Numerical analysis of the electromagnetic force for design optimization of a rectangular direct current electromagnetic pump
The force of a direct current (DC) electromagnetic pump used to transport liquid lithium was analyzed to optimize its geometrical and electrical parameters by numerical simulation. In a heavy-ion accelerator, which is being developed in Korea, a liquid lithium film is utilized for its high charge-st...
Saved in:
Published in | Nuclear engineering and technology Vol. 50; no. 6; pp. 869 - 876 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.08.2018
Elsevier 한국원자력학회 |
Subjects | |
Online Access | Get full text |
ISSN | 1738-5733 2234-358X |
DOI | 10.1016/j.net.2018.04.010 |
Cover
Abstract | The force of a direct current (DC) electromagnetic pump used to transport liquid lithium was analyzed to optimize its geometrical and electrical parameters by numerical simulation. In a heavy-ion accelerator, which is being developed in Korea, a liquid lithium film is utilized for its high charge-stripping efficiency for heavy ions of uranium. A DC electromagnetic pump with a flow rate of 6 cm3/s and a developed pressure of 1.5 MPa at a temperature of 200°C was required to circulate the liquid lithium to form liquid lithium films. The current and magnetic flux densities in the flow gap, where a Sm2Co17 permanent magnet was used to generate a magnetic field, were analyzed for the electromagnetic force distribution generated in the pump. The pressure developed by the Lorentz force on the electromagnetic force was calculated by considering the electromotive force and hydraulic pressure drop in the narrow flow channel. The opposite force at the end part due to the magnetic flux density in the opposite direction depended on the pump geometrical parameters such as the pump duct length and width that defines the rectangular channels in the nonhomogeneous distributions of the current and magnetic fields. |
---|---|
AbstractList | The force of a direct current (DC) electromagnetic pump used to transport liquid lithium was analyzed to optimize its geometrical and electrical parameters by numerical simulation. In a heavy-ion accelerator, which is being developed in Korea, a liquid lithium film is utilized for its high charge-stripping efficiency for heavy ions of uranium. A DC electromagnetic pump with a flow rate of 6 cm3/s and a developed pressure of 1.5 MPa at a temperature of 200°C was required to circulate the liquid lithium to form liquid lithium films. The current and magnetic flux densities in the flow gap, where a Sm2Co17 permanent magnet was used to generate a magnetic field, were analyzed for the electromagnetic force distribution generated in the pump. The pressure developed by the Lorentz force on the electromagnetic force was calculated by considering the electromotive force and hydraulic pressure drop in the narrow flow channel. The opposite force at the end part due to the magnetic flux density in the opposite direction depended on the pump geometrical parameters such as the pump duct length and width that defines the rectangular channels in the nonhomogeneous distributions of the current and magnetic fields. The force of a direct current (DC) electromagnetic pump used to transport liquid lithium was analyzed to optimize its geometrical and electrical parameters by numerical simulation. In a heavy-ion accelerator, which is being developed in Korea, a liquid lithium film is utilized for its high charge-stripping