LitCovid: an open database of COVID-19 literature
Abstract Since the outbreak of the current pandemic in 2020, there has been a rapid growth of published articles on COVID-19 and SARS-CoV-2, with about 10 000 new articles added each month. This is causing an increasingly serious information overload, making it difficult for scientists, healthcare p...
Saved in:
Published in | Nucleic acids research Vol. 49; no. D1; pp. D1534 - D1540 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
08.01.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Abstract
Since the outbreak of the current pandemic in 2020, there has been a rapid growth of published articles on COVID-19 and SARS-CoV-2, with about 10 000 new articles added each month. This is causing an increasingly serious information overload, making it difficult for scientists, healthcare professionals and the general public to remain up to date on the latest SARS-CoV-2 and COVID-19 research. Hence, we developed LitCovid (https://www.ncbi.nlm.nih.gov/research/coronavirus/), a curated literature hub, to track up-to-date scientific information in PubMed. LitCovid is updated daily with newly identified relevant articles organized into curated categories. To support manual curation, advanced machine-learning and deep-learning algorithms have been developed, evaluated and integrated into the curation workflow. To the best of our knowledge, LitCovid is the first-of-its-kind COVID-19-specific literature resource, with all of its collected articles and curated data freely available. Since its release, LitCovid has been widely used, with millions of accesses by users worldwide for various information needs, such as evidence synthesis, drug discovery and text and data mining, among others. |
---|---|
AbstractList | Since the outbreak of the current pandemic in 2020, there has been a rapid growth of published articles on COVID-19 and SARS-CoV-2, with about 10 000 new articles added each month. This is causing an increasingly serious information overload, making it difficult for scientists, healthcare professionals and the general public to remain up to date on the latest SARS-CoV-2 and COVID-19 research. Hence, we developed LitCovid (https://www.ncbi.nlm.nih.gov/research/coronavirus/), a curated literature hub, to track up-to-date scientific information in PubMed. LitCovid is updated daily with newly identified relevant articles organized into curated categories. To support manual curation, advanced machine-learning and deep-learning algorithms have been developed, evaluated and integrated into the curation workflow. To the best of our knowledge, LitCovid is the first-of-its-kind COVID-19-specific literature resource, with all of its collected articles and curated data freely available. Since its release, LitCovid has been widely used, with millions of accesses by users worldwide for various information needs, such as evidence synthesis, drug discovery and text and data mining, among others. Since the outbreak of the current pandemic in 2020, there has been a rapid growth of published articles on COVID-19 and SARS-CoV-2, with about 10,000 new articles added each month. This is causing an increasingly serious information overload, making it difficult for scientists, healthcare professionals and the general public to remain up to date on the latest SARS-CoV-2 and COVID-19 research. Hence, we developed LitCovid (https://www.ncbi.nlm.nih.gov/research/coronavirus/), a curated literature hub, to track up-to-date scientific information in PubMed. LitCovid is updated daily with newly identified relevant articles organized into curated categories. To support manual curation, advanced