LitCovid: an open database of COVID-19 literature

Abstract Since the outbreak of the current pandemic in 2020, there has been a rapid growth of published articles on COVID-19 and SARS-CoV-2, with about 10 000 new articles added each month. This is causing an increasingly serious information overload, making it difficult for scientists, healthcare p...

Full description

Saved in:
Bibliographic Details
Published inNucleic acids research Vol. 49; no. D1; pp. D1534 - D1540
Main Authors Chen, Qingyu, Allot, Alexis, Lu, Zhiyong
Format Journal Article
LanguageEnglish
Published England Oxford University Press 08.01.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Abstract Since the outbreak of the current pandemic in 2020, there has been a rapid growth of published articles on COVID-19 and SARS-CoV-2, with about 10 000 new articles added each month. This is causing an increasingly serious information overload, making it difficult for scientists, healthcare professionals and the general public to remain up to date on the latest SARS-CoV-2 and COVID-19 research. Hence, we developed LitCovid (https://www.ncbi.nlm.nih.gov/research/coronavirus/), a curated literature hub, to track up-to-date scientific information in PubMed. LitCovid is updated daily with newly identified relevant articles organized into curated categories. To support manual curation, advanced machine-learning and deep-learning algorithms have been developed, evaluated and integrated into the curation workflow. To the best of our knowledge, LitCovid is the first-of-its-kind COVID-19-specific literature resource, with all of its collected articles and curated data freely available. Since its release, LitCovid has been widely used, with millions of accesses by users worldwide for various information needs, such as evidence synthesis, drug discovery and text and data mining, among others.
AbstractList Since the outbreak of the current pandemic in 2020, there has been a rapid growth of published articles on COVID-19 and SARS-CoV-2, with about 10 000 new articles added each month. This is causing an increasingly serious information overload, making it difficult for scientists, healthcare professionals and the general public to remain up to date on the latest SARS-CoV-2 and COVID-19 research. Hence, we developed LitCovid (https://www.ncbi.nlm.nih.gov/research/coronavirus/), a curated literature hub, to track up-to-date scientific information in PubMed. LitCovid is updated daily with newly identified relevant articles organized into curated categories. To support manual curation, advanced machine-learning and deep-learning algorithms have been developed, evaluated and integrated into the curation workflow. To the best of our knowledge, LitCovid is the first-of-its-kind COVID-19-specific literature resource, with all of its collected articles and curated data freely available. Since its release, LitCovid has been widely used, with millions of accesses by users worldwide for various information needs, such as evidence synthesis, drug discovery and text and data mining, among others.
Since the outbreak of the current pandemic in 2020, there has been a rapid growth of published articles on COVID-19 and SARS-CoV-2, with about 10,000 new articles added each month. This is causing an increasingly serious information overload, making it difficult for scientists, healthcare professionals and the general public to remain up to date on the latest SARS-CoV-2 and COVID-19 research. Hence, we developed LitCovid (https://www.ncbi.nlm.nih.gov/research/coronavirus/), a curated literature hub, to track up-to-date scientific information in PubMed. LitCovid is updated daily with newly identified relevant articles organized into curated categories. To support manual curation, advanced machine-learning and deep-learning algorithms have been developed, evaluated and integrated into the curation workflow. To the best of our knowledge, LitCovid is the first-of-its-kind COVID-19-specific literature resource, with all of its collected articles and curated data freely available. Since its release, LitCovid has been widely used, with millions of accesses by users worldwide for various information needs, such as evidence synthesis, drug discovery and text and data mining, among others.Since the outbreak of the current pandemic in 2020, there has been a rapid growth of published articles on COVID-19 and SARS-CoV-2, with about 10,000 new articles added each month. This is causing an increasingly serious information overload, making it difficult for scientists, healthcare professionals and the general public to remain up to date on the latest SARS-CoV-2 and COVID-19 research. Hence, we developed LitCovid (https://www.ncbi.nlm.nih.gov/research/coronavirus/), a curated literature hub, to track up-to-date scientific information in PubMed. LitCovid is updated daily with newly identified relevant articles organized into curated categories. To support manual curation, advanced machine-learning and deep-learning algorithms have been developed, evaluated and integrated into the curation workflow. To the best of our knowledge, LitCovid is the first-of-its-kind COVID-19-specific literature resource, with all of its collected articles and curated data freely available. Since its release, LitCovid has been widely used, with millions of accesses by users worldwide for various information needs, such as evidence synthesis, drug discovery and text and data mining, among others.
