Single Atomically Sharp Lateral Monolayer p‐n Heterojunction Solar Cells with Extraordinarily High Power Conversion Efficiency

The recent development of 2D monolayer lateral semiconductor has created new paradigm to develop p‐n heterojunctions. Albeit, the growth methods of these heterostructures typically result in alloy structures at the interface, limiting the development for high‐efficiency photovoltaic (PV) devices. He...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 29; no. 32
Main Authors Tsai, Meng‐Lin, Li, Ming‐Yang, Retamal, José Ramón Durán, Lam, Kai‐Tak, Lin, Yung‐Chang, Suenaga, Kazu, Chen, Lih‐Juann, Liang, Gengchiau, Li, Lain‐Jong, He, Jr‐Hau
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.08.2017
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The recent development of 2D monolayer lateral semiconductor has created new paradigm to develop p‐n heterojunctions. Albeit, the growth methods of these heterostructures typically result in alloy structures at the interface, limiting the development for high‐efficiency photovoltaic (PV) devices. Here, the PV properties of sequentially grown alloy‐free 2D monolayer WSe2‐MoS2 lateral p‐n heterojunction are explores. The PV devices show an extraordinary power conversion efficiency of 2.56% under AM 1.5G illumination. The large surface active area enables the full exposure of the depletion region, leading to excellent omnidirectional light harvesting characteristic with only 5% reduction of efficiency at incident angles up to 75°. Modeling studies demonstrate the PV devices comply with typical principles, increasing the feasibility for further development. Furthermore, the appropriate electrode‐spacing design can lead to environment‐independent PV properties. These robust PV properties deriving from the atomically sharp lateral p‐n interface can help develop the next‐generation photovoltaics. By sequential growth of alloy‐free 2D monolayer WSe2‐MoS2 lateral p‐n heterojunction, photovoltaic devices show extraordinary power conversion efficiencies of 2.56%. The large surface active area of the devices enables the full exposure of the depletion region, leading to excellent omnidirectional light harvesting characteristic. Modeling studies demonstrate the devices comply with typical principles. The appropriate electrode‐spacing design leads to environment‐independent properties.
AbstractList The recent development of 2D monolayer lateral semiconductor has created new paradigm to develop p-n heterojunctions. Albeit, the growth methods of these heterostructures typically result in alloy structures at the interface, limiting the development for high-efficiency photovoltaic (PV) devices. Here, the PV properties of sequentially grown alloy-free 2D monolayer WSe2-MoS2 lateral p-n heterojunction are explores. The PV devices show an extraordinary power conversion efficiency of 2.56% under AM 1.5G illumination. The large surface active area enables the full exposure of the depletion region, leading to excellent omnidirectional light harvesting characteristic with only 5% reduction of efficiency at incident angles up to 75°. Modeling studies demonstrate the PV devices comply with typical principles, increasing the feasibility for further development. Furthermore, the appropriate electrode-spacing design can lead to environment-independent PV properties. As a result, these robust PV properties deriving from the atomically sharp lateral p-n interface can help develop the next-generation photovoltaics.
The recent development of 2D monolayer lateral semiconductor has created new paradigm to develop p‐n heterojunctions. Albeit, the growth methods of these heterostructures typically result in alloy structures at the interface, limiting the development for high‐efficiency photovoltaic (PV) devices. Here, the PV properties of sequentially grown alloy‐free 2D monolayer WSe2‐MoS2 lateral p‐n heterojunction are explores. The PV devices show an extraordinary power conversion efficiency of 2.56% under AM 1.5G illumination. The large surface active area enables the full exposure of the depletion region, leading to excellent omnidirectional light harvesting characteristic with only 5% reduction of efficiency at incident angles up to 75°. Modeling studies demonstrate the PV devices comply with typical principles, increasing the feasibility for further development. Furthermore, the appropriate electrode‐spacing design can lead to environment‐independent PV properties. These robust PV properties deriving from the atomically sharp lateral p‐n interface can help develop the next‐generation photovoltaics.
The recent development of 2D monolayer lateral semiconductor has created new paradigm to develop p‐n heterojunctions. Albeit, the growth methods of these heterostructures typically result in alloy structures at the interface, limiting the development for high‐efficiency photovoltaic (PV) devices. Here, the PV properties of sequentially grown alloy‐free 2D monolayer WSe 2 ‐MoS 2 lateral p‐n heterojunction are explores. The PV devices show an extraordinary power conversion efficiency of 2.56% under AM 1.5G illumination. The large surface active area enables the full exposure of the depletion region, leading to excellent omnidirectional light harvesting characteristic with only 5% reduction of efficiency at incident angles up to 75°. Modeling studies demonstrate the PV devices comply with typical principles, increasing the feasibility for further development. Furthermore, the appropriate electrode‐spacing design can lead to environment‐independent PV properties. These robust PV properties deriving from the atomically sharp lateral p‐n interface can help develop the next‐generation photovoltaics.
