Multi-Label Classification of E-Commerce Customer Reviews via Machine Learning

The multi-label customer reviews classification task aims to identify the different thoughts of customers about the product they are purchasing. Due to the impact of the COVID-19 pandemic, customers have become more prone to shopping online. As a consequence, the amount of text data on e-commerce is...

Full description

Saved in:
Bibliographic Details
Published inAxioms Vol. 11; no. 9; p. 436
Main Authors Deniz, Emre, Erbay, Hasan, Coşar, Mustafa
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.08.2022
Subjects
Online AccessGet full text
ISSN2075-1680
2075-1680
DOI10.3390/axioms11090436

Cover

Loading…
Abstract The multi-label customer reviews classification task aims to identify the different thoughts of customers about the product they are purchasing. Due to the impact of the COVID-19 pandemic, customers have become more prone to shopping online. As a consequence, the amount of text data on e-commerce is continuously increasing, which enables new studies to be carried out and important findings to be obtained with more detailed analysis. Nowadays, e-commerce customer reviews are analyzed by both researchers and sector experts, and are subject to many sentiment analysis studies. Herein, an analysis of customer reviews is carried out in order to obtain more in-depth thoughts about the product, rather than engaging in emotion-based analysis. Initially, we form a new customer reviews dataset made up of reviews by Turkish consumers in order to perform the proposed analysis. The created dataset contains more than 50,000 reviews in three different categories, and each review has multiple labels according to the comments made by the customers. Later, we applied machine learning methods employed for multi-label classification to the dataset. Finally, we compared and analyzed the results we obtained using a diverse set of statistical metrics. As a result of our experimental studies, we found the Micro Precision 0.9157, Micro Recall 0.8837, Micro F1 Score 0.8925, and Hamming Loss 0.0278 to be the most successful approaches.
AbstractList The multi-label customer reviews classification task aims to identify the different thoughts of customers about the product they are purchasing. Due to the impact of the COVID-19 pandemic, customers have become more prone to shopping online. As a consequence, the amount of text data on e-commerce is continuously increasing, which enables new studies to be carried out and important findings to be obtained with more detailed analysis. Nowadays, e-commerce customer reviews are analyzed by both researchers and sector experts, and are subject to many sentiment analysis studies. Herein, an analysis of customer reviews is carried out in order to obtain more in-depth thoughts about the product, rather than engaging in emotion-based analysis. Initially, we form a new customer reviews dataset made up of reviews by Turkish consumers in order to perform the proposed analysis. The created dataset contains more than 50,000 reviews in three different categories, and each review has multiple labels according to the comments made by the customers. Later, we applied machine learning methods employed for multi-label classification to the dataset. Finally, we compared and analyzed the results we obtained using a diverse set of statistical metrics. As a result of our experimental studies, we found the Micro Precision 0.9157, Micro Recall 0.8837, Micro F1 Score 0.8925, and Hamming Loss 0.0278 to be the most successful approaches.
Audience Academic
Author Deniz, Emre
Coşar, Mustafa
Erbay, Hasan
Author_xml – sequence: 1
  givenname: Emre
  orcidid: 0000-0003-1563-9256
  surname: Deniz
  fullname: Deniz, Emre
– sequence: 2
  givenname: Hasan
  orcidid: 0000-0002-7555-541X
  surname: Erbay
  fullname: Erbay, Hasan
– sequence: 3
  givenname: Mustafa
  surname: Coşar
  fullname: Coşar, Mustafa
BookMark eNp1UV1PFTEQbQwkIvLK8yY-L_b745FsUEkumhh5bqbd9tqb3S22exH_vQUMfgRnHmZyMufMTM4rdLDkJSB0SvAZYwa_hbuU50oINpgz-QIdUaxET6TGB3_0L9FJrTvcwhCmCTtCH6_205r6DbgwdcMEtaaYPKwpL12O3UU_5HkOxYdu2Nc1t7b7HG5T-F672wTdFfivaQndJkBZ0rJ9jQ4jTDWc_KrH6PrdxZfhQ7_59P5yON_0nnO89kRprRgAHb1jlFAsjKMqMIiAuVdgZOBAjB49E8Q02Dk1SqkpA-yEIOwYXT7qjhl29qakGcoPmyHZByCXrYWyJj8FGwVzAWh0xHDOgwHvYhyZHqNxmAndtN48at2U_G0f6mp3eV-Wdr6likiupVTi99QWmmhaYl4L-DlVb88VF5RSye7vOntmquUY5uSbZTE1_DmCL7nWEuLTMwTbe2ft3842Av-H4NP64FfblKb_0X4Cy5eoVQ
CitedBy_id crossref_primary_10_1016_j_jksuci_2024_102083
crossref_primary_10_1016_j_iswa_2024_200332
crossref_primary_10_1108_DPRG_09_2024_0240
crossref_primary_10_1109_ACCESS_2023_3325785
crossref_primary_10_32604_cmc_2024_052666