efficiency for heavy ions of uranium. A DC electromagnetic pump with a flow rate of 6 cm3/s and a developed pressure of 1.5 MPa at a temperature of 200°C was required to circulate the liquid lithium to form liquid lithium films. The current and magnetic flux densities in the flow gap, where a Sm2Co17 permanent magnet was used to generate a magnetic field, were analyzed for the electromagnetic force distribution generated in the pump. The pressure developed by the Lorentz force on the electromagnetic force was calculated by considering the electromotive force and hydraulic pressure drop in the narrow flow channel. The opposite force at the end part due to the magnetic flux density in the opposite direction depended on the pump geometrical parameters such as the pump duct length and width that defines the rectangular channels in the nonhomogeneous distributions of the current and magnetic fields. Keywords: Current Distribution, Developed Pressure, Heavy-ion Accelerator, Liquid Lithium Film, Magnetic Flux Density Distribution, Rectangular DC Electromagnetic Pump The force of a direct current (DC) electromagnetic pump used to transport liquid lithium was analyzed tooptimize its geometrical and electrical parameters by numerical simulation. In a heavy-ion accelerator,which is being developed in Korea, a liquid lithium film is utilized for its high charge-stripping efficiencyfor heavy ions of uranium. A DC electromagnetic pump with a flow rate of 6 cm3/s and a developedpressure of 1.5 MPa at a temperature of 200 C was required to circulate the liquid lithium to form liquidlithium films. The current and magnetic flux densities in the flow gap, where a Sm2Co17 permanentmagnet was used to generate a magnetic field, were analyzed for the electromagnetic force distributiongenerated in the pump. The pressure developed by the Lorentz force on the electromagnetic force wascalculated by considering the electromotive force and hydraulic pressure drop in the narrow flowchannel. The opposite force at the end part due to the magnetic flux density in the opposite directiondepended on the pump geometrical parameters such as the pump duct length and width that defines therectangular channels in the nonhomogeneous distributions of the current and magnetic fields. KCI Citation Count: 0 |
Author | Kim, Hee Reyoung Lee, Geun Hyeong |
Author_xml | – sequence: 1 givenname: Geun Hyeong surname: Lee fullname: Lee, Geun Hyeong – sequence: 2 givenname: Hee Reyoung orcidid: 0000-0002-6786-3105 surname: Kim fullname: Kim, Hee Reyoung email: kimhr@unist.ac.kr |
BackLink | https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002377602$$DAccess content in National Research Foundation of Korea (NRF) |
BookMark | eNp9kU1r3DAQhkVJoZs0P6A3X3uwo0_LS08h9GMhpFBSyE3I45GrjS0tsreQ0B9fed1eWshFw4h5Xt6Z95ychRiQkHeMVoyy-mpfBZwrTllTUVlRRl-RDedClkI1D2dkw7RoSqWFeEPOp2lPaS2lphvy6-44YvJgh8IGOzxNfiqiK-YfWOCAMKc42j5LeyhcTIDLW3Q4-T4U8TD70T_b2cewQLZImbChPw42D_mlK-CYEob5P7XDcTy8Ja-dHSa8_FMvyPdPH-9vvpS3Xz_vbq5vS5CSziUDp6HVulFIeS2ydwWtVJzxDnmrqQTHXK3a2qmmkY41rcWa6a5zmqutZuKCvF91Q3LmEbyJ1p9qH81jMtff7ndGaKVqyvPsbp3tot2bQ_KjTU8n4PQRU29sygsMaJQSNVMMgW8bCQxs7h3H1lGGdCsga-lVC1KcpoTOgJ9P55qT9YNh1Czhmb3JNzFLeIZKk8PLJPuH_OvkJebDymA-5U-PyUzgMQCuSWT__gX6NwngtjM |
