High surface area carbon materials derived from corn stalk core as electrode for supercapacitor
The activated carbon materials from the corn stalk core raw materials were prepared through the carbonization and activation process and applied as electrode in supercapacitor. The biomass carbon materials activated under different temperatures were tested by cyclic voltammetry, electrochemical impe...
Saved in:
Published in | Diamond and related materials Vol. 88; pp. 18 - 22 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
01.09.2018
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The activated carbon materials from the corn stalk core raw materials were prepared through the carbonization and activation process and applied as electrode in supercapacitor. The biomass carbon materials activated under different temperatures were tested by cyclic voltammetry, electrochemical impedance spectroscopy and galvanostatic charge-discharge cycling method. The corn stalk core-derived material activated at 700 °C with the highest specific surface area (2349.89 m2 g−1) has exhibited the maximum specific capacitance of 140 F g−1. Further detailed characterization and theoretical analysis have demonstrated that the corn stalk core derived activated carbon anode material can not only enhance the capacity of supercapacitor but also realize the comprehensive utilization of corn stalks.
Corn stalk core-derived activated carbonaceous anode material was synthesized by a facile method. Its unique porous structure plays an important role in the improvement of electrochemical performance. [Display omitted]
•We report a high surface carbon anode material derived from corn stalk core via a facile method.•The environment-friendly method has potential application in biomass waste treatment.•The biomass electrode delivers an excellent cycleability with high capacity and superior rate capability. |
---|---|
AbstractList | The activated carbon materials from the corn stalk core raw materials were prepared through the carbonization and activation process and applied as electrode in supercapacitor. The biomass carbon materials activated under different temperatures were tested by cyclic voltammetry, electrochemical impedance spectroscopy and galvanostatic charge-discharge cycling method. The corn stalk core-derived material activated at 700 °C with the highest specific surface area (2349.89 m2 g−1) has exhibited the maximum specific capacitance of 140 F g−1. Further detailed characterization and theoretical analysis have demonstrated that the corn stalk core derived activated carbon anode material can not only enhance the capacity of supercapacitor but also realize the comprehensive utilization of corn stalks. The activated carbon materials from the corn stalk core raw materials were prepared through the carbonization and activation process and applied as electrode in supercapacitor. The biomass carbon materials activated under different temperatures were tested by cyclic voltammetry, electrochemical impedance spectroscopy and galvanostatic charge-discharge cycling method. The corn stalk core-derived material activated at 700 °C with the highest specific surface area (2349.89 m2 g−1) has exhibited the maximum specific capacitance of 140 F g−1. Further detailed characterization and theoretical analysis have demonstrated that the corn stalk core derived activated carbon anode material can not only enhance the capacity of supercapacitor but also realize the comprehensive utilization of corn stalks. Corn stalk core-derived activated carbonaceous anode material was synthesized by a facile method. Its unique porous structure plays an important role in the improvement of electrochemical performance. [Display omitted] •We report a high surface carbon anode material derived from corn stalk core via a facile method.•The environment-friendly method has potential application in biomass waste treatment.•The biomass electrode delivers an excellent cycleability with high capacity and superior rate capability. |
