Multi-Label Classification of E-Commerce Customer Reviews via Machine Learning
The multi-label customer reviews classification task aims to identify the different thoughts of customers about the product they are purchasing. Due to the impact of the COVID-19 pandemic, customers have become more prone to shopping online. As a consequence, the amount of text data on e-commerce is...
Saved in:
Published in | Axioms Vol. 11; no. 9; p. 436 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.08.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 2075-1680 2075-1680 |
DOI | 10.3390/axioms11090436 |
Cover
Loading…
Abstract | The multi-label customer reviews classification task aims to identify the different thoughts of customers about the product they are purchasing. Due to the impact of the COVID-19 pandemic, customers have become more prone to shopping online. As a consequence, the amount of text data on e-commerce is continuously increasing, which enables new studies to be carried out and important findings to be obtained with more detailed analysis. Nowadays, e-commerce customer reviews are analyzed by both researchers and sector experts, and are subject to many sentiment analysis studies. Herein, an analysis of customer reviews is carried out in order to obtain more in-depth thoughts about the product, rather than engaging in emotion-based analysis. Initially, we form a new customer reviews dataset made up of reviews by Turkish consumers in order to perform the proposed analysis. The created dataset contains more than 50,000 reviews in three different categories, and each review has multiple labels according to the comments made by the customers. Later, we applied machine learning methods employed for multi-label classification to the dataset. Finally, we compared and analyzed the results we obtained using a diverse set of statistical metrics. As a result of our experimental studies, we found the Micro Precision 0.9157, Micro Recall 0.8837, Micro F1 Score 0.8925, and Hamming Loss 0.0278 to be the most successful approaches. |
---|---|
AbstractList | The multi-label customer reviews classification task aims to identify the different thoughts of customers about the product they are purchasing. Due to the impact of the COVID-19 pandemic, customers have become more prone to shopping online. As a consequence, the amount of text data on e-commerce is continuously increasing, which enables new studies to be carried out and important findings to be obtained with more detailed analysis. Nowadays, e-commerce customer reviews are analyzed by both researchers and sector experts, and are subject to many sentiment analysis studies. Herein, an analysis of customer reviews is carried out in order to obtain more in-depth thoughts about the product, rather than engaging in emotion-based analysis. Initially, we form a new customer reviews dataset made up of reviews by Turkish consumers in order to perform the proposed analysis. The created dataset contains more than 50,000 reviews in three different categories, and each review has multiple labels according to the comments made by the customers. Later, we applied machine learning methods employed for multi-label classification to the dataset. Finally, we compared and analyzed the results we obtained using a diverse set of statistical metrics. As a result of our experimental studies, we found the Micro Precision 0.9157, Micro Recall 0.8837, Micro F1 Score 0.8925, and Hamming Loss 0.0278 to be the most successful approaches. |
Audience | Academic |
Author | Deniz, Emre Coşar, Mustafa Erbay, Hasan |
