Pb(NO3)2 induces cell apoptosis through triggering of reactive oxygen species accumulation and disruption of mitochondrial function via SIRT3/SOD2 pathways

Lead (Pb) is nonbiodegradable and toxic to the lungs. To investigate the potential mechanisms of Pb‐induced reactive oxygen species (ROS) accumulation and cell death in the lungs, human non‐small lung carcinoma H460 cells were stimulated with Pb(NO3)2 in this study. The results showed that Pb(NO3)2...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental toxicology Vol. 39; no. 3; pp. 1294 - 1302
Main Authors Lin, Hui‐Wen, Lee, Hsiang‐Lin, Shen, Ting‐Jing, Ho, Meng‐Ting, Lee, Yi‐Ju, Wang, Inga, Lin, Ching‐Pin, Chang, Yuan‐Yen
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.03.2024
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Lead (Pb) is nonbiodegradable and toxic to the lungs. To investigate the potential mechanisms of Pb‐induced reactive oxygen species (ROS) accumulation and cell death in the lungs, human non‐small lung carcinoma H460 cells were stimulated with Pb(NO3)2 in this study. The results showed that Pb(NO3)2 stimulation increased cell death by inducing cell apoptosis which showed a reduced Bcl‐2 expression and an enhanced caspase 3 activation. Pb(NO3)2 also caused the production of H2O2 in H460 cells that triggering the buildup of ROS and mitochondrial membrane potential loss. We found that Pb(NO3)2 modulates oxidoreductive activity through reduced the glutathione‐disulfide reductase and glutathione levels in Pb(NO3)2‐exposed H460 cells. Furthermore, the superoxide dismutase (SOD) upstream molecule sirtuin 3 (SIRT3) was increased with Pb(NO3)2 dose. Collectively, these results demonstrate that Pb(NO3)2 promotes lung cell death through SIRT3/SOD‐mediated ROS accumulation and mitochondrial dysfunction.
AbstractList Lead (Pb) is nonbiodegradable and toxic to the lungs. To investigate the potential mechanisms of Pb‐induced reactive oxygen species (ROS) accumulation and cell death in the lungs, human non‐small lung carcinoma H460 cells were stimulated with Pb(NO3)2 in this study. The results showed that Pb(NO3)2 stimulation increased cell death by inducing cell apoptosis which showed a reduced Bcl‐2 expression and an enhanced caspase 3 activation. Pb(NO3)2 also caused the production of H2O2 in H460 cells that triggering the buildup of ROS and mitochondrial membrane potential loss. We found that Pb(NO3)2 modulates oxidoreductive activity through reduced the glutathione‐disulfide reductase and glutathione levels in Pb(NO3)2‐exposed H460 cells. Furthermore, the superoxide dismutase (SOD) upstream molecule sirtuin 3 (SIRT3) was increased with Pb(NO3)2 dose. Collectively, these results demonstrate that Pb(NO3)2 promotes lung cell death through SIRT3/SOD‐mediated ROS accumulation and mitochondrial dysfunction.
Lead (Pb) is nonbiodegradable and toxic to the lungs. To investigate the potential mechanisms of Pb-induced reactive oxygen species (ROS) accumulation and cell death in the lungs, human non-small lung carcinoma H460 cells were stimulated with Pb(NO3 )2 in this study. The results showed that Pb(NO3 )2 stimulation increased cell death by inducing cell apoptosis which showed a reduced Bcl-2 expression and an enhanced caspase 3 activation. Pb(NO3 )2 also caused the production of H2 O2 in H460 cells that triggering the buildup of ROS and mitochondrial membrane potential loss. We found that Pb(NO3 )2 modulates oxidoreductive activity through reduced the glutathione-disulfide reductase and glutathione levels in Pb(NO3 )2 -exposed H460 cells. Furthermore, the superoxide dismutase (SOD) upstream molecule sirtuin 3 (SIRT3) was increased with Pb(NO3 )2 dose. Collectively, these results demonstrate that Pb(NO3 )2 promotes lung cell death through SIRT3/SOD-mediated ROS accumulation and mitochondrial dysfunction.Lead (Pb) is nonbiodegradable and toxic to the lungs. To investigate the potential mechanisms of Pb-induced reactive oxygen species (ROS) accumulation and cell death in the lungs, human non-small lung carcinoma H460 cells were stimulated with Pb(NO3 )2 in this study. The results showed that Pb(NO3 )2 stimulation increased cell death by inducing cell apoptosis which showed a reduced Bcl-2 expression and an enhanced caspase 3 activation. Pb(NO3 )2 also caused the production of H2 O2 in H460 cells that triggering the buildup of ROS and mitochondrial membrane potential loss. We found that Pb(NO3 )2 modulates oxidoreductive activity through reduced the glutathione-disulfide reductase and glutathione levels in Pb(NO3 )2 -exposed H460 cells. Furthermore, the superoxide dismutase (SOD) upstream molecule sirtuin 3 (SIRT3) was increased with Pb(NO3 )2 dose. Collectively, these results demonstrate that Pb(NO3 )2 promotes lung cell death through SIRT3/SOD-mediated ROS accumulation and mitochondrial dysfunction.
Lead (Pb) is nonbiodegradable and toxic to the lungs. To investigate the potential mechanisms of Pb‐induced reactive oxygen species (ROS) accumulation and cell death in the lungs, human non‐small lung carcinoma H460 cells were stimulated with Pb(NO3)2 in this study. The results showed that Pb(NO3)2 stimulation increased cell death by inducing cell apoptosis which showed a reduced Bcl‐2 expression and an enhanced caspase 3 activation. Pb(NO3)2 also caused the production of H2O2 in H460 cells that triggering the buildup of ROS and mitochondrial membrane potential loss. We found that Pb(NO3)2 modulates oxidoreductive activity through reduced the glutathione‐disulfide reductase and glutathione levels in Pb(NO3)2‐exposed H460 cells. Furthermore, the superoxide dismutase (SOD) upstream molecule sirtuin 3 (SIRT3) was increased with Pb(NO3)2 dose. Collectively, these results demonstrate that Pb(NO3)2 promotes lung cell death through SIRT3/SOD‐mediated ROS accumulation and mitochondrial dysfunction.