Since the outbreak of the current pandemic in 2020, there has been a rapid growth of published articles on COVID-19 and SARS-CoV-2, with about 10,000 new articles added each month. This is causing an increasingly serious information overload, making it difficult for scientists, healthcare professionals and the general public to remain up to date on the latest SARS-CoV-2 and COVID-19 research. Hence, we developed LitCovid (https://www.ncbi.nlm.nih.gov/research/coronavirus/), a curated literature hub, to track up-to-date scientific information in PubMed. LitCovid is updated daily with newly identified relevant articles organized into curated categories. To support manual curation, advanced machine-learning and deep-learning algorithms have been developed, evaluated and integrated into the curation workflow. To the best of our knowledge, LitCovid is the first-of-its-kind COVID-19-specific literature resource, with all of its collected articles and curated data freely available. Since its release, LitCovid has been widely used, with millions of accesses by users worldwide for various information needs, such as evidence synthesis, drug discovery and text and data mining, among others.
Since the outbreak of the current pandemic in 2020, there has been a rapid growth of published articles on COVID-19 and SARS-CoV-2, with about 10 000 new articles added each month. This is causing an increasingly serious information overload, making it difficult for scientists, healthcare professionals and the general public to remain up to date on the latest SARS-CoV-2 and COVID-19 research. Hence, we developed LitCovid ( https://www.ncbi.nlm.nih.gov/research/coronavirus/ ), a curated literature hub, to track up-to-date scientific information in PubMed. LitCovid is updated daily with newly identified relevant articles organized into curated categories. To support manual curation, advanced machine-learning and deep-learning algorithms have been developed, evaluated and integrated into the curation workflow. To the best of our knowledge, LitCovid is the first-of-its-kind COVID-19-specific literature resource, with all of its collected articles and curated data freely available. Since its release, LitCovid has been widely used, with millions of accesses by users worldwide for various information needs, such as evidence synthesis, drug discovery and text and data mining, among others.
Abstract Since the outbreak of the current pandemic in 2020, there has been a rapid growth of published articles on COVID-19 and SARS-CoV-2, with about 10 000 new articles added each month. This is causing an increasingly serious information overload, making it difficult for scientists, healthcare professionals and the general public to remain up to date on the latest SARS-CoV-2 and COVID-19 research. Hence, we developed LitCovid (https://www.ncbi.nlm.nih.gov/research/coronavirus/), a curated literature hub, to track up-to-date scientific information in PubMed. LitCovid is updated daily with newly identified relevant articles organized into curated categories. To support manual curation, advanced machine-learning and deep-learning algorithms have been developed, evaluated and integrated into the curation workflow. To the best of our knowledge, LitCovid is the first-of-its-kind COVID-19-specific literature resource, with all of its collected articles and curated data freely available. Since its release, LitCovid has been widely used, with millions of accesses by users worldwide for various information needs, such as evidence synthesis, drug discovery and text and data mining, among others.