crossref_primary_10_3390_bdcc7040168
crossref_primary_10_1080_09544828_2025_2475426
crossref_primary_10_1007_s10115_024_02113_7
crossref_primary_10_3390_math12182825
crossref_primary_10_1007_s00521_022_07987_8
crossref_primary_10_1007_s10586_024_04756_1
crossref_primary_10_3390_app13042074
crossref_primary_10_3390_app13127266
crossref_primary_10_2196_45146
crossref_primary_10_1109_ACCESS_2024_3386841
crossref_primary_10_1109_ACCESS_2023_3319384
Cites_doi 10.1109/SIU49456.2020.9302492
10.1016/j.matpr.2020.08.012
10.1007/s11704-017-7031-7
10.1016/j.eswa.2020.114231
10.1515/pralin-2016-0006
10.1109/ICOASE.2019.8723825
10.3390/info10040150
10.4000/books.aaccademia.1767
10.1007/978-1-4471-4594-3_45
10.4018/jdwm.2007070101
10.1109/IAICT50021.2020.9172020
10.1109/ACCESS.2020.3031588
10.1109/IDAP.2019.8875985
10.2339/politeknik.844019
10.1016/j.asej.2014.04.011
10.1109/ICNSC.2019.8743331
10.3115/v1/D14-1162
10.1109/TKDE.2013.39
10.1109/ACCESS.2019.2937518
10.1109/TIFS.2017.2675361
10.1109/TKDE.2014.2382600
10.1016/j.matpr.2020.10.064
10.1109/ACCESS.2019.2944089
10.1007/s11042-020-10361-2
10.1016/j.ipm.2020.102221
10.1109/ACCESS.2020.3006569
10.1109/ICCIC.2016.7919584
10.1109/ICIRCA.2018.8597286
ContentType Journal Article
Copyright COPYRIGHT 2022 MDPI AG
2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2022 MDPI AG
– notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SC
7TB
7XB
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
COVID
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
KR7
L6V
L7M
L~C
L~D
M0N
M7S
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOA
DOI 10.3390/axioms11090436
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
Coronavirus Research Database
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Engineering Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList CrossRef
Publicly Available Content Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2075-1680
ExternalDocumentID oai_doaj_org_article_f53bea2fb19444e9acbffd38df9b0358
A745222631
10_3390_axioms11090436
GeographicLocations Turkey
New Jersey
GeographicLocations_xml – name: Turkey
– name: New Jersey
GroupedDBID 5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ABUWG
ACUHS
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ARAPS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
EAD
EAP
ESX
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
ITC
K6V
K7-
KQ8
L6V
M7S
MODMG
M~E
OK1
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PTHSS
QF4
QN7
PMFND
3V.
7SC
7TB
7XB
8AL
8FD
8FK
COVID
FR3
JQ2
KR7
L7M
L~C
L~D
M0N
P62
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
PUEGO
ID FETCH-LOGICAL-c440t-178873aa2dcb3212059b27e3afa04c7a96e4a198dc35193afbb7d66823a0b5513
IEDL.DBID DOA
ISSN 2075-1680
IngestDate Wed Aug 27 00:48:15 EDT 2025
Fri Jul 25 12:10:46 EDT 2025
Tue Jun 17 21:37:06 EDT 2025
Tue Jun 10 21:21:15 EDT 2025
Thu Apr 24 22:52:14 EDT 2025
Tue Jul 01 04:19:14 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c440t-178873aa2dcb3212059b27e3afa04c7a96e4a198dc35193afbb7d66823a0b5513
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1563-9256
0000-0002-7555-541X
OpenAccessLink https://doaj.org/article/f53bea2fb19444e9acbffd38df9b0358
PQID 2716486675
PQPubID 2032429
ParticipantIDs doaj_primary_oai_doaj_org_article_f53bea2fb19444e9acbffd38df9b0358
proquest_journals_2716486675
gale_infotracmisc_A745222631
gale_infotracacademiconefile_A745222631
crossref_primary_10_3390_axioms11090436
crossref_citationtrail_10_3390_axioms11090436
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220801
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 08
  year: 2022
  text: 20220801
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Axioms
PublicationYear 2022
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Xu (ref_15) 2020; 57
Tsoumakas (ref_39) 2007; 3
Tripathi (ref_19) 2020; 33
ref_35
ref_34
ref_11
ref_33
ref_10
ref_31
Zhang (ref_38) 2018; 12
Ozyurt (ref_29) 2021; 168
ref_30
Medhat (ref_13) 2014; 5
Erbay (ref_6) 2021; 2021
ref_18
ref_17
ref_16
Shehnepoor (ref_4) 2017; 12
Muslim (ref_14) 2020; 1
Shoja (ref_23) 2019; 7
ref_25
Erbay (ref_5) 2021; 80
Leeuwenberg (ref_9) 2016; 105
Mamat (ref_3) 2019; 7
Liu (ref_7) 2014; 27
ref_22
ref_21
Schweter (ref_36) 2020; 2020
ref_20
Gu (ref_24) 2020; 8
ref_1
Zhang (ref_12) 2020; 8
ref_2
Mikolov (ref_32) 2013; 26
ref_28
ref_27
ref_26
ref_8
Zhang (ref_37) 2013; 26
References_xml – ident: ref_27
  doi: 10.1109/SIU49456.2020.9302492
– volume: 33
  start-page: 4520
  year: 2020
  ident: ref_19
  article-title: Analysis and prediction of extent of helpfulness of reviews on E-commerce websites
  publication-title: Mater. Today Proc.
