Evolution of the proportion of colistin-resistant isolates in animal clinical Escherichia coli over time - A hierarchical mixture model approach

Colistin resistance has been the subject of much attention since mcr genes encoding plasmid-mediated colistin resistance description in 2015. To date, surveillance data about resistance levels encountered in food-producing animals are scarce. In France, the Resapath dataset, consisting in a large co...

Full description

Saved in:
Bibliographic Details
Published inPreventive veterinary medicine Vol. 213; p. 105881
Main Authors COZ, Elsa, Jouy, Eric, Cazeau, Géraldine, Jarrige, Nathalie, Chauvin, Claire, Delignette-Muller, Marie-Laure
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.04.2023
Subjects
Online AccessGet full text
ISSN0167-5877
1873-1716
1873-1716
0167-5877
DOI10.1016/j.prevetmed.2023.105881

Cover

Loading…
Abstract Colistin resistance has been the subject of much attention since mcr genes encoding plasmid-mediated colistin resistance description in 2015. To date, surveillance data about resistance levels encountered in food-producing animals are scarce. In France, the Resapath dataset, consisting in a large collection of disk diffusion antibiogram results transmitted by a network of laboratories. It offers a unique opportunity to study the evolution of resistance towards colistin over the past 15 years in Escherichia coli isolated from diseased food-producing animals. This study used a Bayesian hierarchical Gaussian mixture model to estimate the resistant proportions from those data. This non-classical approach deals with the colistin-specific problem of overlapping distributions of diameters measured for susceptible and resistant isolates that makes the definition of epidemiological cut-off very hard. This model also considers the variability observed between the measurements performed by different laboratories. Proportion of resistant isolates has been calculated for several food-producing animals and most encountered diseases. From those estimations, a marked evolution of the proportions of resistant isolates is noticeable, for swine suffering from digestive disorders. In this group, an increase over the 2006–2011 period from 0.1% [ 0.0%, 1.2%] in 2006–28.6% [25.1%, 32.3%] in 2011 was followed by a decrease to reach 3.6% [2.3%;5.3%] in 2018. For isolates related to digestive disorders in calves, percentages increased and reached 7% in 2009 then decreased as for swine. In contrast, for poultry productions, estimated proportions and credibility intervals were constantly very close to zero.
AbstractList Colistin resistance has been the subject of much attention since mcr genes encoding plasmid-mediated colistin resistance description in 2015. To date, surveillance data about resistance levels encountered in food-producing animals are scarce. In France, the Resapath dataset, consisting in a large collection of disk diffusion antibiogram results transmitted by a network of laboratories. It offers a unique opportunity to study the evolution of resistance towards colistin over the past 15 years in Escherichia coli isolated from diseased food-producing animals. This study used a Bayesian hierarchical Gaussian mixture model to estimate the resistant proportions from those data. This non-classical approach deals with the colistin-specific problem of overlapping distributions of diameters measured for susceptible and resistant isolates that makes the definition of epidemiological cut-off very hard. This model also considers the variability observed between the measurements performed by different laboratories. Proportion of resistant isolates has been calculated for several food-producing animals and most encountered diseases. From those estimations, a marked evolution of the proportions of resistant isolates is noticeable, for swine suffering from digestive disorders. In this group, an increase over the 2006-2011 period from 0.1% [ 0.0%, 1.2%] in 2006-28.6% [25.1%, 32.3%] in 2011 was followed by a decrease to reach 3.6% [2.3%;5.3%] in 2018. For isolates related to digestive disorders in calves, percentages increased and reached 7% in 2009 then decreased as for swine. In contrast, for poultry productions, estimated proportions and credibility intervals were constantly very close to zero.Colistin resistance has been the subject of much attention since mcr genes encoding plasmid-mediated colistin resistance description in 2015. To date, surveillance data about resistance levels encountered in food-producing animals are scarce. In France, the Resapath dataset, consisting in a large collection of disk diffusion antibiogram results transmitted by a network of laboratories. It offers a unique opportunity to study the evolution of resistance towards colistin over the past 15 years in Escherichia coli isolated from diseased food-producing animals. This study used a Bayesian hierarchical Gaussian mixture model to estimate the resistant proportions from those data. This non-classical approach deals with the colistin-specific problem of overlapping distributions of diameters measured for susceptible and resistant isolates that makes the definition of epidemiological cut-off very hard. This model also considers the variability observed between the measurements performed by different laboratories. Proportion of resistant isolates has been calculated for several food-producing animals and most encountered diseases. From those estimations, a marked evolution of the proportions of resistant isolates is noticeable, for swine suffering from digestive disorders. In this group, an increase over the 2006-2011 period from 0.1% [ 0.0%, 1.2%] in 2006-28.6% [25.1%, 32.3%] in 2011 was followed by a decrease to reach 3.6% [2.3%;5.3%] in 2018. For isolates related to digestive disorders in calves, percentages increased and reached 7% in 2009 then decreased as for swine. In contrast, for poultry productions, estimated proportions and credibility intervals were constantly very close to zero.
Colistin resistance has been the subject of much attention since mcr genes encoding plasmid-mediated colistin resistance description in 2015. To date, surveillance data about resistance levels encountered in food-producing animals are scarce. In France, the Resapath dataset, consisting in a large collection of disk diffusion antibiogram results transmitted by a network of laboratories. It offers a unique opportunity to study the evolution of resistance towards colistin over the past 15 years in Escherichia coli isolated from diseased food-producing animals. This study used a Bayesian hierarchical Gaussian mixture model to estimate the resistant proportions from those data. This non-classical approach deals with the colistin-specific problem of overlapping distributions of diameters measured for susceptible and resistant isolates that makes the definition of epidemiological cut-off very hard. This model also considers the variability observed between the measurements performed by different laboratories. Proportion of resistant isolates has been calculated for several food-producing animals and most encountered diseases. From those estimations, a marked evolution of the proportions of resistant isolates is noticeable, for swine suffering from digestive disorders. In this group, an increase over the 2006–2011 period from 0.1% [ 0.0%, 1.2%] in 2006–28.6% [25.1%, 32.3%] in 2011 was followed by a decrease to reach 3.6% [2.3%;5.3%] in 2018. For isolates related to digestive disorders in calves, percentages increased and reached 7% in 2009 then decreased as for swine. In contrast, for poultry productions, estimated proportions and credibility intervals were constantly very close to zero.