Lead (Pb) is nonbiodegradable and toxic to the lungs. To investigate the potential mechanisms of Pb‐induced reactive oxygen species (ROS) accumulation and cell death in the lungs, human non‐small lung carcinoma H460 cells were stimulated with Pb(NO₃)₂ in this study. The results showed that Pb(NO₃)₂ stimulation increased cell death by inducing cell apoptosis which showed a reduced Bcl‐2 expression and an enhanced caspase 3 activation. Pb(NO₃)₂ also caused the production of H₂O₂ in H460 cells that triggering the buildup of ROS and mitochondrial membrane potential loss. We found that Pb(NO₃)₂ modulates oxidoreductive activity through reduced the glutathione‐disulfide reductase and glutathione levels in Pb(NO₃)₂‐exposed H460 cells. Furthermore, the superoxide dismutase (SOD) upstream molecule sirtuin 3 (SIRT3) was increased with Pb(NO₃)₂ dose. Collectively, these results demonstrate that Pb(NO₃)₂ promotes lung cell death through SIRT3/SOD‐mediated ROS accumulation and mitochondrial dysfunction.
Lead (Pb) is nonbiodegradable and toxic to the lungs. To investigate the potential mechanisms of Pb‐induced reactive oxygen species (ROS) accumulation and cell death in the lungs, human non‐small lung carcinoma H460 cells were stimulated with Pb(NO 3 ) 2 in this study. The results showed that Pb(NO 3 ) 2 stimulation increased cell death by inducing cell apoptosis which showed a reduced Bcl‐2 expression and an enhanced caspase 3 activation. Pb(NO 3 ) 2 also caused the production of H 2 O 2 in H460 cells that triggering the buildup of ROS and mitochondrial membrane potential loss. We found that Pb(NO 3 ) 2 modulates oxidoreductive activity through reduced the glutathione‐disulfide reductase and glutathione levels in Pb(NO 3 ) 2 ‐exposed H460 cells. Furthermore, the superoxide dismutase (SOD) upstream molecule sirtuin 3 (SIRT3) was increased with Pb(NO 3 ) 2 dose. Collectively, these results demonstrate that Pb(NO 3 ) 2 promotes lung cell death through SIRT3/SOD‐mediated ROS accumulation and mitochondrial dysfunction.
Lead (Pb) is nonbiodegradable and toxic to the lungs. To investigate the potential mechanisms of Pb-induced reactive oxygen species (ROS) accumulation and cell death in the lungs, human non-small lung carcinoma H460 cells were stimulated with Pb(NO ) in this study. The results showed that Pb(NO ) stimulation increased cell death by inducing cell apoptosis which showed a reduced Bcl-2 expression and an enhanced caspase 3 activation. Pb(NO ) also caused the production of H O in H460 cells that triggering the buildup of ROS and mitochondrial membrane potential loss. We found that Pb(NO ) modulates oxidoreductive activity through reduced the glutathione-disulfide reductase and glutathione levels in Pb(NO ) -exposed H460 cells. Furthermore, the superoxide dismutase (SOD) upstream molecule sirtuin 3 (SIRT3) was increased with Pb(NO ) dose. Collectively, these results demonstrate that Pb(NO ) promotes lung cell death through SIRT3/SOD-mediated ROS accumulation and mitochondrial dysfunction.
Author Lin, Ching‐Pin
Ho, Meng‐Ting
Lin, Hui‐Wen
Lee, Yi‐Ju
Wang, Inga
Chang, Yuan‐Yen
Lee, Hsiang‐Lin
Shen, Ting‐Jing
Author_xml – sequence: 1
  givenname: Hui‐Wen
  surname: Lin
  fullname: Lin, Hui‐Wen
  organization: Asia University
– sequence: 2
  givenname: Hsiang‐Lin
  surname: Lee
  fullname: Lee, Hsiang‐Lin
  organization: Chung Shan Medical University Hospital, Chung Shan Medical University
– sequence: 3
  givenname: Ting‐Jing
  surname: Shen
  fullname: Shen, Ting‐Jing
  organization: Chung Shan Medical University, and Clinical Laboratory, Chung Shan Medical University Hospital
– sequence: 4
  givenname: Meng‐Ting
  surname: Ho
  fullname: Ho, Meng‐Ting
  organization: Chung Shan Medical University
– sequence: 5
  givenname: Yi‐Ju
  surname: Lee
  fullname: Lee, Yi‐Ju
  organization: Chung Shan Medical University Hospital
– sequence: 6
  givenname: Inga
  surname: Wang
  fullname: Wang, Inga
  organization: University of Wisconsin–Milwaukee
– sequence: 7
  givenname: Ching‐Pin
  surname: Lin
  fullname: Lin, Ching‐Pin
  email: a0982224141@gmail.com
  organization: Chung Shan Medical University Hospital, Chung Shan Medical University
– sequence: 8
  givenname: Yuan‐Yen
  orcidid: 0000-0001-6395-4280
  surname: Chang
  fullname: Chang, Yuan‐Yen
