Pb(NO3)2 induces cell apoptosis through triggering of reactive oxygen species accumulation and disruption of mitochondrial function via SIRT3/SOD2 pathways
Lead (Pb) is nonbiodegradable and toxic to the lungs. To investigate the potential mechanisms of Pb‐induced reactive oxygen species (ROS) accumulation and cell death in the lungs, human non‐small lung carcinoma H460 cells were stimulated with Pb(NO3)2 in this study. The results showed that Pb(NO3)2...
Saved in:
Published in | Environmental toxicology Vol. 39; no. 3; pp. 1294 - 1302 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken, USA
John Wiley & Sons, Inc
01.03.2024
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Lead (Pb) is nonbiodegradable and toxic to the lungs. To investigate the potential mechanisms of Pb‐induced reactive oxygen species (ROS) accumulation and cell death in the lungs, human non‐small lung carcinoma H460 cells were stimulated with Pb(NO3)2 in this study. The results showed that Pb(NO3)2 stimulation increased cell death by inducing cell apoptosis which showed a reduced Bcl‐2 expression and an enhanced caspase 3 activation. Pb(NO3)2 also caused the production of H2O2 in H460 cells that triggering the buildup of ROS and mitochondrial membrane potential loss. We found that Pb(NO3)2 modulates oxidoreductive activity through reduced the glutathione‐disulfide reductase and glutathione levels in Pb(NO3)2‐exposed H460 cells. Furthermore, the superoxide dismutase (SOD) upstream molecule sirtuin 3 (SIRT3) was increased with Pb(NO3)2 dose. Collectively, these results demonstrate that Pb(NO3)2 promotes lung cell death through SIRT3/SOD‐mediated ROS accumulation and mitochondrial dysfunction. |
---|---|
AbstractList | Lead (Pb) is nonbiodegradable and toxic to the lungs. To investigate the potential mechanisms of Pb‐induced reactive oxygen species (ROS) accumulation and cell death in the lungs, human non‐small lung carcinoma H460 cells were stimulated with Pb(NO3)2 in this study. The results showed that Pb(NO3)2 stimulation increased cell death by inducing cell apoptosis which showed a reduced Bcl‐2 expression and an enhanced caspase 3 activation. Pb(NO3)2 also caused the production of H2O2 in H460 cells that triggering the buildup of ROS and mitochondrial membrane potential loss. We found that Pb(NO3)2 modulates oxidoreductive activity through reduced the glutathione‐disulfide reductase and glutathione levels in Pb(NO3)2‐exposed H460 cells. Furthermore, the superoxide dismutase (SOD) upstream molecule sirtuin 3 (SIRT3) was increased with Pb(NO3)2 dose. Collectively, these results demonstrate that Pb(NO3)2 promotes lung cell death through SIRT3/SOD‐mediated ROS accumulation and mitochondrial dysfunction. Lead (Pb) is nonbiodegradable and toxic to the lungs. To investigate the potential mechanisms of Pb-induced reactive oxygen species (ROS) accumulation and cell death in the lungs, human non-small lung carcinoma H460 cells were stimulated with Pb(NO3 )2 in this study. The results showed that Pb(NO3 )2 stimulation increased cell death by inducing cell apoptosis which showed a reduced Bcl-2 expression and an enhanced caspase 3 activation. Pb(NO3 )2 also caused the production of H2 O2 in H460 cells that triggering the buildup of ROS and mitochondrial membrane potential loss. We found that Pb(NO3 )2 modulates oxidoreductive activity through reduced the glutathione-disulfide reductase and glutathione levels in Pb(NO3 )2 -exposed H460 cells. Furthermore, the superoxide dismutase (SOD) upstream molecule sirtuin 3 (SIRT3) was increased with Pb(NO3 )2 dose. Collectively, these results demonstrate that Pb(NO3 )2 promotes lung cell death through SIRT3/SOD-mediated ROS accumulation and mitochondrial dysfunction.Lead (Pb) is nonbiodegradable and toxic to the lungs. To investigate the potential mechanisms of Pb-induced reactive oxygen species (ROS) accumulation and cell death in the lungs, human non-small lung carcinoma H460 cells were stimulated with Pb(NO3 )2 in this study. The results showed that Pb(NO3 )2 stimulation increased cell death by inducing cell apoptosis which showed a reduced Bcl-2 expression and an enhanced caspase 3 activation. Pb(NO3 )2 also caused the production of H2 O2 in H460 cells that triggering the buildup of ROS and mitochondrial membrane potential loss. We found that Pb(NO3 )2 modulates oxidoreductive activity through reduced the glutathione-disulfide reductase and glutathione levels in Pb(NO3 )2 -exposed H460 cells. Furthermore, the superoxide dismutase (SOD) upstream molecule sirtuin 3 (SIRT3) was increased with Pb(NO3 )2 dose. Collectively, these results demonstrate that Pb(NO3 )2 promotes lung cell death through SIRT3/SOD-mediated ROS accumulation and mitochondrial dysfunction. Lead (Pb) is nonbiodegradable and toxic to the lungs. To investigate the potential mechanisms of Pb‐induced reactive oxygen species (ROS) accumulation and cell death in the lungs, human non‐small lung carcinoma H460 cells were stimulated with Pb(NO3)2 in this study. The results showed that Pb(NO3)2 stimulation increased cell death by inducing cell apoptosis which showed a reduced Bcl‐2 expression and an enhanced caspase 3 activation. Pb(NO3)2 also caused the production of H2O2 in H460 cells that triggering the buildup of ROS and mitochondrial membrane potential loss. We found that Pb(NO3)2 modulates oxidoreductive activity through reduced the glutathione‐disulfide reductase and glutathione levels in Pb(NO3)2‐exposed H460 cells. Furthermore, the superoxide dismutase (SOD) upstream molecule sirtuin 3 (SIRT3) was increased with Pb(NO3)2 dose. Collectively, these results demonstrate that Pb(NO3)2 promotes lung cell death through SIRT3/SOD‐mediated ROS accumulation and mitochondrial dysfunction. Lead (Pb) is nonbiodegradable and toxic to the lungs. To investigate the potential mechanisms of Pb‐induced reactive oxygen species (ROS) accumulation and cell death in the lungs, human non‐small lung carcinoma H460 cells were stimulated with Pb(NO₃)₂ in this study. The results showed that Pb(NO₃)₂ stimulation increased cell death by inducing cell apoptosis which showed a reduced Bcl‐2 expression and an enhanced caspase 3 activation. Pb(NO₃)₂ also caused the production of H₂O₂ in H460 cells that triggering the buildup of ROS and mitochondrial membrane potential loss. We found that Pb(NO₃)₂ modulates oxidoreductive activity through reduced the glutathione‐disulfide reductase and glutathione levels in Pb(NO₃)₂‐exposed H460 cells. Furthermore, the superoxide dismutase (SOD) upstream molecule sirtuin 3 (SIRT3) was increased with Pb(NO₃)₂ dose. Collectively, these results demonstrate that Pb(NO₃)₂ promotes lung cell death through SIRT3/SOD‐mediated ROS accumulation and mitochondrial dysfunction. Lead (Pb) is nonbiodegradable and toxic to the lungs. To investigate the potential mechanisms of Pb‐induced reactive oxygen species (ROS) accumulation and cell death in the lungs, human non‐small lung carcinoma H460 cells were stimulated with Pb(NO 3 ) 2 in this study. The results showed that Pb(NO 3 ) 2 stimulation increased cell death by inducing cell apoptosis which showed a reduced Bcl‐2 expression and an enhanced caspase 3 activation. Pb(NO 3 ) 2 also caused the production of H 2 O 2 in H460 cells that triggering the buildup of ROS and mitochondrial membrane potential loss. We found that Pb(NO 3 ) 2 modulates oxidoreductive activity through reduced the glutathione‐disulfide reductase and glutathione levels in Pb(NO 3 ) 2 ‐exposed H460 cells. Furthermore, the superoxide dismutase (SOD) upstream molecule sirtuin 3 (SIRT3) was increased with Pb(NO 3 ) 2 dose. Collectively, these results demonstrate that Pb(NO 3 ) 2 promotes lung cell death through SIRT3/SOD‐mediated ROS accumulation and mitochondrial dysfunction. Lead (Pb) is nonbiodegradable and toxic to the lungs. To investigate the potential mechanisms of Pb-induced reactive oxygen species (ROS) accumulation and cell death in the lungs, human non-small lung carcinoma H460 cells were stimulated with Pb(NO ) in this study. The results showed that Pb(NO ) stimulation increased cell death by inducing cell apoptosis which showed a reduced Bcl-2 expression and an enhanced caspase 3 activation. Pb(NO ) also caused the production of H O in H460 cells that triggering the buildup of ROS and mitochondrial membrane potential loss. We found that Pb(NO ) modulates oxidoreductive activity through reduced the glutathione-disulfide reductase and glutathione levels in Pb(NO ) -exposed H460 cells. Furthermore, the superoxide dismutase (SOD) upstream molecule sirtuin 3 (SIRT3) was increased with Pb(NO ) dose. Collectively, these results demonstrate that Pb(NO ) promotes lung cell death through SIRT3/SOD-mediated ROS accumulation and mitochondrial dysfunction. |
Author | Lin, Ching‐Pin Ho, Meng‐Ting Lin, Hui‐Wen Lee, Yi‐Ju Wang, Inga Chang, Yuan‐Yen Lee, Hsiang‐Lin Shen, Ting‐Jing |
