Evolution of the proportion of colistin-resistant isolates in animal clinical Escherichia coli over time - A hierarchical mixture model approach
Colistin resistance has been the subject of much attention since mcr genes encoding plasmid-mediated colistin resistance description in 2015. To date, surveillance data about resistance levels encountered in food-producing animals are scarce. In France, the Resapath dataset, consisting in a large co...
Saved in:
Published in | Preventive veterinary medicine Vol. 213; p. 105881 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.04.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 0167-5877 1873-1716 1873-1716 0167-5877 |
DOI | 10.1016/j.prevetmed.2023.105881 |
Cover
Loading…
Abstract | Colistin resistance has been the subject of much attention since mcr genes encoding plasmid-mediated colistin resistance description in 2015. To date, surveillance data about resistance levels encountered in food-producing animals are scarce. In France, the Resapath dataset, consisting in a large collection of disk diffusion antibiogram results transmitted by a network of laboratories. It offers a unique opportunity to study the evolution of resistance towards colistin over the past 15 years in Escherichia coli isolated from diseased food-producing animals. This study used a Bayesian hierarchical Gaussian mixture model to estimate the resistant proportions from those data. This non-classical approach deals with the colistin-specific problem of overlapping distributions of diameters measured for susceptible and resistant isolates that makes the definition of epidemiological cut-off very hard. This model also considers the variability observed between the measurements performed by different laboratories. Proportion of resistant isolates has been calculated for several food-producing animals and most encountered diseases. From those estimations, a marked evolution of the proportions of resistant isolates is noticeable, for swine suffering from digestive disorders. In this group, an increase over the 2006–2011 period from 0.1% [ 0.0%, 1.2%] in 2006–28.6% [25.1%, 32.3%] in 2011 was followed by a decrease to reach 3.6% [2.3%;5.3%] in 2018. For isolates related to digestive disorders in calves, percentages increased and reached 7% in 2009 then decreased as for swine. In contrast, for poultry productions, estimated proportions and credibility intervals were constantly very close to zero. |
---|---|
AbstractList | Colistin resistance has been the subject of much attention since mcr genes encoding plasmid-mediated colistin resistance description in 2015. To date, surveillance data about resistance levels encountered in food-producing animals are scarce. In France, the Resapath dataset, consisting in a large collection of disk diffusion antibiogram results transmitted by a network of laboratories. It offers a unique opportunity to study the evolution of resistance towards colistin over the past 15 years in Escherichia coli isolated from diseased food-producing animals. This study used a Bayesian hierarchical Gaussian mixture model to estimate the resistant proportions from those data. This non-classical approach deals with the colistin-specific problem of overlapping distributions of diameters measured for susceptible and resistant isolates that makes the definition of epidemiological cut-off very hard. This model also considers the variability observed between the measurements performed by different laboratories. Proportion of resistant isolates has been calculated for several food-producing animals and most encountered diseases. From those estimations, a marked evolution of the proportions of resistant isolates is noticeable, for swine suffering from digestive disorders. In this group, an increase over the 2006-2011 period from 0.1% [ 0.0%, 1.2%] in 2006-28.6% [25.1%, 32.3%] in 2011 was followed by a decrease to reach 3.6% [2.3%;5.3%] in 2018. For isolates related to digestive disorders in calves, percentages increased and reached 7% in 2009 then decreased as for swine. In contrast, for poultry productions, estimated proportions and credibility intervals were constantly very close to zero.Colistin resistance has been the subject of much attention since mcr genes encoding plasmid-mediated colistin resistance description in 2015. To date, surveillance data about resistance levels encountered in food-producing animals are scarce. In France, the Resapath dataset, consisting in a large collection of disk diffusion antibiogram results transmitted by a network of laboratories. It offers a unique opportunity to study the evolution of resistance towards colistin over the past 15 years in Escherichia coli isolated from diseased food-producing animals. This study used a Bayesian hierarchical Gaussian mixture model to estimate the resistant proportions from those data. This non-classical approach deals with the colistin-specific problem of overlapping distributions of diameters measured for susceptible and resistant isolates that makes the definition of epidemiological cut-off very hard. This model also considers the variability observed between the measurements performed by different laboratories. Proportion of resistant isolates has been calculated for several food-producing animals and most encountered diseases. From those estimations, a marked evolution of the proportions of resistant isolates is noticeable, for swine suffering from digestive disorders. In this group, an increase over the 2006-2011 period from 0.1% [ 0.0%, 1.2%] in 2006-28.6% [25.1%, 32.3%] in 2011 was followed by a decrease to reach 3.6% [2.3%;5.3%] in 2018. For isolates related to digestive disorders in calves, percentages increased and reached 7% in 2009 then decreased as for swine. In contrast, for poultry productions, estimated proportions and credibility intervals were