  email: cyy0709@csmu.edu.tw
  organization: Chung Shan Medical University, and Clinical Laboratory, Chung Shan Medical University Hospital
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37948429$$D View this record in MEDLINE/PubMed
BookMark eNqFks1u3CAUhVGVqkmmXfQFKqRukoUzGDA2yyr9ixR1qmYW3SGMsYfIAy4_SeZZ-rIlnskmatUFAnS_c9C9nFNwZJ3VALwt0UWJEF5G93CBKSr5C3BSVhgXNa6bo_mMCoqa8hichnCLEOKsYq_AMak5bSjmJ-D39_bs24qcY2hsl5QOUOlxhHJyU3TBBBg33qVhA6M3w6C9sQN0PfRaqmjuNHQPu0FbGCatTBZLpdI2jTIaZ6G0HexM8Gmar1m2NdGpjbOdN3KEfbJqrtwZCW-ufqzJ8mb1EcNJxs293IXX4GUvx6DfHPYFWH_-tL78WlyvvlxdfrguFKWIF0yWmjasbirVUa0Yb2SjFGOoknVF66ajjOO6qkivK4UJznyLMSNa922LFVmAs73t5N2vpEMUWxMepyCtdikIgigiFSGs_C-Km4ZjSkheC_D-GXrrkre5D4F5fp5zwqpMvTtQqd3qTkzebKXfiacPysByDyjvQvC6F8rEebzRSzOKEonHCIgcATFHICvOnymeTP_GHtzvzah3_wbFevVzr_gD9_bAvg
CitedBy_id crossref_primary_10_1007_s11869_024_01619_x
crossref_primary_10_11648_j_ijnfs_20241303_16
crossref_primary_10_1016_j_dyepig_2024_112305
Cites_doi 10.3390/ijms20174133
10.1007/s11356-022-19980-8
10.1177/0960327112462729
10.1007/s12011-015-0360-1
10.3390/antiox10071125
10.1039/C7TX00204A
10.1093/bmb/ldg032
10.3390/ijerph182312354
10.3389/fphar.2021.643972
10.3390/ijerph7052008
10.1002/jbt.22038
10.3390/antiox9010010
10.1007/s12011-018-1380-4
10.2478/v10102-012-0009-2
10.1016/j.ecoenv.2016.01.030
10.1101/pdb.prot087288
10.1177/15593258211011360
10.3390/biom10020240
10.7150/thno.80289
10.1002/tox.22731
10.1039/C3MT00344B
10.1016/j.bbamcr.2016.09.012
10.1016/j.aquatox.2020.105479
10.3389/fphys.2021.627837
10.1371/journal.pone.0056894
10.2147/CMAR.S154608
10.1111/jnc.14250
10.21769/BioProtoc.3128
10.1016/j.redox.2020.101626
10.1186/1476-5926-2-8
10.1016/j.tox.2016.05.016
10.1080/09687688.2017.1400600
10.1016/S0014-5793(98)01618-4
10.1073/pnas.1916214116
10.1016/j.toxrep.2018.05.012
10.1161/ATVBAHA.119.312613
10.1038/srep37157
10.1021/acs.jproteome.2c00167
10.3390/antiox8120582
10.1186/s12967-017-1306-5
10.1006/taap.2001.9200
10.1007/s12291-017-0680-3
10.1016/j.canlet.2021.04.007
10.1155/2012/949048
10.1007/s12011-016-0799-8
10.1080/09540105.2021.2022605
10.1016/j.cdtm.2018.07.002
10.1155/2022/3229888
10.3389/fphys.2017.00446
10.1096/fj.201601077R
ContentType Journal Article
Copyright 2023 Wiley Periodicals LLC.
2024 Wiley Periodicals LLC.
Copyright_xml – notice: 2023 Wiley Periodicals LLC.
– notice: 2024 Wiley Periodicals LLC.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QH
7ST
7TN
7U7
7UA
C1K
F1W
H97
K9.
L.G
M7N
SOI
7X8
7S9
L.6
DOI 10.1002/tox.24019
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aqualine
Environment Abstracts
Oceanic Abstracts
Toxicology Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
ProQuest Health & Medical Complete (Alumni)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Environment Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Oceanic Abstracts
Toxicology Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest Health & Medical Complete (Alumni)
Aqualine
Environment Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Water Resources Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional
MEDLINE - Academic

AGRICOLA
CrossRef
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Ecology
Oceanography
EISSN 1522-7278
EndPage 1302
ExternalDocumentID 37948429
10_1002_tox_24019
TOX24019
Genre article
Journal Article
GrantInformation_xml – fundername: Chung Shan Medical University
  funderid: NCHU‐CSMU‐10708
– fundername: Ministry of Science and Technology, Taiwan
  funderid: MOST 109‐2320‐B‐040‐019‐MY3; MOST 106‐2320‐B‐040‐023‐MY3
– fundername: Ministry of Science and Technology, Taiwan
  grantid: MOST 106-2320-B-040-023-MY3
– fundername: Chung Shan Medical University
  grantid: NCHU-CSMU-10708
– fundername: Ministry of Science and Technology, Taiwan
  grantid: MOST 109-2320-B-040-019-MY3
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OC
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AI.
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
GWYGA
H.T
H.X
HF~
HGLYW
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
RYL
SUPJJ
SV3
UB1
V2E
VH1
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WRC
WUPDE
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~KM
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
1OB
7QH
7ST
7TN
7U7
7UA
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
F1W
H97
K9.