The recent development of 2D monolayer lateral semiconductor has created new paradigm to develop p-n heterojunctions. Albeit, the growth methods of these heterostructures typically result in alloy structures at the interface, limiting the development for high-efficiency photovoltaic (PV) devices. Here, the PV properties of sequentially grown alloy-free 2D monolayer WSe2 -MoS2 lateral p-n heterojunction are explores. The PV devices show an extraordinary power conversion efficiency of 2.56% under AM 1.5G illumination. The large surface active area enables the full exposure of the depletion region, leading to excellent omnidirectional light harvesting characteristic with only 5% reduction of efficiency at incident angles up to 75°. Modeling studies demonstrate the PV devices comply with typical principles, increasing the feasibility for further development. Furthermore, the appropriate electrode-spacing design can lead to environment-independent PV properties. These robust PV properties deriving from the atomically sharp lateral p-n interface can help develop the next-generation photovoltaics.The recent development of 2D monolayer lateral semiconductor has created new paradigm to develop p-n heterojunctions. Albeit, the growth methods of these heterostructures typically result in alloy structures at the interface, limiting the development for high-efficiency photovoltaic (PV) devices. Here, the PV properties of sequentially grown alloy-free 2D monolayer WSe2 -MoS2 lateral p-n heterojunction are explores. The PV devices show an extraordinary power conversion efficiency of 2.56% under AM 1.5G illumination. The large surface active area enables the full exposure of the depletion region, leading to excellent omnidirectional light harvesting characteristic with only 5% reduction of efficiency at incident angles up to 75°. Modeling studies demonstrate the PV devices comply with typical principles, increasing the feasibility for further development. Furthermore, the appropriate electrode-spacing design can lead to environment-independent PV properties. These robust PV properties deriving from the atomically sharp lateral p-n interface can help develop the next-generation photovoltaics.
The recent development of 2D monolayer lateral semiconductor has created new paradigm to develop p-n heterojunctions. Albeit, the growth methods of these heterostructures typically result in alloy structures at the interface, limiting the development for high-efficiency photovoltaic (PV) devices. Here, the PV properties of sequentially grown alloy-free 2D monolayer WSe -MoS lateral p-n heterojunction are explores. The PV devices show an extraordinary power conversion efficiency of 2.56% under AM 1.5G illumination. The large surface active area enables the full exposure of the depletion region, leading to excellent omnidirectional light harvesting characteristic with only 5% reduction of efficiency at incident angles up to 75°. Modeling studies demonstrate the PV devices comply with typical principles, increasing the feasibility for further development. Furthermore, the appropriate electrode-spacing design can lead to environment-independent PV properties. These robust PV properties deriving from the atomically sharp lateral p-n interface can help develop the next-generation photovoltaics.
The recent development of 2D monolayer lateral semiconductor has created new paradigm to develop p‐n heterojunctions. Albeit, the growth methods of these heterostructures typically result in alloy structures at the interface, limiting the development for high‐efficiency photovoltaic (PV) devices. Here, the PV properties of sequentially grown alloy‐free 2D monolayer WSe2‐MoS2 lateral p‐n heterojunction are explores. The PV devices show an extraordinary power conversion efficiency of 2.56% under AM 1.5G illumination. The large surface active area enables the full exposure of the depletion region, leading to excellent omnidirectional light harvesting characteristic with only 5% reduction of efficiency at incident angles up to 75°. Modeling studies demonstrate the PV devices comply with typical principles, increasing the feasibility for further development. Furthermore, the appropriate electrode‐spacing design can lead to environment‐independent PV properties. These robust PV properties deriving from the atomically sharp lateral p‐n interface can help develop the next‐generation photovoltaics. By sequential growth of alloy‐free 2D monolayer WSe2‐MoS2 lateral p‐n heterojunction, photovoltaic devices show extraordinary power conversion efficiencies of 2.56%. The large surface active area of the devices enables the full exposure of the depletion region, leading to excellent omnidirectional light harvesting characteristic. Modeling studies demonstrate the devices comply with typical principles. The appropriate electrode‐spacing design leads to environment‐independent properties.