Author | Qi, Hui Zhu, He Liang, Ce Yu, Kaifeng |
Author_xml | – sequence: 1 givenname: Kaifeng surname: Yu fullname: Yu, Kaifeng organization: Key Laboratory of Automobile Materials, Ministry of Education, College of Materials Science and Engineering, Jilin University, Changchun 130025, PR China – sequence: 2 givenname: He surname: Zhu fullname: Zhu, He organization: Key Laboratory of Automobile Materials, Ministry of Education, College of Materials Science and Engineering, Jilin University, Changchun 130025, PR China – sequence: 3 givenname: Hui surname: Qi fullname: Qi, Hui organization: The Second Hospital of Jilin University, Changchun 130041, PR China – sequence: 4 givenname: Ce orcidid: 0000-0003-1314-9026 surname: Liang fullname: Liang, Ce email: liangce@jlu.edu.cn organization: Key Laboratory of Automobile Materials, Ministry of Education, College of Materials Science and Engineering, Jilin University, Changchun 130025, PR China |
BookMark | eNqFkMFqGzEQhkVxoLabRygIet6tRqvVWuRQSmiagCGX9CxkadTKsVfuaB3o21fGPuXi0z-H-f5hvgWbjXlExj6DaEGA_rptQ3L7PIZWCli1Qrc1PrA5rAbTCKHljM2FkX1jdNd_ZItStkKANArmzD6m3394OVJ0HrkjdNw72uSR792ElNyu8FDzDQOPlPfcZxp5mdzu9TRWpHDcoZ8oB-QxU-06IHl3cD5NmT6xm1g78PaSS_br4cfL_WOzfv75dP993XilxNRIJaVTRmnYdAZ6UJ3sUXgZsB88Dt5ttDJau4gRNlpGQAnKxEH64KWG0C3Zl3PvgfLfI5bJbvORxnrSSoChWynoTN3qz1uecimE0R4o7R39syDsyaXd2otLe3JphbY1Knf3jqvPuSnlcSKXdlfpb2caq4C3hGSLTzh6DImqORtyutLwH_pzliY |
CitedBy_id | crossref_primary_10_1007_s40243_024_00273_8 crossref_primary_10_21597_jist_1180016 crossref_primary_10_1016_j_cej_2020_124401 crossref_primary_10_1016_j_diamond_2019_107514 crossref_primary_10_1016_j_renene_2022_02_126 crossref_primary_10_1039_D1RA06462B crossref_primary_10_1021_acs_energyfuels_3c01925 crossref_primary_10_3389_fchem_2020_00089 crossref_primary_10_1039_D1TA00790D crossref_primary_10_1016_j_diamond_2020_107802 crossref_primary_10_1016_j_rser_2024_114324 crossref_primary_10_1088_1361_6463_ac33d8 crossref_primary_10_1016_j_est_2024_112873 crossref_primary_10_1016_j_diamond_2019_03_015 crossref_primary_10_1016_j_energy_2023_127797 crossref_primary_10_1016_j_susmat_2024_e01143 crossref_primary_10_1016_j_biombioe_2021_106175 crossref_primary_10_1002_chem_202402597 crossref_primary_10_1016_j_diamond_2019_107475 crossref_primary_10_1016_j_est_2022_105989 crossref_primary_10_1016_j_diamond_2019_107522 crossref_primary_10_1016_j_est_2022_104346 crossref_primary_10_1088_1757_899X_599_1_012030 crossref_primary_10_3390_su11020414 crossref_primary_10_1016_j_cej_2023_144368 crossref_primary_10_1016_j_matpr_2021_05_468 crossref_primary_10_20964_2020_03_18 crossref_primary_10_3775_jie_98_279 crossref_primary_10_1016_j_mset_2024_07_005 crossref_primary_10_20964_2019_02_67 crossref_primary_10_20964_2019_08_59 crossref_primary_10_1016_j_apenergy_2023_121782 crossref_primary_10_1016_j_matpr_2021_12_535 crossref_primary_10_1016_j_biombioe_2021_106206 crossref_primary_10_1021_acs_energyfuels_4c03493 crossref_primary_10_1021_acssuschemeng_2c04050 crossref_primary_10_1039_D1RA07815A crossref_primary_10_20964_2018_11_27 crossref_primary_10_1016_j_diamond_2021_108553 crossref_primary_10_1016_j_diamond_2019_05_015 crossref_primary_10_1039_C9RA08537H crossref_primary_10_1016_j_electacta_2022_139861 crossref_primary_10_1016_j_surfin_2021_101132 crossref_primary_10_1016_j_jece_2021_106149 crossref_primary_10_1016_j_microc_2025_113087 crossref_primary_10_20964_2020_12_39 crossref_primary_10_1016_j_chemosphere_2024_143029 crossref_primary_10_20964_2021_06_48 crossref_primary_10_3390_nano12203555 crossref_primary_10_1016_j_diamond_2023_109852 crossref_primary_10_1088_1742_6596_1120_1_012094 