Author_xml | – sequence: 1 givenname: Hui‐Wen surname: Lin fullname: Lin, Hui‐Wen organization: Asia University – sequence: 2 givenname: Hsiang‐Lin surname: Lee fullname: Lee, Hsiang‐Lin organization: Chung Shan Medical University Hospital, Chung Shan Medical University – sequence: 3 givenname: Ting‐Jing surname: Shen fullname: Shen, Ting‐Jing organization: Chung Shan Medical University, and Clinical Laboratory, Chung Shan Medical University Hospital – sequence: 4 givenname: Meng‐Ting surname: Ho fullname: Ho, Meng‐Ting organization: Chung Shan Medical University – sequence: 5 givenname: Yi‐Ju surname: Lee fullname: Lee, Yi‐Ju organization: Chung Shan Medical University Hospital – sequence: 6 givenname: Inga surname: Wang fullname: Wang, Inga organization: University of Wisconsin–Milwaukee – sequence: 7 givenname: Ching‐Pin surname: Lin fullname: Lin, Ching‐Pin email: a0982224141@gmail.com organization: Chung Shan Medical University Hospital, Chung Shan Medical University – sequence: 8 givenname: Yuan‐Yen orcidid: 0000-0001-6395-4280 surname: Chang fullname: Chang, Yuan‐Yen email: cyy0709@csmu.edu.tw organization: Chung Shan Medical University, and Clinical Laboratory, Chung Shan Medical University Hospital |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37948429$$D View this record in MEDLINE/PubMed |
BookMark | eNqFks1u3CAUhVGVqkmmXfQFKqRukoUzGDA2yyr9ixR1qmYW3SGMsYfIAy4_SeZZ-rIlnskmatUFAnS_c9C9nFNwZJ3VALwt0UWJEF5G93CBKSr5C3BSVhgXNa6bo_mMCoqa8hichnCLEOKsYq_AMak5bSjmJ-D39_bs24qcY2hsl5QOUOlxhHJyU3TBBBg33qVhA6M3w6C9sQN0PfRaqmjuNHQPu0FbGCatTBZLpdI2jTIaZ6G0HexM8Gmar1m2NdGpjbOdN3KEfbJqrtwZCW-ufqzJ8mb1EcNJxs293IXX4GUvx6DfHPYFWH_-tL78WlyvvlxdfrguFKWIF0yWmjasbirVUa0Yb2SjFGOoknVF66ajjOO6qkivK4UJznyLMSNa922LFVmAs73t5N2vpEMUWxMepyCtdikIgigiFSGs_C-Km4ZjSkheC_D-GXrrkre5D4F5fp5zwqpMvTtQqd3qTkzebKXfiacPysByDyjvQvC6F8rEebzRSzOKEonHCIgcATFHICvOnymeTP_GHtzvzah3_wbFevVzr_gD9_bAvg |
CitedBy_id | crossref_primary_10_1007_s11869_024_01619_x crossref_primary_10_11648_j_ijnfs_20241303_16 crossref_primary_10_1016_j_dyepig_2024_112305 |
Cites_doi | 10.3390/ijms20174133 10.1007/s11356-022-19980-8 10.1177/0960327112462729 10.1007/s12011-015-0360-1 10.3390/antiox10071125 10.1039/C7TX00204A 10.1093/bmb/ldg032 10.3390/ijerph182312354 10.3389/fphar.2021.643972 10.3390/ijerph7052008 10.1002/jbt.22038 10.3390/antiox9010010 10.1007/s12011-018-1380-4 10.2478/v10102-012-0009-2 10.1016/j.ecoenv.2016.01.030 10.1101/pdb.prot087288 10.1177/15593258211011360 10.3390/biom10020240 10.7150/thno.80289 10.1002/tox.22731 10.1039/C3MT00344B 10.1016/j.bbamcr.2016.09.012 10.1016/j.aquatox.2020.105479 10.3389/fphys.2021.627837 10.1371/journal.pone.0056894 10.2147/CMAR.S154608 10.1111/jnc.14250 10.21769/BioProtoc.3128 10.1016/j.redox.2020.101626 10.1186/1476-5926-2-8 10.1016/j.tox.2016.05.016 10.1080/09687688.2017.1400600 10.1016/S0014-5793(98)01618-4 10.1073/pnas.1916214116 10.1016/j.toxrep.2018.05.012 10.1161/ATVBAHA.119.312613 10.1038/srep37157 10.1021/acs.jproteome.2c00167 10.3390/antiox8120582 10.1186/s12967-017-1306-5 10.1006/taap.2001.9200 10.1007/s12291-017-0680-3 10.1016/j.canlet.2021.04.007 10.1155/2012/949048 10.1007/s12011-016-0799-8 10.1080/09540105.2021.2022605 10.1016/j.cdtm.2018.07.002 10.1155/2022/3229888 10.3389/fphys.2017.00446 10.1096/fj.201601077R |
ContentType | Journal Article |
Copyright | 2023 Wiley Periodicals LLC. 2024 Wiley Periodicals LLC. |
Copyright_xml | – notice: 2023 Wiley Periodicals LLC. – notice: 2024 Wiley Periodicals LLC. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QH 7ST 7TN 7U7 7UA C1K F1W H97 K9. L.G M7N SOI 7X8 7S9 L.6 |
DOI | 10.1002/tox.24019 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aqualine Environment Abstracts Oceanic Abstracts Toxicology Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality ProQuest Health & Medical Complete (Alumni) Aquatic Science & Fisheries Abstracts (ASFA) Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Environment Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Aquatic Science & Fisheries Abstracts (ASFA) Professional Oceanic Abstracts Toxicology Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest Health & Medical Complete (Alumni) Aqualine Environment Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Water Resources Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional MEDLINE - Academic AGRICOLA CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Ecology Oceanography |
EISSN | 1522-7278 |
EndPage | 1302 |