Author Chen, Qingyu
Allot, Alexis
Lu, Zhiyong
Author_xml – sequence: 1
  givenname: Qingyu
  orcidid: 0000-0002-6036-1516
  surname: Chen
  fullname: Chen, Qingyu
– sequence: 2
  givenname: Alexis
  surname: Allot
  fullname: Allot, Alexis
– sequence: 3
  givenname: Zhiyong
  orcidid: 0000-0001-9998-916X
  surname: Lu
  fullname: Lu, Zhiyong
  email: zhiyong.lu@nih.gov
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33166392$$D View this record in MEDLINE/PubMed
BookMark eNp9kctLw0AYxBep2IeevEtOIkjsPpOsB0Hiq1DoRb0um82mrqbZursp-N-b0lZUxNN3mN_MwDdD0GtsowE4RvACQU7GjXTj-ZuUnOE9MEAkwTHlCe6BASSQxQjSrA-G3r9CiChi9AD0CUFJQjgeADQ1IbcrU15GsonsUjdRKYMspNeRraJ89jy5iRGPahO0k6F1-hDsV7L2-mh7R-Dp7vYxf4ins_tJfj2NFaUwxBhXimBaVBxxolBakKRgtOS0hGXFKUlpprIEMkQTijUvU1YqXaUMY4hSLTkZgatN7rItFroTm-BkLZbOLKT7EFYa8VNpzIuY25VI0zTjLOsCzrYBzr632gexMF7pupaNtq0XmDJOGOMZ7NCT711fJbs_dQDaAMpZ752uhDJBBmPX1aYWCIr1FqLbQmy36Dznvzy72L_p0w1t2-W_4CcRpJdX
CitedBy_id crossref_primary_10_1098_rspb_2021_2721
crossref_primary_10_1186_s13326_023_00282_y
crossref_primary_10_3390_v13061126
crossref_primary_10_1080_02763869_2021_1873639
crossref_primary_10_1080_17446651_2021_1968830
crossref_primary_10_1016_j_eswa_2024_124028
crossref_primary_10_1038_s41598_023_48594_4
crossref_primary_10_1002_cesm_12045
crossref_primary_10_1007_s10844_022_00768_8
crossref_primary_10_3389_fgwh_2021_774033
crossref_primary_10_1177_00333549231210514
crossref_primary_10_3390_traumacare2020011
crossref_primary_10_1016_j_jclinepi_2022_05_001
crossref_primary_10_1371_journal_pone_0273725
crossref_primary_10_1038_s41582_022_00646_5
crossref_primary_10_1093_database_baac056
crossref_primary_10_3892_ijmm_2022_5090
crossref_primary_10_1186_s44247_023_00035_y
crossref_primary_10_1093_database_baae072
crossref_primary_10_1186_s12911_024_02600_5
crossref_primary_10_1186_s12859_022_04751_6
crossref_primary_10_1016_j_humgen_2022_201135
crossref_primary_10_1016_j_ebiom_2024_104988
crossref_primary_10_1093_bioinformatics_btab331
crossref_primary_10_1093_bioinformatics_btab694
crossref_primary_10_1186_s13326_022_00279_z
crossref_primary_10_1093_nar_gkab1112
crossref_primary_10_2196_48115
crossref_primary_10_1080_07391102_2022_2046641
crossref_primary_10_1016_j_wneu_2022_09_051
crossref_primary_10_1093_database_baae106
crossref_primary_10_1093_database_baac048
crossref_primary_10_1183_13993003_02964_2020
crossref_primary_10_3389_fpubh_2022_778037
crossref_primary_10_1371_journal_pone_0288406
crossref_primary_10_1098_rsos_230634
crossref_primary_10_1136_bmjgh_2021_004997
crossref_primary_10_1016_j_compbiomed_2023_107191
crossref_primary_10_1162_qss_a_00169
crossref_primary_10_1038_s41597_023_02068_4
crossref_primary_10_1080_15424065_2022_2150355
crossref_primary_10_4236_ait_2022_123005
crossref_primary_10_1177_03015742221095308
crossref_primary_10_1016_j_health_2022_100068
crossref_primary_10_1002_mlf2_12008
crossref_primary_10_1002_jmv_28887
crossref_primary_10_1186_s12859_022_04803_x
crossref_primary_10_1093_jamiaopen_ooae021
crossref_primary_10_1002_2211_5463_13309
crossref_primary_10_1186_s13321_021_00491_6
crossref_primary_10_1177_09610006231181393
crossref_primary_10_3390_ijerph19148883
crossref_primary_10_4037_aacnacc2021948
crossref_primary_10_3390_diagnostics12040887
crossref_primary_10_3390_ijerph181910496