crossref_primary_10_1016_j_crcon_2023_07_001 crossref_primary_10_1007_s10800_023_01873_4 crossref_primary_10_3389_fchem_2022_944793 crossref_primary_10_3390_ma15196802 crossref_primary_10_1002_slct_202303098 crossref_primary_10_1038_s41598_023_40176_8 crossref_primary_10_1016_j_matchemphys_2019_122151 crossref_primary_10_1007_s13399_022_02795_5 crossref_primary_10_1016_j_mtcomm_2024_108034 crossref_primary_10_1002_tcr_202000058 crossref_primary_10_1016_j_diamond_2019_107693 crossref_primary_10_1016_j_cej_2023_146763 crossref_primary_10_1016_j_est_2021_103410 crossref_primary_10_1016_j_est_2020_101451 crossref_primary_10_1016_j_micromeso_2021_111383 crossref_primary_10_1021_acssuschemeng_1c02613 crossref_primary_10_1088_2043_6254_ab8b60 crossref_primary_10_1002_celc_202400230 crossref_primary_10_1007_s10934_022_01411_1 crossref_primary_10_1016_j_ecoenv_2020_111803 crossref_primary_10_1016_j_jpcs_2023_111318 crossref_primary_10_1016_j_fuel_2023_128529 crossref_primary_10_1016_j_diamond_2020_107983 crossref_primary_10_1016_j_diamond_2022_109562 crossref_primary_10_1016_j_est_2023_109996 crossref_primary_10_1016_j_energy_2022_124877 crossref_primary_10_1016_j_est_2023_108348 crossref_primary_10_1016_j_jece_2021_106525 |
Cites_doi | 10.1016/j.carbon.2013.09.070 10.1016/j.pnsc.2014.05.012 10.1016/j.electacta.2015.03.190 10.1016/j.rser.2015.12.249 10.1016/j.jpowsour.2016.01.052 10.1039/b813846j 10.1002/cssc.201100645 10.1021/ef302028j 10.1016/j.jpowsour.2016.01.056 10.1016/j.carbon.2015.12.079 10.1016/j.cej.2014.06.021 10.1002/adma.201600586 10.1016/j.jclepro.2015.07.005 10.1088/1361-6528/aa5fad 10.1016/j.electacta.2016.07.069 10.1016/j.carbon.2008.07.018 10.1016/j.jallcom.2006.10.036 10.1016/j.cej.2015.08.014 10.1016/j.jpowsour.2016.01.020 10.1039/C5TA08714G 10.1016/j.jcis.2003.10.001 10.1039/C1CS15060J 10.1007/s11581-015-1528-6 10.1016/j.jiec.2010.10.025 10.1126/science.1249625 10.1021/acsami.6b02214 10.1016/j.jpowsour.2013.03.174 |
ContentType | Journal Article |
Copyright | 2018 Elsevier B.V. Copyright Elsevier BV Sep 2018 |
Copyright_xml | – notice: 2018 Elsevier B.V. – notice: Copyright Elsevier BV Sep 2018 |
DBID | AAYXX CITATION 7SR 8BQ 8FD JG9 |
DOI | 10.1016/j.diamond.2018.06.018 |
DatabaseName | CrossRef Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology Engineering Chemistry |
EISSN | 1879-0062 |
EndPage | 22 |
ExternalDocumentID | 10_1016_j_diamond_2018_06_018 S0925963518301857 |
GroupedDBID | --K --M .~1 0R~ 123 1B1 1~. 1~5 29G 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABFRF ABJNI ABMAC ABXDB ABXRA ABYKQ ACDAQ ACGFO ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SEW SMS SPC SPCBC SPD SSM SST SSZ T5K WUQ XFK XPP ZMT ~02 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7SR 8BQ 8FD EFKBS JG9 |
ID | FETCH-LOGICAL-c440t-2422a49461b391514325e0c2de57ce7cab64966afef1b62f1e2149f72cdc261d3 |
IEDL.DBID | .~1 |
ISSN | 0925-9635 |
IngestDate | Fri Jul 25 02:02:57 EDT 2025 Thu Apr 24 23:07:06 EDT 2025 Tue Jul 01 00:37:48 EDT 2025 Fri Feb 23 02:34:58 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Electrochemistry Supercapacitor Activated carbon Corn stalk core |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c440t-2422a49461b391514325e0c2de57ce7cab64966afef1b62f1e2149f72cdc261d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-1314-9026 |
PQID | 2117384139 |
PQPubID | 2045488 |
PageCount | 5 |
ParticipantIDs | proquest_journals_2117384139 crossref_primary_10_1016_j_diamond_2018_06_018 crossref_citationtrail_10_1016_j_diamond_2018_06_018 elsevier_sciencedirect_doi_10_1016_j_diamond_2018_06_018 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-09-01 |
PublicationDateYYYYMMDD | 2018-09-01 |
PublicationDate_xml | – month: 09 year: 2018 text: 2018-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Diamond and related materials |
PublicationYear | 2018 |