machine-learning and deep-learning algorithms have been developed, evaluated and integrated into the curation workflow. To the best of our knowledge, LitCovid is the first-of-its-kind COVID-19-specific literature resource, with all of its collected articles and curated data freely available. Since its release, LitCovid has been widely used, with millions of accesses by users worldwide for various information needs, such as evidence synthesis, drug discovery and text and data mining, among others.Since the outbreak of the current pandemic in 2020, there has been a rapid growth of published articles on COVID-19 and SARS-CoV-2, with about 10,000 new articles added each month. This is causing an increasingly serious information overload, making it difficult for scientists, healthcare professionals and the general public to remain up to date on the latest SARS-CoV-2 and COVID-19 research. Hence, we developed LitCovid (https://www.ncbi.nlm.nih.gov/research/coronavirus/), a curated literature hub, to track up-to-date scientific information in PubMed. LitCovid is updated daily with newly identified relevant articles organized into curated categories. To support manual curation, advanced machine-learning and deep-learning algorithms have been developed, evaluated and integrated into the curation workflow. To the best of our knowledge, LitCovid is the first-of-its-kind COVID-19-specific literature resource, with all of its collected articles and curated data freely available. Since its release, LitCovid has been widely used, with millions of accesses by users worldwide for various information needs, such as evidence synthesis, drug discovery and text and data mining, among others. Since the outbreak of the current pandemic in 2020, there has been a rapid growth of published articles on COVID-19 and SARS-CoV-2, with about 10,000 new articles added each month. This is causing an increasingly serious information overload, making it difficult for scientists, healthcare professionals and the general public to remain up to date on the latest SARS-CoV-2 and COVID-19 research. Hence, we developed LitCovid (https://www.ncbi.nlm.nih.gov/research/coronavirus/), a curated literature hub, to track up-to-date scientific information in PubMed. LitCovid is updated daily with newly identified relevant articles organized into curated categories. To support manual curation, advanced machine-learning and deep-learning algorithms have been developed, evaluated and integrated into the curation workflow. To the best of our knowledge, LitCovid is the first-of-its-kind COVID-19-specific literature resource, with all of its collected articles and curated data freely available. Since its release, LitCovid has been widely used, with millions of accesses by users worldwide for various information needs, such as evidence synthesis, drug discovery and text and data mining, among others. Since the outbreak of the current pandemic in 2020, there has been a rapid growth of published articles on COVID-19 and SARS-CoV-2, with about 10 000 new articles added each month. This is causing an increasingly serious information overload, making it difficult for scientists, healthcare professionals and the general public to remain up to date on the latest SARS-CoV-2 and COVID-19 research. Hence, we developed LitCovid ( https://www.ncbi.nlm.nih.gov/research/coronavirus/ ), a curated literature hub, to track up-to-date scientific information in PubMed. LitCovid is updated daily with newly identified relevant articles organized into curated categories. To support manual curation, advanced machine-learning and deep-learning algorithms have been developed, evaluated