Author_xml | – sequence: 1 givenname: Emre orcidid: 0000-0003-1563-9256 surname: Deniz fullname: Deniz, Emre – sequence: 2 givenname: Hasan orcidid: 0000-0002-7555-541X surname: Erbay fullname: Erbay, Hasan – sequence: 3 givenname: Mustafa surname: Coşar fullname: Coşar, Mustafa |
BookMark | eNp1UV1PFTEQbQwkIvLK8yY-L_b745FsUEkumhh5bqbd9tqb3S22exH_vQUMfgRnHmZyMufMTM4rdLDkJSB0SvAZYwa_hbuU50oINpgz-QIdUaxET6TGB3_0L9FJrTvcwhCmCTtCH6_205r6DbgwdcMEtaaYPKwpL12O3UU_5HkOxYdu2Nc1t7b7HG5T-F672wTdFfivaQndJkBZ0rJ9jQ4jTDWc_KrH6PrdxZfhQ7_59P5yON_0nnO89kRprRgAHb1jlFAsjKMqMIiAuVdgZOBAjB49E8Q02Dk1SqkpA-yEIOwYXT7qjhl29qakGcoPmyHZByCXrYWyJj8FGwVzAWh0xHDOgwHvYhyZHqNxmAndtN48at2U_G0f6mp3eV-Wdr6likiupVTi99QWmmhaYl4L-DlVb88VF5RSye7vOntmquUY5uSbZTE1_DmCL7nWEuLTMwTbe2ft3842Av-H4NP64FfblKb_0X4Cy5eoVQ |
CitedBy_id | crossref_primary_10_1016_j_jksuci_2024_102083 crossref_primary_10_1016_j_iswa_2024_200332 crossref_primary_10_1108_DPRG_09_2024_0240 crossref_primary_10_1109_ACCESS_2023_3325785 crossref_primary_10_32604_cmc_2024_052666 crossref_primary_10_3390_bdcc7040168 crossref_primary_10_1080_09544828_2025_2475426 crossref_primary_10_1007_s10115_024_02113_7 crossref_primary_10_3390_math12182825 crossref_primary_10_1007_s00521_022_07987_8 crossref_primary_10_1007_s10586_024_04756_1 crossref_primary_10_3390_app13042074 crossref_primary_10_3390_app13127266 crossref_primary_10_2196_45146 crossref_primary_10_1109_ACCESS_2024_3386841 crossref_primary_10_1109_ACCESS_2023_3319384 |
Cites_doi | 10.1109/SIU49456.2020.9302492 10.1016/j.matpr.2020.08.012 10.1007/s11704-017-7031-7 10.1016/j.eswa.2020.114231 10.1515/pralin-2016-0006 10.1109/ICOASE.2019.8723825 10.3390/info10040150 10.4000/books.aaccademia.1767 10.1007/978-1-4471-4594-3_45 10.4018/jdwm.2007070101 10.1109/IAICT50021.2020.9172020 10.1109/ACCESS.2020.3031588 10.1109/IDAP.2019.8875985 10.2339/politeknik.844019 10.1016/j.asej.2014.04.011 10.1109/ICNSC.2019.8743331 10.3115/v1/D14-1162 10.1109/TKDE.2013.39 10.1109/ACCESS.2019.2937518 10.1109/TIFS.2017.2675361 10.1109/TKDE.2014.2382600 10.1016/j.matpr.2020.10.064 10.1109/ACCESS.2019.2944089 10.1007/s11042-020-10361-2 10.1016/j.ipm.2020.102221 10.1109/ACCESS.2020.3006569 10.1109/ICCIC.2016.7919584 10.1109/ICIRCA.2018.8597286 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2022 MDPI AG 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2022 MDPI AG – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 3V. 7SC 7TB 7XB 8AL 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU COVID DWQXO FR3 GNUQQ HCIFZ JQ2 K7- KR7 L6V L7M L~C L~D M0N M7S P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U DOA |
DOI | 10.3390/axioms11090436 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College Coronavirus Research Database ProQuest Central Korea Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Engineering Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts ProQuest Computing Engineering Database ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 2075-1680 |
ExternalDocumentID | oai_doaj_org_article_f53bea2fb19444e9acbffd38df9b0358 A745222631 10_3390_axioms11090436 |
GeographicLocations | Turkey New Jersey |
GeographicLocations_xml | – name: Turkey – name: New Jersey |
GroupedDBID | 5VS 8FE 8FG AADQD AAFWJ AAYXX ABDBF ABJCF ABUWG ACUHS ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AMVHM ARAPS AZQEC BCNDV BENPR BGLVJ BPHCQ CCPQU CITATION DWQXO EAD EAP ESX GNUQQ GROUPED_DOAJ HCIFZ IAO ITC K6V K7- KQ8 L6V M7S MODMG M~E OK1 PHGZM PHGZT PIMPY PQQKQ PROAC PTHSS QF4 QN7 PMFND 3V. 7SC 7TB 7XB 8AL 8FD 8FK COVID FR3 JQ2 KR7 L7M L~C L~D M0N P62 PKEHL PQEST PQGLB PQUKI PRINS Q9U PUEGO |