Author Suenaga, Kazu
He, Jr‐Hau
Lin, Yung‐Chang
Chen, Lih‐Juann
Li, Ming‐Yang
Li, Lain‐Jong
Retamal, José Ramón Durán
Tsai, Meng‐Lin
Lam, Kai‐Tak
Liang, Gengchiau
Author_xml – sequence: 1
  givenname: Meng‐Lin
  surname: Tsai
  fullname: Tsai, Meng‐Lin
  organization: National Tsing Hua University
– sequence: 2
  givenname: Ming‐Yang
  surname: Li
  fullname: Li, Ming‐Yang
  organization: King Abdullah University of Science and Technology
– sequence: 3
  givenname: José Ramón Durán
  surname: Retamal
  fullname: Retamal, José Ramón Durán
  organization: King Abdullah University of Science and Technology
– sequence: 4
  givenname: Kai‐Tak
  surname: Lam
  fullname: Lam, Kai‐Tak
  organization: National University of Singapore
– sequence: 5
  givenname: Yung‐Chang
  surname: Lin
  fullname: Lin, Yung‐Chang
  organization: National Institute of Advanced Industrial Science and Technology (AIST)
– sequence: 6
  givenname: Kazu
  surname: Suenaga
  fullname: Suenaga, Kazu
  organization: National Institute of Advanced Industrial Science and Technology (AIST)
– sequence: 7
  givenname: Lih‐Juann
  surname: Chen
  fullname: Chen, Lih‐Juann
  email: ljchen@mx.nthu.edu.tw
  organization: National Tsing Hua University
– sequence: 8
  givenname: Gengchiau
  surname: Liang
  fullname: Liang, Gengchiau
  organization: National University of Singapore
– sequence: 9
  givenname: Lain‐Jong
  surname: Li
  fullname: Li, Lain‐Jong
  organization: King Abdullah University of Science and Technology
– sequence: 10
  givenname: Jr‐Hau
  surname: He
  fullname: He, Jr‐Hau
  email: jrhau.he@kaust.edu.sa
  organization: King Abdullah University of Science and Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28650580$$D View this record in MEDLINE/PubMed
https://www.osti.gov/servlets/purl/1479324$$D View this record in Osti.gov
BookMark eNqFkU-PEyEcholZ43ZXrx4N0cteWvk3FI5NrdakG02qZ0IZZkvDQIWZrXPbj7Cf0U8iTXc12cR4IoHneeHHewHOQgwWgNcYTTBC5L2uWz0hCE8Rxlw8AyNcETxmSFZnYIQkrcaSM3EOLnLeIYQkR_wFOCeCV6gSaATu1i7ceAtnXWyd0d4PcL3VaQ9XurNJe3gdQ_R6sAnuf93dB7i0ZT_u-mA6FwNcl8ME59b7DA-u28LFzy7pmGoXdHIlbelutvBrPJSAeQy3NuWjtmgaZ5wNZngJnjfaZ_vqYb0E3z8uvs2X49WXT5_ns9XYMIbEuOaSc10TYYkWVGpSYzLVAmlGDauxpoJiYqrGWMRYpady01BO5KZuELOiJvQSvD3lxtw5lY3rrNmaGII1ncJsKilhBbo6QfsUf_Q2d6p12ZThdLCxzwpLXC6inMqCvnuC7mKfQhmhUBRRIaoKF-rNA9VvWlurfXKtToN6LKAA7ASYFHNOtlHlZfr4teUbnVcYqWPP6tiz-tNz0SZPtMfkfwryJByct8N_aDX7cD376_4GJ4a7vQ
CitedBy_id crossref_primary_10_35848_1882_0786_ab9efa
crossref_primary_10_1039_D0NA00267D
crossref_primary_10_1039_D0TA06626E
crossref_primary_10_1002_tcr_202100313
crossref_primary_10_1088_1361_6528_acca8b
crossref_primary_10_1002_advs_202406781
crossref_primary_10_1016_j_heliyon_2022_e09800
crossref_primary_10_1002_aenm_202100864
crossref_primary_10_1021_acsaelm_8b00059
crossref_primary_10_1039_D1CS01016F
crossref_primary_10_1021_acsami_1c04980
crossref_primary_10_1016_j_nanoen_2018_12_065
crossref_primary_10_1002_aelm_202001174
crossref_primary_10_1016_j_device_2023_100003
crossref_primary_10_1063_5_0079346
crossref_primary_10_1039_D2CP05663A
crossref_primary_10_1002_adfm_201900314
crossref_primary_10_1002_adfm_202101086
crossref_primary_10_1007_s11467_023_1286_2
crossref_primary_10_1021_acsami_8b15817
crossref_primary_10_1063_1_5027520
crossref_primary_10_1016_j_biteb_2022_101295
crossref_primary_10_1002_adfm_201900040
crossref_primary_10_1364_OPTCON_542953
crossref_primary_10_1021_acsnano_0c08668
crossref_primary_10_1039_C8CS00094H
crossref_primary_10_1088_1361_6463_abd80c
crossref_primary_10_3390_nano11102688
crossref_primary_10_1016_j_nanoen_2018_02_001
crossref_primary_10_1039_D3NR06144B