and integrated into the curation workflow. To the best of our knowledge, LitCovid is the first-of-its-kind COVID-19-specific literature resource, with all of its collected articles and curated data freely available. Since its release, LitCovid has been widely used, with millions of accesses by users worldwide for various information needs, such as evidence synthesis, drug discovery and text and data mining, among others. Abstract Since the outbreak of the current pandemic in 2020, there has been a rapid growth of published articles on COVID-19 and SARS-CoV-2, with about 10 000 new articles added each month. This is causing an increasingly serious information overload, making it difficult for scientists, healthcare professionals and the general public to remain up to date on the latest SARS-CoV-2 and COVID-19 research. Hence, we developed LitCovid (https://www.ncbi.nlm.nih.gov/research/coronavirus/), a curated literature hub, to track up-to-date scientific information in PubMed. LitCovid is updated daily with newly identified relevant articles organized into curated categories. To support manual curation, advanced machine-learning and deep-learning algorithms have been developed, evaluated and integrated into the curation workflow. To the best of our knowledge, LitCovid is the first-of-its-kind COVID-19-specific literature resource, with all of its collected articles and curated data freely available. Since its release, LitCovid has been widely used, with millions of accesses by users worldwide for various information needs, such as evidence synthesis, drug discovery and text and data mining, among others. |
Author | Chen, Qingyu Allot, Alexis Lu, Zhiyong |
Author_xml | – sequence: 1 givenname: Qingyu orcidid: 0000-0002-6036-1516 surname: Chen fullname: Chen, Qingyu – sequence: 2 givenname: Alexis surname: Allot fullname: Allot, Alexis – sequence: 3 givenname: Zhiyong orcidid: 0000-0001-9998-916X surname: Lu fullname: Lu, Zhiyong email: zhiyong.lu@nih.gov |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33166392$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kctLw0AYxBep2IeevEtOIkjsPpOsB0Hiq1DoRb0um82mrqbZursp-N-b0lZUxNN3mN_MwDdD0GtsowE4RvACQU7GjXTj-ZuUnOE9MEAkwTHlCe6BASSQxQjSrA-G3r9CiChi9AD0CUFJQjgeADQ1IbcrU15GsonsUjdRKYMspNeRraJ89jy5iRGPahO0k6F1-hDsV7L2-mh7R-Dp7vYxf4ins_tJfj2NFaUwxBhXimBaVBxxolBakKRgtOS0hGXFKUlpprIEMkQTijUvU1YqXaUMY4hSLTkZgatN7rItFroTm-BkLZbOLKT7EFYa8VNpzIuY25VI0zTjLOsCzrYBzr632gexMF7pupaNtq0XmDJOGOMZ7NCT711fJbs_dQDaAMpZ752uhDJBBmPX1aYWCIr1FqLbQmy36Dznvzy72L_p0w1t2-W_4CcRpJdX |
CitedBy_id | crossref_primary_10_1098_rspb_2021_2721 crossref_primary_10_1186_s13326_023_00282_y crossref_primary_10_3390_v13061126 crossref_primary_10_1080_02763869_2021_1873639 crossref_primary_10_1080_17446651_2021_1968830 crossref_primary_10_1016_j_eswa_2024_124028 crossref_primary_10_1038_s41598_023_48594_4 crossref_primary_10_1002_cesm_12045 crossref_primary_10_1007_s10844_022_00768_8 crossref_primary_10_3389_fgwh_2021_774033 crossref_primary_10_1177_00333549231210514 crossref_primary_10_3390_traumacare2020011 crossref_primary_10_1016_j_jclinepi_2022_05_001 crossref_primary_10_1371_journal_pone_0273725 crossref_primary_10_1038_s41582_022_00646_5 crossref_primary_10_1093_database_baac056 crossref_primary_10_3892_ijmm_2022_5090 crossref_primary_10_1186_s44247_023_00035_y crossref_primary_10_1093_database_baae072 crossref_primary_10_1186_s12911_024_02600_5 crossref_primary_10_1186_s12859_022_04751_6 crossref_primary_10_1016_j_humgen_2022_201135 crossref_primary_10_1016_j_ebiom_2024_104988 crossref_primary_10_1093_bioinformatics_btab331 crossref_primary_10_1093_bioinformatics_btab694 crossref_primary_10_1186_s13326_022_00279_z