Colistin resistance has been the subject of much attention since mcr genes encoding plasmid-mediated colistin resistance description in 2015. To date, surveillance data about resistance levels encountered in food-producing animals are scarce. In France, the Resapath dataset, consisting in a large collection of disk diffusion antibiogram results transmitted by a network of laboratories. It offers a unique opportunity to study the evolution of resistance towards colistin over the past 15 years in Escherichia coli isolated from diseased food-producing animals. This study used a Bayesian hierarchical Gaussian mixture model to estimate the resistant proportions from those data. This non-classical approach deals with the colistin-specific problem of overlapping distributions of diameters measured for susceptible and resistant isolates that makes the definition of epidemiological cut-off very hard. This model also considers the variability observed between the measurements performed by different laboratories. Proportion of resistant isolates has been calculated for several food-producing animals and most encountered diseases. From those estimations, a marked evolution of the proportions of resistant isolates is noticeable, for swine suffering from digestive disorders. In this group, an increase over the 2006-2011 period from 0.1% [ 0.0%, 1.2%] in 2006 to 28.6% [25.1%, 32.3%] in 2011 was followed by a decrease to reach 3.6% [2.3%;5.3%] in 2018. For isolates related to digestive disorders in calves, percentages increased and reached 7% in 2009 then decreased as for swine. In contrast, for poultry productions, estimated proportions and credibility intervals were constantly very close to zero.
ArticleNumber 105881
Author COZ, Elsa
Jarrige, Nathalie
Delignette-Muller, Marie-Laure
Cazeau, Géraldine
Chauvin, Claire
Jouy, Eric
Author_xml – sequence: 1
  givenname: Elsa
  surname: COZ
  fullname: COZ, Elsa
  email: ext-elsa.coz@chu-lyon.fr
  organization: Université de Lyon, Université Lyon 1, CNRS, VetAgro Sup, UMR 5558, Laboratoire de Biométrie et Biologie Evolutive, F-69622 Villeurbanne, France
– sequence: 2
  givenname: Eric
  surname: Jouy
  fullname: Jouy, Eric
  organization: Mycoplasmology, bacteriology and antimicrobial resistance unit, Anses (French Agency for Food, Environmental and Occupational Health and Safety), Ploufragan Laboratory, France
– sequence: 3
  givenname: Géraldine
  surname: Cazeau
  fullname: Cazeau, Géraldine
  organization: Université de Lyon, Anses, Laboratoire de Lyon, Unité Epidémiologie et Appui à la Surveillance, France
– sequence: 4
  givenname: Nathalie
  surname: Jarrige
  fullname: Jarrige, Nathalie
  organization: Université de Lyon, Anses, Laboratoire de Lyon, Unité Epidémiologie et Appui à la Surveillance, France
– sequence: 5
  givenname: Claire
  surname: Chauvin
  fullname: Chauvin, Claire
  organization: Epidemiology, Health and Welfare Unit, Anses, Ploufragan Laboratory, France
– sequence: 6
  givenname: Marie-Laure
  surname: Delignette-Muller
  fullname: Delignette-Muller, Marie-Laure
  organization: Université de Lyon, Université Lyon 1, CNRS, VetAgro Sup, UMR 5558, Laboratoire de Biométrie et Biologie Evolutive, F-69622 Villeurbanne, France
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36871439$$D View this record in MEDLINE/PubMed
https://anses.hal.science/anses-04040740$$DView record in HAL
BookMark eNqNkkGP1CAUx4lZ486ufgXlaGI6QmkLPXiYbEbXZBIveiYMfU2ZUKjANO638CNL7e4cvKzhAHn8_o_3-L8bdOW8A4TeUbKlhDYfT9spwAxphG5bkpLlaC0EfYE2VHBWUE6bK7TJJC9qwfk1uonxRAhpGlG_QtesEZxWrN2g3_vZ23My3mHf4zQAnoKffHiKaG9NTMYVAWI-KJewid6qBBEbh5Uzo7JYW-OMzod91AMEowej_kqxnyHgZEbABd7hwUBQId8u7Gh-pXMAPPoOLFZTfljp4TV62Ssb4c3jfot-fN5_v7svDt--fL3bHQpdVSQVtBYVY0fR62NP27ZWVdPkn6n0UbeMlrUmPac91XXHuNJlbr2telo3ZduRtusbdos-rHkHZeUUchvhQXpl5P3uIJWLECWp8uIVmWmm3690LvLnGWKSo4karFUO_DlKtrA1qTh_Fi25YFyImpGMvn1Ez8fs5KWMJ3sywFdABx9jgP6CUCKXQZAneRkEuQyCXAchKz_9o9QmqcXVFJSx_6HfrXrIHszZNhm1AaehMwF0kp03z-b4A5591T4
CitedBy_id crossref_primary_10_3390_antibiotics12091424
Cites_doi 10.1016/S0732-8893(99)00130-3
10.1093/jac/34.1.73
10.1016/j.prevetmed.2018.09.009
10.1371/journal.pone.0163636
10.1016/j.vetmic.2018.07.025
10.1016/j.mimet.2016.11.017
10.1080/10618600.1998.10474787
10.2147/IDR.S201324
10.1093/jac/dkx196
10.1016/j.cmi.2018.05.021
10.1016/j.csda.2013.01.024
10.1186/s12917-020-2268-z
10.1093/jac/dkv309
10.1016/S1473-3099(06)70580-1
10.1016/j.ijantimicag.2016.09.016
10.1016/S1473-3099(16)00007-4
10.1016/j.ijantimicag.2011.04.006
10.1016/j.prevetmed.2019.01.010
10.1111/apm.12624
10.1016/j.ijantimicag.2015.06.005
10.1093/cid/cit367
10.1016/j.rvsc.2019.01.010
10.1002/sim.2207
10.3390/microorganisms8111716
10.1111/1467-9868.00095
10.1016/S1473-3099(15)00424-7
10.1016/j.prevetmed.2018.03.017
10.1086/429323
10.1002/bimj.201600253
10.1016/S0924-8579(02)00028-6
10.3390/microorganisms9040678
ContentType Journal Article
Copyright 2023
Copyright © 2023. Published by Elsevier B.V.
Copyright
Copyright_xml – notice: 2023
– notice: Copyright © 2023. Published by Elsevier B.V.
– notice: Copyright
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
1XC
VOOES
DOI 10.1016/j.prevetmed.2023.105881
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE

AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Veterinary Medicine
EISSN 1873-1716
0167-5877
ExternalDocumentID oai_HAL_anses_04040740v1
36871439
10_1016_j_prevetmed_2023_105881
S0167587723000454
Genre Journal Article
GeographicLocations France
GeographicLocations_xml – name: France
GroupedDBID ---
--K
--M
.~1
0R~
123
1B1
1RT
1~.