crossref_primary_10_1021_acsami_0c12729
crossref_primary_10_1002_andp_201800465
crossref_primary_10_1002_adfm_202210619
crossref_primary_10_1002_admi_202201649
crossref_primary_10_1002_adfm_201706587
crossref_primary_10_1016_j_ensm_2018_10_002
crossref_primary_10_35848_1882_0786_acfd7d
crossref_primary_10_1039_C8SC02508H
crossref_primary_10_1002_smll_201903831
crossref_primary_10_1039_C8CS00067K
crossref_primary_10_1039_C7CS00874K
crossref_primary_10_1063_5_0021579
crossref_primary_10_1088_2053_1583_ab0708
crossref_primary_10_1039_D3NR03845A
crossref_primary_10_1002_aenm_201900180
crossref_primary_10_1021_acsnano_9b09857
crossref_primary_10_1007_s42247_021_00205_6
crossref_primary_10_1063_5_0018854
crossref_primary_10_1021_acsanm_1c00890
crossref_primary_10_1039_D1NR00318F
crossref_primary_10_3390_ma16134795
crossref_primary_10_1002_adfm_201808182
crossref_primary_10_1116_1_5082166
crossref_primary_10_1016_j_nanoen_2018_06_049
crossref_primary_10_1002_celc_201900224
crossref_primary_10_1002_aelm_201700335
crossref_primary_10_1088_2053_1583_ac3c9c
crossref_primary_10_1002_adma_201802722
crossref_primary_10_1016_j_apsusc_2020_147480
crossref_primary_10_1021_acsnano_8b05859
crossref_primary_10_3390_ma14143768
crossref_primary_10_1021_acsphotonics_7b01103
crossref_primary_10_1002_inf2_12093
crossref_primary_10_1039_D1CS01092A
crossref_primary_10_1021_acsaelm_1c01156
crossref_primary_10_1039_D2NR00216G
crossref_primary_10_1002_advs_201700502
crossref_primary_10_1021_acsphotonics_3c00670
crossref_primary_10_1002_aelm_201900331
crossref_primary_10_1016_j_nanoen_2019_02_032
crossref_primary_10_1038_s41467_018_07656_2
crossref_primary_10_3390_nano13202769
crossref_primary_10_1088_2053_1591_ab15ea
crossref_primary_10_1002_adfm_202103106
crossref_primary_10_1021_acsnano_4c06525
crossref_primary_10_1039_C9TA11304E
crossref_primary_10_1063_5_0097392
crossref_primary_10_1088_1361_651X_ad237d
crossref_primary_10_1002_smll_202304735
crossref_primary_10_1039_C7CS00880E
crossref_primary_10_1021_acsnano_1c10054
crossref_primary_10_1002_admt_201800072
crossref_primary_10_1021_acsnano_2c11927
crossref_primary_10_3390_app11083530
crossref_primary_10_1002_pssr_201800418
crossref_primary_10_1088_1361_648X_ab0970
crossref_primary_10_1002_advs_202103830
crossref_primary_10_1016_j_flatc_2019_100133
crossref_primary_10_1002_admt_201900108
crossref_primary_10_1002_smtd_201700294
crossref_primary_10_1002_adma_202206122
crossref_primary_10_1021_acsami_0c09084
crossref_primary_10_1002_aenm_201703638
crossref_primary_10_1016_j_rinp_2021_104110
crossref_primary_10_1021_acsami_9b15855
crossref_primary_10_1002_adfm_202316175
crossref_primary_10_1007_s42247_021_00219_0
crossref_primary_10_1016_j_ceramint_2022_09_135
crossref_primary_10_1016_j_ensm_2020_03_003
crossref_primary_10_1021_acsami_8b12250
crossref_primary_10_1039_C8CE01666F
crossref_primary_10_1039_C8CP00557E
crossref_primary_10_1002_adfm_201804696
crossref_primary_10_1039_C8CS00024G
crossref_primary_10_1063_1_5143547
crossref_primary_10_1016_j_solener_2022_03_008
crossref_primary_10_1039_C8SC02609B
crossref_primary_10_1088_1361_6528_aabeb2
Cites_doi 10.1073/pnas.1317226110
10.1021/nl401544y
10.1039/C4RA17320A
10.1021/nl501962c
10.1021/acs.chemrev.6b00164
10.1038/nnano.2014.25
10.1039/c3nr03052k
10.1021/nn4024834
10.1073/pnas.1405435111
10.1038/ncomms8083
10.1021/nn501723y
10.1021/nl401540h
10.1021/nn5027388
10.1021/nl503744f
10.1038/nnano.2014.26
10.1021/nn501779y
10.1021/acs.chemrev.6b00075
10.1038/nnano.2011.196
10.1038/nnano.2014.222
10.1126/science.aab4097
10.1016/S0925-4005(99)00245-2
10.1103/PhysRevLett.105.136805
10.1021/acsnano.5b05928
10.1021/nl502075n