L.G
M7N
SOI
7X8
7S9
L.6
ID FETCH-LOGICAL-c4409-6a1e486785cd4ec698a8cc6605a75478d46927553fe5c2326a1b2263eefbb2c3
IEDL.DBID DR2
ISSN 1520-4081
1522-7278
IngestDate Fri Jul 11 18:37:36 EDT 2025
Fri Jul 11 04:09:39 EDT 2025
Wed Aug 13 08:59:48 EDT 2025
Thu Apr 03 07:07:51 EDT 2025
Tue Jul 01 04:43:58 EDT 2025
Thu Apr 24 22:59:42 EDT 2025
Wed Jan 22 16:14:46 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords cell apoptosis
mitochondrial
oxidoreductive activity
Pb(NO3)2
ROS
Language English
License 2023 Wiley Periodicals LLC.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4409-6a1e486785cd4ec698a8cc6605a75478d46927553fe5c2326a1b2263eefbb2c3
Notes Hui‐Wen Lin and Hsiang‐Lin Lee contributed equally as first authors.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-6395-4280
PMID 37948429
PQID 2922699365
PQPubID 866374
PageCount 9
ParticipantIDs proquest_miscellaneous_3040353361
proquest_miscellaneous_2889243324
proquest_journals_2922699365
pubmed_primary_37948429
crossref_citationtrail_10_1002_tox_24019
crossref_primary_10_1002_tox_24019
wiley_primary_10_1002_tox_24019_TOX24019
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2024
2024-03-00
2024-Mar
20240301
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 03
  year: 2024
  text: March 2024
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: United States
– name: Hoboken
PublicationTitle Environmental toxicology
PublicationTitleAlternate Environ Toxicol
PublicationYear 2024
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2017; 6
2017; 8
2012; 2012
2016; 2016
2022; 21
2020; 10
1999; 442
2013; 8
2022; 29
2016; 33
2017; 31
2018; 5
2018; 4
2001; 174
2019; 20
2016; 355–356
2021; 510
2003; 2
2019; 116
2022; 33
2018; 33
2018; 32
2014; 6
2010; 7
2019; 8
2018; 144
2019; 9
2023; 13
2015; 168
2019; 34
2019; 39
2016; 1863
2020; 36
2016; 128
2020; 224
2017; 175
2019; 187
2016; 6
2021; 10
2021; 12
2022; 2022
2017; 15
2013; 32
2017; 17
2021
2021; 18
2021; 19
2003; 68
2019
2018; 10
2012; 5
e_1_2_11_32_1
e_1_2_11_30_1
e_1_2_11_36_1
e_1_2_11_51_1
e_1_2_11_13_1
e_1_2_11_34_1
e_1_2_11_53_1
e_1_2_11_11_1
e_1_2_11_29_1
e_1_2_11_6_1
e_1_2_11_27_1
e_1_2_11_4_1
e_1_2_11_48_1
e_1_2_11_2_1
Klotz K (e_1_2_11_9_1) 2017; 17
e_1_2_11_20_1
e_1_2_11_45_1
e_1_2_11_47_1
e_1_2_11_24_1
e_1_2_11_41_1
e_1_2_11_8_1
e_1_2_11_22_1
e_1_2_11_43_1
e_1_2_11_17_1
e_1_2_11_15_1
e_1_2_11_38_1
e_1_2_11_19_1
e_1_2_11_50_1
e_1_2_11_31_1
e_1_2_11_14_1
e_1_2_11_35_1
e_1_2_11_52_1
ATSDR (e_1_2_11_5_1) 2019
e_1_2_11_12_1
World Health Organization Guideline (e_1_2_11_10_1) 2021
e_1_2_11_33_1
e_1_2_11_54_1
e_1_2_11_7_1
e_1_2_11_28_1
e_1_2_11_26_1
e_1_2_11_3_1
e_1_2_11_49_1
e_1_2_11_21_1
e_1_2_11_44_1
e_1_2_11_46_1
e_1_2_11_25_1
e_1_2_11_40_1
e_1_2_11_23_1
e_1_2_11_42_1
e_1_2_11_18_1
e_1_2_11_16_1
e_1_2_11_37_1
e_1_2_11_39_1
References_xml – volume: 187
  start-page: 341
  year: 2019
  end-page: 356
  article-title: Mercury involvement in neuronal damage and in neurodegenerative diseases
  publication-title: Biol Trace Elem Res
– volume: 128
  start-page: 67
  year: 2016
  end-page: 74
  article-title: The health effects of ambient PM2.5 and potential mechanisms
  publication-title: Ecotoxicol Environ Saf
– volume: 10
  start-page: 1125
  year: 2021
  article-title: Quercetin alleviates the accumulation of superoxide in sodium iodate‐induced retinal autophagy by regulating mitochondrial reactive oxygen species homeostasis through enhanced deacetyl‐SOD2 via Nrf2‐PGC‐1α‐Sirt1 pathway
  publication-title: Antioxidants
– year: 2021
– volume: 10
  start-page: 240
  issue: 2
  year: 2020
  article-title: The role of reactive oxygen species in arsenic toxicity
  publication-title: Biomolecules
– volume: 29
  start-page: 64959
  year: 2022
  end-page: 64970
  article-title: Lead nitrate induces inflammation and apoptosis in rat lungs through the activation of NF‐kappaB and AhR signaling pathways
  publication-title: Environ Sci Pollut Res Int
– volume: 15
  start-page: 207
  year: 2017
  article-title: The pathophysiological role of mitochondrial oxidative stress in lung diseases
  publication-title: J Transl Med
– volume: 174
  start-page: 130
  year: 2001
  end-page: 138
  article-title: Arsenic induces apoptosis in rat cerebellar neurons via activation of JNK3 and p38 MAP kinases
  publication-title: Toxicol Appl Pharmacol
– volume: 510
  start-page: 93
  year: 2021
  end-page: 104
  article-title: SIRT3 inhibits gallbladder cancer by induction of AKT‐dependent ferroptosis and blockade of epithelial‐mesenchymal transition
  publication-title: Cancer Lett
– volume: 39
  start-page: 1682
  year: 2019
  end-page: 1698
  article-title: Inhibition of mitochondrial oxidative damage improves reendothelialization capacity of endothelial progenitor cells via SIRT3 (Sirtuin 3)‐enhanced SOD2 (superoxide dismutase 2) deacetylation in hypertension
  publication-title: Arterioscler Thromb Vasc Biol
– volume: 20
  start-page: 4133
  issue: 17
  year: 2019
  article-title: A cell's fate: an overview of the molecular biology and genetics of apoptosis
  publication-title: Int J Mol Sci
– volume: 2016
  start-page: 953
  issue: 11
  year: 2016
  end-page: 957
  article-title: Quantitation of apoptosis and necrosis by annexin V binding, propidium iodide uptake, and flow cytometry
  publication-title: Cold Spring Harb Protoc
– volume: 5
  start-page: 47
  year: 2012
  end-page: 58
  article-title: Toxicity of lead: a review with recent updates
  publication-title: Interdiscip Toxicol
– volume: 5
  start-page: 704
  year: 2018