1~5
29O
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
ABBQC
ABFNM
ABGRD
ABJNI
ABKYH
ABLVK
ABMAC
ABMZM
ABRWV
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
ADMUD
ADQTV
AEBSH
AEKER
AENEX
AEQOU
AESVU
AEXOQ
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJRQY
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CBWCG
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HMT
HVGLF
HZ~
IHE
J1W
KOM
LCYCR
LW9
M34
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
QYZTP
R2-
RIG
ROL
RPZ
SAB
SDF
SDG
SES
SEW
SNL
SPCBC
SPT
SSA
SSH
SSZ
SVS
T5K
UHS
WUQ
~G-
~KM
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACIEU
ACMHX
ACRPL
ACVFH
ADCNI
ADNMO
ADSLC
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AGWPP
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
EFKBS
7S9
L.6
1XC
VOOES
ID FETCH-LOGICAL-c440t-158433b8fcbf1995a4661014cbc93125c0f71f1c5d37ac200094f15629d09df63
IEDL.DBID .~1
ISSN 0167-5877
1873-1716
IngestDate Fri May 09 12:10:06 EDT 2025
Fri Sep 05 17:27:42 EDT 2025
Fri Sep 05 08:02:29 EDT 2025
Wed Feb 19 02:24:22 EST 2025
Thu Apr 24 23:02:39 EDT 2025
Tue Jul 01 04:22:25 EDT 2025
Fri Feb 23 02:37:10 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords DD
Disc diffusion
Colistin
MIC
AMR
CI
MCMC
Mixture model
Inhibition zone diameter
DS
WT/NWT
IZD
ECOFF
Antimicrobial resistance trend
Bayesian inference
Language English
License Copyright © 2023. Published by Elsevier B.V.
Copyright: http://hal.archives-ouvertes.fr/licences/copyright
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c440t-158433b8fcbf1995a4661014cbc93125c0f71f1c5d37ac200094f15629d09df63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-5453-3994
0000-0003-4956-5355
OpenAccessLink https://anses.hal.science/anses-04040740
PMID 36871439
PQID 2783788530
PQPubID 23479
ParticipantIDs hal_primary_oai_HAL_anses_04040740v1
proquest_miscellaneous_3040450477
proquest_miscellaneous_2783788530
pubmed_primary_36871439
crossref_primary_10_1016_j_prevetmed_2023_105881
crossref_citationtrail_10_1016_j_prevetmed_2023_105881
elsevier_sciencedirect_doi_10_1016_j_prevetmed_2023_105881
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-04-01
PublicationDateYYYYMMDD 2023-04-01
PublicationDate_xml – month: 04
  year: 2023
  text: 2023-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Preventive veterinary medicine
PublicationTitleAlternate Prev Vet Med
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Bourély, Chauvin, Jouy, Cazeau, Jarrige, Leblond, Gay (bib9) 2018; 223
Zhang, Wang, O’Connor (bib48) 2020
Delignette-Muller, Flandrois (bib15) 1994; 34
Mader, Jarrige, Haenni, Bourély, Madec, Amat (bib36) 2021
Karvanen, M., 2013. Optimization of Colistin Dosage in the Treatment of Multiresistant Gram-negative Infections.
Kronvall, Giske, Kahlmeter (bib32) 2011; 38
Boireau, C., Jarrige, N., Cazeau, G., Jouy, E., Haenni, M., Philippon, C., Calavas, D., Madec, J.-Y., Leblond, A., Gay, E., 2018. Représentativité et couverture du Résapath, le réseau d’épidémiosurveillance de l’antibiorésistance des bactéries pathogènes animales.
Falagas, Kasiakou (bib20) 2005; 40
Mouton (bib41) 2002
Brooks, Gelman (bib11) 1998; 7
Ezadi, Ardebili, Mirnejad (bib19) 2018; 57
McLachlan, Peel (bib37) 2000
Perrin-Guyomard, Bruneau, Houée, Deleurme, Legrandois, Poirier, Soumet, Sanders (bib43) 2016
Annis, Craig (bib3) 2005; 24
Moennighoff, Thomas, Nienhaus, Hartmann, Menrath, Merkel, Detlefsen, Kreienbrock, Hennig-Pauka (bib40) 2020; 16
EMA, 2013. Use of colistin products in animals within the European Union: development of resistance and possible impact on human and animal health.
Richardson, Green, Journal, Statistical, Series, Richardson (bib46) 1997; 59
W H O, 2019. WHO | WHO list of Critically Important Antimicrobials (CIA) 6th Revision 2018 https://www.who.int/foodsafety/ublications/antimicrobials-sixth/en/.
Bourély, Fortané, Calavas, Leblond, Gay (bib10) 2018; 159
Haenni, Poirel, Kieffer, Châtre, Saras, Métayer, Dumoulin, Nordmann, Madec (bib21) 2016; 16
Liu, Wang, Walsh, Yi, Zhang, Spencer, Doi, Tian, Dong, Huang, Yu, Gu, Ren, Chen, Lv, He, Zhou, Liang, Liu, Shen (bib34) 2016; 16
Pormohammad, Nasiri, Azimi (bib45) 2019
Catry, Cavaleri, Baptiste, Grave, Grein, Holm, Jukes, Liebana, Navas, Mackay, Magiorakos, Romo, Moulin, Madero, Pomba, Powell, Pyörälä, Rantala, Ružauskas, Sanders, Teale, Threlfall, Törneke, Van Duijkeren, Edo (bib12) 2015; 46
Craig (bib13) 2000; 36
Hombach, Ochoa, Maurer, Pfiffner, Böttger, Furrer (bib23) 2016; 71
Andrade, Silva, Rodrigues, Pina-Vaz (bib2) 2020; 8
Miguela-Villoldo, Hernández, Moreno, Rodríguez-Lázaro, Quesada, Domínguez, Ugarte-Ruiz (bib39) 2019; 123
Plummer, M., 2017. JAGS Version 4.3.0 user manual 73.
Badger, Sam, Stryhn, Trott, Jordan, Caraguel (bib6) 2019
Jouy, Haenni, Le Devendec, Le Roux, Châtre, Madec, Kempf (bib27) 2017; 132
EUCAST, 2016. Recommendations for MIC Determination of Colistin ( Polymyxin E) As Recommended by the Joint CLSI-EUCAST Polymyxin Breakpoints Working Group. no. March 22: 2016.
Åhman, Matuschek, Kahlmeter (bib1) 2019; 25
Kempf, Jouy, Chauvin (bib30) 2016; 48
Mesa-Varona, Mader, Velasova, Madec, Granier, Perrin-Guyomard, Norstrom, Kaspar, Grobbel, Jouy, Anjum, Tenhagen (bib38) 2021; 9
Blöchliger, Keller, Böttger, Hombach (bib7) 2017; 72
Del Fava, Rimseliene, Flem, De Blasio, Tomba, Manfredi (bib14) 2016; 11
Neuenschwander, Zwahlen, Kim, Engel, Rieder (bib42) 2000; 4
Johnson, Jones, Gardner (bib26) 2019; 167
Jaspers, Aerts, Verbeke, Beloeil (bib24) 2014; 71
Kassamali, Rotschafer, Jones, Prince, Danziger (bib29) 2013; 57
Kronvall, Smith (bib31) 2016; 124
Jaspers, Komárek, Aerts (bib25) 2018; 60
European Food Safety Authority, Aerts, Battisti, Hendriksen, Kempf, Teale, Tenhagen, Veldman, Wasyl, Guerra, Liébana, Thomas-López, Belœil (bib18) 2019; 17
Hémonic, Chauvin, Corrégé (bib22) 2014; 46
ANSES, 2020. Sales Survey of Veterinary Medicinal Products Containing Antimicrobials in France in 2019. ANSES-ANMV Fr.