  doi: 10.1016/j.matpr.2020.08.012
– volume: 12
  start-page: 191
  year: 2018
  ident: ref_38
  article-title: Binary relevance for multi-label learning: An overview
  publication-title: Front. Comput. Sci.
  doi: 10.1007/s11704-017-7031-7
– volume: 168
  start-page: 114231
  year: 2021
  ident: ref_29
  article-title: A new topic modeling based approach for aspect extraction in aspect based sentiment analysis: SS-LDA
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.114231
– ident: ref_34
– volume: 2021
  start-page: 8869681
  year: 2021
  ident: ref_6
  article-title: Design and Analysis of a Novel Authorship Verification Framework for Hijacked Social Media Accounts Compromised by a Human
  publication-title: Secur. Commun. Netw.
– volume: 105
  start-page: 111
  year: 2016
  ident: ref_9
  article-title: A minimally supervised approach for synonym extraction with word embeddings
  publication-title: Prague Bull. Math. Linguist.
  doi: 10.1515/pralin-2016-0006
– ident: ref_11
– ident: ref_30
  doi: 10.1109/ICOASE.2019.8723825
– ident: ref_1
  doi: 10.3390/info10040150
– ident: ref_8
  doi: 10.4000/books.aaccademia.1767
– ident: ref_26
  doi: 10.1007/978-1-4471-4594-3_45
– volume: 3
  start-page: 1
  year: 2007
  ident: ref_39
  article-title: Multi-label classification: An overview
  publication-title: Int. J. Data Warehous. Min. (IJDWM)
  doi: 10.4018/jdwm.2007070101
– ident: ref_35
– volume: 2020
  start-page: 3770924
  year: 2020
  ident: ref_36
  article-title: Berturk-Bert Models for Turkish
  publication-title: Zenodo
– ident: ref_2
  doi: 10.1109/IAICT50021.2020.9172020
– volume: 8
  start-page: 189513
  year: 2020
  ident: ref_12
  article-title: A multiclassification model of sentiment for E-commerce reviews
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3031588
– ident: ref_21
– ident: ref_28
  doi: 10.1109/IDAP.2019.8875985
– ident: ref_25
  doi: 10.2339/politeknik.844019
– volume: 5
  start-page: 1093
  year: 2014
  ident: ref_13
  article-title: Sentiment analysis algorithms and applications: A survey
  publication-title: Ain Shams Eng. J.
  doi: 10.1016/j.asej.2014.04.011
– ident: ref_17
  doi: 10.1109/ICNSC.2019.8743331
– ident: ref_33
  doi: 10.3115/v1/D14-1162
– ident: ref_31
– volume: 26
  start-page: 1819
  year: 2013
  ident: ref_37
  article-title: A review on multi-label learning algorithms
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2013.39
– volume: 7
  start-page: 119121
  year: 2019
  ident: ref_23
  article-title: Customer reviews analysis with deep neural networks for e-commerce recommender systems
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2937518
– volume: 12
  start-page: 1585
  year: 2017
  ident: ref_4
  article-title: NetSpam: A network-based spam detection framework for reviews in online social media
  publication-title: IEEE Trans. Inf. Forensics Secur.