  end-page: 713
  article-title: Toxicodynamics of lead, cadmium, mercury and arsenic‐induced kidney toxicity and treatment strategy: a mini review
  publication-title: Toxicol Rep
– volume: 68
  start-page: 167
  year: 2003
  end-page: 182
  article-title: Hazards of heavy metal contamination
  publication-title: Br Med Bull
– volume: 9
  issue: 1
  year: 2019
  article-title: Analysis of the mitochondrial membrane potential using the cationic JC‐1 dye as a sensitive fluorescent probe
  publication-title: Bio Protoc
– volume: 12
  year: 2021
  article-title: Toxic mechanisms of five heavy metals: mercury, lead, chromium, cadmium, and arsenic
  publication-title: Front Pharmacol
– volume: 6
  start-page: 822
  year: 2017
  end-page: 830
  article-title: Toxicity of Pb on rat liver mitochondria induced by oxidative stress and mitochondrial permeability transition
  publication-title: Toxicol Res (Camb)
– volume: 19
  year: 2021
  article-title: Vitamin E and provide protective effects against liver injury induced by HgCl(2): role of CHOP, GPR87, and mTOR proteins
  publication-title: Dose Response
– volume: 7
  start-page: 2008
  year: 2010
  end-page: 2017
  article-title: Basic apoptotic mechanisms of lead toxicity in human leukemia (HL‐60) cells
  publication-title: Int J Environ Res Public Health
– volume: 8
  start-page: 582
  issue: 12
  year: 2019
  article-title: root extract prevents lead‐induced liver injury by attenuating oxidative stress and inflammation, and activating Akt/GSK‐3beta signaling
  publication-title: Antioxidants
– volume: 18
  issue: 23
  year: 2021
  article-title: Elemental composition of PM( ) and PM( ) and health risks assessment in the Industrial Districts of Chelyabinsk, South Ural Region, Russia
  publication-title: Int J Environ Res Public Health
– volume: 355–356
  start-page: 39
  year: 2016
  end-page: 48
  article-title: The role of PGC‐1alpha and MRP1 in lead‐induced mitochondrial toxicity in testicular Sertoli cells
  publication-title: Toxicology
– volume: 9
  start-page: 10
  issue: 1
  year: 2019
  article-title: Antagonistic efficacy of luteolin against lead acetate exposure‐associated with hepatotoxicity is mediated via antioxidant, anti‐inflammatory, and anti‐apoptotic activities
  publication-title: Antioxidants
– volume: 442
  start-page: 65
  year: 1999
  end-page: 69
  article-title: Generation of hydrogen peroxide precedes loss of mitochondrial membrane potential during DNA alkylation‐induced apoptosis
  publication-title: FEBS Lett
– volume: 31
  start-page: 2520
  year: 2017
  end-page: 2532
  article-title: SIRT3 deficiency promotes lung fibrosis by augmenting alveolar epithelial cell mitochondrial DNA damage and apoptosis
  publication-title: FASEB J
– year: 2019
– volume: 116
  start-page: 23376
  year: 2019
  end-page: 23378
  article-title: SOD2 acetylation and deacetylation: another tale of Jekyll and Hyde in cancer
  publication-title: Proc Natl Acad Sci U S A
– volume: 8
  start-page: 446
  year: 2017
  article-title: Early‐life exposure to lead induces cognitive impairment in elder mice targeting SIRT1 phosphorylation and oxidative alterations
  publication-title: Front Physiol
– volume: 21
  start-page: 1759
  year: 2022
  end-page: 1770
  article-title: Nicotinamide mononucleotide administration restores redox homeostasis via the Sirt3‐Nrf2 axis and protects aged mice from oxidative stress‐induced liver injury
  publication-title: J Proteome Res
– volume: 2
  start-page: 8
  issue: 1
  year: 2003
  article-title: Kupffer cells promote lead nitrate‐induced hepatocyte apoptosis via oxidative stress
  publication-title: Comp Hepatol
– volume: 12
  year: 2021
  article-title: Mitochondrial reactive oxygen species and their contribution in chronic kidney disease progression through oxidative stress
  publication-title: Front Physiol
– volume: 8
  year: 2013
  article-title: Mangiferin, a natural xanthone, protects murine liver in Pb(II) induced hepatic damage and cell death via MAP kinase, NF‐kappaB and mitochondria dependent pathways
  publication-title: PLoS One
– volume: 168
  start-page: 206
  year: 2015
  end-page: 220
  article-title: Curcumin ameliorates lead (Pb(2+))‐induced hemato‐biochemical alterations and renal oxidative damage in a rat model
  publication-title: Biol Trace Elem Res
– volume: 33
  start-page: 132
  year: 2018
  end-page: 146
  article-title: Lead: tiny but mighty poison
  publication-title: Indian J Clin Biochem
– volume: 2012
  year: 2012
  article-title: Toxic effects of mercury on the cardiovascular and central nervous systems
  publication-title: J Biomed Biotechnol
– volume: 224
  year: 2020
  article-title: Effects of thermal stress‐induced lead (Pb) toxicity on apoptotic cell death, inflammatory response, oxidative defense, and DNA methylation in zebrafish ( ) embryos
  publication-title: Aquat Toxicol
– volume: 13
  start-page: 531
  issue: 2
  year: 2023
  end-page: 542
  article-title: SIRT3 mediates the effects of PCSK9 inhibitors on inflammation, autophagy, and oxidative stress in endothelial cells
  publication-title: Theranostics
– volume: 4
  start-page: 176
  year: 2018
  end-page: 186
  article-title: Fine particulate matter (PM ): the culprit for chronic lung diseases in China
  publication-title: Chronic Dis Transl Med
– volume: 10
  start-page: 403
  year: 2018
  end-page: 416
  article-title: Bax, Bcl‐2, and Bax/Bcl‐2 as prognostic markers in acute myeloid leukemia: are we ready for Bcl‐2‐directed therapy?