constantly very close to zero. Colistin resistance has been the subject of much attention since mcr genes encoding plasmid-mediated colistin resistance description in 2015. To date, surveillance data about resistance levels encountered in food-producing animals are scarce. In France, the Resapath dataset, consisting in a large collection of disk diffusion antibiogram results transmitted by a network of laboratories. It offers a unique opportunity to study the evolution of resistance towards colistin over the past 15 years in Escherichia coli isolated from diseased food-producing animals. This study used a Bayesian hierarchical Gaussian mixture model to estimate the resistant proportions from those data. This non-classical approach deals with the colistin-specific problem of overlapping distributions of diameters measured for susceptible and resistant isolates that makes the definition of epidemiological cut-off very hard. This model also considers the variability observed between the measurements performed by different laboratories. Proportion of resistant isolates has been calculated for several food-producing animals and most encountered diseases. From those estimations, a marked evolution of the proportions of resistant isolates is noticeable, for swine suffering from digestive disorders. In this group, an increase over the 2006–2011 period from 0.1% [ 0.0%, 1.2%] in 2006–28.6% [25.1%, 32.3%] in 2011 was followed by a decrease to reach 3.6% [2.3%;5.3%] in 2018. For isolates related to digestive disorders in calves, percentages increased and reached 7% in 2009 then decreased as for swine. In contrast, for poultry productions, estimated proportions and credibility intervals were constantly very close to zero. Colistin resistance has been the subject of much attention since mcr genes encoding plasmid-mediated colistin resistance description in 2015. To date, surveillance data about resistance levels encountered in food-producing animals are scarce. In France, the Resapath dataset, consisting in a large collection of disk diffusion antibiogram results transmitted by a network of laboratories. It offers a unique opportunity to study the evolution of resistance towards colistin over the past 15 years in Escherichia coli isolated from diseased food-producing animals. This study used a Bayesian hierarchical Gaussian mixture model to estimate the resistant proportions from those data. This non-classical approach deals with the colistin-specific problem of overlapping distributions of diameters measured for susceptible and resistant isolates that makes the definition of epidemiological cut-off very hard. This model also considers the variability observed between the measurements performed by different laboratories. Proportion of resistant isolates has been calculated for several food-producing animals and most encountered diseases. From those estimations, a marked evolution of the proportions of resistant isolates is noticeable, for swine suffering from digestive disorders. In this group, an increase over the 2006-2011 period from 0.1% [ 0.0%, 1.2%] in 2006 to 28.6% [25.1%, 32.3%] in 2011 was followed by a decrease to reach 3.6% [2.3%;5.3%] in 2018. For isolates related to digestive disorders in calves, percentages increased and reached 7% in 2009 then decreased as for swine. In contrast, for poultry productions, estimated proportions and credibility intervals were constantly very close to zero. |
ArticleNumber | 105881 |
Author | COZ, Elsa Jarrige, Nathalie Delignette-Muller, Marie-Laure Cazeau, Géraldine Chauvin, Claire Jouy, Eric |
Author_xml | – sequence: 1 givenname: Elsa surname: COZ fullname: COZ, Elsa email: ext-elsa.coz@chu-lyon.fr organization: Université de Lyon, Université Lyon 1, CNRS, VetAgro Sup, UMR 5558, Laboratoire de Biométrie et Biologie Evolutive, F-69622 Villeurbanne, France – sequence: 2 givenname: Eric surname: Jouy fullname: Jouy, Eric organization: Mycoplasmology, bacteriology and antimicrobial resistance unit, Anses (French Agency for Food, Environmental and Occupational Health and Safety), Ploufragan Laboratory, France – sequence: 3 givenname: Géraldine surname: Cazeau fullname: Cazeau, Géraldine organization: Université de Lyon, Anses, Laboratoire de Lyon, Unité Epidémiologie et Appui à la Surveillance, France – sequence: 4 givenname: Nathalie surname: Jarrige fullname: Jarrige, Nathalie organization: Université de Lyon, Anses, Laboratoire de Lyon, Unité Epidémiologie et Appui à la Surveillance, France – sequence: 5 givenname: Claire surname: Chauvin fullname: Chauvin, Claire organization: Epidemiology, Health and Welfare Unit, Anses, Ploufragan Laboratory, France – sequence: 6 givenname: Marie-Laure surname: Delignette-Muller fullname: Delignette-Muller, Marie-Laure organization: Université de Lyon, Université Lyon 1, CNRS, VetAgro Sup, UMR 5558, Laboratoire de Biométrie et Biologie Evolutive, F-69622 Villeurbanne, France |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36871439$$D View this record in MEDLINE/PubMed https://anses.hal.science/anses-04040740$$DView record in HAL |
BookMark | eNqNkkGP1CAUx4lZ486ufgXlaGI6QmkLPXiYbEbXZBIveiYMfU2ZUKjANO638CNL7e4cvKzhAHn8_o_3-L8bdOW8A4TeUbKlhDYfT9spwAxphG5bkpLlaC0EfYE2VHBWUE6bK7TJJC9qwfk1uonxRAhpGlG_QtesEZxWrN2g3_vZ23My3mHf4zQAnoKffHiKaG9NTMYVAWI-KJewid6qBBEbh5Uzo7JYW-OMzod91AMEowej_kqxnyHgZEbABd7hwUBQId8u7Gh-pXMAPPoOLFZTfljp4TV62Ssb4c3jfot-fN5_v7svDt--fL3bHQpdVSQVtBYVY0fR62NP27ZWVdPkn6n0UbeMlrUmPac91XXHuNJlbr2telo3ZduRtusbdos-rHkHZeUUchvhQXpl5P3uIJWLECWp8uIVmWmm3690LvLnGWKSo4karFUO_DlKtrA1qTh_Fi25YFyImpGMvn1Ez8fs5KWMJ3sywFdABx9jgP6CUCKXQZAneRkEuQyCXAchKz_9o9QmqcXVFJSx_6HfrXrIHszZNhm1AaehMwF0kp03z-b4A5591T4 |
CitedBy_id | crossref_primary_10_3390_antibiotics12091424 |