crossref_primary_10_1093_nar_gkab326
crossref_primary_10_1093_nar_gkac1139
crossref_primary_10_1177_20406223221076890
crossref_primary_10_1016_j_jbi_2023_104382
crossref_primary_10_1097_JS9_0000000000000088
crossref_primary_10_17826_cumj_1343840
crossref_primary_10_1186_s12874_024_02246_x
crossref_primary_10_1093_database_baac066
crossref_primary_10_1093_database_baac069
crossref_primary_10_1093_database_baac103
crossref_primary_10_1142_S0219622022500870
crossref_primary_10_1186_s13643_023_02247_9
crossref_primary_10_3390_v14122761
crossref_primary_10_1007_s11192_023_04747_w
crossref_primary_10_1016_j_compbiomed_2024_108189
crossref_primary_10_2196_38584
crossref_primary_10_1155_2023_6638714
crossref_primary_10_1016_j_drudis_2021_07_026
crossref_primary_10_1093_nar_gkac1005
crossref_primary_10_1155_2021_3315695
crossref_primary_10_2196_52655
crossref_primary_10_1186_s12879_022_07219_3
crossref_primary_10_2196_57703
crossref_primary_10_1002_hyp_14742
crossref_primary_10_1016_j_patter_2021_100247
crossref_primary_10_5808_gi_19_3_e1
crossref_primary_10_1016_j_neuro_2024_05_003
crossref_primary_10_1093_bib_bbab446
crossref_primary_10_2174_26669587_v2_e2207210
crossref_primary_10_1371_journal_pdig_0000152
crossref_primary_10_1177_20552076221133696
crossref_primary_10_1093_database_baac090
crossref_primary_10_2196_26995
crossref_primary_10_1016_j_focus_2023_100152
crossref_primary_10_1109_TCBB_2022_3173562
crossref_primary_10_1371_journal_pone_0313991
crossref_primary_10_3390_pharmaceutics14030567
crossref_primary_10_3389_fimmu_2023_1195871
crossref_primary_10_1038_s41592_023_01770_w
crossref_primary_10_3389_fninf_2023_1215261
crossref_primary_10_5334_pme_1287
crossref_primary_10_1093_ofid_ofae156
crossref_primary_10_5808_gi_21013
crossref_primary_10_1007_s41060_022_00339_8
crossref_primary_10_3389_fimmu_2021_629193
crossref_primary_10_3389_fviro_2024_1462283
crossref_primary_10_2196_26628
crossref_primary_10_1016_j_nmni_2023_101094
crossref_primary_10_2196_29730
crossref_primary_10_3389_fnins_2024_1336307
crossref_primary_10_1093_bioadv_vbad095
crossref_primary_10_1093_database_baac084
crossref_primary_10_1128_mBio_01116_21
crossref_primary_10_3390_v15030692
crossref_primary_10_1016_j_ibmed_2021_100036
crossref_primary_10_1124_pharmrev_122_000715
crossref_primary_10_3390_biology11081221
crossref_primary_10_5808_gi_21008
crossref_primary_10_3389_fmed_2021_703661
crossref_primary_10_1093_bib_bbab113
crossref_primary_10_1016_j_hlc_2022_02_002
crossref_primary_10_1080_07853890_2024_2304108
crossref_primary_10_1007_s12551_022_01020_x
crossref_primary_10_1016_j_bpc_2025_107413
crossref_primary_10_1093_nar_gkaa1216
crossref_primary_10_1007_s10462_024_10844_w
crossref_primary_10_1016_j_patter_2022_100659
crossref_primary_10_1016_j_eswa_2022_118841
crossref_primary_10_3389_fpubh_2021_657976
crossref_primary_10_1093_nargab_lqab062
crossref_primary_10_3390_ijerph21060654
crossref_primary_10_7717_peerj_cs_1333
crossref_primary_10_1093_database_baad005
crossref_primary_10_1093_nar_gkab881
crossref_primary_10_1016_j_jhazmat_2022_129487
crossref_primary_10_1038_s41598_021_95565_8
crossref_primary_10_1016_j_jclinepi_2021_10_017
crossref_primary_10_4315_JFP_21_218
crossref_primary_10_3390_make4030030
crossref_primary_10_1055_s_0041_1726540
crossref_primary_10_1017_cts_2022_409