  publication-title: Cancer Manag Res
– volume: 33
  start-page: 89
  year: 2016
  end-page: 99
  article-title: Regulation of stressed‐induced cell death by the Bcl‐2 family of apoptotic proteins
  publication-title: Mol Membr Biol
– volume: 6
  start-page: 587
  year: 2014
  end-page: 597
  article-title: A proteomic approach to investigate the effects of cadmium and lead on human primary renal cells
  publication-title: Metallomics
– volume: 32
  issue: 3
  year: 2018
  article-title: Lead‐induced DNA damage and cell apoptosis in human renal proximal tubular epithelial cell: attenuation via N‐acetyl cysteine and tannic acid
  publication-title: J Biochem Mol Toxicol
– volume: 34
  start-page: 652
  year: 2019
  end-page: 658
  article-title: Nickel‐induced VEGF expression via regulation of Akt, ERK1/2, NFkappaB, and AMPK pathways in H460 cells
  publication-title: Environ Toxicol
– volume: 144
  start-page: 93
  year: 2018
  end-page: 104
  article-title: Glutathione reductase mediates drug resistance in glioblastoma cells by regulating redox homeostasis
  publication-title: J Neurochem
– volume: 32
  start-page: 172
  year: 2013
  end-page: 185
  article-title: Protective effects of puerarin on experimental chronic lead nephrotoxicity in immature female rats
  publication-title: Hum Exp Toxicol
– volume: 36
  year: 2020
  article-title: Metformin alleviates lead‐induced mitochondrial fragmentation via AMPK/Nrf2 activation in SH‐SY5Y cells
  publication-title: Redox Biol
– volume: 17
  start-page: 99
  year: 2017
  end-page: 121
  article-title: Human biomonitoring of lead exposure
  publication-title: Met Ions Life Sci
– volume: 175
  start-page: 440
  year: 2017
  end-page: 448
  article-title: Protective effects of PGC‐1alpha against lead‐induced oxidative stress and energy metabolism dysfunction in testis Sertoli cells
  publication-title: Biol Trace Elem Res
– volume: 33
  start-page: 47
  year: 2022
  end-page: 64
  article-title: Luteolin attenuates PM2.5‐induced inflammatory responses by augmenting HO‐1 and JAK‐STAT expression in murine alveolar macrophages
  publication-title: Food Agric Immunol
– volume: 6
  year: 2016
  article-title: Regulation of Sirt1/Nrf2/TNF‐alpha signaling pathway by luteolin is critical to attenuate acute mercuric chloride exposure induced hepatotoxicity
  publication-title: Sci Rep
– volume: 2022
  year: 2022
  article-title: Shufeiya recipe improves monocrotaline‐induced pulmonary hypertension in rats by regulating SIRT3/FOXO3a and its downstream signaling pathways
  publication-title: Dis Markers
– volume: 1863
  start-page: 2977
  year: 2016
  end-page: 2992
  article-title: Activation of apoptosis signalling pathways by reactive oxygen species
  publication-title: Biochim Biophys Acta
– ident: e_1_2_11_28_1
  doi: 10.3390/ijms20174133
– ident: e_1_2_11_11_1
  doi: 10.1007/s11356-022-19980-8
– ident: e_1_2_11_53_1
  doi: 10.1177/0960327112462729
– ident: e_1_2_11_54_1
  doi: 10.1007/s12011-015-0360-1
– volume-title: The ATSDR 2019 Substance Priority List
  year: 2019
  ident: e_1_2_11_5_1
– ident: e_1_2_11_31_1
  doi: 10.3390/antiox10071125
– ident: e_1_2_11_48_1
  doi: 10.1039/C7TX00204A
– ident: e_1_2_11_8_1
  doi: 10.1093/bmb/ldg032
– ident: e_1_2_11_4_1
  doi: 10.3390/ijerph182312354
– ident: e_1_2_11_12_1
  doi: 10.3389/fphar.2021.643972
– ident: e_1_2_11_15_1
  doi: 10.3390/ijerph7052008
– ident: e_1_2_11_29_1
  doi: 10.1002/jbt.22038
– ident: e_1_2_11_14_1
  doi: 10.3390/antiox9010010