CitedBy_id | crossref_primary_10_1016_j_energy_2022_123157 crossref_primary_10_1016_j_etran_2021_100132 crossref_primary_10_1177_09544089211015480 crossref_primary_10_1016_j_matpr_2020_08_729 crossref_primary_10_1007_s42452_021_04841_9 crossref_primary_10_1080_00295639_2023_2249782 crossref_primary_10_1016_j_nucengdes_2023_112376 crossref_primary_10_1016_j_tsep_2025_103484 crossref_primary_10_1016_j_applthermaleng_2024_123290 crossref_primary_10_1103_PhysRevApplied_22_034015 crossref_primary_10_1016_j_anucene_2022_109641 crossref_primary_10_1016_j_anucene_2022_109486 |
Cites_doi | 10.1049/pi-a.1959.0054 10.1007/BF02437333 10.1103/PhysRevLett.96.164501 10.1049/pi-a.1957.0021 10.1149/1.2778113 10.1109/TASC.2011.2179510 10.1109/TMAG.2005.863085 10.1088/1367-2630/9/8/299 10.22364/mhd.53.2.23 10.1016/0307-904X(95)00110-6 |
ContentType | Journal Article |
Copyright | 2018 |
Copyright_xml | – notice: 2018 |
DBID | 6I. AAFTH AAYXX CITATION DOA ACYCR |
DOI | 10.1016/j.net.2018.04.010 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ Directory of Open Access Journals (ND) Korean Citation Index |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2234-358X |
EndPage | 876 |
ExternalDocumentID | oai_kci_go_kr_ARTI_3755602 oai_doaj_org_article_5536151ec2984c1ca536f2ebf01e093c 10_1016_j_net_2018_04_010 S1738573318301426 |
GroupedDBID | .UV 0R~ 0SF 123 4.4 457 5VS 6I. 9ZL AACTN AAEDW AAFTH AALRI AAXUO ABMAC ACGFS ACYCR ADBBV ADEZE AENEX AEXQZ AFTJW AGHFR AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ BCNDV EBS EJD FDB GROUPED_DOAJ IPNFZ JDI KQ8 KVFHK M41 NCXOZ O9- OK1 RIG ROL SSZ AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFPUW AIGII AKBMS AKRWK AKYEP CITATION |
ID | FETCH-LOGICAL-c440t-1cf7cb7785e02630065cb45212de2b704cf1f65b6f5884f18bae617ddf7259713 |
IEDL.DBID | DOA |
ISSN | 1738-5733 |
IngestDate | Tue Nov 21 21:35:19 EST 2023 Mon Sep 08 19:52:49 EDT 2025 Tue Jul 01 04:28:16 EDT 2025 Thu Apr 24 22:55:15 EDT 2025 Wed May 17 02:13:44 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Liquid Lithium Film Developed Pressure Heavy-ion Accelerator Current Distribution Magnetic Flux Density Distribution Rectangular DC Electromagnetic Pump |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c440t-1cf7cb7785e02630065cb45212de2b704cf1f65b6f5884f18bae617ddf7259713 |
ORCID | 0000-0002-6786-3105 |
OpenAccessLink | https://doaj.org/article/5536151ec2984c1ca536f2ebf01e093c |
PageCount | 8 |
ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_3755602 doaj_primary_oai_doaj_org_article_5536151ec2984c1ca536f2ebf01e093c crossref_citationtrail_10_1016_j_net_2018_04_010 crossref_primary_10_1016_j_net_2018_04_010 elsevier_sciencedirect_doi_10_1016_j_net_2018_04_010 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2018 2018-08-00 2018-08-01 2018-08 |
PublicationDateYYYYMMDD | 2018-08-01 |
PublicationDate_xml | – month: 08 year: 2018 text: August 2018 |
PublicationDecade | 2010 |
PublicationTitle | Nuclear engineering and technology |
PublicationYear | 2018 |
Publisher | Elsevier B.V Elsevier 한국원자력학회 |
Publisher_xml | – name: Elsevier B.V – name: Elsevier – name: 한국원자력학회 |
References | Nashine, Dash, Gurumurthy, Kale, Sharma, Prabhaker, Rajan, Vaidyanathan (bib14) 2007; 14 Takorabet (bib16) 2006; 42 Wagner (bib5) 1951; 98 Marti, Guetschow, Momozaki, Nolen (bib3) 2015 Lee, Kim (bib9) 2017; 53 Thess, Votyakov, Knaepen, Zikanov (bib20) 2007; 9 Bennecib, Drid, Abdessemed (bib12) 2009; 2 Nashine, Dash, Gurumurthy, Rajan, Vaidyanathan (bib11) 2006 Ho, Chu (bib19) 1977 Gutierrez, Heckathorn (bib1) 1965 Oka, Kawasaki, Fukui, Ogawa, Sato, Terasawa, Itoh, Yabuno (bib6) 2012; 22 Blake (bib4) 1957; 104 Thess, Votyakov, Kolesnikov (bib18) 2006; 96 Hughes, Pericleous, Cross (bib7) 1995; 