ID | FETCH-LOGICAL-c440t-178873aa2dcb3212059b27e3afa04c7a96e4a198dc35193afbb7d66823a0b5513 |
IEDL.DBID | DOA |
ISSN | 2075-1680 |
IngestDate | Wed Aug 27 00:48:15 EDT 2025 Fri Jul 25 12:10:46 EDT 2025 Tue Jun 17 21:37:06 EDT 2025 Tue Jun 10 21:21:15 EDT 2025 Thu Apr 24 22:52:14 EDT 2025 Tue Jul 01 04:19:14 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c440t-178873aa2dcb3212059b27e3afa04c7a96e4a198dc35193afbb7d66823a0b5513 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-1563-9256 0000-0002-7555-541X |
OpenAccessLink | https://doaj.org/article/f53bea2fb19444e9acbffd38df9b0358 |
PQID | 2716486675 |
PQPubID | 2032429 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_f53bea2fb19444e9acbffd38df9b0358 proquest_journals_2716486675 gale_infotracmisc_A745222631 gale_infotracacademiconefile_A745222631 crossref_primary_10_3390_axioms11090436 crossref_citationtrail_10_3390_axioms11090436 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220801 |
PublicationDateYYYYMMDD | 2022-08-01 |
PublicationDate_xml | – month: 08 year: 2022 text: 20220801 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Axioms |
PublicationYear | 2022 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Xu (ref_15) 2020; 57 Tsoumakas (ref_39) 2007; 3 Tripathi (ref_19) 2020; 33 ref_35 ref_34 ref_11 ref_33 ref_10 ref_31 Zhang (ref_38) 2018; 12 Ozyurt (ref_29) 2021; 168 ref_30 Medhat (ref_13) 2014; 5 Erbay (ref_6) 2021; 2021 ref_18 ref_17 ref_16 Shehnepoor (ref_4) 2017; 12 Muslim (ref_14) 2020; 1 Shoja (ref_23) 2019; 7 ref_25 Erbay (ref_5) 2021; 80 Leeuwenberg (ref_9) 2016; 105 Mamat (ref_3) 2019; 7 Liu (ref_7) 2014; 27 ref_22 ref_21 Schweter (ref_36) 2020; 2020 ref_20 Gu (ref_24) 2020; 8 ref_1 Zhang (ref_12) 2020; 8 ref_2 Mikolov (ref_32) 2013; 26 ref_28 ref_27 ref_26 ref_8 Zhang (ref_37) 2013; 26 |
References_xml | – ident: ref_27 doi: 10.1109/SIU49456.2020.9302492 – volume: 33 start-page: 4520 year: 2020 ident: ref_19 article-title: Analysis and prediction of extent of helpfulness of reviews on E-commerce websites publication-title: Mater. Today Proc. doi: 10.1016/j.matpr.2020.08.012 – volume: 12 start-page: 191 year: 2018 ident: ref_38 article-title: Binary relevance for multi-label learning: An overview publication-title: Front. Comput. Sci. doi: 10.1007/s11704-017-7031-7 – volume: 168 start-page: 114231 year: 2021 ident: ref_29 article-title: A new topic modeling based approach for aspect extraction in aspect based sentiment analysis: SS-LDA publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2020.114231 – ident: ref_34 – volume: 2021 start-page: 8869681 year: 2021 ident: ref_6 article-title: Design and Analysis of a Novel Authorship Verification Framework for Hijacked Social Media Accounts Compromised by a Human publication-title: Secur. Commun. Netw. – volume: 105 start-page: 111 year: 2016 ident: ref_9 article-title: A minimally supervised approach for synonym extraction with word embeddings publication-title: Prague Bull. Math. Linguist. doi: 10.1515/pralin-2016-0006 – ident: ref_11 – ident: ref_30 doi: 10.1109/ICOASE.2019.8723825 – ident: ref_1 doi: 10.3390/info10040150 – ident: ref_8 doi: 10.4000/books.aaccademia.1767 – ident: ref_26 doi: 10.1007/978-1-4471-4594-3_45 – volume: 3 start-page: 1 year: 2007 ident: ref_39 article-title: Multi-label classification: An overview publication-title: Int. J. Data Warehous. Min. (IJDWM) doi: 10.4018/jdwm.2007070101 – ident: ref_35 – volume: 2020 start-page: 3770924 year: 2020 ident: ref_36 article-title: Berturk-Bert Models for Turkish publication-title: Zenodo – ident: ref_2 doi: 10.1109/IAICT50021.2020.9172020 – volume: 8 start-page: 189513 year: 2020 ident: ref_12 