ExternalDocumentID | 37948429 10_1002_tox_24019 TOX24019 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Chung Shan Medical University funderid: NCHU‐CSMU‐10708 – fundername: Ministry of Science and Technology, Taiwan funderid: MOST 109‐2320‐B‐040‐019‐MY3; MOST 106‐2320‐B‐040‐023‐MY3 – fundername: Ministry of Science and Technology, Taiwan grantid: MOST 106-2320-B-040-023-MY3 – fundername: Chung Shan Medical University grantid: NCHU-CSMU-10708 – fundername: Ministry of Science and Technology, Taiwan grantid: MOST 109-2320-B-040-019-MY3 |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 1L6 1OC 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AI. AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA GWYGA H.T H.X HF~ HGLYW HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K ROL RWI RX1 RYL SUPJJ SV3 UB1 V2E VH1 W8V W99 WBKPD WIH WIK WOHZO WQJ WRC WUPDE WXSBR WYISQ XG1 XPP XV2 ~IA ~KM ~WT AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION CGR CUY CVF ECM EIF NPM 1OB 7QH 7ST 7TN 7U7 7UA AAMMB AEFGJ AGXDD AIDQK AIDYY C1K F1W H97 K9. L.G M7N SOI 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c4409-6a1e486785cd4ec698a8cc6605a75478d46927553fe5c2326a1b2263eefbb2c3 |
IEDL.DBID | DR2 |
ISSN | 1520-4081 1522-7278 |
IngestDate | Fri Jul 11 18:37:36 EDT 2025 Fri Jul 11 04:09:39 EDT 2025 Wed Aug 13 08:59:48 EDT 2025 Thu Apr 03 07:07:51 EDT 2025 Tue Jul 01 04:43:58 EDT 2025 Thu Apr 24 22:59:42 EDT 2025 Wed Jan 22 16:14:46 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | cell apoptosis mitochondrial oxidoreductive activity Pb(NO3)2 ROS |
Language | English |
License | 2023 Wiley Periodicals LLC. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4409-6a1e486785cd4ec698a8cc6605a75478d46927553fe5c2326a1b2263eefbb2c3 |
Notes | Hui‐Wen Lin and Hsiang‐Lin Lee contributed equally as first authors. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-6395-4280 |
PMID | 37948429 |
PQID | 2922699365 |
PQPubID | 866374 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_3040353361 proquest_miscellaneous_2889243324 proquest_journals_2922699365 pubmed_primary_37948429 crossref_citationtrail_10_1002_tox_24019 crossref_primary_10_1002_tox_24019 wiley_primary_10_1002_tox_24019_TOX24019 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2024 2024-03-00 2024-Mar 20240301 |
PublicationDateYYYYMMDD | 2024-03-01 |
PublicationDate_xml | – month: 03 year: 2024 text: March 2024 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken, USA |
PublicationPlace_xml | – name: Hoboken, USA – name: United States – name: Hoboken |
PublicationTitle | Environmental toxicology |
PublicationTitleAlternate | Environ Toxicol |
PublicationYear | 2024 |
Publisher | John Wiley & Sons, Inc Wiley Subscription Services, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Subscription Services, Inc |
References | 2017; 6 2017; 8 2012; 2012 2016; 2016 2022; 21 2020; 10 1999; 442 2013; 8 2022; 29 2016; 33 2017; 31 2018; 5 2018; 4 2001; 174 2019; 20 2016; 355–356 2021; 510 2003; 2 2019; 116 2022; 33 2018; 33 2018; 32 2014; 6 2010; 7 2019; 8 2018; 144 2019; 9 2023; 13 2015; 168 2019; 34 2019; 39 2016; 1863 2020; 36 2016; 128 2020; 224 2017; 175 2019; 187 2016; 6 2021; 10 2021; 12 2022; 2022 2017; 15 2013; 32 2017; 17 2021 2021; 18 2021; 19 2003; 68 2019 2018; 10 2012; 5 e_1_2_11_32_1 e_1_2_11_30_1 e_1_2_11_36_1 e_1_2_11_51_1 e_1_2_11_13_1 e_1_2_11_34_1 e_1_2_11_53_1 e_1_2_11_11_1 e_1_2_11_29_1 e_1_2_11_6_1 e_1_2_11_27_1 e_1_2_11_4_1 e_1_2_11_48_1 e_1_2_11_2_1 Klotz K (e_1_2_11_9_1) 2017; 17 e_1_2_11_20_1 e_1_2_11_45_1 e_1_2_11_47_1 e_1_2_11_24_1 e_1_2_11_41_1 e_1_2_11_8_1 e_1_2_11_22_1 e_1_2_11_43_1 e_1_2_11_17_1 e_1_2_11_15_1 e_1_2_11_38_1 e_1_2_11_19_1 e_1_2_11_50_1 e_1_2_11_31_1 e_1_2_11_14_1 e_1_2_11_35_1 e_1_2_11_52_1 ATSDR (e_1_2_11_5_1) 2019 e_1_2_11_12_1 World Health Organization Guideline (e_1_2_11_10_1) 2021 e_1_2_11_33_1 e_1_2_11_54_1 e_1_2_11_7_1 e_1_2_11_28_1 e_1_2_11_26_1 e_1_2_11_3_1 e_1_2_11_49_1 e_1_2_11_21_1 e_1_2_11_44_1 e_1_2_11_46_1 e_1_2_11_25_1 e_1_2_11_40_1 e_1_2_11_23_1 e_1_2_11_42_1 e_1_2_11_18_1 e_1_2_11_16_1 e_1_2_11_37_1 e_1_2_11_39_1 |