crossref_primary_10_1093_nar_gkab1112 crossref_primary_10_2196_48115 crossref_primary_10_1080_07391102_2022_2046641 crossref_primary_10_1016_j_wneu_2022_09_051 crossref_primary_10_1093_database_baae106 crossref_primary_10_1093_database_baac048 crossref_primary_10_1183_13993003_02964_2020 crossref_primary_10_3389_fpubh_2022_778037 crossref_primary_10_1371_journal_pone_0288406 crossref_primary_10_1098_rsos_230634 crossref_primary_10_1136_bmjgh_2021_004997 crossref_primary_10_1016_j_compbiomed_2023_107191 crossref_primary_10_1162_qss_a_00169 crossref_primary_10_1038_s41597_023_02068_4 crossref_primary_10_1080_15424065_2022_2150355 crossref_primary_10_4236_ait_2022_123005 crossref_primary_10_1177_03015742221095308 crossref_primary_10_1016_j_health_2022_100068 crossref_primary_10_1002_mlf2_12008 crossref_primary_10_1002_jmv_28887 crossref_primary_10_1186_s12859_022_04803_x crossref_primary_10_1093_jamiaopen_ooae021 crossref_primary_10_1002_2211_5463_13309 crossref_primary_10_1186_s13321_021_00491_6 crossref_primary_10_1177_09610006231181393 crossref_primary_10_3390_ijerph19148883 crossref_primary_10_4037_aacnacc2021948 crossref_primary_10_3390_diagnostics12040887 crossref_primary_10_3390_ijerph181910496 crossref_primary_10_1093_nar_gkab326 crossref_primary_10_1093_nar_gkac1139 crossref_primary_10_1177_20406223221076890 crossref_primary_10_1016_j_jbi_2023_104382 crossref_primary_10_1097_JS9_0000000000000088 crossref_primary_10_17826_cumj_1343840 crossref_primary_10_1186_s12874_024_02246_x crossref_primary_10_1093_database_baac066 crossref_primary_10_1093_database_baac069 crossref_primary_10_1093_database_baac103 crossref_primary_10_1142_S0219622022500870 crossref_primary_10_1186_s13643_023_02247_9 crossref_primary_10_3390_v14122761 crossref_primary_10_1007_s11192_023_04747_w crossref_primary_10_1016_j_compbiomed_2024_108189 crossref_primary_10_2196_38584 crossref_primary_10_1155_2023_6638714 crossref_primary_10_1016_j_drudis_2021_07_026 crossref_primary_10_1093_nar_gkac1005 crossref_primary_10_1155_2021_3315695 crossref_primary_10_2196_52655 crossref_primary_10_1186_s12879_022_07219_3 crossref_primary_10_2196_57703 crossref_primary_10_1002_hyp_14742 crossref_primary_10_1016_j_patter_2021_100247 crossref_primary_10_5808_gi_19_3_e1 crossref_primary_10_1016_j_neuro_2024_05_003 crossref_primary_10_1093_bib_bbab446 crossref_primary_10_2174_26669587_v2_e2207210 crossref_primary_10_1371_journal_pdig_0000152 crossref_primary_10_1177_20552076221133696 crossref_primary_10_1093_database_baac090 crossref_primary_10_2196_26995 crossref_primary_10_1016_j_focus_2023_100152 crossref_primary_10_1109_TCBB_2022_3173562 crossref_primary_10_1371_journal_pone_0313991 crossref_primary_10_3390_pharmaceutics14030567 crossref_primary_10_3389_fimmu_2023_1195871 crossref_primary_10_1038_s41592_023_01770_w crossref_primary_10_3389_fninf_2023_1215261 crossref_primary_10_5334_pme_1287 crossref_primary_10_1093_ofid_ofae156 crossref_primary_10_5808_gi_21013 crossref_primary_10_1007_s41060_022_00339_8 crossref_primary_10_3389_fimmu_2021_629193 crossref_primary_10_3389_fviro_2024_1462283 crossref_primary_10_2196_26628 crossref_primary_10_1016_j_nmni_2023_101094 crossref_primary_10_2196_29730 crossref_primary_10_3389_fnins_2024_1336307 crossref_primary_10_1093_bioadv_vbad095 crossref_primary_10_1093_database_baac084 crossref_primary_10_1128_mBio_01116_21 crossref_primary_10_3390_v15030692 crossref_primary_10_1016_j_ibmed_2021_100036 crossref_primary_10_1124_pharmrev_122_000715 crossref_primary_10_3390_biology11081221 crossref_primary_10_5808_gi_21008 crossref_primary_10_3389_fmed_2021_703661 crossref_primary_10_1093_bib_bbab113 