Numerical analysis of the electromagnetic force for design optimization of a rectangular direct current electromagnetic pump

The force of a direct current (DC) electromagnetic pump used to transport liquid lithium was analyzed to optimize its geometrical and electrical parameters by numerical simulation. In a heavy-ion accelerator, which is being developed in Korea, a liquid lithium film is utilized for its high charge-st...

Full description

Saved in:
Bibliographic Details
Published inNuclear engineering and technology Vol. 50; no. 6; pp. 869 - 876
Main Authors Lee, Geun Hyeong, Kim, Hee Reyoung
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.08.2018
Elsevier
한국원자력학회
Subjects
Online AccessGet full text
ISSN1738-5733
2234-358X
DOI10.1016/j.net.2018.04.010

Cover

Abstract The force of a direct current (DC) electromagnetic pump used to transport liquid lithium was analyzed to optimize its geometrical and electrical parameters by numerical simulation. In a heavy-ion accelerator, which is being developed in Korea, a liquid lithium film is utilized for its high charge-stripping efficiency for heavy ions of uranium. A DC electromagnetic pump with a flow rate of 6 cm3/s and a developed pressure of 1.5 MPa at a temperature of 200°C was required to circulate the liquid lithium to form liquid lithium films. The current and magnetic flux densities in the flow gap, where a Sm2Co17 permanent magnet was used to generate a magnetic field, were analyzed for the electromagnetic force distribution generated in the pump. The pressure developed by the Lorentz force on the electromagnetic force was calculated by considering the electromotive force and hydraulic pressure drop in the narrow flow channel. The opposite force at the end part due to the magnetic flux density in the opposite direction depended on the pump geometrical parameters such as the pump duct length and width that defines the rectangular channels in the nonhomogeneous distributions of the current and magnetic fields.
AbstractList The force of a direct current (DC) electromagnetic pump used to transport liquid lithium was analyzed to optimize its geometrical and electrical parameters by numerical simulation. In a heavy-ion accelerator, which is being developed in Korea, a liquid lithium film is utilized for its high charge-stripping efficiency for heavy ions of uranium. A DC electromagnetic pump with a flow rate of 6 cm3/s and a developed pressure of 1.5 MPa at a temperature of 200°C was required to circulate the liquid lithium to form liquid lithium films. The current and magnetic flux densities in the flow gap, where a Sm2Co17 permanent magnet was used to generate a magnetic field, were analyzed for the electromagnetic force distribution generated in the pump. The pressure developed by the Lorentz force on the electromagnetic force was calculated by considering the electromotive force and hydraulic pressure drop in the narrow flow channel. The opposite force at the end part due to the magnetic flux density in the opposite direction depended on the pump geometrical parameters such as the pump duct length and width that defines the rectangular channels in the nonhomogeneous distributions of the current and magnetic fields.
The force of a direct current (DC) electromagnetic pump used to transport liquid lithium was analyzed to optimize its geometrical and electrical parameters by numerical simulation. In a heavy-ion accelerator, which is being developed in Korea, a liquid lithium film is utilized for its high charge-stripping efficiency for heavy ions of uranium. A DC electromagnetic pump with a flow rate of 6 cm3/s and a developed pressure of 1.5 MPa at a temperature of 200°C was required to circulate the liquid lithium to form liquid lithium films. The current and magnetic flux densities in the flow gap, where a Sm2Co17 permanent magnet was used to generate a magnetic field, were analyzed for the electromagnetic force distribution generated in the pump. The pressure developed by the Lorentz force on the electromagnetic force was calculated by considering the electromotive force and hydraulic pressure drop in the narrow flow channel. The opposite force at the end part due to the magnetic flux density in the opposite direction depended on the pump geometrical parameters such as the pump duct length and width that defines the rectangular channels in the nonhomogeneous distributions of the current and magnetic fields. Keywords: Current Distribution, Developed Pressure, Heavy-ion Accelerator, Liquid Lithium Film, Magnetic Flux Density Distribution, Rectangular DC Electromagnetic Pump