Lurier, Delignette-Muller, Rannou, Strube, Arcangioli, Bourgoin (bib35) 2018; 154
Anses, 2017. Anses annual report.
Li, Nation, Turnidge, Milne, Coulthard, Rayner, Paterson (bib33) 2006; 6
Annis (10.1016/j.prevetmed.2023.105881_bib3) 2005; 24
Moennighoff (10.1016/j.prevetmed.2023.105881_bib40) 2020; 16
Kronvall (10.1016/j.prevetmed.2023.105881_bib31) 2016; 124
McLachlan (10.1016/j.prevetmed.2023.105881_bib37) 2000
Andrade (10.1016/j.prevetmed.2023.105881_bib2) 2020; 8
10.1016/j.prevetmed.2023.105881_bib16
10.1016/j.prevetmed.2023.105881_bib17
Brooks (10.1016/j.prevetmed.2023.105881_bib11) 1998; 7
Kempf (10.1016/j.prevetmed.2023.105881_bib30) 2016; 48
Delignette-Muller (10.1016/j.prevetmed.2023.105881_bib15) 1994; 34
Kronvall (10.1016/j.prevetmed.2023.105881_bib32) 2011; 38
Bourély (10.1016/j.prevetmed.2023.105881_bib10) 2018; 159
Johnson (10.1016/j.prevetmed.2023.105881_bib26) 2019; 167
Perrin-Guyomard (10.1016/j.prevetmed.2023.105881_bib43) 2016
Jouy (10.1016/j.prevetmed.2023.105881_bib27) 2017; 132
Richardson (10.1016/j.prevetmed.2023.105881_bib46) 1997; 59
Falagas (10.1016/j.prevetmed.2023.105881_bib20) 2005; 40
Lurier (10.1016/j.prevetmed.2023.105881_bib35) 2018; 154
Mader (10.1016/j.prevetmed.2023.105881_bib36) 2021
Haenni (10.1016/j.prevetmed.2023.105881_bib21) 2016; 16
10.1016/j.prevetmed.2023.105881_bib44
Ezadi (10.1016/j.prevetmed.2023.105881_bib19) 2018; 57
Blöchliger (10.1016/j.prevetmed.2023.105881_bib7) 2017; 72
Craig (10.1016/j.prevetmed.2023.105881_bib13) 2000; 36
Jaspers (10.1016/j.prevetmed.2023.105881_bib24) 2014; 71
Jaspers (10.1016/j.prevetmed.2023.105881_bib25) 2018; 60
Mesa-Varona (10.1016/j.prevetmed.2023.105881_bib38) 2021; 9
10.1016/j.prevetmed.2023.105881_bib47
Hémonic (10.1016/j.prevetmed.2023.105881_bib22) 2014; 46
10.1016/j.prevetmed.2023.105881_bib28
Liu (10.1016/j.prevetmed.2023.105881_bib34) 2016; 16
Badger (10.1016/j.prevetmed.2023.105881_bib6) 2019
Del Fava (10.1016/j.prevetmed.2023.105881_bib14) 2016; 11
Miguela-Villoldo (10.1016/j.prevetmed.2023.105881_bib39) 2019; 123
10.1016/j.prevetmed.2023.105881_bib8
10.1016/j.prevetmed.2023.105881_bib5
10.1016/j.prevetmed.2023.105881_bib4
Bourély (10.1016/j.prevetmed.2023.105881_bib9) 2018; 223
Hombach (10.1016/j.prevetmed.2023.105881_bib23) 2016; 71
Mouton (10.1016/j.prevetmed.2023.105881_bib41) 2002
Li (10.1016/j.prevetmed.2023.105881_bib33) 2006; 6
Neuenschwander (10.1016/j.prevetmed.2023.105881_bib42) 2000; 4
Kassamali (10.1016/j.prevetmed.2023.105881_bib29) 2013; 57
European Food Safety Authority (10.1016/j.prevetmed.2023.105881_bib18) 2019; 17
Zhang (10.1016/j.prevetmed.2023.105881_bib48) 2020
Åhman (10.1016/j.prevetmed.2023.105881_bib1) 2019; 25
Catry (10.1016/j.prevetmed.2023.105881_bib12) 2015; 46
Pormohammad (10.1016/j.prevetmed.2023.105881_bib45) 2019
References_xml – reference: EUCAST, 2016. Recommendations for MIC Determination of Colistin ( Polymyxin E) As Recommended by the Joint CLSI-EUCAST Polymyxin Breakpoints Working Group. no. March 22: 2016.
– volume: 16
  start-page: 1
  year: 2020
  end-page: 14
  ident: bib40
  article-title: Phenotypic antimicrobial resistance in Escherichia coli strains isolated from swine husbandries in North Western Germany - Temporal patterns in samples from laboratory practice from 2006 to 2017
  publication-title: BMC Vet. Res.
– volume: 8
  start-page: 1716
  year: 2020
  ident: bib2
  article-title: Colistin update on its mechanism of action and resistance, present and future challenges
  publication-title: Microorganisms
– volume: 11
  start-page: 1
  year: 2016
  end-page: 12
  ident: bib14
  article-title: Estimating age-specific immunity and force of infection of varicella zoster virus in norway using mixture models
  publication-title: PLoS ONE
– volume: 59
  start-page: 731
  year: 1997
  end-page: 792
  ident: bib46
  article-title: On Bayesian analysis of mixtures with an unknown number of components
  publication-title: J. R. Stat. Soc. Ser. B Methodol. Stat. Soc.
– volume: 24
  start-page: 3631
  year: 2005
  end-page: 3644
  ident: bib3
  article-title: Statistical properties and inference of the antimicrobial MIC test
  publication-title: Stat. Med.
– reference: W H O, 2019. WHO | WHO list of Critically Important Antimicrobials (CIA) 6th Revision 2018 https://www.who.int/foodsafety/ublications/antimicrobials-sixth/en/.
– volume: 4
  start-page: 719
  year: 2000
  end-page: 729
  ident: bib42
  article-title: Trends in the prevalence of infection with Mycobacterium tuberculosis in Korea from 1965 to 1995: an analysis of seven surveys by mixture models
  publication-title: Int. J. Tuberc. Lung Dis.
– volume: 72
  start-page: 2553
  year: 2017
  end-page: 2561
  ident: bib7
  article-title: MASTER: a model to improve and standardize clinical breakpoints for antimicrobial susceptibility testing using forecast probabilities
  publication-title: J. Antimicrob. Chemother.