References_xml | – volume: 187 start-page: 341 year: 2019 end-page: 356 article-title: Mercury involvement in neuronal damage and in neurodegenerative diseases publication-title: Biol Trace Elem Res – volume: 128 start-page: 67 year: 2016 end-page: 74 article-title: The health effects of ambient PM2.5 and potential mechanisms publication-title: Ecotoxicol Environ Saf – volume: 10 start-page: 1125 year: 2021 article-title: Quercetin alleviates the accumulation of superoxide in sodium iodate‐induced retinal autophagy by regulating mitochondrial reactive oxygen species homeostasis through enhanced deacetyl‐SOD2 via Nrf2‐PGC‐1α‐Sirt1 pathway publication-title: Antioxidants – year: 2021 – volume: 10 start-page: 240 issue: 2 year: 2020 article-title: The role of reactive oxygen species in arsenic toxicity publication-title: Biomolecules – volume: 29 start-page: 64959 year: 2022 end-page: 64970 article-title: Lead nitrate induces inflammation and apoptosis in rat lungs through the activation of NF‐kappaB and AhR signaling pathways publication-title: Environ Sci Pollut Res Int – volume: 15 start-page: 207 year: 2017 article-title: The pathophysiological role of mitochondrial oxidative stress in lung diseases publication-title: J Transl Med – volume: 174 start-page: 130 year: 2001 end-page: 138 article-title: Arsenic induces apoptosis in rat cerebellar neurons via activation of JNK3 and p38 MAP kinases publication-title: Toxicol Appl Pharmacol – volume: 510 start-page: 93 year: 2021 end-page: 104 article-title: SIRT3 inhibits gallbladder cancer by induction of AKT‐dependent ferroptosis and blockade of epithelial‐mesenchymal transition publication-title: Cancer Lett – volume: 39 start-page: 1682 year: 2019 end-page: 1698 article-title: Inhibition of mitochondrial oxidative damage improves reendothelialization capacity of endothelial progenitor cells via SIRT3 (Sirtuin 3)‐enhanced SOD2 (superoxide dismutase 2) deacetylation in hypertension publication-title: Arterioscler Thromb Vasc Biol – volume: 20 start-page: 4133 issue: 17 year: 2019 article-title: A cell's fate: an overview of the molecular biology and genetics of apoptosis publication-title: Int J Mol Sci – volume: 2016 start-page: 953 issue: 11 year: 2016 end-page: 957 article-title: Quantitation of apoptosis and necrosis by annexin V binding, propidium iodide uptake, and flow cytometry publication-title: Cold Spring Harb Protoc – volume: 5 start-page: 47 year: 2012 end-page: 58 article-title: Toxicity of lead: a review with recent updates publication-title: Interdiscip Toxicol – volume: 5 start-page: 704 year: 2018 end-page: 713 article-title: Toxicodynamics of lead, cadmium, mercury and arsenic‐induced kidney toxicity and treatment strategy: a mini review publication-title: Toxicol Rep – volume: 68 start-page: 167 year: 2003 end-page: 182 article-title: Hazards of heavy metal contamination publication-title: Br Med Bull – volume: 9 issue: 1 year: 2019 article-title: Analysis of the mitochondrial membrane potential using the cationic JC‐1 dye as a sensitive fluorescent probe publication-title: Bio Protoc – volume: 12 year: 2021 article-title: Toxic mechanisms of five heavy metals: mercury, lead, chromium, cadmium, and arsenic publication-title: Front Pharmacol – volume: 6 start-page: 822 year: 2017 end-page: 830 article-title: Toxicity of Pb on rat liver mitochondria induced by oxidative stress and mitochondrial permeability transition publication-title: Toxicol Res (Camb) – volume: 19 year: 2021 article-title: Vitamin E and provide protective effects against liver injury induced by HgCl(2): role of CHOP, GPR87, and mTOR proteins publication-title: Dose Response – volume: 7 start-page: 2008 year: 2010 end-page: 2017 article-title: Basic apoptotic mechanisms of lead toxicity in human leukemia (HL‐60) cells publication-title: Int J Environ Res Public Health – volume: 8 start-page: 582 issue: 12 year: 2019 article-title: root extract prevents lead‐induced liver injury by attenuating oxidative stress and inflammation, and activating Akt/GSK‐3beta signaling publication-title: Antioxidants – volume: 18 issue: 23 year: 2021 article-title: Elemental composition of PM( ) and PM( ) and health risks assessment in the Industrial Districts of Chelyabinsk, South Ural Region, Russia publication-title: Int J Environ Res Public Health – volume: 355–356 start-page: 39 year: 2016 end-page: 48 article-title: The role of PGC‐1alpha and MRP1 in lead‐induced mitochondrial toxicity in testicular Sertoli cells publication-title: Toxicology – volume: 9 start-page: 10 issue: 1 year: 2019 article-title: Antagonistic efficacy of luteolin against lead acetate exposure‐associated with hepatotoxicity is mediated via antioxidant, anti‐inflammatory, and anti‐apoptotic activities publication-title: Antioxidants – volume: 442 start-page: 65 year: 1999 end-page: 69 article-title: Generation of hydrogen peroxide precedes loss of mitochondrial membrane potential during DNA alkylation‐induced apoptosis publication-title: FEBS Lett – volume: 31 start-page: 2520 year: 2017 end-page: 2532 article-title: SIRT3 deficiency promotes lung fibrosis by augmenting alveolar epithelial cell mitochondrial DNA damage and apoptosis publication-title: FASEB J – year: 2019 – volume: 116 start-page: 23376 year: 2019 end-page: 23378 article-title: SOD2 acetylation and deacetylation: another tale of Jekyll and Hyde in cancer publication-title: Proc Natl Acad Sci U S A – volume: 8 start-page: 446 year: 2017 article-title: Early‐life exposure to lead induces cognitive impairment in elder mice targeting SIRT1 phosphorylation and oxidative alterations publication-title: Front Physiol – volume: 21 start-page: 1759 year: 2022 end-page: 1770 article-title: Nicotinamide mononucleotide administration restores redox homeostasis via the Sirt3‐Nrf2 axis and protects aged mice from oxidative stress‐induced liver injury publication-title: J Proteome Res – volume: 2 start-page: 8 issue: 1 year: 2003 article-title: Kupffer cells promote lead nitrate‐induced hepatocyte apoptosis via oxidative stress publication-title: Comp Hepatol – volume: 12 year: 2021 article-title: Mitochondrial reactive oxygen species and their contribution in chronic kidney disease progression through oxidative stress publication-title: Front Physiol – volume: 8 year: 2013 article-title: Mangiferin, a natural xanthone, protects murine liver in Pb(II) induced hepatic damage and cell death via MAP kinase, NF‐kappaB and mitochondria dependent pathways publication-title: PLoS One – volume: 168 start-page: 206 year: 2015 end-page: 220 article-title: Curcumin ameliorates lead (Pb(2+))‐induced hemato‐biochemical alterations and renal oxidative damage in a rat model publication-title: Biol Trace Elem Res – volume: 33 start-page: 132 year: 2018 end-page: 146 article-title: Lead: tiny but mighty poison publication-title: Indian J Clin Biochem – volume: 2012 year: 2012 article-title: Toxic effects of mercury on the cardiovascular and central nervous systems publication-title: J Biomed Biotechnol – volume: 224 year: 2020 article-title: Effects of thermal stress‐induced lead (Pb) toxicity on apoptotic cell death, inflammatory response, oxidative defense, and DNA methylation in zebrafish ( ) embryos publication-title: Aquat Toxicol – volume: 13 start-page: 531 issue: 2 year: 2023 end-page: 542 article-title: SIRT3 mediates the effects of PCSK9 inhibitors on inflammation, autophagy, and oxidative stress in endothelial cells publication-title: Theranostics – volume: 4 start-page: 176 year: 2018 end-page: 186 article-title: Fine particulate matter (PM ): the culprit for chronic lung diseases in China publication-title: Chronic Dis Transl Med – volume: 10 start-page: 403 year: 2018 end-page: 416 article-title: Bax, Bcl‐2, and Bax/Bcl‐2 as prognostic markers in acute myeloid leukemia: are we ready for Bcl‐2‐directed therapy? publication-title: Cancer Manag Res – volume: 33 start-page: 89 year: 2016 end-page: 99 article-title: Regulation of stressed‐induced cell death by the Bcl‐2 family of apoptotic proteins publication-title: Mol Membr Biol – volume: 6 start-page: 587 year: 2014 end-page: 597 article-title: A proteomic approach to investigate the effects of cadmium and lead on human primary renal cells publication-title: Metallomics – volume: 32 issue: 3 year: 2018 article-title: Lead‐induced DNA damage and cell apoptosis in human renal proximal tubular epithelial cell: attenuation via N‐acetyl cysteine and tannic acid publication-title: J Biochem Mol Toxicol – volume: 34 start-page: 652 year: 2019 end-page: 658 article-title: Nickel‐induced VEGF expression via regulation of Akt, ERK1/2, NFkappaB, and AMPK pathways in H460 cells publication-title: Environ Toxicol – volume: 144 start-page: 93 year: 2018 end-page: 104 article-title: Glutathione reductase mediates drug resistance in glioblastoma cells by regulating redox homeostasis publication-title: J Neurochem – volume: 32 start-page: 172 year: 2013 end-page: 185 article-title: Protective effects of puerarin on experimental chronic lead nephrotoxicity in immature female rats publication-title: Hum Exp Toxicol – volume: 36 year: 2020 article-title: Metformin alleviates lead‐induced mitochondrial fragmentation via AMPK/Nrf2 