The force of a direct current (DC) electromagnetic pump used to transport liquid lithium was analyzed tooptimize its geometrical and electrical parameters by numerical simulation. In a heavy-ion accelerator,which is being developed in Korea, a liquid lithium film is utilized for its high charge-stripping efficiencyfor heavy ions of uranium. A DC electromagnetic pump with a flow rate of 6 cm3/s and a developedpressure of 1.5 MPa at a temperature of 200 C was required to circulate the liquid lithium to form liquidlithium films. The current and magnetic flux densities in the flow gap, where a Sm2Co17 permanentmagnet was used to generate a magnetic field, were analyzed for the electromagnetic force distributiongenerated in the pump. The pressure developed by the Lorentz force on the electromagnetic force wascalculated by considering the electromotive force and hydraulic pressure drop in the narrow flowchannel. The opposite force at the end part due to the magnetic flux density in the opposite directiondepended on the pump geometrical parameters such as the pump duct length and width that defines therectangular channels in the nonhomogeneous distributions of the current and magnetic fields. KCI Citation Count: 0
Author Kim, Hee Reyoung
Lee, Geun Hyeong
Author_xml – sequence: 1
  givenname: Geun Hyeong
  surname: Lee
  fullname: Lee, Geun Hyeong
– sequence: 2
  givenname: Hee Reyoung
  orcidid: 0000-0002-6786-3105
  surname: Kim
  fullname: Kim, Hee Reyoung
  email: kimhr@unist.ac.kr
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002377602$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNp9kU1r3DAQhkVJoZs0P6A3X3uwo0_LS08h9GMhpFBSyE3I45GrjS0tsreQ0B9fed1eWshFw4h5Xt6Z95ychRiQkHeMVoyy-mpfBZwrTllTUVlRRl-RDedClkI1D2dkw7RoSqWFeEPOp2lPaS2lphvy6-44YvJgh8IGOzxNfiqiK-YfWOCAMKc42j5LeyhcTIDLW3Q4-T4U8TD70T_b2cewQLZImbChPw42D_mlK-CYEob5P7XDcTy8Ja-dHSa8_FMvyPdPH-9vvpS3Xz_vbq5vS5CSziUDp6HVulFIeS2ydwWtVJzxDnmrqQTHXK3a2qmmkY41rcWa6a5zmqutZuKCvF91Q3LmEbyJ1p9qH81jMtff7ndGaKVqyvPsbp3tot2bQ_KjTU8n4PQRU29sygsMaJQSNVMMgW8bCQxs7h3H1lGGdCsga-lVC1KcpoTOgJ9P55qT9YNh1Czhmb3JNzFLeIZKk8PLJPuH_OvkJebDymA-5U-PyUzgMQCuSWT__gX6NwngtjM
CitedBy_id crossref_primary_10_1016_j_energy_2022_123157
crossref_primary_10_1016_j_etran_2021_100132
crossref_primary_10_1177_09544089211015480
crossref_primary_10_1016_j_matpr_2020_08_729
crossref_primary_10_1007_s42452_021_04841_9
crossref_primary_10_1080_00295639_2023_2249782
crossref_primary_10_1016_j_nucengdes_2023_112376
crossref_primary_10_1016_j_tsep_2025_103484
crossref_primary_10_1016_j_applthermaleng_2024_123290
crossref_primary_10_1103_PhysRevApplied_22_034015
crossref_primary_10_1016_j_anucene_2022_109641
crossref_primary_10_1016_j_anucene_2022_109486
Cites_doi 10.1049/pi-a.1959.0054
10.1007/BF02437333
10.1103/PhysRevLett.96.164501
10.1049/pi-a.1957.0021
10.1149/1.2778113
10.1109/TASC.2011.2179510
10.1109/TMAG.2005.863085
10.1088/1367-2630/9/8/299
10.22364/mhd.53.2.23
10.1016/0307-904X(95)00110-6
ContentType Journal Article
Copyright 2018
Copyright_xml – notice: 2018
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
ACYCR
DOI 10.1016/j.net.2018.04.010
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ Directory of Open Access Journals (ND)
Korean Citation Index
DatabaseTitle CrossRef
DatabaseTitleList


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2234-358X
EndPage 876
ExternalDocumentID oai_kci_go_kr_ARTI_3755602
oai_doaj_org_article_5536151ec2984c1ca536f2ebf01e093c
10_1016_j_net_2018_04_010
S1738573318301426
GroupedDBID .UV
0R~
0SF
123
4.4
457
5VS
6I.