– volume: 71
  start-page: 141
  year: 2016
  end-page: 151
  ident: bib23
  article-title: Relative contribution of biological variation and technical variables to zone diameter variations of disc diffusion susceptibility testing
  publication-title: J. Antimicrob. Chemother.
– start-page: 149
  year: 2021
  ident: bib36
  article-title: OASIS evaluation of the French surveillance network for antimicrobial resistance in diseased animals (RESAPATH): success factors underpinning a well-performing voluntary system
  publication-title: Epidemiol. Infect.
– volume: 71
  start-page: 30
  year: 2014
  end-page: 42
  ident: bib24
  article-title: A new semi-parametric mixture model for interval censored data, with applications in the field of antimicrobial resistance
  publication-title: Comput. Stat. Data Anal.
– volume: 124
  start-page: 1023
  year: 2016
  end-page: 1030
  ident: bib31
  article-title: Normalized resistance interpretation, the NRI method: Review of NRI disc test applications and guide to calculations
  publication-title: APMIS Acta Pathol. Microbiol. Immunol. Scand.
– reference: Plummer, M., 2017. JAGS Version 4.3.0 user manual 73.
– volume: 46
  start-page: 135
  year: 2014
  end-page: 140
  ident: bib22
  article-title: Les utilisations d’antibiotiques en élevage de porcs: motifs et stratégies thérapeutiques associées
  publication-title: Journ. Rech. Porc
– year: 2019
  ident: bib6
  article-title: Intra- and inter-laboratory agreement of the disc diffusion assay for assessing antimicrobial susceptibility of porcine Escherichia coli
  publication-title: Sens. Actuators B Chem.
– volume: 223
  start-page: 72
  year: 2018
  end-page: 78
  ident: bib9
  article-title: Comparative epidemiology of E. coli resistance to third-generation cephalosporins in diseased food-producing animals
  publication-title: Vet. Microbiol.
– volume: 57
  year: 2018
  ident: bib19
  article-title: Antimicrobial susceptibility testing for polymyxins: challenges, issues, and recommendations
  publication-title: J. Clin. Microbiol.
– volume: 38
  start-page: 281
  year: 2011
  end-page: 290
  ident: bib32
  article-title: Setting interpretive breakpoints for antimicrobial susceptibility testing using disk diffusion
  publication-title: Int. J. Antimicrob. Agents
– start-page: 15
  year: 2020
  ident: bib48
  article-title: A hierarchical Bayesian latent class mixture model with censorship for detection of linear temporal changes in antibiotic resistance
  publication-title: PLoS ONE
– year: 2019
  ident: bib45
  article-title: Prevalence of antibiotic resistance in Escherichia coli strains simultaneously isolated from humans, animals, food, and the environment: a systematic review and meta-analysis
  publication-title: Infect. Drug Resist
– volume: 46
  start-page: 297
  year: 2015
  end-page: 306
  ident: bib12
  article-title: Use of colistin-containing products within the European Union and European Economic Area (EU/EEA): development of resistance in animals and possible impact on human and animal health
  publication-title: Int. J. Antimicrob. Agents
– volume: 40
  start-page: 1333
  year: 2005
  end-page: 1341
  ident: bib20
  article-title: Colistin: the revival of polymyxins for the management of multidrug-resistant gram-negative bacterial infections
  publication-title: Clin. Infect. Dis.
– reference: Boireau, C., Jarrige, N., Cazeau, G., Jouy, E., Haenni, M., Philippon, C., Calavas, D., Madec, J.-Y., Leblond, A., Gay, E., 2018. Représentativité et couverture du Résapath, le réseau d’épidémiosurveillance de l’antibiorésistance des bactéries pathogènes animales.
– volume: 57
  start-page: 877
  year: 2013
  end-page: 883
  ident: bib29
  article-title: Polymyxins: wisdom does not always come with age
  publication-title: Clin. Infect. Dis.
– reference: EMA, 2013. Use of colistin products in animals within the European Union: development of resistance and possible impact on human and animal health.
– volume: 9
  start-page: 678
  year: 2021
  ident: bib38
  article-title: Comparison of Phenotypical Antimicrobial Resistance between Clinical and Non-Clinical E. coli Isolates from Broilers, Turkeys and Calves in Four European Countries
  publication-title: Microorganisms
– start-page: 323
  year: 2002
  end-page: 331
  ident: bib41
  article-title: Breakpoints: current practice and future perspectives
  publication-title: Int. J. Antimicrob. Agents
– reference: Karvanen, M., 2013. Optimization of Colistin Dosage in the Treatment of Multiresistant Gram-negative Infections.
– reference: Anses, 2017. Anses annual report.
– volume: 16
  start-page: 161
  year: 2016
  end-page: 168
  ident: bib34
  article-title: Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study
  publication-title: Lancet Infect. Dis.
– volume: 123
  start-page: 141
  year: 2019
  end-page: 143
  ident: bib39
  article-title: National colistin sales versus colistin resistance in Spanish pig production
  publication-title: Res. Vet. Sci.
– start-page: 21
  year: 2016
  ident: bib43
  article-title: Prevalence of mcr-1 in commensal Escherichia coli from French livestock, 2007 to 2014
  publication-title: Eurosurveillance
– reference: ANSES, 2020. Sales Survey of Veterinary Medicinal Products Containing Antimicrobials in France in 2019. ANSES-ANMV Fr.
– volume: 36
  start-page: 193
  year: 2000
  end-page: 202
  ident: bib13
  article-title: Modeling approach to diameter breakpoint determination
  publication-title: Diagn. Microbiol. Infect. Dis.
– volume: 34
  start-page: 73
  year: 1994
  end-page: 81
  ident: bib15
  article-title: An accurate diffusion method for determining bacterial sensitivity to antibiotics
  publication-title: J. Antimicrob. Chemother.
– volume: 17
  year: 2019
  ident: bib18
  article-title: Technical specifications on harmonised monitoring of antimicrobial resistance in zoonotic and indicator bacteria from food-producing animals and food
  publication-title: EFSA J. Eur. Food Saf. Auth.
– volume: 60
  start-page: 7
  year: 2018
  end-page: 19
  ident: bib25
  article-title: Bayesian estimation of multivariate normal mixtures with covariate-dependent mixing weights, with an application in antimicrobial resistance monitoring: JASPERS et al.
  publication-title: Biom. J.
– volume: 132
  start-page: 125
  year: 2017
  end-page: 127
  ident: bib27
  article-title: Improvement in routine detection of colistin resistance in E. coli isolated in veterinary diagnostic laboratories
  publication-title: J. Microbiol. Methods
– volume: 25
  start-page: 346
  year: 2019
  end-page: 352
  ident: bib1
  article-title: The quality of antimicrobial discs from nine manufacturers—EUCAST evaluations in 2014 and 2017
  publication-title: Clin. Microbiol. Infect.