– ident: e_1_2_11_41_1
  doi: 10.1007/s12011-018-1380-4
– ident: e_1_2_11_6_1
  doi: 10.2478/v10102-012-0009-2
– ident: e_1_2_11_2_1
  doi: 10.1016/j.ecoenv.2016.01.030
– ident: e_1_2_11_25_1
  doi: 10.1101/pdb.prot087288
– ident: e_1_2_11_40_1
  doi: 10.1177/15593258211011360
– ident: e_1_2_11_43_1
  doi: 10.3390/biom10020240
– ident: e_1_2_11_19_1
  doi: 10.7150/thno.80289
– ident: e_1_2_11_37_1
  doi: 10.1002/tox.22731
– ident: e_1_2_11_22_1
  doi: 10.1039/C3MT00344B
– ident: e_1_2_11_39_1
  doi: 10.1016/j.bbamcr.2016.09.012
– ident: e_1_2_11_13_1
  doi: 10.1016/j.aquatox.2020.105479
– ident: e_1_2_11_17_1
  doi: 10.3389/fphys.2021.627837
– ident: e_1_2_11_30_1
  doi: 10.1371/journal.pone.0056894
– ident: e_1_2_11_26_1
  doi: 10.2147/CMAR.S154608
– ident: e_1_2_11_34_1
  doi: 10.1111/jnc.14250
– ident: e_1_2_11_32_1
  doi: 10.21769/BioProtoc.3128
– ident: e_1_2_11_23_1
  doi: 10.1016/j.redox.2020.101626
– ident: e_1_2_11_24_1
  doi: 10.1186/1476-5926-2-8
– ident: e_1_2_11_46_1
  doi: 10.1016/j.tox.2016.05.016
– ident: e_1_2_11_27_1
  doi: 10.1080/09687688.2017.1400600
– ident: e_1_2_11_49_1
  doi: 10.1016/S0014-5793(98)01618-4
– ident: e_1_2_11_33_1
  doi: 10.1073/pnas.1916214116
– ident: e_1_2_11_36_1
  doi: 10.1016/j.toxrep.2018.05.012
– ident: e_1_2_11_35_1
  doi: 10.1161/ATVBAHA.119.312613
– ident: e_1_2_11_52_1
  doi: 10.1038/srep37157
– ident: e_1_2_11_50_1
  doi: 10.1021/acs.jproteome.2c00167
– ident: e_1_2_11_45_1
  doi: 10.3390/antiox8120582
– ident: e_1_2_11_16_1
  doi: 10.1186/s12967-017-1306-5
– ident: e_1_2_11_38_1
  doi: 10.1006/taap.2001.9200
– ident: e_1_2_11_7_1
  doi: 10.1007/s12291-017-0680-3
– volume: 17
  start-page: 99
  year: 2017
  ident: e_1_2_11_9_1
  article-title: Human biomonitoring of lead exposure
  publication-title: Met Ions Life Sci
– ident: e_1_2_11_18_1
  doi: 10.1016/j.canlet.2021.04.007
– ident: e_1_2_11_42_1
  doi: 10.1155/2012/949048
– ident: e_1_2_11_47_1
  doi: 10.1007/s12011-016-0799-8
– volume-title: WHO Guideline for Clinical Management of Exposure to Lead
  year: 2021
  ident: e_1_2_11_10_1
– ident: e_1_2_11_51_1
  doi: 10.1080/09540105.2021.2022605
– ident: e_1_2_11_3_1
  doi: 10.1016/j.cdtm.2018.07.002
– ident: e_1_2_11_21_1
  doi: 10.1155/2022/3229888
– ident: e_1_2_11_44_1
  doi: 10.3389/fphys.2017.00446
– ident: e_1_2_11_20_1
  doi: 10.1096/fj.201601077R
SSID ssj0009656
Score 2.3914046
Snippet Lead (Pb) is nonbiodegradable and toxic to the lungs. To investigate the potential mechanisms of Pb‐induced reactive oxygen species (ROS) accumulation and cell...
Lead (Pb) is nonbiodegradable and toxic to the lungs. To investigate the potential mechanisms of Pb-induced reactive oxygen species (ROS) accumulation and cell...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1294
SubjectTerms Accumulation
Apoptosis
Caspase-3
cell apoptosis
Cell death
Cells
Disulfide reductase
ecotoxicology
Glutathione
glutathione-disulfide reductase
Humans
Hydrogen peroxide
Lead
Lung cancer
Lung carcinoma
lung neoplasms
Lungs
Membrane potential
Mitochondria
Mitochondria - metabolism
mitochondrial
mitochondrial membrane
Mortality
Neoplasms
oxidoreductive activity
Oxygen
Pb(NO3)2
Reactive oxygen species
Reactive Oxygen Species - metabolism
Reductases
ROS
Sirtuin 3 - metabolism
sirtuins
Superoxide dismutase
Superoxide Dismutase - metabolism
toxicity
Title Pb(NO3)2 induces cell apoptosis through triggering of reactive oxygen species accumulation and disruption of mitochondrial function via SIRT3/SOD2 pathways
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Ftox.24019
https://www.ncbi.nlm.nih.gov/pubmed/37948429
https://www.proquest.com/docview/2922699365
https://www.proquest.com/docview/2889243324
https://www.proquest.com/docview/3040353361
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1baxQxFD6UgiCCrfW2bZWj-FAfZi_JTCaLT6ItVbAr7Qr7IAxJJiNL25mlM6PWv-Kf9SRzKVUL4ttATuBkci7fCcl3AF4wnVlutCDjtSwIY6UCaVMThI77PMx4lHkynQ9H4vBT-H4RLdbgVfcWpuGH6A_cnGf4eO0cXOlydEUaWhXfh5SOPOWnu6vlANHxFXXUVPjOrZSexlQjyUnHKjRmo37m9Vz0B8C8jld9wjnYgM-dqs09k9NhXemh-fEbi-N_rmUT7rZAFF83lnMP1my-Bbf2PYn15RbcmRmr8pbP-j78_Kj3jmb8JUOq4ckaSnQn_qhWxaoqymWJbb8frKja_-LpDbHIkBCpj6dIayBLRfeuk0pzVMbU523jMFR5iumyvKh99HLTzinMUFjOU-cd6FKvH_m6VHjy7njORyeztwxdM-Vv6rJ8APOD_fmbw6Dt6xCYkMrJQKiJdUR_MjJpaI2YSiWNEVRYqdjRi6VUsrM4inhmI0OIj-Q1oURubaY1M_whrOdFbh8DxmNhzDS0gvwh5ONUx9JyFRGqcTgmFQPY6zY4MS3nuWu9cZY0bM0soT-f-D8_gOe96Koh-vib0G5nJUnr62XCpqQcwTwRDeBZP0xe6jZC5baoSUZKKnQ5odebZTjFU07oW0wG8KixwF4TTmFTEnSgBXk7ulnFZD5b-I_tfxfdgduMsFpztW4X1quL2j4hrFXpp96pfgGb4yaS
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL0qRQiExKO8BgoYBFJZZB524iQLFohpNUPbGdSm0uwix3GqCJqMJgll-BU-gV_ho7h2MqkKVGLTBbtIvo4c-z7OdexzAV7RKFFMRhyVV1HLdoWwPBVLy9bc53bCnMSQ6exP-OjI_jBzZmvwY3UXpuaHaDfctGUYf60NXG9I985YQ8v8axfj0cBvjlTuquUpJmzF2_EQV_c1pTvbwfuR1dQUsKSNqYzFxUBpkjnPkbGtJPc94UnJEdQLV1NbxZguUtdxWKIciWgD5SNEKEypJIqoZPjaK3BVFxDXRP3DgzOuKp-bUrEYD_uYlHmDFY1Rn_bakZ4Pfn8g2vMA2US4ndvwczU39cGWT92qjLry22-0kf_J5N2BWw3SJu9q07gLayrbgGvbhqV7uQE3p1KJrCHsvgffP0Zbkyl7Q0maxajuBdG_NIiY5_MyL9KCNAWNSLlIj48NfyPJE4KQ2wQMgnOGpkj0xdUUOwspq5OmMhoRWUzitFhUxj3rbifoRzHuZLE2f6KxhWn5kgpyOD4IWO9wOqREV4s-FcviPgSXMU8PYD3LM_UIiNvnUvq24mjwNuvHkespJhyEbRqoxbwDWyuFCmVD6q5ri3wOazpqGuJCh2ahO_CyFZ3XTCZ_E9pcaWXYOLMipD4ODnEsdzrwom1GN6QXQmQqr1DG8zCTZwjPL5ZhGDAYphd80IGHtca3I2EYFzzERvhBRm8vHmIYTGfm4fG_iz6H66Ngfy_cG092n8ANisC0Pke4CevlolJPEViW0TNj0ATCS7aBX_oJgkw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3dbtMwFD4aQ6AJiZ8BozDAIJDGRdrUTpzkggtEV60M2mkrUu8ix3GmCJZUTcIor8Ib8Cq8FMdOmmnAJG52wV2kHEeOz993Evs7AC9olCgmI47Gq6jleEJYvoql5WjucydhbmLIdD6M-d5H593Mna3Bj9VZmJofov3gpj3DxGvt4PM46Z2Rhpb51y6mo37Q7KjcV8tTrNeK16MBKvclpcPd6ds9q2kpYEkHKxmLi77SHHO-K2NHSR74wpeSI6YXnma2irFapJ7rskS5EsEGykcIUJhSSRRRyfCxV-Cqw-1At4kYHJ5RVQXcdIrFdGhjTeb3VyxGNu21Mz2f-_4AtOfxsUlww1vwc7U09b6WT92qjLry22-skf_H2t2Gmw3OJm9qx7gDayrbhGu7hqN7uQk3JlKJrKHrvgvfD6Kd8YS9oiTNYjT2gugfGkTM83mZF2lBmnZGpFykx8eGvZHkCUHAbdIFwSVDRyT62GqKg4WU1UnTF42ILCZxWiwqE5z1sBOMoph1slg7P9HIwtz5kgpyNDqcst7RZECJ7hV9KpbFPZhexjrdh_Usz9QDIJ7NpQwcxdHdHWbHkecrJlwEbRqmxbwDOyt7CmVD6a47i3wOazJqGqKiQ6PoDjxvRec1j8nfhLZXRhk2oawIaYCTQxTL3Q48a29jENKKEJnKK5TxfazjGYLzi2UYpguGxQXvd2CrNvh2Jgyzgo_ICF_ImO3FUwynk5m5ePjvok_h-sFgGL4fjfcfwQZFVFpvItyG9XJRqceIKsvoiXFnAuElu8Av4BmA-w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pb%28+NO+3+%29+2+induces+cell+apoptosis+through+triggering+of+reactive+oxygen+species+accumulation+and+disruption+of+mitochondrial+function+via+SIRT3+%2F+SOD2+pathways&rft.jtitle=Environmental+toxicology&rft.au=Lin%2C+Hui%E2%80%90Wen&rft.au=Lee%2C+Hsiang%E2%80%90Lin&rft.au=Shen%2C+Ting%E2%80%90Jing&rft.au=Ho%2C+Meng%E2%80%90Ting&rft.date=2024-03-01&rft.issn=1520-4081&rft.eissn=1522-7278&rft.volume=39&rft.issue=3&rft.spage=1294&rft.epage=1302&rft_id=info:doi/10.1002%2Ftox.24019&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_tox_24019
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-4081&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-4081&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-4081&client=summon