crossref_primary_10_12688_wellcomeopenres_17284_1
crossref_primary_10_1109_TNNLS_2022_3185295
crossref_primary_10_1093_bib_bbab339
crossref_primary_10_1093_database_baab057
crossref_primary_10_1371_journal_pone_0316812
crossref_primary_10_3389_fpubh_2023_1125917
crossref_primary_10_3390_biomedinformatics3040055
crossref_primary_10_1057_s41599_021_00823_9
crossref_primary_10_1177_23814683221089844
crossref_primary_10_1093_jambio_lxac055
crossref_primary_10_3390_healthcare11070999
crossref_primary_10_1186_s13722_021_00275_1
Cites_doi 10.1101/2020.04.11.037093
10.18653/v1/2020.acl-demos.8
10.1371/journal.pbio.2002846
10.1371/journal.pcbi.1006390
10.1038/s41597-019-0055-0
10.1016/j.gpb.2018.11.006
10.1093/nar/gkz389
10.3390/nu12092738
10.1093/nar/gkt441
10.1371/journal.pbio.2005343
10.1093/nar/gkz289
10.1371/journal.pcbi.1007617
10.1038/s41562-020-0911-0
10.1093/bioinformatics/btx439
10.1038/d41586-020-00694-1
10.1016/S2589-7500(20)30086-8
10.12688/f1000research.26707.1
10.1093/bioinformatics/btz682
10.1038/nbt.4267
10.1371/journal.pbio.3000716
ContentType Journal Article
Copyright Published by Oxford University Press on behalf of Nucleic Acids Research 2020. 2021
Published by Oxford University Press on behalf of Nucleic Acids Research 2020.
Copyright_xml – notice: Published by Oxford University Press on behalf of Nucleic Acids Research 2020. 2021
– notice: Published by Oxford University Press on behalf of Nucleic Acids Research 2020.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1093/nar/gkaa952
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic
MEDLINE


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1362-4962
EndPage D1540
ExternalDocumentID PMC7778958
33166392
10_1093_nar_gkaa952
10.1093/nar/gkaa952
Genre Journal Article
Research Support, N.I.H., Intramural
GrantInformation_xml – fundername: NLM NIH HHS
– fundername: ; ;
GroupedDBID ---
-DZ
-~X
.55
.GJ
.I3
0R~
123
18M
1TH
29N
2WC
3O-
4.4
482
53G
5VS
5WA
6.Y
70E
85S
A8Z
AAFWJ
AAHBH
AAMVS
AAOGV
AAPPN
AAPXW
AAUQX
AAVAP
AAWDT
AAYJJ
ABPTD
ABQLI
ABQTQ
ABSAR
ABSMQ
ABXVV
ACFRR
ACGFO
ACGFS
ACIPB
ACIWK
ACMRT
ACNCT
ACPQN
ACPRK
ACUTJ
ACZBC
ADBBV
ADHZD
AEGXH
AEKPW
AENEX
AENZO
AFFNX
AFPKN
AFRAH
AFSHK
AFULF
AFYAG
AGKRT
AGMDO
AHMBA
AIAGR
ALMA_UNASSIGNED_HOLDINGS
ALUQC
ANFBD
AOIJS
AQDSO
ASAOO
ASPBG
ATDFG
ATTQO
AVWKF
AZFZN
BAWUL
BAYMD
BCNDV
BEYMZ
BTTYL
C1A
CAG
CIDKT
COF
CS3
CXTWN
CZ4
D0S
DFGAJ
DIK
DU5
D~K
E3Z
EBD
EBS
EJD
ELUNK
EMOBN
ESTFP
F20
F5P
FEDTE
GROUPED_DOAJ
GX1
H13
HH5
HVGLF
HYE
HZ~
H~9
IH2
KAQDR
KC5
KQ8
KSI
M49
MBTAY
MVM
M~E
NTWIH
NU-
OAWHX
OBC
OBS
OEB
OES
OJQWA
OVD
O~Y
P2P
PB-
PEELM
PQQKQ
QBD
R44
RD5
RNI
RNS
ROL
ROX
ROZ
RPM
RXO
RZF
RZO
SJN
SV3
TCN
TEORI
TN5
TOX
TR2
UHB
WG7
WOQ
X7H
X7M
XSB
XSW
YSK
ZKX
ZXP
~91
~D7
~KM
AAYXX
ABEJV
ABGNP
AMNDL
CITATION
OVT
ADIXU
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c440t-22fc324bf9193c17b36b54d94d0df943748c860514642e9d75dcef7522017ea93
IEDL.DBID TOX
ISSN 0305-1048
1362-4962
IngestDate Thu Aug 21 14:30:35 EDT 2025
Fri Jul 11 03:56:32 EDT 2025
Wed Feb 19 02:30:06 EST 2025
Thu Apr 24 23:00:11 EDT 2025
Tue Jul 01 02:07:30 EDT 2025
Wed Aug 28 03:17:39 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue D1
Language English
License This work is written by (a) US Government employee(s) and is in the public domain in the US.