crossref_primary_10_1016_j_hlc_2022_02_002 crossref_primary_10_1080_07853890_2024_2304108 crossref_primary_10_1007_s12551_022_01020_x crossref_primary_10_1016_j_bpc_2025_107413 crossref_primary_10_1093_nar_gkaa1216 crossref_primary_10_1007_s10462_024_10844_w crossref_primary_10_1016_j_patter_2022_100659 crossref_primary_10_1016_j_eswa_2022_118841 crossref_primary_10_3389_fpubh_2021_657976 crossref_primary_10_1093_nargab_lqab062 crossref_primary_10_3390_ijerph21060654 crossref_primary_10_7717_peerj_cs_1333 crossref_primary_10_1093_database_baad005 crossref_primary_10_1093_nar_gkab881 crossref_primary_10_1016_j_jhazmat_2022_129487 crossref_primary_10_1038_s41598_021_95565_8 crossref_primary_10_1016_j_jclinepi_2021_10_017 crossref_primary_10_4315_JFP_21_218 crossref_primary_10_3390_make4030030 crossref_primary_10_1055_s_0041_1726540 crossref_primary_10_1017_cts_2022_409 crossref_primary_10_12688_wellcomeopenres_17284_1 crossref_primary_10_1109_TNNLS_2022_3185295 crossref_primary_10_1093_bib_bbab339 crossref_primary_10_1093_database_baab057 crossref_primary_10_1371_journal_pone_0316812 crossref_primary_10_3389_fpubh_2023_1125917 crossref_primary_10_3390_biomedinformatics3040055 crossref_primary_10_1057_s41599_021_00823_9 crossref_primary_10_1177_23814683221089844 crossref_primary_10_1093_jambio_lxac055 crossref_primary_10_3390_healthcare11070999 crossref_primary_10_1186_s13722_021_00275_1 |
Cites_doi | 10.1101/2020.04.11.037093 10.18653/v1/2020.acl-demos.8 10.1371/journal.pbio.2002846 10.1371/journal.pcbi.1006390 10.1038/s41597-019-0055-0 10.1016/j.gpb.2018.11.006 10.1093/nar/gkz389 10.3390/nu12092738 10.1093/nar/gkt441 10.1371/journal.pbio.2005343 10.1093/nar/gkz289 10.1371/journal.pcbi.1007617 10.1038/s41562-020-0911-0 10.1093/bioinformatics/btx439 10.1038/d41586-020-00694-1 10.1016/S2589-7500(20)30086-8 10.12688/f1000research.26707.1 10.1093/bioinformatics/btz682 10.1038/nbt.4267 10.1371/journal.pbio.3000716 |
ContentType | Journal Article |
Copyright | Published by Oxford University Press on behalf of Nucleic Acids Research 2020. 2021 Published by Oxford University Press on behalf of Nucleic Acids Research 2020. |
Copyright_xml | – notice: Published by Oxford University Press on behalf of Nucleic Acids Research 2020. 2021 – notice: Published by Oxford University Press on behalf of Nucleic Acids Research 2020. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1093/nar/gkaa952 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry |
EISSN | 1362-4962 |
EndPage | D1540 |
ExternalDocumentID | PMC7778958 33166392 10_1093_nar_gkaa952 10.1093/nar/gkaa952 |
Genre | Journal Article Research Support, N.I.H., Intramural |
GrantInformation_xml | – fundername: NLM NIH HHS – fundername: ; ; |
GroupedDBID | --- -DZ -~X .55 .GJ .I3 0R~ 123 18M 1TH 29N 2WC 3O- 4.4 482 53G 5VS 5WA 6.Y 70E 85S A8Z AAFWJ AAHBH AAMVS AAOGV AAPPN AAPXW AAUQX AAVAP AAWDT AAYJJ ABPTD ABQLI ABQTQ ABSAR ABSMQ ABXVV ACFRR ACGFO ACGFS ACIPB ACIWK ACMRT ACNCT ACPQN ACPRK ACUTJ ACZBC ADBBV ADHZD AEGXH AEKPW AENEX AENZO AFFNX AFPKN AFRAH AFSHK AFULF AFYAG AGKRT AGMDO AHMBA AIAGR ALMA_UNASSIGNED_HOLDINGS ALUQC ANFBD AOIJS AQDSO ASAOO ASPBG ATDFG ATTQO AVWKF AZFZN BAWUL BAYMD BCNDV BEYMZ BTTYL C1A CAG CIDKT COF CS3 CXTWN CZ4 D0S DFGAJ DIK DU5 D~K E3Z EBD EBS EJD ELUNK EMOBN ESTFP F20 F5P FEDTE GROUPED_DOAJ GX1 H13 HH5 HVGLF HYE HZ~ H~9 IH2 KAQDR KC5 KQ8 KSI M49 MBTAY MVM M~E NTWIH NU- OAWHX OBC OBS OEB OES OJQWA OVD O~Y P2P PB- PEELM PQQKQ QBD R44 RD5 RNI RNS ROL ROX ROZ RPM RXO RZF RZO SJN SV3 TCN TEORI TN5 TOX TR2 UHB WG7 WOQ X7H X7M XSB XSW YSK ZKX ZXP ~91 ~D7 ~KM AAYXX ABEJV ABGNP AMNDL CITATION OVT ADIXU CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c440t-22fc324bf9193c17b36b54d94d0df943748c860514642e9d75dcef7522017ea93 |