9ZL
AACTN
AAEDW
AAFTH
AALRI
AAXUO
ABMAC
ACGFS
ACYCR
ADBBV
ADEZE
AENEX
AEXQZ
AFTJW
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BCNDV
EBS
EJD
FDB
GROUPED_DOAJ
IPNFZ
JDI
KQ8
KVFHK
M41
NCXOZ
O9-
OK1
RIG
ROL
SSZ
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
CITATION
ID FETCH-LOGICAL-c440t-1cf7cb7785e02630065cb45212de2b704cf1f65b6f5884f18bae617ddf7259713
IEDL.DBID DOA
ISSN 1738-5733
IngestDate Tue Nov 21 21:35:19 EST 2023
Mon Sep 08 19:52:49 EDT 2025
Tue Jul 01 04:28:16 EDT 2025
Thu Apr 24 22:55:15 EDT 2025
Wed May 17 02:13:44 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Liquid Lithium Film
Developed Pressure
Heavy-ion Accelerator
Current Distribution
Magnetic Flux Density Distribution
Rectangular DC Electromagnetic Pump
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c440t-1cf7cb7785e02630065cb45212de2b704cf1f65b6f5884f18bae617ddf7259713
ORCID 0000-0002-6786-3105
OpenAccessLink https://doaj.org/article/5536151ec2984c1ca536f2ebf01e093c
PageCount 8
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_3755602
doaj_primary_oai_doaj_org_article_5536151ec2984c1ca536f2ebf01e093c
crossref_citationtrail_10_1016_j_net_2018_04_010
crossref_primary_10_1016_j_net_2018_04_010
elsevier_sciencedirect_doi_10_1016_j_net_2018_04_010
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2018
2018-08-00
2018-08-01
2018-08
PublicationDateYYYYMMDD 2018-08-01
PublicationDate_xml – month: 08
  year: 2018
  text: August 2018
PublicationDecade 2010
PublicationTitle Nuclear engineering and technology
PublicationYear 2018
Publisher Elsevier B.V
Elsevier
한국원자력학회
Publisher_xml – name: Elsevier B.V
– name: Elsevier
– name: 한국원자력학회
References Nashine, Dash, Gurumurthy, Kale, Sharma, Prabhaker, Rajan, Vaidyanathan (bib14) 2007; 14
Takorabet (bib16) 2006; 42
Wagner (bib5) 1951; 98
Marti, Guetschow, Momozaki, Nolen (bib3) 2015
Lee, Kim (bib9) 2017; 53
Thess, Votyakov, Knaepen, Zikanov (bib20) 2007; 9
Bennecib, Drid, Abdessemed (bib12) 2009; 2
Nashine, Dash, Gurumurthy, Rajan, Vaidyanathan (bib11) 2006
Ho, Chu (bib19) 1977
Gutierrez, Heckathorn (bib1) 1965
Oka, Kawasaki, Fukui, Ogawa, Sato, Terasawa, Itoh, Yabuno (bib6) 2012; 22
Blake (bib4) 1957; 104
Thess, Votyakov, Kolesnikov (bib18) 2006; 96
Hughes, Pericleous, Cross (bib7) 1995; 19
W (bib13) 1985
Kim, Hong, Lee (bib2) 2014
Xiao-Fan, Yong, Xiao-Jing (bib17) 2004; 25
Watt (bib10) 1959; 106
Baker, Tessier (bib8) 1987
Crane Co. (US) (bib15) 1977
Nashine (10.1016/j.net.2018.04.010_bib14) 2007; 14
Thess (10.1016/j.net.2018.04.010_bib20) 2007; 9
Marti (10.1016/j.net.2018.04.010_bib3) 2015
Xiao-Fan (10.1016/j.net.2018.04.010_bib17) 2004; 25
Wagner (10.1016/j.net.2018.04.010_bib5) 1951; 98
Gutierrez (10.1016/j.net.2018.04.010_bib1) 1965
Lee (10.1016/j.net.2018.04.010_bib9) 2017; 53
Takorabet (10.1016/j.net.2018.04.010_bib16) 2006; 42
Hughes (10.1016/j.net.2018.04.010_bib7) 1995; 19
Watt (10.1016/j.net.2018.04.010_bib10) 1959; 106
Nashine (10.1016/j.net.2018.04.010_bib11) 2006
Oka (10.1016/j.net.2018.04.010_bib6) 2012; 22
Blake (10.1016/j.net.2018.04.010_bib4) 1957; 104