– volume: 16
  start-page: 281
  year: 2016
  end-page: 282
  ident: bib21
  article-title: Co-occurrence of extended spectrum β lactamase and MCR-1 encoding genes on plasmids
  publication-title: Lancet Infect. Dis.
– volume: 7
  start-page: 434
  year: 1998
  end-page: 455
  ident: bib11
  article-title: General methods for monitoring convergence of iterative simulations
  publication-title: J. Comput. Graph. Stat.
– volume: 167
  start-page: 113
  year: 2019
  end-page: 127
  ident: bib26
  article-title: Gold standards are out and Bayes is in: implementing the cure for imperfect reference tests in diagnostic accuracy studies
  publication-title: Prev. Vet. Med.
– volume: 154
  start-page: 124
  year: 2018
  end-page: 131
  ident: bib35
  article-title: Diagnosis of bovine dictyocaulosis by bronchoalveolar lavage technique: a comparative study using a Bayesian approach
  publication-title: Prev. Vet. Med.
– volume: 159
  start-page: 123
  year: 2018
  end-page: 134
  ident: bib10
  article-title: Why do veterinarians ask for antimicrobial susceptibility testing? A qualitative study exploring determinants and evaluating the impact of antibiotic reduction policy
  publication-title: Prev. Vet. Med.
– volume: 48
  start-page: 598
  year: 2016
  end-page: 606
  ident: bib30
  article-title: Colistin use and colistin resistance in bacteria from animals
  publication-title: Int. J. Antimicrob. Agents
– start-page: 44
  year: 2000
  ident: bib37
  article-title: Finite Mixture Model
  publication-title: Finite Mix. Models
– volume: 6
  start-page: 589
  year: 2006
  end-page: 601
  ident: bib33
  article-title: Colistin: the re-emerging antibiotic for multidrug-resistant Gram-negative bacterial infections
  publication-title: Lancet Infect. Dis.
– volume: 36
  start-page: 193
  year: 2000
  ident: 10.1016/j.prevetmed.2023.105881_bib13
  article-title: Modeling approach to diameter breakpoint determination
  publication-title: Diagn. Microbiol. Infect. Dis.
  doi: 10.1016/S0732-8893(99)00130-3
– volume: 34
  start-page: 73
  year: 1994
  ident: 10.1016/j.prevetmed.2023.105881_bib15
  article-title: An accurate diffusion method for determining bacterial sensitivity to antibiotics
  publication-title: J. Antimicrob. Chemother.
  doi: 10.1093/jac/34.1.73
– ident: 10.1016/j.prevetmed.2023.105881_bib28
– volume: 159
  start-page: 123
  year: 2018
  ident: 10.1016/j.prevetmed.2023.105881_bib10
  article-title: Why do veterinarians ask for antimicrobial susceptibility testing? A qualitative study exploring determinants and evaluating the impact of antibiotic reduction policy
  publication-title: Prev. Vet. Med.
  doi: 10.1016/j.prevetmed.2018.09.009
– volume: 11
  start-page: 1
  year: 2016
  ident: 10.1016/j.prevetmed.2023.105881_bib14
  article-title: Estimating age-specific immunity and force of infection of varicella zoster virus in norway using mixture models
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0163636
– volume: 223
  start-page: 72
  year: 2018
  ident: 10.1016/j.prevetmed.2023.105881_bib9
  article-title: Comparative epidemiology of E. coli resistance to third-generation cephalosporins in diseased food-producing animals
  publication-title: Vet. Microbiol.
  doi: 10.1016/j.vetmic.2018.07.025
– volume: 132
  start-page: 125
  year: 2017
  ident: 10.1016/j.prevetmed.2023.105881_bib27
  article-title: Improvement in routine detection of colistin resistance in E. coli isolated in veterinary diagnostic laboratories
  publication-title: J. Microbiol. Methods
  doi: 10.1016/j.mimet.2016.11.017
– volume: 7
  start-page: 434
  issue: n
  year: 1998
  ident: 10.1016/j.prevetmed.2023.105881_bib11
  article-title: General methods for monitoring convergence of iterative simulations
  publication-title: J. Comput. Graph. Stat.
  doi: 10.1080/10618600.1998.10474787
– year: 2019
  ident: 10.1016/j.prevetmed.2023.105881_bib45
  article-title: Prevalence of antibiotic resistance in Escherichia coli strains simultaneously isolated from humans, animals, food, and the environment: a systematic review and meta-analysis
  publication-title: Infect. Drug Resist
  doi: 10.2147/IDR.S201324
– start-page: 15
  year: 2020
  ident: 10.1016/j.prevetmed.2023.105881_bib48
  article-title: A hierarchical Bayesian latent class mixture model with censorship for detection of linear temporal changes in antibiotic resistance
  publication-title: PLoS ONE
– volume: 72
  start-page: 2553
  year: 2017
  ident: 10.1016/j.prevetmed.2023.105881_bib7
  article-title: MASTER: a model to improve and standardize clinical breakpoints for antimicrobial susceptibility testing using forecast probabilities
  publication-title: J. Antimicrob. Chemother.
  doi: 10.1093/jac/dkx196
– ident: 10.1016/j.prevetmed.2023.105881_bib17
– volume: 25
  start-page: 346
  year: 2019
  ident: 10.1016/j.prevetmed.2023.105881_bib1
  article-title: The quality of antimicrobial discs from nine manufacturers—EUCAST evaluations in 2014 and 2017
  publication-title: Clin. Microbiol. Infect.
  doi: 10.1016/j.cmi.2018.05.021
– volume: 71
  start-page: 30
  year: 2014
  ident: 10.1016/j.prevetmed.2023.105881_bib24
  article-title: A new semi-parametric mixture model for interval censored data, with applications in the field of antimicrobial resistance
  publication-title: Comput. Stat. Data Anal.
  doi: 10.1016/j.csda.2013.01.024
– volume: 16
  start-page: 1
  year: 2020
  ident: 10.1016/j.prevetmed.2023.105881_bib40
  article-title: Phenotypic antimicrobial resistance in Escherichia coli strains isolated from swine husbandries in North Western Germany - Temporal patterns in samples from laboratory practice from 2006 to 2017
  publication-title: BMC Vet. Res.
  doi: 10.1186/s12917-020-2268-z
– volume: 46
  start-page: 135
  year: 2014
  ident: 10.1016/j.prevetmed.2023.105881_bib22
  article-title: Les utilisations d’antibiotiques en élevage de porcs: motifs et stratégies thérapeutiques associées
  publication-title: Journ. Rech. Porc
– volume: 71
  start-page: 141
  year: 2016
  ident: 10.1016/j.prevetmed.2023.105881_bib23
  article-title: Relative contribution of biological variation and technical variables to zone diameter variations of disc diffusion susceptibility testing
  publication-title: J. Antimicrob. Chemother.