activation in SH‐SY5Y cells publication-title: Redox Biol – volume: 17 start-page: 99 year: 2017 end-page: 121 article-title: Human biomonitoring of lead exposure publication-title: Met Ions Life Sci – volume: 175 start-page: 440 year: 2017 end-page: 448 article-title: Protective effects of PGC‐1alpha against lead‐induced oxidative stress and energy metabolism dysfunction in testis Sertoli cells publication-title: Biol Trace Elem Res – volume: 33 start-page: 47 year: 2022 end-page: 64 article-title: Luteolin attenuates PM2.5‐induced inflammatory responses by augmenting HO‐1 and JAK‐STAT expression in murine alveolar macrophages publication-title: Food Agric Immunol – volume: 6 year: 2016 article-title: Regulation of Sirt1/Nrf2/TNF‐alpha signaling pathway by luteolin is critical to attenuate acute mercuric chloride exposure induced hepatotoxicity publication-title: Sci Rep – volume: 2022 year: 2022 article-title: Shufeiya recipe improves monocrotaline‐induced pulmonary hypertension in rats by regulating SIRT3/FOXO3a and its downstream signaling pathways publication-title: Dis Markers – volume: 1863 start-page: 2977 year: 2016 end-page: 2992 article-title: Activation of apoptosis signalling pathways by reactive oxygen species publication-title: Biochim Biophys Acta – ident: e_1_2_11_28_1 doi: 10.3390/ijms20174133 – ident: e_1_2_11_11_1 doi: 10.1007/s11356-022-19980-8 – ident: e_1_2_11_53_1 doi: 10.1177/0960327112462729 – ident: e_1_2_11_54_1 doi: 10.1007/s12011-015-0360-1 – volume-title: The ATSDR 2019 Substance Priority List year: 2019 ident: e_1_2_11_5_1 – ident: e_1_2_11_31_1 doi: 10.3390/antiox10071125 – ident: e_1_2_11_48_1 doi: 10.1039/C7TX00204A – ident: e_1_2_11_8_1 doi: 10.1093/bmb/ldg032 – ident: e_1_2_11_4_1 doi: 10.3390/ijerph182312354 – ident: e_1_2_11_12_1 doi: 10.3389/fphar.2021.643972 – ident: e_1_2_11_15_1 doi: 10.3390/ijerph7052008 – ident: e_1_2_11_29_1 doi: 10.1002/jbt.22038 – ident: e_1_2_11_14_1 doi: 10.3390/antiox9010010 – ident: e_1_2_11_41_1 doi: 10.1007/s12011-018-1380-4 – ident: e_1_2_11_6_1 doi: 10.2478/v10102-012-0009-2 – ident: e_1_2_11_2_1 doi: 10.1016/j.ecoenv.2016.01.030 – ident: e_1_2_11_25_1 doi: 10.1101/pdb.prot087288 – ident: e_1_2_11_40_1 doi: 10.1177/15593258211011360 – ident: e_1_2_11_43_1 doi: 10.3390/biom10020240 – ident: e_1_2_11_19_1 doi: 10.7150/thno.80289 – ident: e_1_2_11_37_1 doi: 10.1002/tox.22731 – ident: e_1_2_11_22_1 doi: 10.1039/C3MT00344B – ident: e_1_2_11_39_1 doi: 10.1016/j.bbamcr.2016.09.012 – ident: e_1_2_11_13_1 doi: 10.1016/j.aquatox.2020.105479 – ident: e_1_2_11_17_1 doi: 10.3389/fphys.2021.627837 – ident: e_1_2_11_30_1 doi: 10.1371/journal.pone.0056894 – ident: e_1_2_11_26_1 doi: 10.2147/CMAR.S154608 – ident: e_1_2_11_34_1 doi: 10.1111/jnc.14250 – ident: e_1_2_11_32_1 doi: 10.21769/BioProtoc.3128 – ident: e_1_2_11_23_1 doi: 10.1016/j.redox.2020.101626 – ident: e_1_2_11_24_1 doi: 10.1186/1476-5926-2-8 – ident: e_1_2_11_46_1 doi: 10.1016/j.tox.2016.05.016 – ident: e_1_2_11_27_1 doi: 10.1080/09687688.2017.1400600 – ident: e_1_2_11_49_1 doi: 10.1016/S0014-5793(98)01618-4 – ident: e_1_2_11_33_1 doi: 10.1073/pnas.1916214116 – ident: e_1_2_11_36_1 doi: 10.1016/j.toxrep.2018.05.012 – ident: e_1_2_11_35_1 doi: 10.1161/ATVBAHA.119.312613 – ident: e_1_2_11_52_1 doi: 10.1038/srep37157 – ident: e_1_2_11_50_1 doi: 10.1021/acs.jproteome.2c00167 – ident: e_1_2_11_45_1 doi: 10.3390/antiox8120582 – ident: e_1_2_11_16_1 doi: 10.1186/s12967-017-1306-5 – ident: e_1_2_11_38_1 doi: 10.1006/taap.2001.9200 – ident: e_1_2_11_7_1 doi: 10.1007/s12291-017-0680-3 – volume: 17 start-page: 99 year: 2017 ident: e_1_2_11_9_1 article-title: Human biomonitoring of lead exposure publication-title: Met Ions Life Sci – ident: e_1_2_11_18_1 doi: 10.1016/j.canlet.2021.04.007 – ident: e_1_2_11_42_1 doi: 10.1155/2012/949048 – ident: e_1_2_11_47_1 doi: 10.1007/s12011-016-0799-8 – volume-title: WHO Guideline for Clinical Management of Exposure to Lead year: 2021 ident: e_1_2_11_10_1 – ident: e_1_2_11_51_1 doi: 10.1080/09540105.2021.2022605 – ident: e_1_2_11_3_1 doi: 10.1016/j.cdtm.2018.07.002 – ident: e_1_2_11_21_1 doi: 10.1155/2022/3229888 – ident: e_1_2_11_44_1 doi: 10.3389/fphys.2017.00446 – ident: e_1_2_11_20_1 doi: 10.1096/fj.201601077R |
SSID | ssj0009656 |
Score | 2.3914046 |