W (10.1016/j.net.2018.04.010_bib13) 1985
Crane Co. (US) (10.1016/j.net.2018.04.010_bib15) 1977
Kim (10.1016/j.net.2018.04.010_bib2) 2014
Bennecib (10.1016/j.net.2018.04.010_bib12) 2009; 2
Thess (10.1016/j.net.2018.04.010_bib18) 2006; 96
Ho (10.1016/j.net.2018.04.010_bib19) 1977
Baker (10.1016/j.net.2018.04.010_bib8) 1987
References_xml – year: 1977
  ident: bib15
  article-title: Flow of Fluids Through Valves, Fittings, and Pipe
– volume: 98
  start-page: 116
  year: 1951
  end-page: 128
  ident: bib5
  article-title: Theoretical analysis of the current density distribution in electrolytic cells
  publication-title: J. Electrochem. Soc.
– volume: 42
  start-page: 430
  year: 2006
  end-page: 433
  ident: bib16
  article-title: Computation of force density inside the channel of an electromagnetic pump by Hermite projection
  publication-title: IEEE Trans. Magn.
– volume: 14
  start-page: 209
  year: 2007
  end-page: 214
  ident: bib14
  article-title: Performance testing of indigenously developed DC conduction pump for sodium cooled fast reactor
  publication-title: Indian J. Eng. Mater. Sci.
– volume: 2
  start-page: 23
  year: 2009
  end-page: 28
  ident: bib12
  article-title: Numerical investigation of flow in a new DC pump MHD
  publication-title: J. Appl. Fluid Mech.
– volume: 96
  start-page: 164501
  year: 2006
  ident: bib18
  article-title: Lorentz force velocimetry
  publication-title: Phys. Rev. Lett.
– year: 2014
  ident: bib2
  article-title: Design of DC conduction pump for PGSFR active decay heat removal system
  publication-title: Transactions of the Korean Nuclear Society Spring Meeting, Korea
– volume: 25
  start-page: 297
  year: 2004
  end-page: 306
  ident: bib17
  article-title: Analytic expression of magnetic field distribution of rectangular permanent magnets
  publication-title: Appl. Math. Mech.
– year: 2006
  ident: bib11
  article-title: Design and testing of DC conduction pump for sodium cooled fast reactor
  publication-title: 14th International Conference on Nuclear Engineering, American Society of Mechanical Engineers
– year: 2015
  ident: bib3
  article-title: Development of a liquid lithium charge stripper for FRIB
  publication-title: Proceedings of HIAT2015, Japan
– volume: 104
  start-page: 49
  year: 1957
  end-page: 67
  ident: bib4
  article-title: Conduction and induction pumps for liquid metals
  publication-title: Proc. IEE Part A Power Eng.
– volume: 22
  start-page: 9502304
  year: 2012
  ident: bib6
  article-title: Magnetic field distribution of permanent magnet magnetized by static magnetic field generated by HTS bulk magnet
  publication-title: IEEE Trans. Appl. Supercond.
– volume: 19
  start-page: 713
  year: 1995
  end-page: 723
  ident: bib7
  article-title: The numerical modelling of DC electromagnetic pump and brake flow
  publication-title: Appl. Math. Model.
– volume: 9
  start-page: 299
  year: 2007
  ident: bib20
  article-title: Theory of the Lorentz force flowmeter
  publication-title: New J. Phys.