  doi: 10.1093/jac/dkv309
– volume: 6
  start-page: 589
  year: 2006
  ident: 10.1016/j.prevetmed.2023.105881_bib33
  article-title: Colistin: the re-emerging antibiotic for multidrug-resistant Gram-negative bacterial infections
  publication-title: Lancet Infect. Dis.
  doi: 10.1016/S1473-3099(06)70580-1
– volume: 48
  start-page: 598
  year: 2016
  ident: 10.1016/j.prevetmed.2023.105881_bib30
  article-title: Colistin use and colistin resistance in bacteria from animals
  publication-title: Int. J. Antimicrob. Agents
  doi: 10.1016/j.ijantimicag.2016.09.016
– ident: 10.1016/j.prevetmed.2023.105881_bib47
– volume: 16
  start-page: 281
  year: 2016
  ident: 10.1016/j.prevetmed.2023.105881_bib21
  article-title: Co-occurrence of extended spectrum β lactamase and MCR-1 encoding genes on plasmids
  publication-title: Lancet Infect. Dis.
  doi: 10.1016/S1473-3099(16)00007-4
– start-page: 149
  year: 2021
  ident: 10.1016/j.prevetmed.2023.105881_bib36
  article-title: OASIS evaluation of the French surveillance network for antimicrobial resistance in diseased animals (RESAPATH): success factors underpinning a well-performing voluntary system
  publication-title: Epidemiol. Infect.
– start-page: 44
  year: 2000
  ident: 10.1016/j.prevetmed.2023.105881_bib37
  article-title: Finite Mixture Model
  publication-title: Finite Mix. Models
– volume: 38
  start-page: 281
  year: 2011
  ident: 10.1016/j.prevetmed.2023.105881_bib32
  article-title: Setting interpretive breakpoints for antimicrobial susceptibility testing using disk diffusion
  publication-title: Int. J. Antimicrob. Agents
  doi: 10.1016/j.ijantimicag.2011.04.006
– volume: 167
  start-page: 113
  year: 2019
  ident: 10.1016/j.prevetmed.2023.105881_bib26
  article-title: Gold standards are out and Bayes is in: implementing the cure for imperfect reference tests in diagnostic accuracy studies
  publication-title: Prev. Vet. Med.
  doi: 10.1016/j.prevetmed.2019.01.010
– ident: 10.1016/j.prevetmed.2023.105881_bib5
– volume: 124
  start-page: 1023
  year: 2016
  ident: 10.1016/j.prevetmed.2023.105881_bib31
  article-title: Normalized resistance interpretation, the NRI method: Review of NRI disc test applications and guide to calculations
  publication-title: APMIS Acta Pathol. Microbiol. Immunol. Scand.
  doi: 10.1111/apm.12624
– volume: 46
  start-page: 297
  year: 2015
  ident: 10.1016/j.prevetmed.2023.105881_bib12
  article-title: Use of colistin-containing products within the European Union and European Economic Area (EU/EEA): development of resistance in animals and possible impact on human and animal health
  publication-title: Int. J. Antimicrob. Agents
  doi: 10.1016/j.ijantimicag.2015.06.005
– volume: 57
  start-page: 877
  year: 2013
  ident: 10.1016/j.prevetmed.2023.105881_bib29
  article-title: Polymyxins: wisdom does not always come with age
  publication-title: Clin. Infect. Dis.
  doi: 10.1093/cid/cit367
– volume: 123
  start-page: 141
  year: 2019
  ident: 10.1016/j.prevetmed.2023.105881_bib39
  article-title: National colistin sales versus colistin resistance in Spanish pig production
  publication-title: Res. Vet. Sci.
  doi: 10.1016/j.rvsc.2019.01.010
– volume: 24
  start-page: 3631
  year: 2005
  ident: 10.1016/j.prevetmed.2023.105881_bib3
  article-title: Statistical properties and inference of the antimicrobial MIC test
  publication-title: Stat. Med.
  doi: 10.1002/sim.2207
– volume: 8
  start-page: 1716
  year: 2020
  ident: 10.1016/j.prevetmed.2023.105881_bib2
  article-title: Colistin update on its mechanism of action and resistance, present and future challenges
  publication-title: Microorganisms
  doi: 10.3390/microorganisms8111716
– volume: 59
  start-page: 731
  year: 1997
  ident: 10.1016/j.prevetmed.2023.105881_bib46
  article-title: On Bayesian analysis of mixtures with an unknown number of components
  publication-title: J. R. Stat. Soc. Ser. B Methodol. Stat. Soc.
  doi: 10.1111/1467-9868.00095
– year: 2019
  ident: 10.1016/j.prevetmed.2023.105881_bib6
  article-title: Intra- and inter-laboratory agreement of the disc diffusion assay for assessing antimicrobial susceptibility of porcine Escherichia coli
  publication-title: Sens. Actuators B Chem.
– volume: 16
  start-page: 161
  year: 2016
  ident: 10.1016/j.prevetmed.2023.105881_bib34
  article-title: Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study
  publication-title: Lancet Infect. Dis.
  doi: 10.1016/S1473-3099(15)00424-7
– ident: 10.1016/j.prevetmed.2023.105881_bib8
– ident: 10.1016/j.prevetmed.2023.105881_bib16
– volume: 154
  start-page: 124
  year: 2018
  ident: 10.1016/j.prevetmed.2023.105881_bib35
  article-title: Diagnosis of bovine dictyocaulosis by bronchoalveolar lavage technique: a comparative study using a Bayesian approach
  publication-title: Prev. Vet. Med.
  doi: 10.1016/j.prevetmed.2018.03.017
– volume: 57
  year: 2018
  ident: 10.1016/j.prevetmed.2023.105881_bib19
  article-title: Antimicrobial susceptibility testing for polymyxins: challenges, issues, and recommendations
  publication-title: J. Clin. Microbiol.
– volume: 40
  start-page: 1333
  year: 2005
  ident: 10.1016/j.prevetmed.2023.105881_bib20
  article-title: Colistin: the revival of polymyxins for the management of multidrug-resistant gram-negative bacterial infections
  publication-title: Clin. Infect. Dis.
  doi: 10.1086/429323
– ident: 10.1016/j.prevetmed.2023.105881_bib44
– volume: 4
  start-page: 719
  year: 2000
  ident: 10.1016/j.prevetmed.2023.105881_bib42
  article-title: Trends in the prevalence of infection with Mycobacterium tuberculosis in Korea from 1965 to 1995: an analysis of seven surveys by mixture models
  publication-title: Int. J. Tuberc. Lung Dis.