Cites_doi | 10.1016/S0732-8893(99)00130-3 10.1093/jac/34.1.73 10.1016/j.prevetmed.2018.09.009 10.1371/journal.pone.0163636 10.1016/j.vetmic.2018.07.025 10.1016/j.mimet.2016.11.017 10.1080/10618600.1998.10474787 10.2147/IDR.S201324 10.1093/jac/dkx196 10.1016/j.cmi.2018.05.021 10.1016/j.csda.2013.01.024 10.1186/s12917-020-2268-z 10.1093/jac/dkv309 10.1016/S1473-3099(06)70580-1 10.1016/j.ijantimicag.2016.09.016 10.1016/S1473-3099(16)00007-4 10.1016/j.ijantimicag.2011.04.006 10.1016/j.prevetmed.2019.01.010 10.1111/apm.12624 10.1016/j.ijantimicag.2015.06.005 10.1093/cid/cit367 10.1016/j.rvsc.2019.01.010 10.1002/sim.2207 10.3390/microorganisms8111716 10.1111/1467-9868.00095 10.1016/S1473-3099(15)00424-7 10.1016/j.prevetmed.2018.03.017 10.1086/429323 10.1002/bimj.201600253 10.1016/S0924-8579(02)00028-6 10.3390/microorganisms9040678 |
ContentType | Journal Article |
Copyright | 2023 Copyright © 2023. Published by Elsevier B.V. Copyright |
Copyright_xml | – notice: 2023 – notice: Copyright © 2023. Published by Elsevier B.V. – notice: Copyright |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 1XC VOOES |
DOI | 10.1016/j.prevetmed.2023.105881 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Veterinary Medicine |
EISSN | 1873-1716 0167-5877 |
ExternalDocumentID | oai_HAL_anses_04040740v1 36871439 10_1016_j_prevetmed_2023_105881 S0167587723000454 |
Genre | Journal Article |
GeographicLocations | France |
GeographicLocations_xml | – name: France |
GroupedDBID | --- --K --M .~1 0R~ 123 1B1 1RT 1~. 1~5 29O 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO ABBQC ABFNM ABGRD ABJNI ABKYH ABLVK ABMAC ABMZM ABRWV ABXDB ABYKQ ACDAQ ACGFS ACIUM ACRLP ADBBV ADEZE ADMUD ADQTV AEBSH AEKER AENEX AEQOU AESVU AEXOQ AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AJRQY ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANZVX ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CBWCG CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HMT HVGLF HZ~ IHE J1W KOM LCYCR LW9 M34 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 QYZTP R2- RIG ROL RPZ SAB SDF SDG SES SEW SNL SPCBC SPT SSA SSH SSZ SVS T5K UHS WUQ ~G- ~KM AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACIEU ACMHX ACRPL ACVFH ADCNI ADNMO ADSLC AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AGWPP AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION CGR CUY CVF ECM EIF NPM 7X8 EFKBS 7S9 L.6 1XC VOOES |
ID | FETCH-LOGICAL-c440t-158433b8fcbf1995a4661014cbc93125c0f71f1c5d37ac200094f15629d09df63 |
IEDL.DBID | .~1 |
ISSN | 0167-5877 1873-1716 |
IngestDate | Fri May 09 12:10:06 EDT 2025 Fri Sep 05 17:27:42 EDT 2025 Fri Sep 05 08:02:29 EDT 2025 Wed Feb 19 02:24:22 EST 2025 Thu Apr 24 23:02:39 EDT 2025 Tue Jul 01 04:22:25 EDT 2025 Fri Feb 23 02:37:10 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | DD Disc diffusion Colistin MIC AMR CI MCMC Mixture model Inhibition zone diameter DS WT/NWT IZD ECOFF Antimicrobial resistance trend Bayesian inference |
Language | English |
License | Copyright © 2023. Published by Elsevier B.V. Copyright: http://hal.archives-ouvertes.fr/licences/copyright |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c440t-158433b8fcbf1995a4661014cbc93125c0f71f1c5d37ac200094f15629d09df63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-5453-3994 0000-0003-4956-5355 |
OpenAccessLink | https://anses.hal.science/anses-04040740 |
PMID | 36871439 |
PQID | 2783788530 |
PQPubID | 23479 |
ParticipantIDs | hal_primary_oai_HAL_anses_04040740v1 proquest_miscellaneous_3040450477 proquest_miscellaneous_2783788530 pubmed_primary_36871439 crossref_primary_10_1016_j_prevetmed_2023_105881 crossref_citationtrail_10_1016_j_prevetmed_2023_105881 elsevier_sciencedirect_doi_10_1016_j_prevetmed_2023_105881 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-04-01 |
PublicationDateYYYYMMDD | 2023-04-01 |
PublicationDate_xml | – month: 04 year: 2023 text: 2023-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Preventive veterinary medicine |
PublicationTitleAlternate | Prev Vet Med |
PublicationYear | 2023 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Bourély, Chauvin, Jouy, Cazeau, Jarrige, Leblond, Gay (bib9) 2018; 223 Zhang, Wang, O’Connor (bib48) 2020 Delignette-Muller, Flandrois (bib15) 1994; 34 Mader, Jarrige, Haenni, Bourély, Madec, Amat (bib36) 2021 Karvanen, M., 2013. Optimization of Colistin Dosage in the Treatment of Multiresistant Gram-negative Infections. Kronvall, Giske, Kahlmeter (bib32) 2011; 38 Boireau, C., Jarrige, N., Cazeau, G., Jouy, E., Haenni, M., Philippon, C., Calavas, D., Madec, J.-Y., Leblond, A., Gay, E., 2018. Représentativité et couverture du Résapath, le réseau d’épidémiosurveillance de l’antibiorésistance des bactéries pathogènes animales. Falagas, Kasiakou (bib20) 2005; 40 Mouton (bib41) 2002 Brooks, Gelman (bib11) 1998; 7 Ezadi, Ardebili, Mirnejad (bib19) 2018; 57 McLachlan, Peel (bib37) 2000 Perrin-Guyomard, Bruneau, Houée, Deleurme, Legrandois, Poirier, Soumet, Sanders (bib43) 2016 Annis, Craig (bib3) 2005; 24 Moennighoff, Thomas, Nienhaus, Hartmann, Menrath, Merkel, Detlefsen, Kreienbrock, Hennig-Pauka (bib40) 2020; 16 EMA, 2013. Use of colistin products in animals within the European Union: development of resistance and possible impact on human and animal health. Richardson, Green, Journal, Statistical, Series, Richardson (bib46) 1997; 59 W H O, 2019. WHO | WHO list of Critically Important Antimicrobials (CIA) 6th Revision 2018 https://www.who.int/foodsafety/ublications/antimicrobials-sixth/en/. Bourély, Fortané, Calavas, Leblond, Gay (bib10) 2018; 159 Haenni, Poirel, Kieffer, Châtre, Saras, Métayer, Dumoulin, Nordmann, Madec (bib21) 2016; 16 Liu, Wang, Walsh, Yi, Zhang, Spencer, Doi, Tian, Dong, Huang, Yu, Gu, Ren, Chen, Lv, He, Zhou, Liang, Liu, Shen (bib34) 2016; 16 Pormohammad, Nasiri, Azimi (bib45) 2019 Catry, Cavaleri, Baptiste, Grave, Grein, Holm, Jukes, Liebana, Navas, Mackay, Magiorakos, Romo, Moulin, Madero, Pomba, Powell, Pyörälä, Rantala, Ružauskas, Sanders, Teale, Threlfall, Törneke, Van