– year: 1977
  ident: bib19
  article-title: Electrical Resistivity and Thermal Conductivity of Nine Selected AISI Stainless Steels
– year: 1987
  ident: bib8
  article-title: Handbook of Electromagnetic Pump Technology
– volume: 106
  start-page: 94
  year: 1959
  end-page: 103
  ident: bib10
  article-title: The design of electromagnetic pumps for liquid metals
  publication-title: Proc. IEE Part A Power Eng.
– volume: 53
  start-page: 429
  year: 2017
  end-page: 438
  ident: bib9
  article-title: Numerical investigation and comparison of the rectangular, cylindrical, and helical-type DC electromagnetic pumps
  publication-title: Magnetohydrodynamics
– year: 1985
  ident: bib13
  article-title: Ohse Handbook of Thermodynamic and Transport Properties of Alkali Metals
– year: 1965
  ident: bib1
  article-title: Electromagnetic Pumps for Liquid Metals
– volume: 106
  start-page: 94
  issue: 26
  year: 1959
  ident: 10.1016/j.net.2018.04.010_bib10
  article-title: The design of electromagnetic pumps for liquid metals
  publication-title: Proc. IEE Part A Power Eng.
  doi: 10.1049/pi-a.1959.0054
– year: 1965
  ident: 10.1016/j.net.2018.04.010_bib1
– year: 1987
  ident: 10.1016/j.net.2018.04.010_bib8
– year: 2006
  ident: 10.1016/j.net.2018.04.010_bib11
  article-title: Design and testing of DC conduction pump for sodium cooled fast reactor
– year: 1977
  ident: 10.1016/j.net.2018.04.010_bib19
– year: 2015
  ident: 10.1016/j.net.2018.04.010_bib3
  article-title: Development of a liquid lithium charge stripper for FRIB
– volume: 25
  start-page: 297
  issue: 3
  year: 2004
  ident: 10.1016/j.net.2018.04.010_bib17
  article-title: Analytic expression of magnetic field distribution of rectangular permanent magnets
  publication-title: Appl. Math. Mech.
  doi: 10.1007/BF02437333
– volume: 96
  start-page: 164501
  issue: 16
  year: 2006
  ident: 10.1016/j.net.2018.04.010_bib18
  article-title: Lorentz force velocimetry
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.96.164501
– year: 2014
  ident: 10.1016/j.net.2018.04.010_bib2
  article-title: Design of DC conduction pump for PGSFR active decay heat removal system
– volume: 104
  start-page: 49
  issue: 13
  year: 1957
  ident: 10.1016/j.net.2018.04.010_bib4
  article-title: Conduction and induction pumps for liquid metals
  publication-title: Proc. IEE Part A Power Eng.
  doi: 10.1049/pi-a.1957.0021
– volume: 98
  start-page: 116
  issue: 3
  year: 1951
  ident: 10.1016/j.net.2018.04.010_bib5
  article-title: Theoretical analysis of the current density distribution in electrolytic cells
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2778113
– volume: 22
  start-page: 9502304
  issue: 3
  year: 2012
  ident: 10.1016/j.net.2018.04.010_bib6
  article-title: Magnetic field distribution of permanent magnet magnetized by static magnetic field generated by HTS bulk magnet
  publication-title: IEEE Trans. Appl. Supercond.
  doi: 10.1109/TASC.2011.2179510
– volume: 42
  start-page: 430
  issue: 3
  year: 2006
  ident: 10.1016/j.net.2018.04.010_bib16
  article-title: Computation of force density inside the channel of an electromagnetic pump by Hermite projection
  publication-title: IEEE Trans. Magn.
  doi: 10.1109/TMAG.2005.863085
– volume: 2
  start-page: 23
  issue: 2
  year: 2009
  ident: 10.1016/j.net.2018.04.010_bib12
  article-title: Numerical investigation of flow in a new DC pump MHD
  publication-title: J. Appl. Fluid Mech.
– volume: 9
  start-page: 299
  issue: 8
  year: 2007
  ident: 10.1016/j.net.2018.04.010_bib20
  article-title: Theory of the Lorentz force flowmeter
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/9/8/299
– volume: 14
  start-page: 209
  year: 2007
  ident: 10.1016/j.net.2018.04.010_bib14
  article-title: Performance testing of indigenously developed DC conduction pump for sodium cooled fast reactor
  publication-title: Indian J. Eng. Mater. Sci.