Published by Oxford University Press on behalf of Nucleic Acids Research 2020.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c440t-22fc324bf9193c17b36b54d94d0df943748c860514642e9d75dcef7522017ea93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
The authors wish it to be known that, in their opinion, the first two authors should be regarded as Joint First Authors.
ORCID 0000-0001-9998-916X
0000-0002-6036-1516
OpenAccessLink http://dx.doi.org/10.1093/nar/gkaa952
PMID 33166392
PQID 2459355980
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7778958
proquest_miscellaneous_2459355980
pubmed_primary_33166392
crossref_citationtrail_10_1093_nar_gkaa952
crossref_primary_10_1093_nar_gkaa952
oup_primary_10_1093_nar_gkaa952
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-01-08
PublicationDateYYYYMMDD 2021-01-08
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-08
  day: 08
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Nucleic acids research
PublicationTitleAlternate Nucleic Acids Res
PublicationYear 2021
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Su (2021010313130211400_B25) 2020
Vergoulis (2021010313130211400_B6) 2020
Chen (2021010313130211400_B9) 2020
Wei (2021010313130211400_B17) 2013; 41
Palayew (2021010313130211400_B2) 2020; 4
Zhang (2021010313130211400_B13) 2019; 6
Hanson (2021010313130211400_B19) 2020
Leaman (2021010313130211400_B5) 2020; 18
Chakraborti (2021010313130211400_B10) 2020
Allot (2021010313130211400_B26) 2019; 47
Fiorini (2021010313130211400_B4) 2018; 36
International Society for Biocuration (2021010313130211400_B8) 2018; 16
Pérez-Iglesias (2021010313130211400_B18) 2009
Yeganova (2021010313130211400_B22) 2020
Galmés (2021010313130211400_B11) 2020; 12
Wang (2021010313130211400_B27) 2020
Wang (2021010313130211400_B7) 2020
Chen (2021010313130211400_B23) 2020; 16
Lee (2021010313130211400_B15) 2019; 36
Wei (2021010313130211400_B16) 2019; 47
Chen (2021010313130211400_B14) 2019
Thorlund (2021010313130211400_B20) 2020; 2
Poux (2021010313130211400_B24) 2017; 33
Chen (2021010313130211400_B1) 2020; 579
Lee (2021010313130211400_B12) 2018; 14
Janiaud (2021010313130211400_B21) 2020
Fiorini (2021010313130211400_B3) 2018; 16
References_xml – year: 2020
  ident: 2021010313130211400_B6
  article-title: BIP4COVID19: Releasing impact measures for articles relevant to COVID-19
  doi: 10.1101/2020.04.11.037093
– year: 2020
  ident: 2021010313130211400_B25
  article-title: CAiRE-COVID: a question answering and multi-document summarization system for COVID-19 research
– start-page: 56
  volume-title: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics: System Demonstrations
  year: 2020
  ident: 2021010313130211400_B27
  article-title: Evidenceminer: Textual evidence discovery for life sciences
  doi: 10.18653/v1/2020.acl-demos.8
– year: 2009
  ident: 2021010313130211400_B18
  article-title: Integrating the probabilistic models BM25/BM25F into Lucene
– volume: 16
  start-page: e2002846
  year: 2018
  ident: 2021010313130211400_B8
  article-title: Biocuration: distilling data into knowledge
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.2002846
– volume: 14