IEDL.DBID | TOX |
ISSN | 0305-1048 1362-4962 |
IngestDate | Thu Aug 21 14:30:35 EDT 2025 Fri Jul 11 03:56:32 EDT 2025 Wed Feb 19 02:30:06 EST 2025 Thu Apr 24 23:00:11 EDT 2025 Tue Jul 01 02:07:30 EDT 2025 Wed Aug 28 03:17:39 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | D1 |
Language | English |
License | This work is written by (a) US Government employee(s) and is in the public domain in the US. Published by Oxford University Press on behalf of Nucleic Acids Research 2020. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c440t-22fc324bf9193c17b36b54d94d0df943748c860514642e9d75dcef7522017ea93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 The authors wish it to be known that, in their opinion, the first two authors should be regarded as Joint First Authors. |
ORCID | 0000-0001-9998-916X 0000-0002-6036-1516 |
OpenAccessLink | http://dx.doi.org/10.1093/nar/gkaa952 |
PMID | 33166392 |
PQID | 2459355980 |
PQPubID | 23479 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7778958 proquest_miscellaneous_2459355980 pubmed_primary_33166392 crossref_citationtrail_10_1093_nar_gkaa952 crossref_primary_10_1093_nar_gkaa952 oup_primary_10_1093_nar_gkaa952 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-01-08 |
PublicationDateYYYYMMDD | 2021-01-08 |
PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-08 day: 08 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Nucleic acids research |
PublicationTitleAlternate | Nucleic Acids Res |
PublicationYear | 2021 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Su (2021010313130211400_B25) 2020 Vergoulis (2021010313130211400_B6) 2020 Chen (2021010313130211400_B9) 2020 Wei (2021010313130211400_B17) 2013; 41 Palayew (2021010313130211400_B2) 2020; 4 Zhang (2021010313130211400_B13) 2019; 6 Hanson (2021010313130211400_B19) 2020 Leaman (2021010313130211400_B5) 2020; 18 Chakraborti (2021010313130211400_B10) 2020 Allot (2021010313130211400_B26) 2019; 47 Fiorini (2021010313130211400_B4) 2018; 36 International Society for Biocuration (2021010313130211400_B8) 2018; 16 Pérez-Iglesias (2021010313130211400_B18) 2009 Yeganova (2021010313130211400_B22) 2020 Galmés (2021010313130211400_B11) 2020; 12 Wang (2021010313130211400_B27) 2020 Wang (2021010313130211400_B7) 2020 Chen (2021010313130211400_B23) 2020; 16 Lee (2021010313130211400_B15) 2019; 36 Wei (2021010313130211400_B16) 2019; 47 Chen (2021010313130211400_B14) 2019 Thorlund (2021010313130211400_B20) 2020; 2 Poux (2021010313130211400_B24) 2017; 33 Chen (2021010313130211400_B1) 2020; 579 Lee (2021010313130211400_B12) 2018; 14 Janiaud (2021010313130211400_B21) 2020 Fiorini (2021010313130211400_B3) 2018; 16 |
References_xml | – year: 2020 ident: 2021010313130211400_B6 article-title: BIP4COVID19: Releasing impact measures for articles relevant to COVID-19 doi: 10.1101/2020.04.11.037093 – year: 2020 ident: 2021010313130211400_B25 article-title: CAiRE-COVID: a question answering and multi-document summarization system for COVID-19 research – start-page: 56 volume-title: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics: System Demonstrations year: 2020 ident: 2021010313130211400_B27 article-title: Evidenceminer: Textual evidence discovery for life sciences doi: 10.18653/v1/2020.acl-demos.8 – year: 2009 ident: 2021010313130211400_B18 article-title: Integrating the probabilistic models BM25/BM25F into Lucene – volume: 16 start-page: e2002846 year: 2018 ident: 2021010313130211400_B8 article-title: Biocuration: distilling data into knowledge publication-title: PLoS Biol. doi: 10.1371/journal.pbio.2002846 – volume: 14 start-page: e1006390 