– volume: 53
  start-page: 429
  issue: 2
  year: 2017
  ident: 10.1016/j.net.2018.04.010_bib9
  article-title: Numerical investigation and comparison of the rectangular, cylindrical, and helical-type DC electromagnetic pumps
  publication-title: Magnetohydrodynamics
  doi: 10.22364/mhd.53.2.23
– year: 1977
  ident: 10.1016/j.net.2018.04.010_bib15
– year: 1985
  ident: 10.1016/j.net.2018.04.010_bib13
– volume: 19
  start-page: 713
  issue: 12
  year: 1995
  ident: 10.1016/j.net.2018.04.010_bib7
  article-title: The numerical modelling of DC electromagnetic pump and brake flow
  publication-title: Appl. Math. Model.
  doi: 10.1016/0307-904X(95)00110-6
SSID ssj0064470
Score 2.1858513
Snippet The force of a direct current (DC) electromagnetic pump used to transport liquid lithium was analyzed to optimize its geometrical and electrical parameters by...
The force of a direct current (DC) electromagnetic pump used to transport liquid lithium was analyzed tooptimize its geometrical and electrical parameters by...
SourceID nrf
doaj
crossref
elsevier
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 869
SubjectTerms Current Distribution
Developed Pressure
Heavy-ion Accelerator
Liquid Lithium Film
Magnetic Flux Density Distribution
Rectangular DC Electromagnetic Pump
원자력공학
Title Numerical analysis of the electromagnetic force for design optimization of a rectangular direct current electromagnetic pump
URI https://dx.doi.org/10.1016/j.net.2018.04.010
https://doaj.org/article/5536151ec2984c1ca536f2ebf01e093c
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002377602
Volume 50
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Nuclear Engineering and Technology, 2018, 50(6), , pp.869-876
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7qSQ_iE9cXQTwJxbRNmu5RRfGBgqDgLSTTRHxsV5bdmz_emaZdVgS9eElpmxeZaWammfmGsUMQyhWFtQnkViYSUpeUyuZJX2lt00qqFChQ-PauuHyU10_qaSbVF_mERXjguHDHSuUkdD1k_RK7Aov3IfMuiNSjNQ60-4q-6IypuAejkNcxFBI_Z0L8684zG88utPnJp6tsME4pdHZGIjXA_d8E03w9CjMi52KFLbe6Ij-Jc1xlc75eY0szCILr7PNuEo9c3rlt4UX4MHDU6nib4GZgn2sKVOSonYKnkleN1wYf4m4xaMMwqZHltPvR_0u0dnmUdRwiftOP3j6QDTbY48X5w9ll0iZUSEBKMU5SCBqc1qXyaHrlpH6AkxS9W_nMaSEhpKFA4gUKXw1p6axHDaeqgkYrCc3ZTbZQD2u_xXhI8ZUovKiUk0XVdyjmodJW5JCJkBc9JrpFNdCijVPSi3fTuZW9GpyvIToYIQ3SoceOpk0-ItTGb5VPiVLTioSS3TxA3jEt75i_eKfHZEdn0yoccXGxq5ffxj5AnjBv8NIMS9fnoXkbGTRBrkyuFWqR2fZ_THCHLdK40eFwly2MRxO_h0rQ2O03_I7lzX35BZX3BMU
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+analysis+of+the+electromagnetic+force+for+design+optimization+of+a+rectangular+direct+current+electromagnetic+pump&rft.jtitle=Nuclear+engineering+and+technology&rft.au=Lee%2C+Geun+Hyeong&rft.au=Kim%2C+Hee+Reyoung&rft.date=2018-08-01&rft.issn=1738-5733&rft.volume=50&rft.issue=6&rft.spage=869&rft.epage=876&rft_id=info:doi/10.1016%2Fj.net.2018.04.010&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_net_2018_04_010
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1738-5733&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1738-5733&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1738-5733&client=summon