– volume: 60
  start-page: 7
  year: 2018
  ident: 10.1016/j.prevetmed.2023.105881_bib25
  article-title: Bayesian estimation of multivariate normal mixtures with covariate-dependent mixing weights, with an application in antimicrobial resistance monitoring: JASPERS et al.
  publication-title: Biom. J.
  doi: 10.1002/bimj.201600253
– start-page: 323
  year: 2002
  ident: 10.1016/j.prevetmed.2023.105881_bib41
  article-title: Breakpoints: current practice and future perspectives
  publication-title: Int. J. Antimicrob. Agents
  doi: 10.1016/S0924-8579(02)00028-6
– volume: 9
  start-page: 678
  year: 2021
  ident: 10.1016/j.prevetmed.2023.105881_bib38
  article-title: Comparison of Phenotypical Antimicrobial Resistance between Clinical and Non-Clinical E. coli Isolates from Broilers, Turkeys and Calves in Four European Countries
  publication-title: Microorganisms
  doi: 10.3390/microorganisms9040678
– start-page: 21
  year: 2016
  ident: 10.1016/j.prevetmed.2023.105881_bib43
  article-title: Prevalence of mcr-1 in commensal Escherichia coli from French livestock, 2007 to 2014
  publication-title: Eurosurveillance
– volume: 17
  year: 2019
  ident: 10.1016/j.prevetmed.2023.105881_bib18
  article-title: Technical specifications on harmonised monitoring of antimicrobial resistance in zoonotic and indicator bacteria from food-producing animals and food
  publication-title: EFSA J. Eur. Food Saf. Auth.
– ident: 10.1016/j.prevetmed.2023.105881_bib4
SSID ssj0006685
Score 2.3648074
Snippet Colistin resistance has been the subject of much attention since mcr genes encoding plasmid-mediated colistin resistance description in 2015. To date,...
SourceID hal
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 105881
SubjectTerms Animals
Anti-Bacterial Agents - pharmacology
Antimicrobial resistance trend
Bayes Theorem
Bayesian inference
Bayesian theory
Cattle
Cattle Diseases
Colistin
Colistin - pharmacology
data collection
Disc diffusion
Drug Resistance, Bacterial
Escherichia coli
Escherichia coli Infections - veterinary
Escherichia coli Proteins - genetics
Escherichia coli Proteins - pharmacology
evolution
France
Inhibition zone diameter
Life Sciences
Microbial Sensitivity Tests - veterinary
Mixture model
monitoring
Plasmids
Poultry
Swine
Swine Diseases
veterinary medicine
Title Evolution of the proportion of colistin-resistant isolates in animal clinical Escherichia coli over time - A hierarchical mixture model approach
URI https://dx.doi.org/10.1016/j.prevetmed.2023.105881
https://www.ncbi.nlm.nih.gov/pubmed/36871439
https://www.proquest.com/docview/2783788530
https://www.proquest.com/docview/3040450477
https://anses.hal.science/anses-04040740
Volume 213
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3BTtwwELUovXCpKC10S4tciatZJ3Ycp7cVWrS0hUsL4mYljq0GleyKDYgT39BP7owTL-Kw4tBjInud9YzHz_KbeYQcFonlqSsF075UTCpVszK3gime2xrrTrqQJHZ2rmYX8ttVdrVBjmMuDNIqh9jfx_QQrYc342E2x4umGf9EAn2mAR2KAEywJqiUOdbPP3p8onkopbNY3xtbP-N4LbBMUgfbzhGqiKPmrdbJuh3q1W-kSq7DoWE_OtkmbwYgSSf9t74lG67dITuXyG4JKbb0bLg1f0f-Tu8HB6NzTwHx0QVqI9zGN-ALuNJbBkdvhJNtRxtwSUShtGlp2TY3MFLMoaTTJRq6QZJ06EqRBUpRpJ4yOqEorh2uJ7DtTfOAVxQ0CO7QWMD8Pbk4mf46nrFBiYFZKXnHEoApQlTa28pjTncJRkWRX1vZQgBEstzniU9sVoscaz4iX9HDyTAtal7UXoldstnOW_eBUO9tqrRwaaFT6bgrhFDaqxICTQVnr2xEVJx9Y4cy5aiW8cdEPtq1WZnNoNlMb7YR4auOi75Sx8tdvkbzmmdOZ2A_ebnzITjEaigs0z2b_DAAMNzSQGiEk7Lk99DsS_QYAysXr2PK1s3vlgY1TnINcImvbyPwhzIu83xE9np3W40I84bi9cXH__kX-2QLn3ou0iey2d3euc8As7rqIKyjA_J6cvp9dv4Pto4oeQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07b9swECbyGNqlaNOX-2SBrKwpUaKobkbgQGlsL02KbIREkYiKRjZiJejP6E_unUQKyGBk6CqRpsw7Hj-C391HyHEeGR7bUjDlSskSKWtWZkYwyTNTY91J2yeJLVeyuEy-X6VXe-Qk5MIgrdLH_iGm99HaP5n62Zxummb6Awn0qQJ0KHpgkuyTQ6xOBc5-ODs7L1ZjQJZSpaHEN3Z4QPPaYKWkDnaerygkjrK3SkW7Nqn9a2RL7oKi_ZZ0-pw881iSzobPfUH2bHtEjn4iwaXPsqVLf3H-kvyd33sfo2tHAfTRDcoj3IYn4A642FsGp29ElG1HG_BKBKK0aWnZNjcwUkijpPMt2rpBnnTflSIRlKJOPWV0RlFfu7-hwLY3zR-8paC95g4NNcxfkcvT-cVJwbwYAzNJwjsWAVIRolLOVA7TukuwK-r8msrkAlCS4S6LXGTSWmRY9hEpiw4Oh3Fe87x2UrwmB-26tW8Jdc7EUgkb5ypOLLe5EFI5WUKsqeD4lU6IDLOvja9UjoIZv3WgpP3So9k0mk0PZpsQPnbcDMU6Hu_yLZhXP_A7DVvK452PwSHGobBSdzFbaMAYdqshOsJhOeH30OxL8BgNixdvZMrWru-2GmVOMgWIie9uI_CHUp5k2YS8GdxtHBHmDfXr83f_8y8-kyfFxXKhF2er8_fkKb4ZqEkfyEF3e2c_Aurqqk9-Vf0Dw6grKg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evolution+of+the+proportion+of+colistin-resistant+isolates+in+animal+clinical+Escherichia+coli+over+time+-+A+hierarchical+mixture+model+approach&rft.jtitle=Preventive+veterinary+medicine&rft.au=Coz%2C+Elsa&rft.au=Jouy%2C+Eric&rft.au=Cazeau%2C+G%C3%A9raldine&rft.au=Jarrige%2C+Nathalie&rft.date=2023-04-01&rft.issn=1873-1716&rft.eissn=1873-1716&rft.volume=213&rft.spage=105881&rft_id=info:doi/10.1016%2Fj.prevetmed.2023.105881&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-5877&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-5877&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-5877&client=summon