19 W (bib13) 1985 Kim, Hong, Lee (bib2) 2014 Xiao-Fan, Yong, Xiao-Jing (bib17) 2004; 25 Watt (bib10) 1959; 106 Baker, Tessier (bib8) 1987 Crane Co. (US) (bib15) 1977 Nashine (10.1016/j.net.2018.04.010_bib14) 2007; 14 Thess (10.1016/j.net.2018.04.010_bib20) 2007; 9 Marti (10.1016/j.net.2018.04.010_bib3) 2015 Xiao-Fan (10.1016/j.net.2018.04.010_bib17) 2004; 25 Wagner (10.1016/j.net.2018.04.010_bib5) 1951; 98 Gutierrez (10.1016/j.net.2018.04.010_bib1) 1965 Lee (10.1016/j.net.2018.04.010_bib9) 2017; 53 Takorabet (10.1016/j.net.2018.04.010_bib16) 2006; 42 Hughes (10.1016/j.net.2018.04.010_bib7) 1995; 19 Watt (10.1016/j.net.2018.04.010_bib10) 1959; 106 Nashine (10.1016/j.net.2018.04.010_bib11) 2006 Oka (10.1016/j.net.2018.04.010_bib6) 2012; 22 Blake (10.1016/j.net.2018.04.010_bib4) 1957; 104 W (10.1016/j.net.2018.04.010_bib13) 1985 Crane Co. (US) (10.1016/j.net.2018.04.010_bib15) 1977 Kim (10.1016/j.net.2018.04.010_bib2) 2014 Bennecib (10.1016/j.net.2018.04.010_bib12) 2009; 2 Thess (10.1016/j.net.2018.04.010_bib18) 2006; 96 Ho (10.1016/j.net.2018.04.010_bib19) 1977 Baker (10.1016/j.net.2018.04.010_bib8) 1987 |
References_xml | – year: 1977 ident: bib15 article-title: Flow of Fluids Through Valves, Fittings, and Pipe – volume: 98 start-page: 116 year: 1951 end-page: 128 ident: bib5 article-title: Theoretical analysis of the current density distribution in electrolytic cells publication-title: J. Electrochem. Soc. – volume: 42 start-page: 430 year: 2006 end-page: 433 ident: bib16 article-title: Computation of force density inside the channel of an electromagnetic pump by Hermite projection publication-title: IEEE Trans. Magn. – volume: 14 start-page: 209 year: 2007 end-page: 214 ident: bib14 article-title: Performance testing of indigenously developed DC conduction pump for sodium cooled fast reactor publication-title: Indian J. Eng. Mater. Sci. – volume: 2 start-page: 23 year: 2009 end-page: 28 ident: bib12 article-title: Numerical investigation of flow in a new DC pump MHD publication-title: J. Appl. Fluid Mech. – volume: 96 start-page: 164501 year: 2006 ident: bib18 article-title: Lorentz force velocimetry publication-title: Phys. Rev. Lett. – year: 2014 ident: bib2 article-title: Design of DC conduction pump for PGSFR active decay heat removal system publication-title: Transactions of the Korean Nuclear Society Spring Meeting, Korea – volume: 25 start-page: 297 year: 2004 end-page: 306 ident: bib17 article-title: Analytic expression of magnetic field distribution of rectangular permanent magnets publication-title: Appl. Math. Mech. – year: 2006 ident: bib11 article-title: Design and testing of DC conduction pump for sodium cooled fast reactor publication-title: 14th International Conference on Nuclear Engineering, American Society of Mechanical Engineers – year: 2015 ident: bib3 article-title: Development of a liquid lithium charge stripper for FRIB publication-title: Proceedings of HIAT2015, Japan – volume: 104 start-page: 49 year: 1957 end-page: 67 ident: bib4 article-title: Conduction and induction pumps for liquid metals publication-title: Proc. IEE Part A Power Eng. – volume: 22 start-page: 9502304 year: 2012 ident: bib6 article-title: Magnetic field distribution of permanent magnet magnetized by static magnetic field generated by HTS bulk magnet publication-title: IEEE Trans. Appl. Supercond. – volume: 19 start-page: 713 year: 1995 end-page: 723 ident: bib7 article-title: The numerical modelling of DC electromagnetic pump and