year: 2018 ident: 2021010313130211400_B12 article-title: Scaling up data curation using deep learning: an application to literature triage in genomic variation resources publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1006390 – volume: 6 start-page: 52 year: 2019 ident: 2021010313130211400_B13 article-title: BioWordVec, improving biomedical word embeddings with subword information and MeSH publication-title: Sci. Data doi: 10.1038/s41597-019-0055-0 – start-page: 1 year: 2019 ident: 2021010313130211400_B14 article-title: BioSentVec: creating sentence embeddings for biomedical texts publication-title: 2019 IEEE International Conference on Healthcare Informatics (ICHI) – year: 2020 ident: 2021010313130211400_B9 article-title: Quality matters: biocuration experts on the impact of duplication and other data quality issues in biological databases publication-title: Genomics Proteomics Bioinform doi: 10.1016/j.gpb.2018.11.006 – volume: 47 start-page: W587 year: 2019 ident: 2021010313130211400_B16 article-title: PubTator central: automated concept annotation for biomedical full text articles publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkz389 – volume: 12 start-page: 2738 year: 2020 ident: 2021010313130211400_B11 article-title: Current state of evidence: influence of nutritional and nutrigenetic factors on immunity in the COVID-19 pandemic framework publication-title: Nutrients doi: 10.3390/nu12092738 – volume: 41 start-page: W518 year: 2013 ident: 2021010313130211400_B17 article-title: PubTator: a web-based text mining tool for assisting biocuration publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkt441 – volume-title: ACL NLP-COVID Workshop year: 2020 ident: 2021010313130211400_B7 article-title: CORD-19: the Covid-19 open research dataset – volume: 16 start-page: e2005343 year: 2018 ident: 2021010313130211400_B3 article-title: Best match: new relevance search for PubMed publication-title: PLoS Biol. doi: 10.1371/journal.pbio.2005343 – year: 2020 ident: 2021010313130211400_B10 article-title: Drug repurposing approach targeted against main protease of SARS-CoV-2 exploiting ‘neighbourhood behaviour’in 3D protein structural space and 2D chemical space of small molecules – volume: 47 start-page: W594 year: 2019 ident: 2021010313130211400_B26 article-title: LitSense: making sense of biomedical literature at sentence level publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkz289 – volume: 16 start-page: e1007617 year: 2020 ident: 2021010313130211400_B23 article-title: BioConceptVec: creating and evaluating literature-based biomedical concept embeddings on a large scale publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1007617 – year: 2020 ident: 2021010313130211400_B19 article-title: Infectious diseases society of america guidelines on the diagnosis of COVID-19 publication-title: Clin. Infect. Dis. – volume: 4 start-page: 666 year: 2020 ident: 2021010313130211400_B2 article-title: Pandemic publishing poses a new COVID-19 challenge publication-title: Nat. Hum. Behav. doi: 10.1038/s41562-020-0911-0 – volume: 33 start-page: 3454 year: 2017 ident: 2021010313130211400_B24 article-title: On expert curation and sustainability: UniProtKB/Swiss-Prot as a case study publication-title: Bioinformatics doi: 10.1093/bioinformatics/btx439 – volume: 579 start-page: 193 year: 2020 ident: 2021010313130211400_B1 article-title: Keep up with the latest coronavirus research publication-title: Nature doi: 10.1038/d41586-020-00694-1 – volume: 2 start-page: e286 year: 2020 ident: 2021010313130211400_B20 article-title: A real-time dashboard of clinical trials for COVID-19 publication-title: Lancet Digit Health