Duijkeren, Edo (bib12) 2015; 46 Craig (bib13) 2000; 36 Hombach, Ochoa, Maurer, Pfiffner, Böttger, Furrer (bib23) 2016; 71 Andrade, Silva, Rodrigues, Pina-Vaz (bib2) 2020; 8 Miguela-Villoldo, Hernández, Moreno, Rodríguez-Lázaro, Quesada, Domínguez, Ugarte-Ruiz (bib39) 2019; 123 Plummer, M., 2017. JAGS Version 4.3.0 user manual 73. Badger, Sam, Stryhn, Trott, Jordan, Caraguel (bib6) 2019 Jouy, Haenni, Le Devendec, Le Roux, Châtre, Madec, Kempf (bib27) 2017; 132 EUCAST, 2016. Recommendations for MIC Determination of Colistin ( Polymyxin E) As Recommended by the Joint CLSI-EUCAST Polymyxin Breakpoints Working Group. no. March 22: 2016. Åhman, Matuschek, Kahlmeter (bib1) 2019; 25 Kempf, Jouy, Chauvin (bib30) 2016; 48 Mesa-Varona, Mader, Velasova, Madec, Granier, Perrin-Guyomard, Norstrom, Kaspar, Grobbel, Jouy, Anjum, Tenhagen (bib38) 2021; 9 Blöchliger, Keller, Böttger, Hombach (bib7) 2017; 72 Del Fava, Rimseliene, Flem, De Blasio, Tomba, Manfredi (bib14) 2016; 11 Neuenschwander, Zwahlen, Kim, Engel, Rieder (bib42) 2000; 4 Johnson, Jones, Gardner (bib26) 2019; 167 Jaspers, Aerts, Verbeke, Beloeil (bib24) 2014; 71 Kassamali, Rotschafer, Jones, Prince, Danziger (bib29) 2013; 57 Kronvall, Smith (bib31) 2016; 124 Jaspers, Komárek, Aerts (bib25) 2018; 60 European Food Safety Authority, Aerts, Battisti, Hendriksen, Kempf, Teale, Tenhagen, Veldman, Wasyl, Guerra, Liébana, Thomas-López, Belœil (bib18) 2019; 17 Hémonic, Chauvin, Corrégé (bib22) 2014; 46 ANSES, 2020. Sales Survey of Veterinary Medicinal Products Containing Antimicrobials in France in 2019. ANSES-ANMV Fr. Lurier, Delignette-Muller, Rannou, Strube, Arcangioli, Bourgoin (bib35) 2018; 154 Anses, 2017. Anses annual report. Li, Nation, Turnidge, Milne, Coulthard, Rayner, Paterson (bib33) 2006; 6 Annis (10.1016/j.prevetmed.2023.105881_bib3) 2005; 24 Moennighoff (10.1016/j.prevetmed.2023.105881_bib40) 2020; 16 Kronvall (10.1016/j.prevetmed.2023.105881_bib31) 2016; 124 McLachlan (10.1016/j.prevetmed.2023.105881_bib37) 2000 Andrade (10.1016/j.prevetmed.2023.105881_bib2) 2020; 8 10.1016/j.prevetmed.2023.105881_bib16 10.1016/j.prevetmed.2023.105881_bib17 Brooks (10.1016/j.prevetmed.2023.105881_bib11) 1998; 7 Kempf (10.1016/j.prevetmed.2023.105881_bib30) 2016; 48 Delignette-Muller (10.1016/j.prevetmed.2023.105881_bib15) 1994; 34 Kronvall (10.1016/j.prevetmed.2023.105881_bib32) 2011; 38 Bourély (10.1016/j.prevetmed.2023.105881_bib10) 2018; 159 Johnson (10.1016/j.prevetmed.2023.105881_bib26) 2019; 167 Perrin-Guyomard (10.1016/j.prevetmed.2023.105881_bib43) 2016 Jouy (10.1016/j.prevetmed.2023.105881_bib27) 2017; 132 Richardson (10.1016/j.prevetmed.2023.105881_bib46) 1997; 59 Falagas (10.1016/j.prevetmed.2023.105881_bib20) 2005; 40 Lurier (10.1016/j.prevetmed.2023.105881_bib35) 2018; 154 Mader (10.1016/j.prevetmed.2023.105881_bib36) 2021 Haenni (10.1016/j.prevetmed.2023.105881_bib21) 2016; 16 10.1016/j.prevetmed.2023.105881_bib44 Ezadi (10.1016/j.prevetmed.2023.105881_bib19) 2018; 57 Blöchliger (10.1016/j.prevetmed.2023.105881_bib7) 2017; 72 Craig (10.1016/j.prevetmed.2023.105881_bib13) 2000; 36 Jaspers (10.1016/j.prevetmed.2023.105881_bib24) 2014; 71 Jaspers (10.1016/j.prevetmed.2023.105881_bib25) 2018; 60 Mesa-Varona (10.1016/j.prevetmed.2023.105881_bib38) 2021; 9 10.1016/j.prevetmed.2023.105881_bib47 Hémonic (10.1016/j.prevetmed.2023.105881_bib22) 2014; 46 10.1016/j.prevetmed.2023.105881_bib28 Liu (10.1016/j.prevetmed.2023.105881_bib34) 2016; 16 Badger (10.1016/j.prevetmed.2023.105881_bib6) 2019 Del Fava (10.1016/j.prevetmed.2023.105881_bib14) 2016; 11 Miguela-Villoldo (10.1016/j.prevetmed.2023.105881_bib39) 2019; 123 10.1016/j.prevetmed.2023.105881_bib8 10.1016/j.prevetmed.2023.105881_bib5 10.1016/j.prevetmed.2023.105881_bib4 Bourély (10.1016/j.prevetmed.2023.105881_bib9) 2018; 223 Hombach (10.1016/j.prevetmed.2023.105881_bib23) 2016; 71 Mouton (10.1016/j.prevetmed.2023.105881_bib41) 2002 Li (10.1016/j.prevetmed.2023.105881_bib33) 2006; 6 Neuenschwander (10.1016/j.prevetmed.2023.105881_bib42) 2000; 4 Kassamali (10.1016/j.prevetmed.2023.105881_bib29) 2013; 57 European Food Safety Authority (10.1016/j.prevetmed.2023.105881_bib18) 2019; 17 Zhang (10.1016/j.prevetmed.2023.105881_bib48) 2020 Åhman (10.1016/j.prevetmed.2023.105881_bib1) 2019; 25 Catry (10.1016/j.prevetmed.2023.105881_bib12) 2015; 46 Pormohammad (10.1016/j.prevetmed.2023.105881_bib45) 2019 |
References_xml | – reference: EUCAST, 2016. Recommendations for MIC Determination of Colistin ( Polymyxin E) As Recommended by the Joint CLSI-EUCAST Polymyxin Breakpoints Working Group. no. March 22: 2016. – volume: 16 start-page: 1 year: 2020 end-page: 14 ident: bib40 article-title: Phenotypic antimicrobial resistance in Escherichia coli strains isolated from swine husbandries in North Western Germany - Temporal patterns in samples from laboratory practice from 2006 to 2017 publication-title: BMC Vet. Res. – volume: 8 start-page: 1716 year: 2020 ident: bib2 article-title: Colistin update on its mechanism of action and resistance, present and future challenges publication-title: Microorganisms – volume: 11 start-page: 1 year: 2016 end-page: 12 ident: bib14 article-title: Estimating age-specific immunity and force of infection of varicella zoster virus in norway using mixture models publication-title: PLoS ONE – volume: 59 start-page: 731 year: 1997 end-page: 792 ident: bib46 article-title: On Bayesian analysis of mixtures with an unknown number of components publication-title: J. R. Stat. Soc. Ser. B Methodol. Stat. Soc. – volume: 24 start-page: 3631 year: 2005 end-page: 3644 ident: bib3 article-title: Statistical properties and inference of the antimicrobial MIC test publication-title: Stat. Med. – reference: W H O, 2019. WHO | WHO list of Critically Important Antimicrobials (CIA) 6th Revision 2018 