brake flow publication-title: Appl. Math. Model. – volume: 9 start-page: 299 year: 2007 ident: bib20 article-title: Theory of the Lorentz force flowmeter publication-title: New J. Phys. – year: 1977 ident: bib19 article-title: Electrical Resistivity and Thermal Conductivity of Nine Selected AISI Stainless Steels – year: 1987 ident: bib8 article-title: Handbook of Electromagnetic Pump Technology – volume: 106 start-page: 94 year: 1959 end-page: 103 ident: bib10 article-title: The design of electromagnetic pumps for liquid metals publication-title: Proc. IEE Part A Power Eng. – volume: 53 start-page: 429 year: 2017 end-page: 438 ident: bib9 article-title: Numerical investigation and comparison of the rectangular, cylindrical, and helical-type DC electromagnetic pumps publication-title: Magnetohydrodynamics – year: 1985 ident: bib13 article-title: Ohse Handbook of Thermodynamic and Transport Properties of Alkali Metals – year: 1965 ident: bib1 article-title: Electromagnetic Pumps for Liquid Metals – volume: 106 start-page: 94 issue: 26 year: 1959 ident: 10.1016/j.net.2018.04.010_bib10 article-title: The design of electromagnetic pumps for liquid metals publication-title: Proc. IEE Part A Power Eng. doi: 10.1049/pi-a.1959.0054 – year: 1965 ident: 10.1016/j.net.2018.04.010_bib1 – year: 1987 ident: 10.1016/j.net.2018.04.010_bib8 – year: 2006 ident: 10.1016/j.net.2018.04.010_bib11 article-title: Design and testing of DC conduction pump for sodium cooled fast reactor – year: 1977 ident: 10.1016/j.net.2018.04.010_bib19 – year: 2015 ident: 10.1016/j.net.2018.04.010_bib3 article-title: Development of a liquid lithium charge stripper for FRIB – volume: 25 start-page: 297 issue: 3 year: 2004 ident: 10.1016/j.net.2018.04.010_bib17 article-title: Analytic expression of magnetic field distribution of rectangular permanent magnets publication-title: Appl. Math. Mech. doi: 10.1007/BF02437333 – volume: 96 start-page: 164501 issue: 16 year: 2006 ident: 10.1016/j.net.2018.04.010_bib18 article-title: Lorentz force velocimetry publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.96.164501 – year: 2014 ident: 10.1016/j.net.2018.04.010_bib2 article-title: Design of DC conduction pump for PGSFR active decay heat removal system – volume: 104 start-page: 49 issue: 13 year: 1957 ident: 10.1016/j.net.2018.04.010_bib4 article-title: Conduction and induction pumps for liquid metals publication-title: Proc. IEE Part A Power Eng. doi: 10.1049/pi-a.1957.0021 – volume: 98 start-page: 116 issue: 3 year: 1951 ident: 10.1016/j.net.2018.04.010_bib5 article-title: Theoretical analysis of the current density distribution in electrolytic cells publication-title: J. Electrochem. Soc. doi: 10.1149/1.2778113 – volume: 22 start-page: 9502304 issue: 3 year: 2012 ident: 10.1016/j.net.2018.04.010_bib6 article-title: Magnetic field distribution of permanent magnet magnetized by static magnetic field generated by HTS bulk magnet publication-title: IEEE Trans. Appl. Supercond. doi: 10.1109/TASC.2011.2179510 – volume: 42 start-page: 430 issue: 3 year: 2006 ident: 10.1016/j.net.2018.04.010_bib16 article-title: Computation of force density inside the channel of an electromagnetic pump by Hermite projection publication-title: IEEE Trans. Magn. doi: 10.1109/TMAG.2005.863085 – volume: 2 start-page: 23 issue: 2 year: 2009 ident: 10.1016/j.net.2018.04.010_bib12 article-title: Numerical investigation of flow in a new DC pump MHD publication-title: J. Appl. Fluid Mech. – volume: 9 start-page: 