Publisher | Elsevier B.V Elsevier BV |
Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
References | Lee, Park, Shim, Balathanigaimani, Moon (bb0065) 2011; 17 González, Goikolea, Barrena (bb0005) 2016; 58 He, Ling, Qiu, Yu, Zhang, Yu, Zheng (bb0140) 2013; 240 Ruibin, Zhongai, Yuying, Zhimin, Ning, Xiaoying, Haixiong, Hongying (bb0135) 2015; 167 Liu, Zhang, Lin, Li, Lu, Wang (bb0100) 2016; 112 Wang, Yan, Wang, Wei, Zhang, Jing, Fan (bb0050) 2014; 67 Wang, Zhang, Zhang (bb0020) 2012; 41 Jain, Balasubramanian, Srinivasan (bb0085) 2016; 283 Hwang, Lee, Kim, Kahng, Lee (bb0070) 2016; 100 Han, Jung, Jeong, Oh (bb0120) 2014; 254 Huang, Peng, Liu, Zhao, Chen, Yu (bb0095) 2016; 8 Li, Yang, Yang, Zhang, Miao, Zhang, Sun, Huang, Dong, Liu (bb0045) 2016; 4 Jiang, Li, Liu, Liu, Xu, Zhu (bb0080) 2017; 28 Nguyen, Ryu, Bramhe, Kim (bb0125) 2013; 23 Sk, Yue, Ghosh, Jena (bb0035) 2016; 308 Zhao, Lu, Tao, Zhang, Gong, Yang, Zhang, Li (bb0090) 2016; 307 Van, Thi (bb0055) 2014; 24 Cao, Wang, Wang, Gu, Fan, Gibbons, Hoefelmeyer, Kharel, Shrestha (bb0105) 2016; 212 Long, Zhuang, Xiao, Zheng, Hu, Dong, Lei, Zhang, Liu (bb0040) 2016; 310 Xu, Tan, Zeng, Chen, Wu, Zhao, Ni, Tao, Ikram, Ji, Zhu (bb0075) 2016; 28 Hwang, Jeong, Shin, Nahm, Stephan (bb0115) 2008; 448 Xia, Gao, Jiang, Hu (bb0030) 2008; 46 Ghosh, Lee (bb0025) 2012; 5 Zhang, Zhao (bb0010) 2009; 38 Simon, Gogotsi, Dunn (bb0015) 2014; 343 Lua, Yang (bb0130) 2004; 274 Yuan, Yin, Zhao, Bakenov, Wang, Zhang (bb0060) 2016; 22 Liu, Gan, Xiong, Zhao, Fan, Zhu, Xu, Hao, Chen (bb0110) 2013; 27 Sk (10.1016/j.diamond.2018.06.018_bb0035) 2016; 308 Hwang (10.1016/j.diamond.2018.06.018_bb0070) 2016; 100 Lua (10.1016/j.diamond.2018.06.018_bb0130) 2004; 274 Liu (10.1016/j.diamond.2018.06.018_bb0110) 2013; 27 Han (10.1016/j.diamond.2018.06.018_bb0120) 2014; 254 Ruibin (10.1016/j.diamond.2018.06.018_bb0135) 2015; 167 Li (10.1016/j.diamond.2018.06.018_bb0045) 2016; 4 Cao (10.1016/j.diamond.2018.06.018_bb0105) 2016; 212 Wang (10.1016/j.diamond.2018.06.018_bb0050) 2014; 67 Zhang (10.1016/j.diamond.2018.06.018_bb0010) 2009; 38 Xia (10.1016/j.diamond.2018.06.018_bb0030) 2008; 46 He (10.1016/j.diamond.2018.06.018_bb0140) 2013; 240 Jiang (10.1016/j.diamond.2018.06.018_bb0080) 2017; 28 Zhao (10.1016/j.diamond.2018.06.018_bb0090) 2016; 307 Huang (10.1016/j.diamond.2018.06.018_bb0095) 2016; 8 Hwang (10.1016/j.diamond.2018.06.018_bb0115) 2008; 448 Simon (10.1016/j.diamond.2018.06.018_bb0015) 2014; 343 Lee (10.1016/j.diamond.2018.06.018_bb0065) 2011; 17 Jain (10.1016/j.diamond.2018.06.018_bb0085) 2016; 283 Liu (10.1016/j.diamond.2018.06.018_bb0100) 2016; 112 Xu (10.1016/j.diamond.2018.06.018_bb0075) 2016; 28 Ghosh (10.1016/j.diamond.2018.06.018_bb0025) 2012; 5 Nguyen (10.1016/j.diamond.2018.06.018_bb0125) 2013; 23 González (10.1016/j.diamond.2018.06.018_bb0005) 2016; 58 Long (10.1016/j.diamond.2018.06.018_bb0040) 2016; 310 Van (10.1016/j.diamond.2018.06.018_bb0055) 2014; 24 Wang (10.1016/j.diamond.2018.06.018_bb0020) 2012; 41 Yuan (10.1016/j.diamond.2018.06.018_bb0060) 2016; 22 |
References_xml | – volume: 112 start-page: 1190 year: 2016 end-page: 1198 ident: bb0100 article-title: A green technology for the preparation of high capacitance rice husk-based activated carbon publication-title: J. Clean. Prod. – volume: 212 start-page: 839 year: 2016 end-page: 847 ident: bb0105 article-title: Hierarchical porous activated carbon for supercapacitor derived from corn stalk core by potassium hydroxide activation publication-title: Electrochim. Acta – volume: 343 start-page: 1210 year: 2014 end-page: 1211 ident: bb0015 article-title: Where do batteries end and supercapacitors begin publication-title: Science – volume: 38 start-page: 2520 year: 2009 end-page: 2531 ident: bb0010 article-title: Carbon-based materials as supercapacitor electrodes publication-title: Chem. Soc. Rev. – volume: 28 year: 2017 ident: bb0080 article-title: Uniform implantation of CNTs on total activated carbon surfaces: a smart engineering protocol for commercial supercapacitor applications publication-title: Nanotechnology – volume: 274 start-page: 594 year: 2004 end-page: 601 ident: bb0130 article-title: Effect of activation temperature on the textural and chemical properties of potassium hydroxide activated carbon prepared from pistachio-nut shell publication-title: J. Colloid Interface Sci. – volume: 254 start-page: 597 year: 2014 end-page: 604 ident: bb0120 article-title: Effect of pyrolysis temperature on carbon obtained from green tea biomass for superior lithium ion battery anodes publication-title: Chem. Eng. J. – volume: 167 start-page: 303 year: 2015 end-page: 310 ident: bb0135 article-title: Monodisperse carbon microspheres derived from potato starch for asymmetric supercapacitors publication-title: Electrochim. Acta – volume: 8 start-page: 15205 year: 2016 end-page: 15215 ident: bb0095 article-title: Biobased nano porous active carbon fibers for high-performance supercapacitors publication-title: ACS Appl. Mater. Interfaces – volume: 5 start-page: 480 year: 2012 end-page: 499 ident: bb0025 article-title: Carbon-based electrochemical capacitor publication-title: ChemSusChem – volume: 23 start-page: 643 year: 2013 end-page: 648 ident: bb0125 article-title: Performance of electric double layers capacitor using activated carbon materials from rice husk as electrodes publication-title: Korean J. Mater. Res. – volume: 100 start-page: 7 year: 2016 end-page: 15 ident: bb0070 article-title: A new approach of structural and chemical modification on graphene electrodes for high-performance supercapacitors publication-title: Carbon – volume: 41 start-page: 797 year: 2012 end-page: 828 ident: bb0020 article-title: A review of electrode materials for electrochemical supercapacitors publication-title: Chem. Soc. Rev. – volume: 307 start-page: 391 year: 2016 end-page: 400 ident: bb0090 article-title: Hierarchically porous and heteroatom doped carbon derived from tobacco rods for supercapacitors publication-title: J. Power Sources – volume: 67 start-page: 119 year: 2014 end-page: 127 ident: bb0050 article-title: Three-dimensional flower-like and hierarchical porous carbon materials as high-rate performance electrodes for supercapacitors publication-title: Carbon – volume: 310 start-page: 145 year: 2016 end-page: 153 ident: bb0040 article-title: Nitrogen-doped porous carbon with an ultrahigh specific surface area for superior performance supercapacitors publication-title: J. Power Sources – volume: 46 start-page: 1718 year: 2008 end-page: 1726 ident: bb0030 article-title: Hierarchical porous carbon with controlled micropores and mesopores for supercapacitor electrode materials publication-title: Carbon – volume: 28 start-page: 5222 year: 2016 end-page: 5228 ident: bb0075 article-title: Hydrothermal conversion of biomass waste to activated carbon with high porosity: a review publication-title: Adv. Mater. – volume: 240 start-page: 109 year: 2013 end-page: 113 ident: bb0140 article-title: Efficient preparation of biomass-based mesoporous carbons for supercapacitors with both high energy density and high power density publication-title: J. Power Sources – volume: 27 start-page: 1168 year: 2013 end-page: 1173 ident: bb0110 article-title: Nickel-doped activated mesoporous carbon microspheres with partially graphitic structure for supercapacitors publication-title: Energy Fuel – volume: 22 start-page: 63 year: 2016 end-page: 69 ident: bb0060 article-title: Corn stalk-derived activated carbon with a stacking sheet-like structure as sulfur cathode supporter for lithium/sulfur batteries publication-title: Ionics – volume: 4 start-page: 1319 year: 2016 end-page: 1325 ident: bb0045 article-title: Hierarchical carbon@Ni publication-title: J. Mater. Chem. A – volume: 283 start-page: 789 year: 2016 end-page: 805 ident: bb0085 article-title: Hydrothermal conversion of biomass waste to activated carbon with high porosity: a review publication-title: Chem. Eng. J. – volume: 448 start-page: 141 year: 2008 end-page: 147 ident: bb0115 article-title: High capacity disordered carbons obtained from coconut shells as anode materials for lithium batteries publication-title: J. Alloys Compd. – volume: 308 start-page: 121 year: 2016 end-page: 140 ident: bb0035 article-title: Review on advance in porous nanostructured nickle oxides and their composite electrodes for high-performance supercapacitors publication-title: J. Power Sources – volume: 17 start-page: 450 year: 2011 end-page: 454 ident: bb0065 article-title: Performance of electrochemical double layer capacitors using highly porous activated carbons prepared from beer lees publication-title: J. Ind. Eng. Chem. – volume: 58 start-page: 1189 year: 2016 end-page: 1206 ident: bb0005 article-title: Review on supercapacitors: technologies and materials publication-title: Renew. Sust. Energ. Rev. – volume: 24 start-page: 191 year: 2014 end-page: 198 ident: bb0055 article-title: Activated carbon derived from rice husk by NaOH activation and its application in supercapacitor publication-title: Prog. Nat. Sci.: Mater. Int. – volume: 67 start-page: 119 year: 2014 ident: 10.1016/j.diamond.2018.06.018_bb0050 article-title: Three-dimensional flower-like and hierarchical porous carbon materials as high-rate performance electrodes for supercapacitors publication-title: Carbon doi: 10.1016/j.carbon.2013.09.070 – volume: 23 start-page: 643 year: 2013 ident: 10.1016/j.diamond.2018.06.018_bb0125 article-title: Performance of electric double layers capacitor using activated carbon materials from rice husk as electrodes publication-title: Korean J. Mater. Res. – volume: 24 start-page: 191 year: 2014 ident: 10.1016/j.diamond.2018.06.018_bb0055 article-title: Activated carbon derived from rice husk by NaOH activation and its application in supercapacitor publication-title: Prog. Nat. Sci.: Mater. Int. doi: 10.1016/j.pnsc.2014.05.012 – volume: 167 start-page: 303 year: 2015 ident: 10.1016/j.diamond.2018.06.018_bb0135 article-title: Monodisperse carbon microspheres derived from potato starch for asymmetric supercapacitors publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2015.03.190 – volume: 58 start-page: 1189 year: 2016 ident: 10.1016/j.diamond.2018.06.018_bb0005 article-title: Review on supercapacitors: technologies and materials publication-title: Renew. Sust. Energ. Rev. doi: 10.1016/j.rser.2015.12.249 – volume: 310 start-page: 145 year: 2016 ident: 10.1016/j.diamond.2018.06.018_bb0040 article-title: Nitrogen-doped porous carbon with an ultrahigh specific surface area for superior performance supercapacitors publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2016.01.052 – volume: 38 start-page: 2520 year: 2009 ident: 10.1016/j.diamond.2018.06.018_bb0010 article-title: Carbon-based materials as supercapacitor electrodes publication-title: Chem. Soc. Rev. doi: 10.1039/b813846j – volume: 5 start-page: 480 year: 2012 ident: 10.1016/j.diamond.2018.06.018_bb0025 article-title: Carbon-based electrochemical capacitor publication-title: ChemSusChem doi: 10.1002/cssc.201100645 – volume: 27 start-page: 1168 year: 2013 ident: 10.1016/j.diamond.2018.06.018_bb0110 article-title: Nickel-doped activated mesoporous carbon microspheres with partially graphitic structure for supercapacitors publication-title: Energy Fuel doi: 10.1021/ef302028j – volume: 308 start-page: 121 year: 2016 ident: 10.1016/j.diamond.2018.06.018_bb0035 article-title: Review on advance in porous nanostructured nickle oxides and their composite electrodes for