https://www.who.int/foodsafety/ublications/antimicrobials-sixth/en/. – volume: 4 start-page: 719 year: 2000 end-page: 729 ident: bib42 article-title: Trends in the prevalence of infection with Mycobacterium tuberculosis in Korea from 1965 to 1995: an analysis of seven surveys by mixture models publication-title: Int. J. Tuberc. Lung Dis. – volume: 72 start-page: 2553 year: 2017 end-page: 2561 ident: bib7 article-title: MASTER: a model to improve and standardize clinical breakpoints for antimicrobial susceptibility testing using forecast probabilities publication-title: J. Antimicrob. Chemother. – volume: 71 start-page: 141 year: 2016 end-page: 151 ident: bib23 article-title: Relative contribution of biological variation and technical variables to zone diameter variations of disc diffusion susceptibility testing publication-title: J. Antimicrob. Chemother. – start-page: 149 year: 2021 ident: bib36 article-title: OASIS evaluation of the French surveillance network for antimicrobial resistance in diseased animals (RESAPATH): success factors underpinning a well-performing voluntary system publication-title: Epidemiol. Infect. – volume: 71 start-page: 30 year: 2014 end-page: 42 ident: bib24 article-title: A new semi-parametric mixture model for interval censored data, with applications in the field of antimicrobial resistance publication-title: Comput. Stat. Data Anal. – volume: 124 start-page: 1023 year: 2016 end-page: 1030 ident: bib31 article-title: Normalized resistance interpretation, the NRI method: Review of NRI disc test applications and guide to calculations publication-title: APMIS Acta Pathol. Microbiol. Immunol. Scand. – reference: Plummer, M., 2017. JAGS Version 4.3.0 user manual 73. – volume: 46 start-page: 135 year: 2014 end-page: 140 ident: bib22 article-title: Les utilisations d’antibiotiques en élevage de porcs: motifs et stratégies thérapeutiques associées publication-title: Journ. Rech. Porc – year: 2019 ident: bib6 article-title: Intra- and inter-laboratory agreement of the disc diffusion assay for assessing antimicrobial susceptibility of porcine Escherichia coli publication-title: Sens. Actuators B Chem. – volume: 223 start-page: 72 year: 2018 end-page: 78 ident: bib9 article-title: Comparative epidemiology of E. coli resistance to third-generation cephalosporins in diseased food-producing animals publication-title: Vet. Microbiol. – volume: 57 year: 2018 ident: bib19 article-title: Antimicrobial susceptibility testing for polymyxins: challenges, issues, and recommendations publication-title: J. Clin. Microbiol. – volume: 38 start-page: 281 year: 2011 end-page: 290 ident: bib32 article-title: Setting interpretive breakpoints for antimicrobial susceptibility testing using disk diffusion publication-title: Int. J. Antimicrob. Agents – start-page: 15 year: 2020 ident: bib48 article-title: A hierarchical Bayesian latent class mixture model with censorship for detection of linear temporal changes in antibiotic resistance publication-title: PLoS ONE – year: 2019 ident: bib45 article-title: Prevalence of antibiotic resistance in Escherichia coli strains simultaneously isolated from humans, animals, food, and the environment: a systematic review and meta-analysis publication-title: Infect. Drug Resist – volume: 46 start-page: 297 year: 2015 end-page: 306 ident: bib12 article-title: Use of colistin-containing products within the European Union and European Economic Area (EU/EEA): development of resistance in animals and possible impact on human and animal health publication-title: Int. J. Antimicrob. Agents – volume: 40 start-page: 1333 year: 2005 end-page: 1341 ident: bib20 article-title: Colistin: the revival of polymyxins for the management of multidrug-resistant gram-negative bacterial infections publication-title: Clin. Infect. Dis. – reference: Boireau, C., Jarrige, N., Cazeau, G., Jouy, E., Haenni, M., Philippon, C., Calavas, D., Madec, J.-Y., Leblond, A., Gay, E., 2018. Représentativité et couverture du Résapath, le réseau d’épidémiosurveillance de l’antibiorésistance des bactéries pathogènes animales. – volume: 57 start-page: 877 year: 2013 end-page: 883 ident: bib29 article-title: Polymyxins: wisdom does not always come with age publication-title: Clin. Infect. Dis. – reference: EMA, 2013. Use of colistin products in animals within the European Union: development of resistance and possible impact on human and animal health. – volume: 9 start-page: 678 year: 2021 ident: bib38 article-title: Comparison of Phenotypical Antimicrobial Resistance between Clinical and Non-Clinical E. coli Isolates from Broilers, Turkeys and Calves in Four European Countries publication-title: Microorganisms – start-page: 323 year: 2002 end-page: 331 ident: bib41 article-title: Breakpoints: current practice and future perspectives publication-title: Int. J. Antimicrob. Agents – reference: Karvanen, M., 2013. Optimization of Colistin Dosage in the Treatment of Multiresistant Gram-negative Infections. – reference: Anses, 2017. Anses annual report. – volume: 16 start-page: 161 year: 2016 end-page: 168 ident: bib34 article-title: Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study publication-title: Lancet Infect. Dis. – volume: 123 start-page: 141 year: 2019 end-page: 143 ident: bib39 article-title: National colistin sales versus colistin resistance in Spanish pig production publication-title: Res. Vet. Sci. – start-page: 21 year: 2016 ident: bib43 article-title: Prevalence of mcr-1 in commensal Escherichia coli from French livestock, 2007 to 2014 publication-title: Eurosurveillance – reference: ANSES, 2020. Sales Survey of Veterinary Medicinal Products Containing Antimicrobials in France in 2019. ANSES-ANMV Fr. – volume: 36 start-page: 193 year: 2000 end-page: 202 ident: bib13 article-title: Modeling approach to diameter breakpoint determination publication-title: Diagn. Microbiol. Infect. Dis. – volume: 34 start-page: 73 year: 1994 end-page: 81 ident: bib15 article-title: An accurate diffusion method for determining bacterial sensitivity to antibiotics publication-title: J. Antimicrob. Chemother. – volume: 17 year: 2019 ident: bib18 article-title: Technical specifications on harmonised monitoring of antimicrobial resistance in zoonotic and indicator bacteria from food-producing animals and food publication-title: EFSA J. Eur. Food Saf. Auth. – volume: 60 start-page: 7 year: 2018 end-page: 19 ident: bib25 article-title: Bayesian estimation of multivariate normal mixtures with covariate-dependent mixing weights, with an application in antimicrobial resistance monitoring: JASPERS et al. publication-title: Biom. J. – volume: 132 start-page: 125 year: 2017 end-page: 127 ident: bib27 article-title: Improvement in routine detection of colistin resistance in E. coli isolated in veterinary diagnostic laboratories publication-title: J. Microbiol. Methods – volume: 25 start-page: 346 year: 2019 end-page: 352 ident: bib1 article-title: The quality of antimicrobial discs from nine manufacturers—EUCAST evaluations in 2014 and 2017 publication-title: Clin. Microbiol. Infect. – volume: 16 start-page: 281 year: 2016 end-page: 282 ident: bib21 article-title: Co-occurrence of extended spectrum β lactamase and MCR-1 encoding genes on plasmids publication-title: Lancet Infect. Dis. – volume: 7 start-page: 434 year: 1998 end-page: 455 ident: bib11 article-title: General methods for monitoring convergence of iterative simulations publication-title: J. Comput. Graph. Stat. – volume: 167 start-page: 113 year: 2019 end-page: 127 ident: bib26 article-title: Gold standards are out and Bayes is in: implementing the cure for imperfect reference tests in diagnostic accuracy studies publication-title: Prev. Vet. Med. – volume: 154 start-page: 124 year: 2018 end-page: 131 ident: bib35 article-title: Diagnosis of bovine dictyocaulosis by bronchoalveolar lavage technique: a comparative study using a Bayesian approach publication-title: Prev. Vet. Med. – volume: 159 start-page: 123 year: 2018 end-page: 134 ident: bib10 article-title: Why do veterinarians ask for antimicrobial susceptibility testing? A qualitative study exploring determinants and evaluating the impact of antibiotic reduction policy publication-title: Prev. Vet. Med. – volume: 48 start-page: 598 year: 2016 end-page: 606 ident: bib30 article-title: Colistin use and colistin resistance in bacteria from animals publication-title: Int. J. Antimicrob. Agents – start-page: 44 year: 2000 ident: bib37 article-title: Finite Mixture Model publication-title: Finite Mix. Models – volume: 6 start-page: 589 year: 2006 end-page: 601 ident: bib33 article-title: Colistin: the re-emerging antibiotic for multidrug-resistant Gram-negative bacterial infections publication-title: Lancet Infect. Dis. – volume: 36 start-page: 193 year: 2000 ident: 10.1016/j.prevetmed.2023.105881_bib13 article-title: Modeling approach to diameter breakpoint determination publication-title: Diagn. Microbiol. Infect. Dis. doi: 10.1016/S0732-8893(99)00130-3 – volume: 34 start-page: 73 year: 1994 ident: 10.1016/j.prevetmed.2023.105881_bib15 article-title: An accurate diffusion method for determining bacterial sensitivity to antibiotics publication-title: J. Antimicrob. Chemother. doi: 10.1093/jac/34.1.73 – ident: 10.1016/j.prevetmed.2023.105881_bib28 – volume: 159 start-page: 123 year: 2018 ident: 10.1016/j.prevetmed.2023.105881_bib10 article-title: Why do veterinarians ask for antimicrobial susceptibility testing? A qualitative study exploring determinants and evaluating the impact of antibiotic reduction policy publication-title: Prev. Vet. Med. doi: 10.1016/j.prevetmed.2018.09.009 – volume: 11 start-page: 1 year: 2016 ident: 10.1016/j.prevetmed.2023.105881_bib14 article-title: Estimating age-specific immunity and force of infection of varicella zoster virus in norway using mixture models publication-title: PLoS ONE doi: 10.1371/journal.pone.0163636 – volume: 223 start-page: 72 year: 2018 ident: 10.1016/j.prevetmed.2023.105881_bib9 article-title: Comparative epidemiology of E. coli resistance to third-generation cephalosporins in diseased food-producing animals publication-title: Vet. Microbiol. doi: 10.1016/j.vetmic.2018.07.025 – volume: 132 start-page: 125 year: 2017 ident: 10.1016/j.prevetmed.2023.105881_bib27 article-title: Improvement in routine detection of colistin resistance in E. coli isolated in veterinary diagnostic laboratories publication-title: J. Microbiol. Methods doi: 10.1016/j.mimet.2016.11.017 – volume: 7 start-page: 434 issue: n year: 1998 ident: 10.1016/j.prevetmed.2023.105881_bib11 article-title: General methods for monitoring convergence of iterative simulations publication-title: J. Comput. Graph. Stat. doi: 10.1080/10618600.1998.10474787 – year: 2019 ident: 10.1016/j.prevetmed.2023.105881_bib45 article-title: Prevalence of antibiotic resistance in Escherichia coli strains simultaneously isolated from humans, animals, food, and the environment: a systematic review and meta-analysis publication-title: Infect. Drug Resist doi: 10.2147/IDR.S201324 – start-page: 15 year: 2020 ident: 10.1016/j.prevetmed.2023.105881_bib48 article-title: A hierarchical Bayesian latent class mixture model with censorship for detection of linear temporal changes in antibiotic resistance publication-title: PLoS ONE – volume: 72 start-page: 2553 year: 2017 ident: 10.1016/j.prevetmed.2023.105881_bib7 article-title: MASTER: a model to improve and standardize clinical breakpoints for antimicrobial susceptibility testing using forecast probabilities publication-title: J. Antimicrob. Chemother. doi: 10.1093/jac/dkx196 – ident: 10.1016/j.prevetmed.2023.105881_bib17 – volume: 25 start-page: 346 year: 2019 ident: 10.1016/j.prevetmed.2023.105881_bib1 