  start-page: e1006390
  year: 2018
  ident: 2021010313130211400_B12
  article-title: Scaling up data curation using deep learning: an application to literature triage in genomic variation resources
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1006390
– volume: 6
  start-page: 52
  year: 2019
  ident: 2021010313130211400_B13
  article-title: BioWordVec, improving biomedical word embeddings with subword information and MeSH
  publication-title: Sci. Data
  doi: 10.1038/s41597-019-0055-0
– start-page: 1
  year: 2019
  ident: 2021010313130211400_B14
  article-title: BioSentVec: creating sentence embeddings for biomedical texts
  publication-title: 2019 IEEE International Conference on Healthcare Informatics (ICHI)
– year: 2020
  ident: 2021010313130211400_B9
  article-title: Quality matters: biocuration experts on the impact of duplication and other data quality issues in biological databases
  publication-title: Genomics Proteomics Bioinform
  doi: 10.1016/j.gpb.2018.11.006
– volume: 47
  start-page: W587
  year: 2019
  ident: 2021010313130211400_B16
  article-title: PubTator central: automated concept annotation for biomedical full text articles
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkz389
– volume: 12
  start-page: 2738
  year: 2020
  ident: 2021010313130211400_B11
  article-title: Current state of evidence: influence of nutritional and nutrigenetic factors on immunity in the COVID-19 pandemic framework
  publication-title: Nutrients
  doi: 10.3390/nu12092738
– volume: 41
  start-page: W518
  year: 2013
  ident: 2021010313130211400_B17
  article-title: PubTator: a web-based text mining tool for assisting biocuration
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkt441
– volume-title: ACL NLP-COVID Workshop
  year: 2020
  ident: 2021010313130211400_B7
  article-title: CORD-19: the Covid-19 open research dataset
– volume: 16
  start-page: e2005343
  year: 2018
  ident: 2021010313130211400_B3
  article-title: Best match: new relevance search for PubMed
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.2005343
– year: 2020
  ident: 2021010313130211400_B10
  article-title: Drug repurposing approach targeted against main protease of SARS-CoV-2 exploiting ‘neighbourhood behaviour’in 3D protein structural space and 2D chemical space of small molecules
– volume: 47
  start-page: W594
  year: 2019
  ident: 2021010313130211400_B26
  article-title: LitSense: making sense of biomedical literature at sentence level
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkz289
– volume: 16
  start-page: e1007617
  year: 2020
  ident: 2021010313130211400_B23
  article-title: BioConceptVec: creating and evaluating literature-based biomedical concept embeddings on a large scale
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1007617
– year: 2020
  ident: 2021010313130211400_B19
  article-title: Infectious diseases society of america guidelines on the diagnosis of COVID-19
  publication-title: Clin. Infect. Dis.
– volume: 4
  start-page: 666
  year: 2020
  ident: 2021010313130211400_B2
  article-title: Pandemic publishing poses a new COVID-19 challenge
  publication-title: Nat. Hum. Behav.