10.1038/nmat4064
10.1007/0-387-37766-2
10.1038/nmat4452
10.1038/nnano.2014.150
10.1021/nl5037484
10.1038/srep02657
10.1063/1.113780
10.1109/JPHOTOV.2015.2395145
10.1038/nnano.2014.14
10.1016/j.solmat.2012.02.019
10.1038/srep05209
10.1063/1.4871582
10.1021/nn507278b
10.1021/cr300263a
10.1021/jacs.5b03141
ContentType Journal Article
Copyright 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
CorporateAuthor Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
CorporateAuthor_xml – name: Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
OIOZB
OTOTI
DOI 10.1002/adma.201701168
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
OSTI.GOV - Hybrid
OSTI.GOV
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList
Materials Research Database
CrossRef
MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 1479324
28650580
10_1002_adma_201701168
ADMA201701168
Genre article
Journal Article
GrantInformation_xml – fundername: KAUST
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AANHP
AAYOK
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
FEDTE
FOJGT
HF~
HVGLF
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
NPM
7SR
8BQ
8FD
JG9
7X8
AAPBV
ABHUG
ACXME
ADAWD
ADDAD
AFVGU
AGJLS
OIOZB
OTOTI
ID FETCH-LOGICAL-c4408-d6966ad28e2a839a2d127a80a43c4d1a38312c5fce0445a79bf3629bdf04e8d23
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Thu May 18 22:31:12 EDT 2023
Fri Jul 11 15:26:32 EDT 2025
Fri Jul 25 04:28:27 EDT 2025
Mon Jul 21 05:42:02 EDT 2025
Tue Jul 01 00:44:34 EDT 2025
Thu Apr 24 23:08:35 EDT 2025
Wed Jan 22 16:27:38 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 32
Keywords monolayer
lateral heterostructures
solar cells
transition metal dichalcogenides
2D materials
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4408-d6966ad28e2a839a2d127a80a43c4d1a38312c5fce0445a79bf3629bdf04e8d23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
AC02-05CH11231
USDOE Office of Science (SC)
OpenAccessLink https://www.osti.gov/servlets/purl/1479324
PMID 28650580
PQID 1930388551
PQPubID 2045203
PageCount 7
ParticipantIDs osti_scitechconnect_1479324
proquest_miscellaneous_1913833639
proquest_journals_1930388551
pubmed_primary_28650580
crossref_citationtrail_10_1002_adma_201701168
crossref_primary_10_1002_adma_201701168
wiley_primary_10_1002_adma_201701168_ADMA201701168
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-Aug
PublicationDateYYYYMMDD 2017-08-01
PublicationDate_xml – month: 08
  year: 2017
  text: 2017-Aug
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
– name: United States
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2017
Publisher Wiley Subscription Services, Inc
Wiley
Publisher_xml – name: Wiley Subscription Services, Inc
– name: Wiley
References 2015; 15
2015; 14
2013; 3
2015; 6
2015; 5
2012; 101
2010; 105
2016; 10
2006
2015; 349
1999; 60
2013; 7
2015; 9
2014; 111
2013; 5
2011; 6
2014; 4
2015; 137
2013; 13
1995; 66
2014; 14
2013; 113
2014; 13
2016; 116
2013; 110
2014; 9
2014; 8
2014; 104
e_1_2_5_27_1
e_1_2_5_28_1
e_1_2_5_25_1
e_1_2_5_26_1
e_1_2_5_23_1
e_1_2_5_24_1
e_1_2_5_21_1
e_1_2_5_22_1
e_1_2_5_29_1
e_1_2_5_20_1
e_1_2_5_15_1
e_1_2_5_38_1
e_1_2_5_14_1
e_1_2_5_39_1
e_1_2_5_17_1
e_1_2_5_36_1
e_1_2_5_9_1
e_1_2_5_16_1
e_1_2_5_37_1
e_1_2_5_8_1
e_1_2_5_11_1
e_1_2_5_34_1
e_1_2_5_7_1
e_1_2_5_10_1
e_1_2_5_35_1
e_1_2_5_6_1
e_1_2_5_13_1
e_1_2_5_32_1
e_1_2_5_5_1
e_1_2_5_12_1
e_1_2_5_33_1
e_1_2_5_4_1
e_1_2_5_3_1
e_1_2_5_2_1
e_1_2_5_1_1
e_1_2_5_19_1
e_1_2_5_18_1
e_1_2_5_30_1
e_1_2_5_31_1
References_xml – volume: 8
  start-page: 8292
  year: 2014
  publication-title: ACS Nano
– volume: 66
  start-page: 3510
  year: 1995
  publication-title: Appl. Phys. Lett.