article-title: A multiclassification model of sentiment for E-commerce reviews publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3031588 – ident: ref_21 – ident: ref_28 doi: 10.1109/IDAP.2019.8875985 – ident: ref_25 doi: 10.2339/politeknik.844019 – volume: 5 start-page: 1093 year: 2014 ident: ref_13 article-title: Sentiment analysis algorithms and applications: A survey publication-title: Ain Shams Eng. J. doi: 10.1016/j.asej.2014.04.011 – ident: ref_17 doi: 10.1109/ICNSC.2019.8743331 – ident: ref_33 doi: 10.3115/v1/D14-1162 – ident: ref_31 – volume: 26 start-page: 1819 year: 2013 ident: ref_37 article-title: A review on multi-label learning algorithms publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2013.39 – volume: 7 start-page: 119121 year: 2019 ident: ref_23 article-title: Customer reviews analysis with deep neural networks for e-commerce recommender systems publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2937518 – volume: 12 start-page: 1585 year: 2017 ident: ref_4 article-title: NetSpam: A network-based spam detection framework for reviews in online social media publication-title: IEEE Trans. Inf. Forensics Secur. doi: 10.1109/TIFS.2017.2675361 – ident: ref_10 – volume: 27 start-page: 1696 year: 2014 ident: ref_7 article-title: TASC: Topic-adaptive sentiment classification on dynamic tweets publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2014.2382600 – ident: ref_18 doi: 10.1016/j.matpr.2020.10.064 – volume: 7 start-page: 143721 year: 2019 ident: ref_3 article-title: Hybrid water cycle optimization algorithm with simulated annealing for spam e-mail detection publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2944089 – volume: 80 start-page: 13575 year: 2021 ident: ref_5 article-title: Novel authorship verification model for social media accounts compromised by a human publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-020-10361-2 – volume: 1 start-page: 8 year: 2020 ident: ref_14 article-title: Support vector machine (svm) optimization using grid search and unigram to improve e-commerce review accuracy publication-title: J. Soft Comput. Explor. – volume: 57 start-page: 102221 year: 2020 ident: ref_15 article-title: E-commerce product review sentiment classification based on a naïve Bayes continuous learning framework publication-title: Inf. Process. Manag. doi: 10.1016/j.ipm.2020.102221 – volume: 8 start-page: 121014 year: 2020 ident: ref_24 article-title: Sentiment analysis via deep multichannel neural networks with variational information bottleneck publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3006569 – volume: 26 start-page: 3111 year: 2013 ident: ref_32 article-title: Distributed representations of words and phrases and their compositionality publication-title: Adv. Neural Inf. Process. Syst. – ident: ref_22 – ident: ref_20 doi: 10.1109/ICCIC.2016.7919584 – ident: ref_16 doi: 10.1109/ICIRCA.2018.8597286 |
SSID | ssj0000913813 |
Score | 2.3005445 |
Snippet | The multi-label customer reviews classification task aims to identify the different thoughts of customers about the product they are purchasing. Due to the... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 436 |