  doi: 10.1109/TIFS.2017.2675361
– ident: ref_10
– volume: 27
  start-page: 1696
  year: 2014
  ident: ref_7
  article-title: TASC: Topic-adaptive sentiment classification on dynamic tweets
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2014.2382600
– ident: ref_18
  doi: 10.1016/j.matpr.2020.10.064
– volume: 7
  start-page: 143721
  year: 2019
  ident: ref_3
  article-title: Hybrid water cycle optimization algorithm with simulated annealing for spam e-mail detection
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2944089
– volume: 80
  start-page: 13575
  year: 2021
  ident: ref_5
  article-title: Novel authorship verification model for social media accounts compromised by a human
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-020-10361-2
– volume: 1
  start-page: 8
  year: 2020
  ident: ref_14
  article-title: Support vector machine (svm) optimization using grid search and unigram to improve e-commerce review accuracy
  publication-title: J. Soft Comput. Explor.
– volume: 57
  start-page: 102221
  year: 2020
  ident: ref_15
  article-title: E-commerce product review sentiment classification based on a naïve Bayes continuous learning framework
  publication-title: Inf. Process. Manag.
  doi: 10.1016/j.ipm.2020.102221
– volume: 8
  start-page: 121014
  year: 2020
  ident: ref_24
  article-title: Sentiment analysis via deep multichannel neural networks with variational information bottleneck
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3006569
– volume: 26
  start-page: 3111
  year: 2013
  ident: ref_32
  article-title: Distributed representations of words and phrases and their compositionality
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: ref_22
– ident: ref_20
  doi: 10.1109/ICCIC.2016.7919584
– ident: ref_16
  doi: 10.1109/ICIRCA.2018.8597286
SSID ssj0000913813
Score 2.3005445
Snippet The multi-label customer reviews classification task aims to identify the different thoughts of customers about the product they are purchasing. Due to the...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 436
SubjectTerms Analysis
Artificial intelligence
Classification
Computational linguistics
Consumer behavior
customer reviews analysis
Customers
Data mining
Datasets
Electronic commerce
Epidemics
Language processing
Machine learning
multi-label classification
Natural language interfaces
natural language processing
New Jersey
Sentiment analysis
Support vector machines
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dSxwxEA-tvrQPRftBrbbkodCn4G6Sze4-FZUTkd5RSgXfwuRLBHur7in--Z3J5a7cg31bsgO7mWSSmWTm92Psq9KNDC4Aem7BCa1dKyC1GKo4Q2zbyUFGvJnOzNmFPr9sLsuB21jSKldrYl6ow-DpjPxQkmPfGfRvv9_eCWKNotvVQqHxkm3jEtxh8LV9PJn9_LU-ZSHUy65WS7RGhfH9ITxdD39Gwtkk8PWN3SiD9j-3NOf95nSHvSmOIj9ajuwuexHnb9nr6RpldXzHZrl6VvwAF294ZrekvJ-saj4kPhFU_UGJK_zkAX08fOTLq4CRP14Dn-Y8ysgLxOrVe3ZxOvl9ciYKP4LwWlcLUVMmoAKQwTuF_UdPyck2KkhQad9Cb6KGuu-CJxY-bHauDcZ0UkHliNjlA9uaD_P4kXEMqZsAoaqjdNrUKF3FvpMOwERsq_eYWOnJ-gIeThwWNxaDCNKr3dTrHvu2lr9dwmY8K3lMal9LEdx1bhjur2yxHpsa5SLI5Opeax178C6loLqQeleppsPP0aBZMkr8LQ-ltgA7R_BW9qgl4HhpFHbkYEMSjclvvl4Nuy3GPNp_U-_T_1_vs1eSqiNyfuAB21rcP8TP6LMs3JcyMf8CLufsNQ