– volume: 14
  start-page: 1195
  year: 2015
  publication-title: Nat. Mater.
– volume: 104
  start-page: 153903
  year: 2014
  publication-title: Appl. Phys. Lett.
– volume: 111
  start-page: 6198
  year: 2014
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 5
  start-page: 9677
  year: 2013
  publication-title: Nanoscale
– volume: 113
  start-page: 3766
  year: 2013
  publication-title: Chem. Rev.
– volume: 9
  start-page: 1024
  year: 2014
  publication-title: Nat. Nanotechnol.
– volume: 13
  start-page: 3658
  year: 2013
  publication-title: Nano Lett.
– volume: 8
  start-page: 6563
  year: 2014
  publication-title: ACS Nano
– volume: 6
  start-page: 773
  year: 2011
  publication-title: Nat. Nanotechnol.
– volume: 14
  start-page: 5590
  year: 2014
  publication-title: Nano Lett.
– volume: 5
  start-page: 926
  year: 2015
  publication-title: IEEE J. Photovoltaics
– volume: 116
  start-page: 10934
  year: 2016
  publication-title: Chem. Rev.
– volume: 10
  start-page: 815
  year: 2016
  publication-title: ACS Nano
– volume: 4
  start-page: 5209
  year: 2014
  publication-title: Sci. Rep.
– volume: 8
  start-page: 6259
  year: 2014
  publication-title: ACS Nano
– volume: 9
  start-page: 262
  year: 2014
  publication-title: Nat. Nanotechnol.
– volume: 9
  start-page: 268
  year: 2014
  publication-title: Nat. Nanotechnol.
– volume: 116
  start-page: 7159
  year: 2016
  publication-title: Chem. Rev.
– volume: 13
  start-page: 1096
  year: 2014
  publication-title: Nat. Mater.
– volume: 60
  start-page: 64
  year: 1999
  publication-title: Sens. Actuators, B
– volume: 137
  start-page: 8313
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 9
  start-page: 2071
  year: 2015
  publication-title: ACS Nano
– volume: 6
  start-page: 7083
  year: 2015
  publication-title: Nat. Commun.
– year: 2006
– volume: 9
  start-page: 257
  year: 2014
  publication-title: Nat. Nanotechnol.
– volume: 349
  start-page: 524
  year: 2015
  publication-title: Science
– volume: 14
  start-page: 4785
  year: 2014
  publication-title: Nano Lett.
– volume: 5
  start-page: 17572
  year: 2015
  publication-title: RSC Adv.
– volume: 101
  start-page: 36
  year: 2012
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 15
  start-page: 416
  year: 2015
  publication-title: Nano Lett.
– volume: 3
  start-page: 2657
  year: 2013
  publication-title: Sci. Rep.
– volume: 9
  start-page: 676
  year: 2014
  publication-title: Nat. Nanotechnol.
– volume: 110
  start-page: 18076
  year: 2013
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 105
  start-page: 136805
  year: 2010
  publication-title: Phys. Rev. Lett.
– volume: 15
  start-page: 410
  year: 2015
  publication-title: Nano Lett.
– volume: 13
  start-page: 3664
  year: 2013
  publication-title: Nano Lett.