article-title: The quality of antimicrobial discs from nine manufacturers—EUCAST evaluations in 2014 and 2017 publication-title: Clin. Microbiol. Infect. doi: 10.1016/j.cmi.2018.05.021 – volume: 71 start-page: 30 year: 2014 ident: 10.1016/j.prevetmed.2023.105881_bib24 article-title: A new semi-parametric mixture model for interval censored data, with applications in the field of antimicrobial resistance publication-title: Comput. Stat. Data Anal. doi: 10.1016/j.csda.2013.01.024 – volume: 16 start-page: 1 year: 2020 ident: 10.1016/j.prevetmed.2023.105881_bib40 article-title: Phenotypic antimicrobial resistance in Escherichia coli strains isolated from swine husbandries in North Western Germany - Temporal patterns in samples from laboratory practice from 2006 to 2017 publication-title: BMC Vet. Res. doi: 10.1186/s12917-020-2268-z – volume: 46 start-page: 135 year: 2014 ident: 10.1016/j.prevetmed.2023.105881_bib22 article-title: Les utilisations d’antibiotiques en élevage de porcs: motifs et stratégies thérapeutiques associées publication-title: Journ. Rech. Porc – volume: 71 start-page: 141 year: 2016 ident: 10.1016/j.prevetmed.2023.105881_bib23 article-title: Relative contribution of biological variation and technical variables to zone diameter variations of disc diffusion susceptibility testing publication-title: J. Antimicrob. Chemother. doi: 10.1093/jac/dkv309 – volume: 6 start-page: 589 year: 2006 ident: 10.1016/j.prevetmed.2023.105881_bib33 article-title: Colistin: the re-emerging antibiotic for multidrug-resistant Gram-negative bacterial infections publication-title: Lancet Infect. Dis. doi: 10.1016/S1473-3099(06)70580-1 – volume: 48 start-page: 598 year: 2016 ident: 10.1016/j.prevetmed.2023.105881_bib30 article-title: Colistin use and colistin resistance in bacteria from animals publication-title: Int. J. Antimicrob. Agents doi: 10.1016/j.ijantimicag.2016.09.016 – ident: 10.1016/j.prevetmed.2023.105881_bib47 – volume: 16 start-page: 281 year: 2016 ident: 10.1016/j.prevetmed.2023.105881_bib21 article-title: Co-occurrence of extended spectrum β lactamase and MCR-1 encoding genes on plasmids publication-title: Lancet Infect. Dis. doi: 10.1016/S1473-3099(16)00007-4 – start-page: 149 year: 2021 ident: 10.1016/j.prevetmed.2023.105881_bib36 article-title: OASIS evaluation of the French surveillance network for antimicrobial resistance in diseased animals (RESAPATH): success factors underpinning a well-performing voluntary system publication-title: Epidemiol. Infect. – start-page: 44 year: 2000 ident: 10.1016/j.prevetmed.2023.105881_bib37 article-title: Finite Mixture Model publication-title: Finite Mix. Models – volume: 38 start-page: 281 year: 2011 ident: 10.1016/j.prevetmed.2023.105881_bib32 article-title: Setting interpretive breakpoints for antimicrobial susceptibility testing using disk diffusion publication-title: Int. J. Antimicrob. Agents doi: 10.1016/j.ijantimicag.2011.04.006 – volume: 167 start-page: 113 year: 2019 ident: 10.1016/j.prevetmed.2023.105881_bib26 article-title: Gold standards are out and Bayes is in: implementing the cure for imperfect reference tests in diagnostic accuracy studies publication-title: Prev. Vet. Med. doi: 10.1016/j.prevetmed.2019.01.010 – ident: 10.1016/j.prevetmed.2023.105881_bib5 – volume: 124 start-page: 1023 year: 2016 ident: 10.1016/j.prevetmed.2023.105881_bib31 article-title: Normalized resistance interpretation, the NRI method: Review of NRI disc test applications and guide to calculations publication-title: APMIS Acta Pathol. Microbiol. Immunol. Scand. doi: 10.1111/apm.12624 – volume: 46 start-page: 297 year: 2015 ident: 10.1016/j.prevetmed.2023.105881_bib12 article-title: Use of colistin-containing products within the European Union and European Economic Area (EU/EEA): development of resistance in animals and possible impact on human and animal health publication-title: Int. J. Antimicrob. Agents doi: 10.1016/j.ijantimicag.2015.06.005 – volume: 57 start-page: 877 year: 2013 ident: 10.1016/j.prevetmed.2023.105881_bib29 article-title: Polymyxins: wisdom does not always come with age publication-title: Clin. Infect. Dis. doi: 10.1093/cid/cit367 – volume: 123 start-page: 141 year: 2019 ident: 10.1016/j.prevetmed.2023.105881_bib39 article-title: National colistin sales versus colistin resistance in Spanish pig production publication-title: Res. Vet. Sci. doi: 10.1016/j.rvsc.2019.01.010 – volume: 24 start-page: 3631 year: 2005 ident: 10.1016/j.prevetmed.2023.105881_bib3 article-title: Statistical properties and inference of the antimicrobial MIC test publication-title: Stat. Med. doi: 10.1002/sim.2207 – volume: 8 start-page: 1716 year: 2020 ident: 10.1016/j.prevetmed.2023.105881_bib2 article-title: Colistin update on its mechanism of action and resistance, present and future challenges publication-title: Microorganisms doi: 10.3390/microorganisms8111716 – volume: 59 start-page: 731 year: 1997 ident: 10.1016/j.prevetmed.2023.105881_bib46 article-title: On Bayesian analysis of mixtures with an unknown number of components publication-title: J. R. Stat. Soc. Ser. B Methodol. Stat. Soc. doi: 10.1111/1467-9868.00095 – year: 2019 ident: 10.1016/j.prevetmed.2023.105881_bib6 article-title: Intra- and inter-laboratory agreement of the disc diffusion assay for assessing antimicrobial susceptibility of porcine Escherichia coli publication-title: Sens. Actuators B Chem. – volume: 16 start-page: 161 year: 2016 ident: 10.1016/j.prevetmed.2023.105881_bib34 article-title: Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study publication-title: Lancet Infect. Dis. doi: 10.1016/S1473-3099(15)00424-7 – ident: 10.1016/j.prevetmed.2023.105881_bib8 – ident: 10.1016/j.prevetmed.2023.105881_bib16 – volume: 154 start-page: 124 year: 2018 ident: 10.1016/j.prevetmed.2023.105881_bib35 article-title: Diagnosis of bovine dictyocaulosis