Snippet | Lead (Pb) is nonbiodegradable and toxic to the lungs. To investigate the potential mechanisms of Pb‐induced reactive oxygen species (ROS) accumulation and cell... Lead (Pb) is nonbiodegradable and toxic to the lungs. To investigate the potential mechanisms of Pb-induced reactive oxygen species (ROS) accumulation and cell... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1294 |
SubjectTerms | Accumulation Apoptosis Caspase-3 cell apoptosis Cell death Cells Disulfide reductase ecotoxicology Glutathione glutathione-disulfide reductase Humans Hydrogen peroxide Lead Lung cancer Lung carcinoma lung neoplasms Lungs Membrane potential Mitochondria Mitochondria - metabolism mitochondrial mitochondrial membrane Mortality Neoplasms oxidoreductive activity Oxygen Pb(NO3)2 Reactive oxygen species Reactive Oxygen Species - metabolism Reductases ROS Sirtuin 3 - metabolism sirtuins Superoxide dismutase Superoxide Dismutase - metabolism toxicity |
Title | Pb(NO3)2 induces cell apoptosis through triggering of reactive oxygen species accumulation and disruption of mitochondrial function via SIRT3/SOD2 pathways |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Ftox.24019 https://www.ncbi.nlm.nih.gov/pubmed/37948429 https://www.proquest.com/docview/2922699365 https://www.proquest.com/docview/2889243324 https://www.proquest.com/docview/3040353361 |
Volume | 39 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1baxQxFD6UgiCCrfW2bZWj-FAfZi_JTCaLT6ItVbAr7Qr7IAxJJiNL25mlM6PWv-Kf9SRzKVUL4ttATuBkci7fCcl3AF4wnVlutCDjtSwIY6UCaVMThI77PMx4lHkynQ9H4vBT-H4RLdbgVfcWpuGH6A_cnGf4eO0cXOlydEUaWhXfh5SOPOWnu6vlANHxFXXUVPjOrZSexlQjyUnHKjRmo37m9Vz0B8C8jld9wjnYgM-dqs09k9NhXemh-fEbi-N_rmUT7rZAFF83lnMP1my-Bbf2PYn15RbcmRmr8pbP-j78_Kj3jmb8JUOq4ckaSnQn_qhWxaoqymWJbb8frKja_-LpDbHIkBCpj6dIayBLRfeuk0pzVMbU523jMFR5iumyvKh99HLTzinMUFjOU-cd6FKvH_m6VHjy7njORyeztwxdM-Vv6rJ8APOD_fmbw6Dt6xCYkMrJQKiJdUR_MjJpaI2YSiWNEVRYqdjRi6VUsrM4inhmI0OIj-Q1oURubaY1M_whrOdFbh8DxmNhzDS0gvwh5ONUx9JyFRGqcTgmFQPY6zY4MS3nuWu9cZY0bM0soT-f-D8_gOe96Koh-vib0G5nJUnr62XCpqQcwTwRDeBZP0xe6jZC5baoSUZKKnQ5odebZTjFU07oW0wG8KixwF4TTmFTEnSgBXk7ulnFZD5b-I_tfxfdgduMsFpztW4X1quL2j4hrFXpp96pfgGb4yaS |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL0qRQiExKO8BgoYBFJZZB524iQLFohpNUPbGdSm0uwix3GqCJqMJgll-BU-gV_ho7h2MqkKVGLTBbtIvo4c-z7OdexzAV7RKFFMRhyVV1HLdoWwPBVLy9bc53bCnMSQ6exP-OjI_jBzZmvwY3UXpuaHaDfctGUYf60NXG9I985YQ8v8axfj0cBvjlTuquUpJmzF2_EQV_c1pTvbwfuR1dQUsKSNqYzFxUBpkjnPkbGtJPc94UnJEdQLV1NbxZguUtdxWKIciWgD5SNEKEypJIqoZPjaK3BVFxDXRP3DgzOuKp-bUrEYD_uYlHmDFY1Rn_bakZ4Pfn8g2vMA2US4ndvwczU39cGWT92qjLry22-0kf_J5N2BWw3SJu9q07gLayrbgGvbhqV7uQE3p1KJrCHsvgffP0Zbkyl7Q0maxajuBdG_NIiY5_MyL9KCNAWNSLlIj48NfyPJE4KQ2wQMgnOGpkj0xdUUOwspq5OmMhoRWUzitFhUxj3rbifoRzHuZLE2f6KxhWn5kgpyOD4IWO9wOqREV4s-FcviPgSXMU8PYD3LM_UIiNvnUvq24mjwNuvHkespJhyEbRqoxbwDWyuFCmVD6q5ri3wOazpqGuJCh2ahO_CyFZ3XTCZ_E9pcaWXYOLMipD4ODnEsdzrwom1GN6QXQmQqr1DG8zCTZwjPL5ZhGDAYphd80IGHtca3I2EYFzzERvhBRm8vHmIYTGfm4fG_iz6H66Ngfy_cG092n8ANisC0Pke4CevlolJPEViW0TNj0ATCS7aBX_oJgkw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3dbtMwFD4aQ6AJiZ8BozDAIJDGRdrUTpzkggtEV60M2mkrUu8ix3GmCJZUTcIor8Ib8Cq8FMdOmmnAJG52wV2kHEeOz993Evs7AC9olCgmI47Gq6jleEJYvoql5WjucydhbmLIdD6M-d5H593Mna3Bj9VZmJofov3gpj3DxGvt4PM46Z2Rhpb51y6mo37Q7KjcV8tTrNeK16MBKvclpcPd6ds9q2kpYEkHKxmLi77SHHO-K2NHSR74wpeSI6YXnma2irFapJ7rskS5EsEGykcIUJhSSRRRyfCxV-Cqw-1At4kYHJ5RVQXcdIrFdGhjTeb3VyxGNu21Mz2f-_4AtOfxsUlww1vwc7U09b6WT92qjLry22-skf_H2t2Gmw3OJm9qx7gDayrbhGu7hqN7uQk3JlKJrKHrvgvfD6Kd8YS9oiTNYjT2gugfGkTM83mZF2lBmnZGpFykx8eGvZHkCUHAbdIFwSVDRyT62GqKg4WU1UnTF42ILCZxWiwqE5z1sBOMoph1slg7P9HIwtz5kgpyNDqcst7RZECJ7hV9KpbFPZhexjrdh_Usz9QDIJ7NpQwcxdHdHWbHkecrJlwEbRqmxbwDOyt7CmVD6a47i3wOazJqGqKiQ6PoDjxvRec1j8nfhLZXRhk2oawIaYCTQxTL3Q48a29jENKKEJnKK5TxfazjGYLzi2UYpguGxQXvd2CrNvh2Jgyzgo_ICF_ImO3FUwynk5m5ePjvok_h-sFgGL4fjfcfwQZFVFpvItyG9XJRqceIKsvoiXFnAuElu8Av4BmA-w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pb%28+NO+3+%29+2+induces+cell+apoptosis+through+triggering+of+reactive+oxygen+species+accumulation+and+disruption+of+mitochondrial+function+via+SIRT3+%2F+SOD2+pathways&rft.jtitle=Environmental+toxicology&rft.au=Lin%2C+Hui%E2%80%90Wen&rft.au=Lee%2C+Hsiang%E2%80%90Lin&rft.au=Shen%2C+Ting%E2%80%90Jing&rft.au=Ho%2C+Meng%E2%80%90Ting&rft.date=2024-03-01&rft.issn=1520-4081&rft.eissn=1522-7278&rft.volume=39&rft.issue=3&rft.spage=1294&rft.epage=1302&rft_id=info:doi/10.1002%2Ftox.24019&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_tox_24019 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-4081&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-4081&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-4081&client=summon |