299 issue: 8 year: 2007 ident: 10.1016/j.net.2018.04.010_bib20 article-title: Theory of the Lorentz force flowmeter publication-title: New J. Phys. doi: 10.1088/1367-2630/9/8/299 – volume: 14 start-page: 209 year: 2007 ident: 10.1016/j.net.2018.04.010_bib14 article-title: Performance testing of indigenously developed DC conduction pump for sodium cooled fast reactor publication-title: Indian J. Eng. Mater. Sci. – volume: 53 start-page: 429 issue: 2 year: 2017 ident: 10.1016/j.net.2018.04.010_bib9 article-title: Numerical investigation and comparison of the rectangular, cylindrical, and helical-type DC electromagnetic pumps publication-title: Magnetohydrodynamics doi: 10.22364/mhd.53.2.23 – year: 1977 ident: 10.1016/j.net.2018.04.010_bib15 – year: 1985 ident: 10.1016/j.net.2018.04.010_bib13 – volume: 19 start-page: 713 issue: 12 year: 1995 ident: 10.1016/j.net.2018.04.010_bib7 article-title: The numerical modelling of DC electromagnetic pump and brake flow publication-title: Appl. Math. Model. doi: 10.1016/0307-904X(95)00110-6 |
SSID | ssj0064470 |
Score | 2.1858513 |
Snippet | The force of a direct current (DC) electromagnetic pump used to transport liquid lithium was analyzed to optimize its geometrical and electrical parameters by... The force of a direct current (DC) electromagnetic pump used to transport liquid lithium was analyzed tooptimize its geometrical and electrical parameters by... |
SourceID | nrf doaj crossref elsevier |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 869 |
SubjectTerms | Current Distribution Developed Pressure Heavy-ion Accelerator Liquid Lithium Film Magnetic Flux Density Distribution Rectangular DC Electromagnetic Pump 원자력공학 |
Title | Numerical analysis of the electromagnetic force for design optimization of a rectangular direct current electromagnetic pump |
URI | https://dx.doi.org/10.1016/j.net.2018.04.010 https://doaj.org/article/5536151ec2984c1ca536f2ebf01e093c https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002377602 |
Volume | 50 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Nuclear Engineering and Technology, 2018, 50(6), , pp.869-876 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7qSQ_iE9cXQTwJxbRNmu5RRfGBgqDgLSTTRHxsV5bdmz_emaZdVgS9eElpmxeZaWammfmGsUMQyhWFtQnkViYSUpeUyuZJX2lt00qqFChQ-PauuHyU10_qaSbVF_mERXjguHDHSuUkdD1k_RK7Aov3IfMuiNSjNQ60-4q-6IypuAejkNcxFBI_Z0L8684zG88utPnJp6tsME4pdHZGIjXA_d8E03w9CjMi52KFLbe6Ij-Jc1xlc75eY0szCILr7PNuEo9c3rlt4UX4MHDU6nib4GZgn2sKVOSonYKnkleN1wYf4m4xaMMwqZHltPvR_0u0dnmUdRwiftOP3j6QDTbY48X5w9ll0iZUSEBKMU5SCBqc1qXyaHrlpH6AkxS9W_nMaSEhpKFA4gUKXw1p6axHDaeqgkYrCc3ZTbZQD2u_xXhI8ZUovKiUk0XVdyjmodJW5JCJkBc9JrpFNdCijVPSi3fTuZW9GpyvIToYIQ3SoceOpk0-ItTGb5VPiVLTioSS3TxA3jEt75i_eKfHZEdn0yoccXGxq5ffxj5AnjBv8NIMS9fnoXkbGTRBrkyuFWqR2fZ_THCHLdK40eFwly2MRxO_h0rQ2O03_I7lzX35BZX3BMU |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+analysis+of+the+electromagnetic+force+for+design+optimization+of+a+rectangular+direct+current+electromagnetic+pump&rft.jtitle=Nuclear+engineering+and+technology&rft.au=Lee%2C+Geun+Hyeong&rft.au=Kim%2C+Hee+Reyoung&rft.date=2018-08-01&rft.issn=1738-5733&rft.volume=50&rft.issue=6&rft.spage=869&rft.epage=876&rft_id=info:doi/10.1016%2Fj.net.2018.04.010&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_net_2018_04_010 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1738-5733&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1738-5733&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1738-5733&client=summon |