start-page: 181 year: 1993 ident: 10.1016/j.buildenv.2010.08.011_bib9 article-title: Thermal sensations resulting from sudden ambient temperature changes publication-title: Indoor Air doi: 10.1111/j.1600-0668.1993.t01-1-00004.x – year: 2000 ident: 10.1016/j.buildenv.2010.08.011_bib17 – volume: 25 start-page: 147 year: 2000 ident: 10.1016/j.buildenv.2010.08.011_bib5 article-title: Relative contribution of core and skin temperatures to thermal comfort in humans publication-title: Journal of Thermal Biology doi: 10.1016/S0306-4565(99)00039-X – year: 1992 ident: 10.1016/j.buildenv.2010.08.011_bib22 – volume: 28 start-page: 399 year: 1993 ident: 10.1016/j.buildenv.2010.08.011_bib2 article-title: Objective criteria for thermal comfort publication-title: Building and Environment doi: 10.1016/0360-1323(93)90016-V – volume: 25 start-page: 214 year: 1992 ident: 10.1016/j.buildenv.2010.08.011_bib16 article-title: Problems in measuring heart rate variability of patients with congestive heart failure publication-title: Journal of Electrocardiology doi: 10.1016/0022-0736(92)90105-9 – year: 1972 ident: 10.1016/j.buildenv.2010.08.011_bib3 |
SSID | ssj0016934 |
Score | 2.4665198 |
Snippet | A method was established to evaluate calculation methods of mean skin temperature, in order to find appropriate ones for use in human thermal comfort study. In... |
SourceID | proquest pascalfrancis crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 478 |
SubjectTerms | air temperature Ambient temperature Applied sciences Building insulation Buildings Buildings. Public works Computation methods. Tables. Charts electrocardiography Exact sciences and technology External envelopes Heart rate Heart rate variability Human humans Mathematical analysis Mean skin temperature sensation Sensitivity Skin temperature Structural analysis. Stresses Thermal comfort |
Title | Evaluation of calculation methods of mean skin temperature for use in thermal comfort study |
URI | https://dx.doi.org/10.1016/j.buildenv.2010.08.011 https://www.proquest.com/docview/1733524162 https://www.proquest.com/docview/1777116455 https://www.proquest.com/docview/831196454 |
Volume | 46 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEBYhvbSU0CfdJllU6NW7q7d1DCFh29Jc2kCgByFLMt008S71bo797Z2x5SUhpDnUx0GyrRlpZiTNfEPIx9pLjpanKJX2BXjEsKQq64taCO61iKWvcaP49UzPz-XnC3WxQ46HXBgMq8y6v9fpnbbOlGnm5nS1WEy_ge7Fi4LuhBrMOmaUS2lwlk_-bMM8EGskQ0jNCmx9K0v4clJh6enU3OQQr3IyY-whA_V85VtgW93Xu7inujt7dPqC7GVHkh71__qS7KTmFXl2C17wNflxsoXypsuawmtDLtZF-8LRLZKvk29o-2vRUISpyhjLFHxZumkTRfJP1N5XFFgE1DXtEGnfkPPTk-_H8yIXUyiClLN1wY0Pla1iZGVtolA6WG8R_j3qlIItNQglcuBDrVLQXgTNrdSx0jEa0EFevCW7zbJJ7whlwdooOQ8etzOKeQmPLsEVkrbiPoyIGjjoQkYax4IXV24IKbt0A-cdct5hJUzGRmS67bfqsTYe7WEHAbk7s8aBQXi07_iORLef5EIYo4wYkQ-DiB2sObxI8U1ablrHDGaqgSvL_9XGGAZ7UaVGhD7QphQM8dCUfP8f49gnT_tzbgyxOSC769-bdAiO0roadythTJ4cffoyP_sLLr4UQg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxEB7RcGhRVfUp0gd1pV6XxO_1ESFQKJBLQULqwfLaXjWUbqJu0t9fT9YbgSrKoXscefYxs56HPf4G4HPtBEPPU5RSuSJFxGlKVcYVNefMKR5KV2OieD5Vk0vx5UpebcFhfxYGyyqz7e9s-tpaZ8ooS3O0mM1GX5PtxY2C9Qp1cuv6EWwjOpUcwPbByelkutlMUIZnFKlxgQy3Dgpf71fYfTo2v3OVV7k_pvQ-H_V04dokubprefGX9V67pOPn8CzHkuSge90XsBWbl7BzC2HwFXw72qB5k3lN0m197tdFut7RLZJ_RteQ9sesIYhUlWGWSQpnyaqNBMnf0YDfkCSlRF2SNSjta7g8Pro4nBS5n0LhhRgvC6adr0wVAi1rHbhU3jiDCPBBxehNqZJeAktyqGX0ynGvmBEqVCoEncyQ429g0MybuAuEemOCYMw7zGgkdSJdqkzRkDAVc34Ispeg9RlsHHte3Ni-quza9pK3KHmLzTApHcJow7fo4DYe5DC9guydH8cmn_Ag794djW4eyTjXWmo-hE-9im2adriX4po4X7WWajyslqJZ9q8xWtOUjko5BHLPmJJThEST4u1_fMdHeDy5OD-zZyfT03fwpFv2xoqb9zBY_lrFDyluWlZ7eV78AZJkFvM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluation+of+calculation+methods+of+mean+skin+temperature+for+use+in+thermal+comfort+study&rft.jtitle=Building+and+environment&rft.au=Liu%2C+Weiwei&rft.au=Lian%2C+Zhiwei&rft.au=Deng%2C+Qihong&rft.au=Liu%2C+Yuanmou&rft.date=2011-02-01&rft.issn=0360-1323&rft.volume=46&rft.issue=2&rft.spage=478&rft.epage=488&rft_id=info:doi/10.1016%2Fj.buildenv.2010.08.011&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-1323&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-1323&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-1323&client=summon |