SubjectTerms | Analysis Artificial intelligence Classification Computational linguistics Consumer behavior customer reviews analysis Customers Data mining Datasets Electronic commerce Epidemics Language processing Machine learning multi-label classification Natural language interfaces natural language processing New Jersey Sentiment analysis Support vector machines |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dSxwxEA-tvrQPRftBrbbkodCn4G6Sze4-FZUTkd5RSgXfwuRLBHur7in--Z3J5a7cg31bsgO7mWSSmWTm92Psq9KNDC4Aem7BCa1dKyC1GKo4Q2zbyUFGvJnOzNmFPr9sLsuB21jSKldrYl6ow-DpjPxQkmPfGfRvv9_eCWKNotvVQqHxkm3jEtxh8LV9PJn9_LU-ZSHUy65WS7RGhfH9ITxdD39Gwtkk8PWN3SiD9j-3NOf95nSHvSmOIj9ajuwuexHnb9nr6RpldXzHZrl6VvwAF294ZrekvJ-saj4kPhFU_UGJK_zkAX08fOTLq4CRP14Dn-Y8ysgLxOrVe3ZxOvl9ciYKP4LwWlcLUVMmoAKQwTuF_UdPyck2KkhQad9Cb6KGuu-CJxY-bHauDcZ0UkHliNjlA9uaD_P4kXEMqZsAoaqjdNrUKF3FvpMOwERsq_eYWOnJ-gIeThwWNxaDCNKr3dTrHvu2lr9dwmY8K3lMal9LEdx1bhjur2yxHpsa5SLI5Opeax178C6loLqQeleppsPP0aBZMkr8LQ-ltgA7R_BW9qgl4HhpFHbkYEMSjclvvl4Nuy3GPNp_U-_T_1_vs1eSqiNyfuAB21rcP8TP6LMs3JcyMf8CLufsNQ priority: 102 providerName: ProQuest |
Title | Multi-Label Classification of E-Commerce Customer Reviews via Machine Learning |
URI | https://www.proquest.com/docview/2716486675 https://doaj.org/article/f53bea2fb19444e9acbffd38df9b0358 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1RSxwxEA7VvtQHsdXiqT3yUPBpcTfJZncfVe4qpXeUouBbmNkkIuid9M7iz3cmux7eg_jStyU7sMnMJjMfmflGiO_alMqjB4rcPGbGYJVBrAiqoOVu2xEhMd5Mpvbiyvy8Lq9ftfrinLCOHrhT3EksNQZQEQltGxMaaDFGr2sfG8x1mcp8yee9AlPpDG4KckW6Y2nUhOtP4Ol2fr9gfk0mXV_zQoms_60jOfmZ8Y7Y7gNEedpN7LP4EGZfxNZkxa662BXTVDWb_QIMdzJ1teR8n6RiOY9ylHHVByesyPNHiu3oUXZXAAv57xbkJOVPBtlTq97siavx6PL8Iuv7ImStMfkyKzgDUAMo36Im10MREqoqaIiQm7aCxgYDRVP7lrvv0TBi5a2tlYYcuaHLV7E5m8_CvpAEpUsPPi-CQmMLks5DUysEsIHGioHIXvTk2p40nHtX3DkCD6xXt67XgTheyT90dBlvSp6x2ldSTHOdBsj4rje-e8_49Dk2muPNSNNqoa8poMUxrZU7rZgwXllNCzlak6RN1K6_fjG76zfxwinGkrUlSHXwPyZ7KD4prp1I2YNHYnP59zF8o4hmiUOxUY9_DMXHs9H0959h-pWfATJS92Q |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOQAHxFMUCvgA4hQ1sR0nOaCqLV22dHdPrdSbGT9SVSqb0mx5_Kn-xs44yaI9lFtvkT3KY2yPZ5yZ72Psg1S58NYDem7eJkrZIoG6wFDFamLbri1ExJvpTI-P1beT_GSNXQ-1MJRWOdjEaKh94-iMfEuQY19q9G-3L34mxBpFf1cHCo1uWhyGv78xZGs_H3zB8f0oxGj_aG-c9KwCiVMqXSQZ5c9JAOGdlWi40b-woggSakiVK6DSQQGG4t4Rdx02W1t4rUshIbVEh4L3vcfuKykrWlHl6OvyTIcwNstMdtiQ2J9uwZ-z5kdLqJ4E9b6y90WKgNs2gri7jZ6wx71byne6efSUrYX5M_ZousR0bZ-zWazVTSZgwzmPXJqUZRQHljc130-o1oTSZPjeFXqUeMm7Hw8t_3UGfBqzNgPvAV1PX7DjO9HbS7Y-b-bhFeMYwOcefJoFYZXOUDoNVSksgA7Ylm2wZNCTcT1UOTFmnBsMWUivZlWvG-zTUv6iA-m4VXKX1L6UInDt2NBcnpp-rZo6lzaAqG1WKaVCBc7WtZelryubyrzEx9GgGTIB-FoO-koG_DgC0zI7BcHUCy3xQzZXJHHputXuYdhNbzpa82-iv_5_93v2YHw0nZjJwezwDXsoqC4jZiZusvXF5VV4i97Swr6LU5Sz73e9Jm4ArJcm_g |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKVkJwqHiKPgAfQJyiTWzndahQH7tqaXdVISr1ZsaxXVUqm9JsW_hr_DpmnGTRHsqtt8ge5TG2xzPxzPcx9kGqVFhjAT03ayKlTB6BzzFUMRmxbXsDAfFmMs0OTtWXs_Rshf3pa2EorbK3icFQ27qif-RDQY59kaF_O_RdWsTJ_vjz1c-IGKTopLWn02inyJH7fYfhW7N9uI9j_VGI8ejb3kHUMQxElVLxPEool04CCFsZiUYcfQ0jcifBQ6yqHMrMKcCw3FbEY4fNxuQ2ywohITZEjYL3fcRWc4yK4gFb3R1NT74u_vAQ4maRyBYpUsoyHsKvi_pHQxifBPy-tBMGwoD7toWw142fsbXOSeU77ax6zlbc7AV7OlkgvDYv2TRU7kbHYNwlD8yalHMUhpnXno8iqjyhpBm-d4P-JV7y9hii4bcXwCchh9PxDt71_BU7fRDNvWaDWT1zbxjHcD61YOPECaOyBKVjVxbCAGQO25J1FvV60lUHXE78GZcaAxjSq17W6zr7tJC_aiE77pXcJbUvpAhqOzTU1-e6W7nap9I4EN4kpVLKlVAZ760srC9NLNMCH0eDpskg4GtV0NU14McRtJbeyQm0XmQSP2RrSRIXcrXc3Q-77gxJo_9N-43_d79nj3E96OPD6dEmeyKoSCOkKW6xwfz6xr1F12lu3nVzlLPvD70s_gJCYSyQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-Label+Classification+of+E-Commerce+Customer+Reviews+via+Machine+Learning&rft.jtitle=Axioms&rft.au=Deniz%2C+Emre&rft.au=Erbay%2C+Hasan&rft.au=Co%C5%9Far%2C+Mustafa&rft.date=2022-08-01&rft.pub=MDPI+AG&rft.issn=2075-1680&rft.eissn=2075-1680&rft.volume=11&rft.issue=9&rft_id=info:doi/10.3390%2Faxioms11090436&rft.externalDocID=A745222631 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2075-1680&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2075-1680&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2075-1680&client=summon |