by bronchoalveolar lavage technique: a comparative study using a Bayesian approach publication-title: Prev. Vet. Med. doi: 10.1016/j.prevetmed.2018.03.017 – volume: 57 year: 2018 ident: 10.1016/j.prevetmed.2023.105881_bib19 article-title: Antimicrobial susceptibility testing for polymyxins: challenges, issues, and recommendations publication-title: J. Clin. Microbiol. – volume: 40 start-page: 1333 year: 2005 ident: 10.1016/j.prevetmed.2023.105881_bib20 article-title: Colistin: the revival of polymyxins for the management of multidrug-resistant gram-negative bacterial infections publication-title: Clin. Infect. Dis. doi: 10.1086/429323 – ident: 10.1016/j.prevetmed.2023.105881_bib44 – volume: 4 start-page: 719 year: 2000 ident: 10.1016/j.prevetmed.2023.105881_bib42 article-title: Trends in the prevalence of infection with Mycobacterium tuberculosis in Korea from 1965 to 1995: an analysis of seven surveys by mixture models publication-title: Int. J. Tuberc. Lung Dis. – volume: 60 start-page: 7 year: 2018 ident: 10.1016/j.prevetmed.2023.105881_bib25 article-title: Bayesian estimation of multivariate normal mixtures with covariate-dependent mixing weights, with an application in antimicrobial resistance monitoring: JASPERS et al. publication-title: Biom. J. doi: 10.1002/bimj.201600253 – start-page: 323 year: 2002 ident: 10.1016/j.prevetmed.2023.105881_bib41 article-title: Breakpoints: current practice and future perspectives publication-title: Int. J. Antimicrob. Agents doi: 10.1016/S0924-8579(02)00028-6 – volume: 9 start-page: 678 year: 2021 ident: 10.1016/j.prevetmed.2023.105881_bib38 article-title: Comparison of Phenotypical Antimicrobial Resistance between Clinical and Non-Clinical E. coli Isolates from Broilers, Turkeys and Calves in Four European Countries publication-title: Microorganisms doi: 10.3390/microorganisms9040678 – start-page: 21 year: 2016 ident: 10.1016/j.prevetmed.2023.105881_bib43 article-title: Prevalence of mcr-1 in commensal Escherichia coli from French livestock, 2007 to 2014 publication-title: Eurosurveillance – volume: 17 year: 2019 ident: 10.1016/j.prevetmed.2023.105881_bib18 article-title: Technical specifications on harmonised monitoring of antimicrobial resistance in zoonotic and indicator bacteria from food-producing animals and food publication-title: EFSA J. Eur. Food Saf. Auth. – ident: 10.1016/j.prevetmed.2023.105881_bib4 |
SSID | ssj0006685 |
Score | 2.3648074 |
Snippet | Colistin resistance has been the subject of much attention since mcr genes encoding plasmid-mediated colistin resistance description in 2015. To date,... |
SourceID | hal proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 105881 |
SubjectTerms | Animals Anti-Bacterial Agents - pharmacology Antimicrobial resistance trend Bayes Theorem Bayesian inference Bayesian theory Cattle Cattle Diseases Colistin Colistin - pharmacology data collection Disc diffusion Drug Resistance, Bacterial Escherichia coli Escherichia coli Infections - veterinary Escherichia coli Proteins - genetics Escherichia coli Proteins - pharmacology evolution France Inhibition zone diameter Life Sciences Microbial Sensitivity Tests - veterinary Mixture model monitoring Plasmids Poultry Swine Swine Diseases veterinary medicine |
Title | Evolution of the proportion of colistin-resistant isolates in animal clinical Escherichia coli over time - A hierarchical mixture model approach |
URI | https://dx.doi.org/10.1016/j.prevetmed.2023.105881 https://www.ncbi.nlm.nih.gov/pubmed/36871439 https://www.proquest.com/docview/2783788530 https://www.proquest.com/docview/3040450477 https://anses.hal.science/anses-04040740 |
Volume | 213 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3BTtwwELUovXCpKC10S4tciatZJ3Ycp7cVWrS0hUsL4mYljq0GleyKDYgT39BP7owTL-Kw4tBjInud9YzHz_KbeYQcFonlqSsF075UTCpVszK3gime2xrrTrqQJHZ2rmYX8ttVdrVBjmMuDNIqh9jfx_QQrYc342E2x4umGf9EAn2mAR2KAEywJqiUOdbPP3p8onkopbNY3xtbP-N4LbBMUgfbzhGqiKPmrdbJuh3q1W-kSq7DoWE_OtkmbwYgSSf9t74lG67dITuXyG4JKbb0bLg1f0f-Tu8HB6NzTwHx0QVqI9zGN-ALuNJbBkdvhJNtRxtwSUShtGlp2TY3MFLMoaTTJRq6QZJ06EqRBUpRpJ4yOqEorh2uJ7DtTfOAVxQ0CO7QWMD8Pbk4mf46nrFBiYFZKXnHEoApQlTa28pjTncJRkWRX1vZQgBEstzniU9sVoscaz4iX9HDyTAtal7UXoldstnOW_eBUO9tqrRwaaFT6bgrhFDaqxICTQVnr2xEVJx9Y4cy5aiW8cdEPtq1WZnNoNlMb7YR4auOi75Sx8tdvkbzmmdOZ2A_ebnzITjEaigs0z2b_DAAMNzSQGiEk7Lk99DsS_QYAysXr2PK1s3vlgY1TnINcImvbyPwhzIu83xE9np3W40I84bi9cXH__kX-2QLn3ou0iey2d3euc8As7rqIKyjA_J6cvp9dv4Pto4oeQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07b9swECbyGNqlaNOX-2SBrKwpUaKobkbgQGlsL02KbIREkYiKRjZiJejP6E_unUQKyGBk6CqRpsw7Hj-C391HyHEeGR7bUjDlSskSKWtWZkYwyTNTY91J2yeJLVeyuEy-X6VXe-Qk5MIgrdLH_iGm99HaP5n62Zxummb6Awn0qQJ0KHpgkuyTQ6xOBc5-ODs7L1ZjQJZSpaHEN3Z4QPPaYKWkDnaerygkjrK3SkW7Nqn9a2RL7oKi_ZZ0-pw881iSzobPfUH2bHtEjn4iwaXPsqVLf3H-kvyd33sfo2tHAfTRDcoj3IYn4A642FsGp29ElG1HG_BKBKK0aWnZNjcwUkijpPMt2rpBnnTflSIRlKJOPWV0RlFfu7-hwLY3zR-8paC95g4NNcxfkcvT-cVJwbwYAzNJwjsWAVIRolLOVA7TukuwK-r8msrkAlCS4S6LXGTSWmRY9hEpiw4Oh3Fe87x2UrwmB-26tW8Jdc7EUgkb5ypOLLe5EFI5WUKsqeD4lU6IDLOvja9UjoIZv3WgpP3So9k0mk0PZpsQPnbcDMU6Hu_yLZhXP_A7DVvK452PwSHGobBSdzFbaMAYdqshOsJhOeH30OxL8BgNixdvZMrWru-2GmVOMgWIie9uI_CHUp5k2YS8GdxtHBHmDfXr83f_8y8-kyfFxXKhF2er8_fkKb4ZqEkfyEF3e2c_Aurqqk9-Vf0Dw6grKg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evolution+of+the+proportion+of+colistin-resistant+isolates+in+animal+clinical+Escherichia+coli+over+time+-+A+hierarchical+mixture+model+approach&rft.jtitle=Preventive+veterinary+medicine&rft.au=Coz%2C+Elsa&rft.au=Jouy%2C+Eric&rft.au=Cazeau%2C+G%C3%A9raldine&rft.au=Jarrige%2C+Nathalie&rft.date=2023-04-01&rft.issn=1873-1716&rft.eissn=1873-1716&rft.volume=213&rft.spage=105881&rft_id=info:doi/10.1016%2Fj.prevetmed.2023.105881&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-5877&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-5877&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-5877&client=summon |