doi: 10.1016/S2589-7500(20)30086-8 – start-page: 1193 year: 2020 ident: 2021010313130211400_B21 article-title: The worldwide clinical trial research response to the COVID-19 pandemic-the first 100 days publication-title: F1000Research doi: 10.12688/f1000research.26707.1 – year: 2020 ident: 2021010313130211400_B22 article-title: Navigating the landscape of COVID-19 research through literature analysis: a bird's eye view – volume: 36 start-page: 1234 year: 2019 ident: 2021010313130211400_B15 article-title: BioBERT: pre-trained biomedical language representation model for biomedical text mining publication-title: Bioinformatics doi: 10.1093/bioinformatics/btz682 – volume: 36 start-page: 937 year: 2018 ident: 2021010313130211400_B4 article-title: How user intelligence is improving PubMed publication-title: Nat. Biotechnol. doi: 10.1038/nbt.4267 – volume: 18 start-page: e3000716 year: 2020 ident: 2021010313130211400_B5 article-title: Ten tips for a text-mining-ready article: how to improve automated discoverability and interpretability publication-title: PLoS Biol. doi: 10.1371/journal.pbio.3000716 |
SSID | ssj0014154 |
Score | 2.66474 |
Snippet | Abstract
Since the outbreak of the current pandemic in 2020, there has been a rapid growth of published articles on COVID-19 and SARS-CoV-2, with about 10 000... Since the outbreak of the current pandemic in 2020, there has been a rapid growth of published articles on COVID-19 and SARS-CoV-2, with about 10 000 new... Since the outbreak of the current pandemic in 2020, there has been a rapid growth of published articles on COVID-19 and SARS-CoV-2, with about 10,000 new... |
SourceID | pubmedcentral proquest pubmed crossref oup |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | D1534 |
SubjectTerms | COVID-19 - epidemiology COVID-19 - prevention & control COVID-19 - virology Data Curation - methods Data Curation - statistics & numerical data Data Mining - methods Data Mining - statistics & numerical data Database Issue Databases, Factual Humans Internet Machine Learning Pandemics Publications - statistics & numerical data PubMed - statistics & numerical data SARS-CoV-2 - isolation & purification SARS-CoV-2 - physiology |
Title | LitCovid: an open database of COVID-19 literature |
URI | https://www.ncbi.nlm.nih.gov/pubmed/33166392 https://www.proquest.com/docview/2459355980 https://pubmed.ncbi.nlm.nih.gov/PMC7778958 |
Volume | 49 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LT8MwDI5gF7ggYDzGYwQJcUCq1qZp03CbBtNAPC4b2q1K0gQmRof2OPDvcdqu2qYJznWq1m7iz7X9GaEraiIiiIYwVSvhUMXhHAwT5uiACEmU9Zi2Ofn5Jez06GM_6BcFspM1KXzuN1Ixbrx_CsEDe9SC-7UU-d3XfpksAB-Us0RlpJo0KtrwVtYuOZ6lZrYFTLlaGrnga9q7aKcAibiZW3UPbeh0H1WbKQTIXz_4Gmdlm9n_8H201ZqPbKsi72kwbdnOulssUmwHY2FbAWo9FR4Z3Hp9e7hzPI6HJZfyAeq177utjlPMRHAUpe7UIcQowEDScEBeymPSD2VAE04TNzGcWjIZFYWW1BwCC80TFsCrGAYoC7aeFtw_RJV0lOpjhF2qGKAVyRITUY8omYQilCQwsC-NdL0aupkrLFYFYbidWzGM88S1H4N240K7NXRVCn_nPBnrxS5A839LXM6tEoP2bPpCpHo0m8SEBpYMnkduDR3lVipv5PseQCcOq9mS_UoBy6K9fCUdfGRs2oyBFoLo5N8nO0XbxBa02P8v0RmqTMczfQ6IZCrraJO59_Usnq9n3-Yvj6ffdw |
linkProvider | Oxford University Press |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=LitCovid%3A+an+open+database+of+COVID-19+literature&rft.jtitle=Nucleic+acids+research&rft.au=Chen%2C+Qingyu&rft.au=Allot%2C+Alexis&rft.au=Lu%2C+Zhiyong&rft.date=2021-01-08&rft.eissn=1362-4962&rft.volume=49&rft.issue=D1&rft.spage=D1534&rft_id=info:doi/10.1093%2Fnar%2Fgkaa952&rft_id=info%3Apmid%2F33166392&rft.externalDocID=33166392 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-1048&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-1048&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-1048&client=summon |