  doi: 10.1038/s41562-020-0911-0
– volume: 33
  start-page: 3454
  year: 2017
  ident: 2021010313130211400_B24
  article-title: On expert curation and sustainability: UniProtKB/Swiss-Prot as a case study
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btx439
– volume: 579
  start-page: 193
  year: 2020
  ident: 2021010313130211400_B1
  article-title: Keep up with the latest coronavirus research
  publication-title: Nature
  doi: 10.1038/d41586-020-00694-1
– volume: 2
  start-page: e286
  year: 2020
  ident: 2021010313130211400_B20
  article-title: A real-time dashboard of clinical trials for COVID-19
  publication-title: Lancet Digit Health
  doi: 10.1016/S2589-7500(20)30086-8
– start-page: 1193
  year: 2020
  ident: 2021010313130211400_B21
  article-title: The worldwide clinical trial research response to the COVID-19 pandemic-the first 100 days
  publication-title: F1000Research
  doi: 10.12688/f1000research.26707.1
– year: 2020
  ident: 2021010313130211400_B22
  article-title: Navigating the landscape of COVID-19 research through literature analysis: a bird's eye view
– volume: 36
  start-page: 1234
  year: 2019
  ident: 2021010313130211400_B15
  article-title: BioBERT: pre-trained biomedical language representation model for biomedical text mining
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz682
– volume: 36
  start-page: 937
  year: 2018
  ident: 2021010313130211400_B4
  article-title: How user intelligence is improving PubMed
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.4267
– volume: 18
  start-page: e3000716
  year: 2020
  ident: 2021010313130211400_B5
  article-title: Ten tips for a text-mining-ready article: how to improve automated discoverability and interpretability
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.3000716
SSID ssj0014154
Score 2.66474
Snippet Abstract Since the outbreak of the current pandemic in 2020, there has been a rapid growth of published articles on COVID-19 and SARS-CoV-2, with about 10 000...
Since the outbreak of the current pandemic in 2020, there has been a rapid growth of published articles on COVID-19 and SARS-CoV-2, with about 10 000 new...
Since the outbreak of the current pandemic in 2020, there has been a rapid growth of published articles on COVID-19 and SARS-CoV-2, with about 10,000 new...
SourceID pubmedcentral
proquest
pubmed
crossref
oup
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage D1534
SubjectTerms COVID-19 - epidemiology
COVID-19 - prevention & control
COVID-19 - virology
Data Curation - methods
Data Curation - statistics & numerical data
Data Mining - methods
Data Mining - statistics & numerical data
Database Issue
Databases, Factual
Humans
Internet
Machine Learning
Pandemics
Publications - statistics & numerical data
PubMed - statistics & numerical data
SARS-CoV-2 - isolation & purification
SARS-CoV-2 - physiology
Title LitCovid: an open database of COVID-19 literature
URI https://www.ncbi.nlm.nih.gov/pubmed/33166392
https://www.proquest.com/docview/2459355980
https://pubmed.ncbi.nlm.nih.gov/PMC7778958
Volume 49
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LT8MwDI5gF7ggYDzGYwQJcUCq1qZp03CbBtNAPC4b2q1K0gQmRof2OPDvcdqu2qYJznWq1m7iz7X9GaEraiIiiIYwVSvhUMXhHAwT5uiACEmU9Zi2Ofn5Jez06GM_6BcFspM1KXzuN1Ixbrx_CsEDe9SC-7UU-d3XfpksAB-Us0RlpJo0KtrwVtYuOZ6lZrYFTLlaGrnga9q7aKcAibiZW3UPbeh0H1WbKQTIXz_4Gmdlm9n_8H201ZqPbKsi72kwbdnOulssUmwHY2FbAWo9FR4Z3Hp9e7hzPI6HJZfyAeq177utjlPMRHAUpe7UIcQowEDScEBeymPSD2VAE04TNzGcWjIZFYWW1BwCC80TFsCrGAYoC7aeFtw_RJV0lOpjhF2qGKAVyRITUY8omYQilCQwsC-NdL0aupkrLFYFYbidWzGM88S1H4N240K7NXRVCn_nPBnrxS5A839LXM6tEoP2bPpCpHo0m8SEBpYMnkduDR3lVipv5PseQCcOq9mS_UoBy6K9fCUdfGRs2oyBFoLo5N8nO0XbxBa02P8v0RmqTMczfQ6IZCrraJO59_Usnq9n3-Yvj6ffdw
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=LitCovid%3A+an+open+database+of+COVID-19+literature&rft.jtitle=Nucleic+acids+research&rft.au=Chen%2C+Qingyu&rft.au=Allot%2C+Alexis&rft.au=Lu%2C+Zhiyong&rft.date=2021-01-08&rft.eissn=1362-4962&rft.volume=49&rft.issue=D1&rft.spage=D1534&rft_id=info:doi/10.1093%2Fnar%2Fgkaa952&rft_id=info%3Apmid%2F33166392&rft.externalDocID=33166392
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-1048&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-1048&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-1048&client=summon