high-performance supercapacitors publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2016.01.056 – volume: 100 start-page: 7 year: 2016 ident: 10.1016/j.diamond.2018.06.018_bb0070 article-title: A new approach of structural and chemical modification on graphene electrodes for high-performance supercapacitors publication-title: Carbon doi: 10.1016/j.carbon.2015.12.079 – volume: 254 start-page: 597 year: 2014 ident: 10.1016/j.diamond.2018.06.018_bb0120 article-title: Effect of pyrolysis temperature on carbon obtained from green tea biomass for superior lithium ion battery anodes publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2014.06.021 – volume: 28 start-page: 5222 year: 2016 ident: 10.1016/j.diamond.2018.06.018_bb0075 article-title: Hydrothermal conversion of biomass waste to activated carbon with high porosity: a review publication-title: Adv. Mater. doi: 10.1002/adma.201600586 – volume: 112 start-page: 1190 year: 2016 ident: 10.1016/j.diamond.2018.06.018_bb0100 article-title: A green technology for the preparation of high capacitance rice husk-based activated carbon publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2015.07.005 – volume: 28 year: 2017 ident: 10.1016/j.diamond.2018.06.018_bb0080 article-title: Uniform implantation of CNTs on total activated carbon surfaces: a smart engineering protocol for commercial supercapacitor applications publication-title: Nanotechnology doi: 10.1088/1361-6528/aa5fad – volume: 212 start-page: 839 year: 2016 ident: 10.1016/j.diamond.2018.06.018_bb0105 article-title: Hierarchical porous activated carbon for supercapacitor derived from corn stalk core by potassium hydroxide activation publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2016.07.069 – volume: 46 start-page: 1718 year: 2008 ident: 10.1016/j.diamond.2018.06.018_bb0030 article-title: Hierarchical porous carbon with controlled micropores and mesopores for supercapacitor electrode materials publication-title: Carbon doi: 10.1016/j.carbon.2008.07.018 – volume: 448 start-page: 141 year: 2008 ident: 10.1016/j.diamond.2018.06.018_bb0115 article-title: High capacity disordered carbons obtained from coconut shells as anode materials for lithium batteries publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2006.10.036 – volume: 283 start-page: 789 year: 2016 ident: 10.1016/j.diamond.2018.06.018_bb0085 article-title: Hydrothermal conversion of biomass waste to activated carbon with high porosity: a review publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2015.08.014 – volume: 307 start-page: 391 year: 2016 ident: 10.1016/j.diamond.2018.06.018_bb0090 article-title: Hierarchically porous and heteroatom doped carbon derived from tobacco rods for supercapacitors publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2016.01.020 – volume: 4 start-page: 1319 year: 2016 ident: 10.1016/j.diamond.2018.06.018_bb0045 article-title: Hierarchical carbon@Ni3S2@MoS2 double core-shell nanorods for high-performance supercapacitors publication-title: J. Mater. Chem. A doi: 10.1039/C5TA08714G – volume: 274 start-page: 594 year: 2004 ident: 10.1016/j.diamond.2018.06.018_bb0130 article-title: Effect of activation temperature on the textural and chemical properties of potassium hydroxide activated carbon prepared from pistachio-nut shell publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2003.10.001 – volume: 41 start-page: 797 year: 2012 ident: 10.1016/j.diamond.2018.06.018_bb0020 article-title: A review of electrode materials for electrochemical supercapacitors publication-title: Chem. Soc. Rev. doi: 10.1039/C1CS15060J – volume: 22 start-page: 63 year: 2016 ident: 10.1016/j.diamond.2018.06.018_bb0060 article-title: Corn stalk-derived activated carbon with a stacking sheet-like structure as sulfur cathode supporter for lithium/sulfur batteries publication-title: Ionics doi: 10.1007/s11581-015-1528-6 – volume: 17 start-page: 450 year: 2011 ident: 10.1016/j.diamond.2018.06.018_bb0065 article-title: Performance of electrochemical double layer capacitors using highly porous activated carbons prepared from beer lees publication-title: J. Ind. Eng. Chem. doi: 10.1016/j.jiec.2010.10.025 – volume: 343 start-page: 1210 year: 2014 ident: 10.1016/j.diamond.2018.06.018_bb0015 article-title: Where do batteries end and supercapacitors begin publication-title: Science doi: 10.1126/science.1249625 – volume: 8 start-page: 15205 year: 2016 ident: 10.1016/j.diamond.2018.06.018_bb0095 article-title: Biobased nano porous active carbon fibers for high-performance supercapacitors publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b02214 – volume: 240 start-page: 109 year: 2013 ident: 10.1016/j.diamond.2018.06.018_bb0140 article-title: Efficient preparation of biomass-based mesoporous carbons for supercapacitors with both high energy density and high power density publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2013.03.174 |
SSID | ssj0012941 |
Score | 2.5276105 |
Snippet | The activated carbon materials from the corn stalk core raw materials were prepared through the carbonization and activation process and applied as electrode... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 18 |
SubjectTerms | Activated carbon Anodes Batteries Carbonization Corn Corn stalk core Electrochemical impedance spectroscopy Electrochemistry Electrode materials Electrodes Raw materials Supercapacitor Supercapacitors Surface area |
Title | High surface area carbon materials derived from corn stalk core as electrode for supercapacitor |
URI | https://dx.doi.org/10.1016/j.diamond.2018.06.018 https://www.proquest.com/docview/2117384139 |
Volume | 88 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB6KIupBtCq-2YPXtE2ySZqjFLVa7EEtelv2FVBLLGkVvPjbnUk29YEgeNok7IawM5nvG3YeAMdJhqDj07F7EGYeN9b3lFSRZ2MVIXxIlYaU73w1jPsjfnkf3TegV-fCUFils_2VTS-ttXvSdrvZnjw8tG86KVJ3xEtUyg5VNKIMdp6Qlrfe52EeCGdl90qa7NHszyye9mMLRYDCpoKhflXGk3p__I5PPyx1CT9n67DmeCM7qT5tAxo2b8Jyr27X1oTVL5UFm7B0XnbsfdsEQZEcbPpSZFJbJpEjMi0L9Zwz5KqV-jGD46s1jHJNGLqjOUPOOH6iS1wyZa5XjrEMKS6-a2ILjSCr0RoUWzA6O73t9T3XVcHTnHdmdAYcSJ7y2FdUHB75UhDZjg6MjRJtEy1VzNEHkpnNfBUHmW8D9KKyJNBGo7tlwm1YyJ9zuwNMxTg_5CG6JMiqjOkGIbLDVCY2prJpchd4vZdCu5Lj1PliLOrYskfhRCBIBIJi7PzuLrTmyyZVzY2_FnRrQYlvyiMQF_5aelALVri_dyrQKU7CLsJ7uvf_N-_DCt1V8WgHsDArXuwhEpiZOio19AgWTy4G_SGNg-u7wQfKyfEv |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIlQ4VLBQUSjgAxyzu3GcZHPgUPXBlj4utFJvxnYcqaVKV9ktqBf-FH-QbxKnPIRUCamnRElsWZ7JfN_I8yB6m1cAnZiP3WVSRar0cWSNTSOf2RTwYWyRcL7z4VE2PVEfT9PTJfrR58JwWGWw_Z1Nb611eDIKuzmanZ2NPo0LUHfgJZRyzBWNQmTlvr_-Br9t_n5vG0J-J-XuzvHWNAqtBSKn1HjBB6HSqEJlseUK6SANMvVjJ0uf5s7nzthMwREwla9im8kq9hKuRJVLVzr4HGWCee_RfQVzwW0Tht9v4kqAn227TF5dxMv7lTY0Oh9C5tAurlAad3VDudnIvwHxL2ho8W73Ma0Goio2u714Qku-HtDKVt8fbkCPfitlOKAHH9oWwddPSXPoiJhfNZVxXhiQUuFMYy9rAXLc6bsocf3qS8HJLQL-by1AUi--8C2GzEVozlN6AU6NuWa-cUB1B_PTPKOTO9nrNVquL2v_nITN8H2iEvhAoHFlOZEJ6Ghhcp9xnTazTqrfS-1CjXNutXGh-2C2cx1EoFkEmoP64sk6DW-GzboiH7cNmPSC0n9oqwYQ3TZ0oxesDuZiruGF58kEfKJ48f8zv6GV6fHhgT7YO9p_SQ_5TRcMt0HLi-bKvwJ7WtjXrbYK-nzXv8dP9kkqfw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High+surface+area+carbon+materials+derived+from+corn+stalk+core+as+electrode+for+supercapacitor&rft.jtitle=Diamond+and+related+materials&rft.au=Yu%2C+Kaifeng&rft.au=Zhu%2C+He&rft.au=Qi%2C+Hui&rft.au=Liang%2C+Ce&rft.date=2018-09-01&rft.issn=0925-9635&rft.volume=88&rft.spage=18&rft.epage=22&rft_id=info:doi/10.1016%2Fj.diamond.2018.06.018&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_diamond_2018_06_018 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-9635&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-9635&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-9635&client=summon |