  priority: 102
  providerName: ProQuest
Title Multi-Label Classification of E-Commerce Customer Reviews via Machine Learning
URI https://www.proquest.com/docview/2716486675
https://doaj.org/article/f53bea2fb19444e9acbffd38df9b0358
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1RSxwxEA7VvtQHsdXiqT3yUPBpcTfJZncfVe4qpXeUouBbmNkkIuid9M7iz3cmux7eg_jStyU7sMnMJjMfmflGiO_alMqjB4rcPGbGYJVBrAiqoOVu2xEhMd5Mpvbiyvy8Lq9ftfrinLCOHrhT3EksNQZQEQltGxMaaDFGr2sfG8x1mcp8yee9AlPpDG4KckW6Y2nUhOtP4Ol2fr9gfk0mXV_zQoms_60jOfmZ8Y7Y7gNEedpN7LP4EGZfxNZkxa662BXTVDWb_QIMdzJ1teR8n6RiOY9ylHHVByesyPNHiu3oUXZXAAv57xbkJOVPBtlTq97siavx6PL8Iuv7ImStMfkyKzgDUAMo36Im10MREqoqaIiQm7aCxgYDRVP7lrvv0TBi5a2tlYYcuaHLV7E5m8_CvpAEpUsPPi-CQmMLks5DUysEsIHGioHIXvTk2p40nHtX3DkCD6xXt67XgTheyT90dBlvSp6x2ldSTHOdBsj4rje-e8_49Dk2muPNSNNqoa8poMUxrZU7rZgwXllNCzlak6RN1K6_fjG76zfxwinGkrUlSHXwPyZ7KD4prp1I2YNHYnP59zF8o4hmiUOxUY9_DMXHs9H0959h-pWfATJS92Q
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOQAHxFMUCvgA4hQ1sR0nOaCqLV22dHdPrdSbGT9SVSqb0mx5_Kn-xs44yaI9lFtvkT3KY2yPZ5yZ72Psg1S58NYDem7eJkrZIoG6wFDFamLbri1ExJvpTI-P1beT_GSNXQ-1MJRWOdjEaKh94-iMfEuQY19q9G-3L34mxBpFf1cHCo1uWhyGv78xZGs_H3zB8f0oxGj_aG-c9KwCiVMqXSQZ5c9JAOGdlWi40b-woggSakiVK6DSQQGG4t4Rdx02W1t4rUshIbVEh4L3vcfuKykrWlHl6OvyTIcwNstMdtiQ2J9uwZ-z5kdLqJ4E9b6y90WKgNs2gri7jZ6wx71byne6efSUrYX5M_ZousR0bZ-zWazVTSZgwzmPXJqUZRQHljc130-o1oTSZPjeFXqUeMm7Hw8t_3UGfBqzNgPvAV1PX7DjO9HbS7Y-b-bhFeMYwOcefJoFYZXOUDoNVSksgA7Ylm2wZNCTcT1UOTFmnBsMWUivZlWvG-zTUv6iA-m4VXKX1L6UInDt2NBcnpp-rZo6lzaAqG1WKaVCBc7WtZelryubyrzEx9GgGTIB-FoO-koG_DgC0zI7BcHUCy3xQzZXJHHputXuYdhNbzpa82-iv_5_93v2YHw0nZjJwezwDXsoqC4jZiZusvXF5VV4i97Swr6LU5Sz73e9Jm4ArJcm_g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKVkJwqHiKPgAfQJyiTWzndahQH7tqaXdVISr1ZsaxXVUqm9JsW_hr_DpmnGTRHsqtt8ge5TG2xzPxzPcx9kGqVFhjAT03ayKlTB6BzzFUMRmxbXsDAfFmMs0OTtWXs_Rshf3pa2EorbK3icFQ27qif-RDQY59kaF_O_RdWsTJ_vjz1c-IGKTopLWn02inyJH7fYfhW7N9uI9j_VGI8ejb3kHUMQxElVLxPEool04CCFsZiUYcfQ0jcifBQ6yqHMrMKcCw3FbEY4fNxuQ2ywohITZEjYL3fcRWc4yK4gFb3R1NT74u_vAQ4maRyBYpUsoyHsKvi_pHQxifBPy-tBMGwoD7toWw142fsbXOSeU77ax6zlbc7AV7OlkgvDYv2TRU7kbHYNwlD8yalHMUhpnXno8iqjyhpBm-d4P-JV7y9hii4bcXwCchh9PxDt71_BU7fRDNvWaDWT1zbxjHcD61YOPECaOyBKVjVxbCAGQO25J1FvV60lUHXE78GZcaAxjSq17W6zr7tJC_aiE77pXcJbUvpAhqOzTU1-e6W7nap9I4EN4kpVLKlVAZ760srC9NLNMCH0eDpskg4GtV0NU14McRtJbeyQm0XmQSP2RrSRIXcrXc3Q-77gxJo_9N-43_d79nj3E96OPD6dEmeyKoSCOkKW6xwfz6xr1F12lu3nVzlLPvD70s_gJCYSyQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-Label+Classification+of+E-Commerce+Customer+Reviews+via+Machine+Learning&rft.jtitle=Axioms&rft.au=Deniz%2C+Emre&rft.au=Erbay%2C+Hasan&rft.au=Co%C5%9Far%2C+Mustafa&rft.date=2022-08-01&rft.pub=MDPI+AG&rft.issn=2075-1680&rft.eissn=2075-1680&rft.volume=11&rft.issue=9&rft_id=info:doi/10.3390%2Faxioms11090436&rft.externalDocID=A745222631
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2075-1680&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2075-1680&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2075-1680&client=summon