– volume: 7
  start-page: 7126
  year: 2013
  publication-title: ACS Nano
– ident: e_1_2_5_17_1
  doi: 10.1073/pnas.1317226110
– ident: e_1_2_5_5_1
  doi: 10.1021/nl401544y
– ident: e_1_2_5_23_1
  doi: 10.1039/C4RA17320A
– ident: e_1_2_5_6_1
  doi: 10.1021/nl501962c
– ident: e_1_2_5_8_1
  doi: 10.1021/acs.chemrev.6b00164
– ident: e_1_2_5_20_1
  doi: 10.1038/nnano.2014.25
– ident: e_1_2_5_29_1
  doi: 10.1039/c3nr03052k
– ident: e_1_2_5_28_1
  doi: 10.1021/nn4024834
– ident: e_1_2_5_27_1
  doi: 10.1073/pnas.1405435111
– ident: e_1_2_5_33_1
  doi: 10.1038/ncomms8083
– ident: e_1_2_5_4_1
  doi: 10.1021/nn501723y
– ident: e_1_2_5_37_1
  doi: 10.1021/nl401540h
– ident: e_1_2_5_3_1
  doi: 10.1021/nn5027388
– ident: e_1_2_5_15_1
  doi: 10.1021/nl503744f
– ident: e_1_2_5_19_1
  doi: 10.1038/nnano.2014.26
– ident: e_1_2_5_11_1
  doi: 10.1021/nn501779y
– ident: e_1_2_5_9_1
  doi: 10.1021/acs.chemrev.6b00075
– ident: e_1_2_5_35_1
  doi: 10.1038/nnano.2011.196
– ident: e_1_2_5_13_1
  doi: 10.1038/nnano.2014.222
– ident: e_1_2_5_16_1
  doi: 10.1126/science.aab4097
– ident: e_1_2_5_25_1
  doi: 10.1016/S0925-4005(99)00245-2
– ident: e_1_2_5_30_1
  doi: 10.1103/PhysRevLett.105.136805
– ident: e_1_2_5_34_1
  doi: 10.1021/acsnano.5b05928
– ident: e_1_2_5_1_1
  doi: 10.1021/nl502075n
– ident: e_1_2_5_14_1
  doi: 10.1038/nmat4064
– ident: e_1_2_5_39_1
  doi: 10.1007/0-387-37766-2
– ident: e_1_2_5_36_1
  doi: 10.1038/nmat4452
– ident: e_1_2_5_2_1
  doi: 10.1038/nnano.2014.150
– ident: e_1_2_5_18_1
  doi: 10.1021/nl5037484
– ident: e_1_2_5_10_1
  doi: 10.1038/srep02657
– ident: e_1_2_5_26_1
  doi: 10.1063/1.113780
– ident: e_1_2_5_31_1
  doi: 10.1109/JPHOTOV.2015.2395145
– ident: e_1_2_5_21_1
  doi: 10.1038/nnano.2014.14
– ident: e_1_2_5_38_1
  doi: 10.1016/j.solmat.2012.02.019
– ident: e_1_2_5_24_1
  doi: 10.1038/srep05209
– ident: e_1_2_5_32_1
  doi: 10.1063/1.4871582
– ident: e_1_2_5_22_1
  doi: 10.1021/nn507278b
– ident: e_1_2_5_7_1
  doi: 10.1021/cr300263a
– ident: e_1_2_5_12_1
  doi: 10.1021/jacs.5b03141
SSID ssj0009606
Score 2.5545118
Snippet The recent development of 2D monolayer lateral semiconductor has created new paradigm to develop p‐n heterojunctions. Albeit, the growth methods of these...
The recent development of 2D monolayer lateral semiconductor has created new paradigm to develop p-n heterojunctions. Albeit, the growth methods of these...
SourceID osti
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
SubjectTerms 2D materials
Devices
Efficiency
Energy conversion efficiency
Feasibility studies
Heterojunctions
Heterostructures
Illumination
lateral heterostructures
Materials science
Molybdenum disulfide
monolayer
Photovoltaic cells
Properties (attributes)
Solar cells
SOLAR ENERGY
transition metal dichalcogenides
Title Single Atomically Sharp Lateral Monolayer p‐n Heterojunction Solar Cells with Extraordinarily High Power Conversion Efficiency
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201701168
https://www.ncbi.nlm.nih.gov/pubmed/28650580
https://www.proquest.com/docview/1930388551
https://www.proquest.com/docview/1913833639
https://www.osti.gov/servlets/purl/1479324
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB6hPcGB_5_QgoyExClt4jiJc1wtW60QRYhSqbdo4tgSNEpW3awEnPoIPCNPwoyzm3YRCAlOSRTbsp2Z8TfOzGeAl3mlqyLCItROI6fkpCHmTobOaIdkKjGRnI18_C5bnKo3Z-nZtSz-gR9i3HBjzfD2mhUcq9XhFWko1p43iPnE44yzfTlgi1HRhyv-KIbnnmyPulBkSm9ZGyN5uFt9Z1WadKRdv0OcuwDWr0BHdwC3fR8CT84P1n11YL79Quv4P4O7C7c38FRMB3m6Bzdsex9uXSMtfACXJ3RprJj2nacaaL4KZn1eirfI2cyNIDNB_jJBebH8cfm9FQuOuOk-0wLKQiBO2JkWM9s0K8G7wGL-pb9A8oE5M_gTtcahJ-I9n94mZhwT7zf0xNxzXXCi6EM4PZp_nC3CzTkOoeHzrMM6I58Ka6mtRMJjKOtY5qgjVIlRdYzkJMfSpM7YSKkU86JytKwWVe0iZXUtk0cwabvWPgGRVLkytnLS2kTVSaazFKlBQkkYodQugHD7HUuzITnnszaacqBnliXPbDnObACvxvLLgd7jjyX3WCxKAibMrms4DMn05DmRgZMqgP2ttJQbI7AqCRsz1w5h0gBejK9JffmfDLa2W3OZmIafEE4M4PEgZWNHOGk4SnUUgPSy8pceltPXx9Px6em_VNqDm3w_BDjuw6S_WNtnBLr66rlXrJ9SmyRj
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NjpRAEK7oeFAP_v_grtomJp7YZZoGmuNknM2oMxvj7ibeSNE0iUpgsssk6mkfwWf0SaxqBtYxGhM9EaC700BV9VdN1VcAz5Nc52mAqa9LjZySE_mYlNIvjS6RTCWGkrORl4fx_ES9fh_10YScC9PxQwwbbqwZzl6zgvOG9P4FaygWjjiICcXHsb4MV7ist_Oq3l0wSDFAd3R7NIk0VrrnbQzk_nb_rXVp1JB-_Q5zbkNYtwYd3IS8n30XevJpb93me-brL8SO__V4t-DGBqGKSSdSt-GSre_A9Z94C-_C-REdKismbePYBqovgomfV2KBnNBcCbIU5DITmher7-ffajHnoJvmI62hLAfiiP1pMbVVdSZ4I1jMPrenSG4wJwd_oNE4-kS85QJuYsph8W5PT8wc3QXnit6Dk4PZ8XTub0o5-IZLWvtFTG4VFlJbiQTJUBZjmaAOUIVGFWMkP3ksTVQaGygVYZLmJa2saV6UgbK6kOF9GNVNbR-CCPNEGZuX0tpQFWGs4whpQAJKGKDUpQd-_yEzs-E553IbVdYxNMuM32w2vFkPXgztVx3Dxx9b7rBcZIRNmGDXcCSSacl5IhsnlQe7vbhkGztwlhE8ZrodgqUePBtukwbzbxmsbbPmNmN6_JCgogcPOjEbJsJ5w0GkAw-kE5a_zDCbvFxOhrNH_9LpKVydHy8X2eLV4ZsduMbXu3jHXRi1p2v7mDBYmz9xWvYDhp0ofg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB7BIiE48F8ILWAkJE5pE8dJnONqf7RAW1WUSr1FE8eWgGizarMScOoj8Iw8CTPJbtpFICQ4RUlsy3Zmxt84M58BXqWFLrIAM187jZySE_uYOuk7ox2SqcRIcjbywWEyO1FvT-PTK1n8HT9Ev-HGmtHaa1bwRen2LklDsWx5g5hPPEz0dbihkkCzXI_fXxJIMT5v2faoD1mi9Jq2MZB7m_U3lqVBTer1O8i5iWDbJWh6F3Dd-S7y5PPusil2zbdfeB3_Z3T34M4Kn4phJ1D34ZqdP4DbV1gLH8LFMV0qK4ZN3XINVF8F0z4vxD5yOnMlyE6Qw0xYXix-XHyfixmH3NSfaAVlKRDH7E2Lka2qc8HbwGLypTlDcoI5NfgjtcaxJ-KIj28TIw6Kb3f0xKQlu-BM0UdwMp18GM381UEOvuEDrf0yIacKS6mtRAJkKMtQpqgDVJFRZYjkJYfSxM7YQKkY06xwtK5mRekCZXUpoy0YzOu5fQIiKlJlbOGktZEqo0QnMVKDBJMwQKmdB_76O-ZmxXLOh21UecfPLHOe2byfWQ9e9-UXHb_HH0tus1jkhEyYXtdwHJJpyHUiCyeVBztraclXVuA8J3DMZDsESj142b8m_eWfMji39ZLLhDT8iICiB487Kes7wlnDQawDD2QrK3_pYT4cHwz7u6f_UukF3DwaT_P9N4fvtuEWP-6CHXdg0Jwt7TMCYE3xvNWxnwgqJzY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Single+Atomically+Sharp+Lateral+Monolayer+p-n+Heterojunction+Solar+Cells+with+Extraordinarily+High+Power+Conversion+Efficiency&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Tsai%2C+Meng-Lin&rft.au=Li%2C+Ming-Yang&rft.au=Retamal%2C+Jos%C3%A9+Ram%C3%B3n+Dur%C3%A1n&rft.au=Lam%2C+Kai-Tak&rft.date=2017-08-01&rft.issn=1521-4095&rft.eissn=1521-4095&rft.volume=29&rft.issue=32&rft_id=info:doi/10.1002%2Fadma.201701168&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon