Single Atomically Sharp Lateral Monolayer p‐n Heterojunction Solar Cells with Extraordinarily High Power Conversion Efficiency
The recent development of 2D monolayer lateral semiconductor has created new paradigm to develop p‐n heterojunctions. Albeit, the growth methods of these heterostructures typically result in alloy structures at the interface, limiting the development for high‐efficiency photovoltaic (PV) devices. He...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 29; no. 32 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.08.2017
Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The recent development of 2D monolayer lateral semiconductor has created new paradigm to develop p‐n heterojunctions. Albeit, the growth methods of these heterostructures typically result in alloy structures at the interface, limiting the development for high‐efficiency photovoltaic (PV) devices. Here, the PV properties of sequentially grown alloy‐free 2D monolayer WSe2‐MoS2 lateral p‐n heterojunction are explores. The PV devices show an extraordinary power conversion efficiency of 2.56% under AM 1.5G illumination. The large surface active area enables the full exposure of the depletion region, leading to excellent omnidirectional light harvesting characteristic with only 5% reduction of efficiency at incident angles up to 75°. Modeling studies demonstrate the PV devices comply with typical principles, increasing the feasibility for further development. Furthermore, the appropriate electrode‐spacing design can lead to environment‐independent PV properties. These robust PV properties deriving from the atomically sharp lateral p‐n interface can help develop the next‐generation photovoltaics.
By sequential growth of alloy‐free 2D monolayer WSe2‐MoS2 lateral p‐n heterojunction, photovoltaic devices show extraordinary power conversion efficiencies of 2.56%. The large surface active area of the devices enables the full exposure of the depletion region, leading to excellent omnidirectional light harvesting characteristic. Modeling studies demonstrate the devices comply with typical principles. The appropriate electrode‐spacing design leads to environment‐independent properties. |
---|---|
AbstractList | The recent development of 2D monolayer lateral semiconductor has created new paradigm to develop p-n heterojunctions. Albeit, the growth methods of these heterostructures typically result in alloy structures at the interface, limiting the development for high-efficiency photovoltaic (PV) devices. Here, the PV properties of sequentially grown alloy-free 2D monolayer WSe2-MoS2 lateral p-n heterojunction are explores. The PV devices show an extraordinary power conversion efficiency of 2.56% under AM 1.5G illumination. The large surface active area enables the full exposure of the depletion region, leading to excellent omnidirectional light harvesting characteristic with only 5% reduction of efficiency at incident angles up to 75°. Modeling studies demonstrate the PV devices comply with typical principles, increasing the feasibility for further development. Furthermore, the appropriate electrode-spacing design can lead to environment-independent PV properties. As a result, these robust PV properties deriving from the atomically sharp lateral p-n interface can help develop the next-generation photovoltaics. The recent development of 2D monolayer lateral semiconductor has created new paradigm to develop p‐n heterojunctions. Albeit, the growth methods of these heterostructures typically result in alloy structures at the interface, limiting the development for high‐efficiency photovoltaic (PV) devices. Here, the PV properties of sequentially grown alloy‐free 2D monolayer WSe2‐MoS2 lateral p‐n heterojunction are explores. The PV devices show an extraordinary power conversion efficiency of 2.56% under AM 1.5G illumination. The large surface active area enables the full exposure of the depletion region, leading to excellent omnidirectional light harvesting characteristic with only 5% reduction of efficiency at incident angles up to 75°. Modeling studies demonstrate the PV devices comply with typical principles, increasing the feasibility for further development. Furthermore, the appropriate electrode‐spacing design can lead to environment‐independent PV properties. These robust PV properties deriving from the atomically sharp lateral p‐n interface can help develop the next‐generation photovoltaics. The recent development of 2D monolayer lateral semiconductor has created new paradigm to develop p‐n heterojunctions. Albeit, the growth methods of these heterostructures typically result in alloy structures at the interface, limiting the development for high‐efficiency photovoltaic (PV) devices. Here, the PV properties of sequentially grown alloy‐free 2D monolayer WSe 2 ‐MoS 2 lateral p‐n heterojunction are explores. The PV devices show an extraordinary power conversion efficiency of 2.56% under AM 1.5G illumination. The large surface active area enables the full exposure of the depletion region, leading to excellent omnidirectional light harvesting characteristic with only 5% reduction of efficiency at incident angles up to 75°. Modeling studies demonstrate the PV devices comply with typical principles, increasing the feasibility for further development. Furthermore, the appropriate electrode‐spacing design can lead to environment‐independent PV properties. These robust PV properties deriving from the atomically sharp lateral p‐n interface can help develop the next‐generation photovoltaics. The recent development of 2D monolayer lateral semiconductor has created new paradigm to develop p-n heterojunctions. Albeit, the growth methods of these heterostructures typically result in alloy structures at the interface, limiting the development for high-efficiency photovoltaic (PV) devices. Here, the PV properties of sequentially grown alloy-free 2D monolayer WSe2 -MoS2 lateral p-n heterojunction are explores. The PV devices show an extraordinary power conversion efficiency of 2.56% under AM 1.5G illumination. The large surface active area enables the full exposure of the depletion region, leading to excellent omnidirectional light harvesting characteristic with only 5% reduction of efficiency at incident angles up to 75°. Modeling studies demonstrate the PV devices comply with typical principles, increasing the feasibility for further development. Furthermore, the appropriate electrode-spacing design can lead to environment-independent PV properties. These robust PV properties deriving from the atomically sharp lateral p-n interface can help develop the next-generation photovoltaics.The recent development of 2D monolayer lateral semiconductor has created new paradigm to develop p-n heterojunctions. Albeit, the growth methods of these heterostructures typically result in alloy structures at the interface, limiting the development for high-efficiency photovoltaic (PV) devices. Here, the PV properties of sequentially grown alloy-free 2D monolayer WSe2 -MoS2 lateral p-n heterojunction are explores. The PV devices show an extraordinary power conversion efficiency of 2.56% under AM 1.5G illumination. The large surface active area enables the full exposure of the depletion region, leading to excellent omnidirectional light harvesting characteristic with only 5% reduction of efficiency at incident angles up to 75°. Modeling studies demonstrate the PV devices comply with typical principles, increasing the feasibility for further development. Furthermore, the appropriate electrode-spacing design can lead to environment-independent PV properties. These robust PV properties deriving from the atomically sharp lateral p-n interface can help develop the next-generation photovoltaics. The recent development of 2D monolayer lateral semiconductor has created new paradigm to develop p-n heterojunctions. Albeit, the growth methods of these heterostructures typically result in alloy structures at the interface, limiting the development for high-efficiency photovoltaic (PV) devices. Here, the PV properties of sequentially grown alloy-free 2D monolayer WSe -MoS lateral p-n heterojunction are explores. The PV devices show an extraordinary power conversion efficiency of 2.56% under AM 1.5G illumination. The large surface active area enables the full exposure of the depletion region, leading to excellent omnidirectional light harvesting characteristic with only 5% reduction of efficiency at incident angles up to 75°. Modeling studies demonstrate the PV devices comply with typical principles, increasing the feasibility for further development. Furthermore, the appropriate electrode-spacing design can lead to environment-independent PV properties. These robust PV properties deriving from the atomically sharp lateral p-n interface can help develop the next-generation photovoltaics. The recent development of 2D monolayer lateral semiconductor has created new paradigm to develop p‐n heterojunctions. Albeit, the growth methods of these heterostructures typically result in alloy structures at the interface, limiting the development for high‐efficiency photovoltaic (PV) devices. Here, the PV properties of sequentially grown alloy‐free 2D monolayer WSe2‐MoS2 lateral p‐n heterojunction are explores. The PV devices show an extraordinary power conversion efficiency of 2.56% under AM 1.5G illumination. The large surface active area enables the full exposure of the depletion region, leading to excellent omnidirectional light harvesting characteristic with only 5% reduction of efficiency at incident angles up to 75°. Modeling studies demonstrate the PV devices comply with typical principles, increasing the feasibility for further development. Furthermore, the appropriate electrode‐spacing design can lead to environment‐independent PV properties. These robust PV properties deriving from the atomically sharp lateral p‐n interface can help develop the next‐generation photovoltaics. By sequential growth of alloy‐free 2D monolayer WSe2‐MoS2 lateral p‐n heterojunction, photovoltaic devices show extraordinary power conversion efficiencies of 2.56%. The large surface active area of the devices enables the full exposure of the depletion region, leading to excellent omnidirectional light harvesting characteristic. Modeling studies demonstrate the devices comply with typical principles. The appropriate electrode‐spacing design leads to environment‐independent properties. |
Author | Suenaga, Kazu He, Jr‐Hau Lin, Yung‐Chang Chen, Lih‐Juann Li, Ming‐Yang Li, Lain‐Jong Retamal, José Ramón Durán Tsai, Meng‐Lin Lam, Kai‐Tak Liang, Gengchiau |
Author_xml | – sequence: 1 givenname: Meng‐Lin surname: Tsai fullname: Tsai, Meng‐Lin organization: National Tsing Hua University – sequence: 2 givenname: Ming‐Yang surname: Li fullname: Li, Ming‐Yang organization: King Abdullah University of Science and Technology – sequence: 3 givenname: José Ramón Durán surname: Retamal fullname: Retamal, José Ramón Durán organization: King Abdullah University of Science and Technology – sequence: 4 givenname: Kai‐Tak surname: Lam fullname: Lam, Kai‐Tak organization: National University of Singapore – sequence: 5 givenname: Yung‐Chang surname: Lin fullname: Lin, Yung‐Chang organization: National Institute of Advanced Industrial Science and Technology (AIST) – sequence: 6 givenname: Kazu surname: Suenaga fullname: Suenaga, Kazu organization: National Institute of Advanced Industrial Science and Technology (AIST) – sequence: 7 givenname: Lih‐Juann surname: Chen fullname: Chen, Lih‐Juann email: ljchen@mx.nthu.edu.tw organization: National Tsing Hua University – sequence: 8 givenname: Gengchiau surname: Liang fullname: Liang, Gengchiau organization: National University of Singapore – sequence: 9 givenname: Lain‐Jong surname: Li fullname: Li, Lain‐Jong organization: King Abdullah University of Science and Technology – sequence: 10 givenname: Jr‐Hau surname: He fullname: He, Jr‐Hau email: jrhau.he@kaust.edu.sa organization: King Abdullah University of Science and Technology |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28650580$$D View this record in MEDLINE/PubMed https://www.osti.gov/servlets/purl/1479324$$D View this record in Osti.gov |
BookMark | eNqFkU-PEyEcholZ43ZXrx4N0cteWvk3FI5NrdakG02qZ0IZZkvDQIWZrXPbj7Cf0U8iTXc12cR4IoHneeHHewHOQgwWgNcYTTBC5L2uWz0hCE8Rxlw8AyNcETxmSFZnYIQkrcaSM3EOLnLeIYQkR_wFOCeCV6gSaATu1i7ceAtnXWyd0d4PcL3VaQ9XurNJe3gdQ_R6sAnuf93dB7i0ZT_u-mA6FwNcl8ME59b7DA-u28LFzy7pmGoXdHIlbelutvBrPJSAeQy3NuWjtmgaZ5wNZngJnjfaZ_vqYb0E3z8uvs2X49WXT5_ns9XYMIbEuOaSc10TYYkWVGpSYzLVAmlGDauxpoJiYqrGWMRYpady01BO5KZuELOiJvQSvD3lxtw5lY3rrNmaGII1ncJsKilhBbo6QfsUf_Q2d6p12ZThdLCxzwpLXC6inMqCvnuC7mKfQhmhUBRRIaoKF-rNA9VvWlurfXKtToN6LKAA7ASYFHNOtlHlZfr4teUbnVcYqWPP6tiz-tNz0SZPtMfkfwryJByct8N_aDX7cD376_4GJ4a7vQ |
CitedBy_id | crossref_primary_10_35848_1882_0786_ab9efa crossref_primary_10_1039_D0NA00267D crossref_primary_10_1039_D0TA06626E crossref_primary_10_1002_tcr_202100313 crossref_primary_10_1088_1361_6528_acca8b crossref_primary_10_1002_advs_202406781 crossref_primary_10_1016_j_heliyon_2022_e09800 crossref_primary_10_1002_aenm_202100864 crossref_primary_10_1021_acsaelm_8b00059 crossref_primary_10_1039_D1CS01016F crossref_primary_10_1021_acsami_1c04980 crossref_primary_10_1016_j_nanoen_2018_12_065 crossref_primary_10_1002_aelm_202001174 crossref_primary_10_1016_j_device_2023_100003 crossref_primary_10_1063_5_0079346 crossref_primary_10_1039_D2CP05663A crossref_primary_10_1002_adfm_201900314 crossref_primary_10_1002_adfm_202101086 crossref_primary_10_1007_s11467_023_1286_2 crossref_primary_10_1021_acsami_8b15817 crossref_primary_10_1063_1_5027520 crossref_primary_10_1016_j_biteb_2022_101295 crossref_primary_10_1002_adfm_201900040 crossref_primary_10_1364_OPTCON_542953 crossref_primary_10_1021_acsnano_0c08668 crossref_primary_10_1039_C8CS00094H crossref_primary_10_1088_1361_6463_abd80c crossref_primary_10_3390_nano11102688 crossref_primary_10_1016_j_nanoen_2018_02_001 crossref_primary_10_1039_D3NR06144B crossref_primary_10_1021_acsami_0c12729 crossref_primary_10_1002_andp_201800465 crossref_primary_10_1002_adfm_202210619 crossref_primary_10_1002_admi_202201649 crossref_primary_10_1002_adfm_201706587 crossref_primary_10_1016_j_ensm_2018_10_002 crossref_primary_10_35848_1882_0786_acfd7d crossref_primary_10_1039_C8SC02508H crossref_primary_10_1002_smll_201903831 crossref_primary_10_1039_C8CS00067K crossref_primary_10_1039_C7CS00874K crossref_primary_10_1063_5_0021579 crossref_primary_10_1088_2053_1583_ab0708 crossref_primary_10_1039_D3NR03845A crossref_primary_10_1002_aenm_201900180 crossref_primary_10_1021_acsnano_9b09857 crossref_primary_10_1007_s42247_021_00205_6 crossref_primary_10_1063_5_0018854 crossref_primary_10_1021_acsanm_1c00890 crossref_primary_10_1039_D1NR00318F crossref_primary_10_3390_ma16134795 crossref_primary_10_1002_adfm_201808182 crossref_primary_10_1116_1_5082166 crossref_primary_10_1016_j_nanoen_2018_06_049 crossref_primary_10_1002_celc_201900224 crossref_primary_10_1002_aelm_201700335 crossref_primary_10_1088_2053_1583_ac3c9c crossref_primary_10_1002_adma_201802722 crossref_primary_10_1016_j_apsusc_2020_147480 crossref_primary_10_1021_acsnano_8b05859 crossref_primary_10_3390_ma14143768 crossref_primary_10_1021_acsphotonics_7b01103 crossref_primary_10_1002_inf2_12093 crossref_primary_10_1039_D1CS01092A crossref_primary_10_1021_acsaelm_1c01156 crossref_primary_10_1039_D2NR00216G crossref_primary_10_1002_advs_201700502 crossref_primary_10_1021_acsphotonics_3c00670 crossref_primary_10_1002_aelm_201900331 crossref_primary_10_1016_j_nanoen_2019_02_032 crossref_primary_10_1038_s41467_018_07656_2 crossref_primary_10_3390_nano13202769 crossref_primary_10_1088_2053_1591_ab15ea crossref_primary_10_1002_adfm_202103106 crossref_primary_10_1021_acsnano_4c06525 crossref_primary_10_1039_C9TA11304E crossref_primary_10_1063_5_0097392 crossref_primary_10_1088_1361_651X_ad237d crossref_primary_10_1002_smll_202304735 crossref_primary_10_1039_C7CS00880E crossref_primary_10_1021_acsnano_1c10054 crossref_primary_10_1002_admt_201800072 crossref_primary_10_1021_acsnano_2c11927 crossref_primary_10_3390_app11083530 crossref_primary_10_1002_pssr_201800418 crossref_primary_10_1088_1361_648X_ab0970 crossref_primary_10_1002_advs_202103830 crossref_primary_10_1016_j_flatc_2019_100133 crossref_primary_10_1002_admt_201900108 crossref_primary_10_1002_smtd_201700294 crossref_primary_10_1002_adma_202206122 crossref_primary_10_1021_acsami_0c09084 crossref_primary_10_1002_aenm_201703638 crossref_primary_10_1016_j_rinp_2021_104110 crossref_primary_10_1021_acsami_9b15855 crossref_primary_10_1002_adfm_202316175 crossref_primary_10_1007_s42247_021_00219_0 crossref_primary_10_1016_j_ceramint_2022_09_135 crossref_primary_10_1016_j_ensm_2020_03_003 crossref_primary_10_1021_acsami_8b12250 crossref_primary_10_1039_C8CE01666F crossref_primary_10_1039_C8CP00557E crossref_primary_10_1002_adfm_201804696 crossref_primary_10_1039_C8CS00024G crossref_primary_10_1063_1_5143547 crossref_primary_10_1016_j_solener_2022_03_008 crossref_primary_10_1039_C8SC02609B crossref_primary_10_1088_1361_6528_aabeb2 |
Cites_doi | 10.1073/pnas.1317226110 10.1021/nl401544y 10.1039/C4RA17320A 10.1021/nl501962c 10.1021/acs.chemrev.6b00164 10.1038/nnano.2014.25 10.1039/c3nr03052k 10.1021/nn4024834 10.1073/pnas.1405435111 10.1038/ncomms8083 10.1021/nn501723y 10.1021/nl401540h 10.1021/nn5027388 10.1021/nl503744f 10.1038/nnano.2014.26 10.1021/nn501779y 10.1021/acs.chemrev.6b00075 10.1038/nnano.2011.196 10.1038/nnano.2014.222 10.1126/science.aab4097 10.1016/S0925-4005(99)00245-2 10.1103/PhysRevLett.105.136805 10.1021/acsnano.5b05928 10.1021/nl502075n 10.1038/nmat4064 10.1007/0-387-37766-2 10.1038/nmat4452 10.1038/nnano.2014.150 10.1021/nl5037484 10.1038/srep02657 10.1063/1.113780 10.1109/JPHOTOV.2015.2395145 10.1038/nnano.2014.14 10.1016/j.solmat.2012.02.019 10.1038/srep05209 10.1063/1.4871582 10.1021/nn507278b 10.1021/cr300263a 10.1021/jacs.5b03141 |
ContentType | Journal Article |
Copyright | 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
CorporateAuthor | Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States) |
CorporateAuthor_xml | – name: Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States) |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 OIOZB OTOTI |
DOI | 10.1002/adma.201701168 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic OSTI.GOV - Hybrid OSTI.GOV |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database CrossRef MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 1479324 28650580 10_1002_adma_201701168 ADMA201701168 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: KAUST |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AANHP AAYOK AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AETEA AEYWJ AFFNX AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION FEDTE FOJGT HF~ HVGLF M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 AAMMB AEFGJ AGXDD AIDQK AIDYY NPM 7SR 8BQ 8FD JG9 7X8 AAPBV ABHUG ACXME ADAWD ADDAD AFVGU AGJLS OIOZB OTOTI |
ID | FETCH-LOGICAL-c4408-d6966ad28e2a839a2d127a80a43c4d1a38312c5fce0445a79bf3629bdf04e8d23 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Thu May 18 22:31:12 EDT 2023 Fri Jul 11 15:26:32 EDT 2025 Fri Jul 25 04:28:27 EDT 2025 Mon Jul 21 05:42:02 EDT 2025 Tue Jul 01 00:44:34 EDT 2025 Thu Apr 24 23:08:35 EDT 2025 Wed Jan 22 16:27:38 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 32 |
Keywords | monolayer lateral heterostructures solar cells transition metal dichalcogenides 2D materials |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4408-d6966ad28e2a839a2d127a80a43c4d1a38312c5fce0445a79bf3629bdf04e8d23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 AC02-05CH11231 USDOE Office of Science (SC) |
OpenAccessLink | https://www.osti.gov/servlets/purl/1479324 |
PMID | 28650580 |
PQID | 1930388551 |
PQPubID | 2045203 |
PageCount | 7 |
ParticipantIDs | osti_scitechconnect_1479324 proquest_miscellaneous_1913833639 proquest_journals_1930388551 pubmed_primary_28650580 crossref_citationtrail_10_1002_adma_201701168 crossref_primary_10_1002_adma_201701168 wiley_primary_10_1002_adma_201701168_ADMA201701168 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-Aug |
PublicationDateYYYYMMDD | 2017-08-01 |
PublicationDate_xml | – month: 08 year: 2017 text: 2017-Aug |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim – name: United States |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2017 |
Publisher | Wiley Subscription Services, Inc Wiley |
Publisher_xml | – name: Wiley Subscription Services, Inc – name: Wiley |
References | 2015; 15 2015; 14 2013; 3 2015; 6 2015; 5 2012; 101 2010; 105 2016; 10 2006 2015; 349 1999; 60 2013; 7 2015; 9 2014; 111 2013; 5 2011; 6 2014; 4 2015; 137 2013; 13 1995; 66 2014; 14 2013; 113 2014; 13 2016; 116 2013; 110 2014; 9 2014; 8 2014; 104 e_1_2_5_27_1 e_1_2_5_28_1 e_1_2_5_25_1 e_1_2_5_26_1 e_1_2_5_23_1 e_1_2_5_24_1 e_1_2_5_21_1 e_1_2_5_22_1 e_1_2_5_29_1 e_1_2_5_20_1 e_1_2_5_15_1 e_1_2_5_38_1 e_1_2_5_14_1 e_1_2_5_39_1 e_1_2_5_17_1 e_1_2_5_36_1 e_1_2_5_9_1 e_1_2_5_16_1 e_1_2_5_37_1 e_1_2_5_8_1 e_1_2_5_11_1 e_1_2_5_34_1 e_1_2_5_7_1 e_1_2_5_10_1 e_1_2_5_35_1 e_1_2_5_6_1 e_1_2_5_13_1 e_1_2_5_32_1 e_1_2_5_5_1 e_1_2_5_12_1 e_1_2_5_33_1 e_1_2_5_4_1 e_1_2_5_3_1 e_1_2_5_2_1 e_1_2_5_1_1 e_1_2_5_19_1 e_1_2_5_18_1 e_1_2_5_30_1 e_1_2_5_31_1 |
References_xml | – volume: 8 start-page: 8292 year: 2014 publication-title: ACS Nano – volume: 66 start-page: 3510 year: 1995 publication-title: Appl. Phys. Lett. – volume: 14 start-page: 1195 year: 2015 publication-title: Nat. Mater. – volume: 104 start-page: 153903 year: 2014 publication-title: Appl. Phys. Lett. – volume: 111 start-page: 6198 year: 2014 publication-title: Proc. Natl. Acad. Sci. USA – volume: 5 start-page: 9677 year: 2013 publication-title: Nanoscale – volume: 113 start-page: 3766 year: 2013 publication-title: Chem. Rev. – volume: 9 start-page: 1024 year: 2014 publication-title: Nat. Nanotechnol. – volume: 13 start-page: 3658 year: 2013 publication-title: Nano Lett. – volume: 8 start-page: 6563 year: 2014 publication-title: ACS Nano – volume: 6 start-page: 773 year: 2011 publication-title: Nat. Nanotechnol. – volume: 14 start-page: 5590 year: 2014 publication-title: Nano Lett. – volume: 5 start-page: 926 year: 2015 publication-title: IEEE J. Photovoltaics – volume: 116 start-page: 10934 year: 2016 publication-title: Chem. Rev. – volume: 10 start-page: 815 year: 2016 publication-title: ACS Nano – volume: 4 start-page: 5209 year: 2014 publication-title: Sci. Rep. – volume: 8 start-page: 6259 year: 2014 publication-title: ACS Nano – volume: 9 start-page: 262 year: 2014 publication-title: Nat. Nanotechnol. – volume: 9 start-page: 268 year: 2014 publication-title: Nat. Nanotechnol. – volume: 116 start-page: 7159 year: 2016 publication-title: Chem. Rev. – volume: 13 start-page: 1096 year: 2014 publication-title: Nat. Mater. – volume: 60 start-page: 64 year: 1999 publication-title: Sens. Actuators, B – volume: 137 start-page: 8313 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 9 start-page: 2071 year: 2015 publication-title: ACS Nano – volume: 6 start-page: 7083 year: 2015 publication-title: Nat. Commun. – year: 2006 – volume: 9 start-page: 257 year: 2014 publication-title: Nat. Nanotechnol. – volume: 349 start-page: 524 year: 2015 publication-title: Science – volume: 14 start-page: 4785 year: 2014 publication-title: Nano Lett. – volume: 5 start-page: 17572 year: 2015 publication-title: RSC Adv. – volume: 101 start-page: 36 year: 2012 publication-title: Sol. Energy Mater. Sol. Cells – volume: 15 start-page: 416 year: 2015 publication-title: Nano Lett. – volume: 3 start-page: 2657 year: 2013 publication-title: Sci. Rep. – volume: 9 start-page: 676 year: 2014 publication-title: Nat. Nanotechnol. – volume: 110 start-page: 18076 year: 2013 publication-title: Proc. Natl. Acad. Sci. USA – volume: 105 start-page: 136805 year: 2010 publication-title: Phys. Rev. Lett. – volume: 15 start-page: 410 year: 2015 publication-title: Nano Lett. – volume: 13 start-page: 3664 year: 2013 publication-title: Nano Lett. – volume: 7 start-page: 7126 year: 2013 publication-title: ACS Nano – ident: e_1_2_5_17_1 doi: 10.1073/pnas.1317226110 – ident: e_1_2_5_5_1 doi: 10.1021/nl401544y – ident: e_1_2_5_23_1 doi: 10.1039/C4RA17320A – ident: e_1_2_5_6_1 doi: 10.1021/nl501962c – ident: e_1_2_5_8_1 doi: 10.1021/acs.chemrev.6b00164 – ident: e_1_2_5_20_1 doi: 10.1038/nnano.2014.25 – ident: e_1_2_5_29_1 doi: 10.1039/c3nr03052k – ident: e_1_2_5_28_1 doi: 10.1021/nn4024834 – ident: e_1_2_5_27_1 doi: 10.1073/pnas.1405435111 – ident: e_1_2_5_33_1 doi: 10.1038/ncomms8083 – ident: e_1_2_5_4_1 doi: 10.1021/nn501723y – ident: e_1_2_5_37_1 doi: 10.1021/nl401540h – ident: e_1_2_5_3_1 doi: 10.1021/nn5027388 – ident: e_1_2_5_15_1 doi: 10.1021/nl503744f – ident: e_1_2_5_19_1 doi: 10.1038/nnano.2014.26 – ident: e_1_2_5_11_1 doi: 10.1021/nn501779y – ident: e_1_2_5_9_1 doi: 10.1021/acs.chemrev.6b00075 – ident: e_1_2_5_35_1 doi: 10.1038/nnano.2011.196 – ident: e_1_2_5_13_1 doi: 10.1038/nnano.2014.222 – ident: e_1_2_5_16_1 doi: 10.1126/science.aab4097 – ident: e_1_2_5_25_1 doi: 10.1016/S0925-4005(99)00245-2 – ident: e_1_2_5_30_1 doi: 10.1103/PhysRevLett.105.136805 – ident: e_1_2_5_34_1 doi: 10.1021/acsnano.5b05928 – ident: e_1_2_5_1_1 doi: 10.1021/nl502075n – ident: e_1_2_5_14_1 doi: 10.1038/nmat4064 – ident: e_1_2_5_39_1 doi: 10.1007/0-387-37766-2 – ident: e_1_2_5_36_1 doi: 10.1038/nmat4452 – ident: e_1_2_5_2_1 doi: 10.1038/nnano.2014.150 – ident: e_1_2_5_18_1 doi: 10.1021/nl5037484 – ident: e_1_2_5_10_1 doi: 10.1038/srep02657 – ident: e_1_2_5_26_1 doi: 10.1063/1.113780 – ident: e_1_2_5_31_1 doi: 10.1109/JPHOTOV.2015.2395145 – ident: e_1_2_5_21_1 doi: 10.1038/nnano.2014.14 – ident: e_1_2_5_38_1 doi: 10.1016/j.solmat.2012.02.019 – ident: e_1_2_5_24_1 doi: 10.1038/srep05209 – ident: e_1_2_5_32_1 doi: 10.1063/1.4871582 – ident: e_1_2_5_22_1 doi: 10.1021/nn507278b – ident: e_1_2_5_7_1 doi: 10.1021/cr300263a – ident: e_1_2_5_12_1 doi: 10.1021/jacs.5b03141 |
SSID | ssj0009606 |
Score | 2.5545118 |
Snippet | The recent development of 2D monolayer lateral semiconductor has created new paradigm to develop p‐n heterojunctions. Albeit, the growth methods of these... The recent development of 2D monolayer lateral semiconductor has created new paradigm to develop p-n heterojunctions. Albeit, the growth methods of these... |
SourceID | osti proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
SubjectTerms | 2D materials Devices Efficiency Energy conversion efficiency Feasibility studies Heterojunctions Heterostructures Illumination lateral heterostructures Materials science Molybdenum disulfide monolayer Photovoltaic cells Properties (attributes) Solar cells SOLAR ENERGY transition metal dichalcogenides |
Title | Single Atomically Sharp Lateral Monolayer p‐n Heterojunction Solar Cells with Extraordinarily High Power Conversion Efficiency |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201701168 https://www.ncbi.nlm.nih.gov/pubmed/28650580 https://www.proquest.com/docview/1930388551 https://www.proquest.com/docview/1913833639 https://www.osti.gov/servlets/purl/1479324 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB6hPcGB_5_QgoyExClt4jiJc1wtW60QRYhSqbdo4tgSNEpW3awEnPoIPCNPwoyzm3YRCAlOSRTbsp2Z8TfOzGeAl3mlqyLCItROI6fkpCHmTobOaIdkKjGRnI18_C5bnKo3Z-nZtSz-gR9i3HBjzfD2mhUcq9XhFWko1p43iPnE44yzfTlgi1HRhyv-KIbnnmyPulBkSm9ZGyN5uFt9Z1WadKRdv0OcuwDWr0BHdwC3fR8CT84P1n11YL79Quv4P4O7C7c38FRMB3m6Bzdsex9uXSMtfACXJ3RprJj2nacaaL4KZn1eirfI2cyNIDNB_jJBebH8cfm9FQuOuOk-0wLKQiBO2JkWM9s0K8G7wGL-pb9A8oE5M_gTtcahJ-I9n94mZhwT7zf0xNxzXXCi6EM4PZp_nC3CzTkOoeHzrMM6I58Ka6mtRMJjKOtY5qgjVIlRdYzkJMfSpM7YSKkU86JytKwWVe0iZXUtk0cwabvWPgGRVLkytnLS2kTVSaazFKlBQkkYodQugHD7HUuzITnnszaacqBnliXPbDnObACvxvLLgd7jjyX3WCxKAibMrms4DMn05DmRgZMqgP2ttJQbI7AqCRsz1w5h0gBejK9JffmfDLa2W3OZmIafEE4M4PEgZWNHOGk4SnUUgPSy8pceltPXx9Px6em_VNqDm3w_BDjuw6S_WNtnBLr66rlXrJ9SmyRj |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NjpRAEK7oeFAP_v_grtomJp7YZZoGmuNknM2oMxvj7ibeSNE0iUpgsssk6mkfwWf0SaxqBtYxGhM9EaC700BV9VdN1VcAz5Nc52mAqa9LjZySE_mYlNIvjS6RTCWGkrORl4fx_ES9fh_10YScC9PxQwwbbqwZzl6zgvOG9P4FaygWjjiICcXHsb4MV7ist_Oq3l0wSDFAd3R7NIk0VrrnbQzk_nb_rXVp1JB-_Q5zbkNYtwYd3IS8n30XevJpb93me-brL8SO__V4t-DGBqGKSSdSt-GSre_A9Z94C-_C-REdKismbePYBqovgomfV2KBnNBcCbIU5DITmher7-ffajHnoJvmI62hLAfiiP1pMbVVdSZ4I1jMPrenSG4wJwd_oNE4-kS85QJuYsph8W5PT8wc3QXnit6Dk4PZ8XTub0o5-IZLWvtFTG4VFlJbiQTJUBZjmaAOUIVGFWMkP3ksTVQaGygVYZLmJa2saV6UgbK6kOF9GNVNbR-CCPNEGZuX0tpQFWGs4whpQAJKGKDUpQd-_yEzs-E553IbVdYxNMuM32w2vFkPXgztVx3Dxx9b7rBcZIRNmGDXcCSSacl5IhsnlQe7vbhkGztwlhE8ZrodgqUePBtukwbzbxmsbbPmNmN6_JCgogcPOjEbJsJ5w0GkAw-kE5a_zDCbvFxOhrNH_9LpKVydHy8X2eLV4ZsduMbXu3jHXRi1p2v7mDBYmz9xWvYDhp0ofg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB7BIiE48F8ILWAkJE5pE8dJnONqf7RAW1WUSr1FE8eWgGizarMScOoj8Iw8CTPJbtpFICQ4RUlsy3Zmxt84M58BXqWFLrIAM187jZySE_uYOuk7ox2SqcRIcjbywWEyO1FvT-PTK1n8HT9Ev-HGmtHaa1bwRen2LklDsWx5g5hPPEz0dbihkkCzXI_fXxJIMT5v2faoD1mi9Jq2MZB7m_U3lqVBTer1O8i5iWDbJWh6F3Dd-S7y5PPusil2zbdfeB3_Z3T34M4Kn4phJ1D34ZqdP4DbV1gLH8LFMV0qK4ZN3XINVF8F0z4vxD5yOnMlyE6Qw0xYXix-XHyfixmH3NSfaAVlKRDH7E2Lka2qc8HbwGLypTlDcoI5NfgjtcaxJ-KIj28TIw6Kb3f0xKQlu-BM0UdwMp18GM381UEOvuEDrf0yIacKS6mtRAJkKMtQpqgDVJFRZYjkJYfSxM7YQKkY06xwtK5mRekCZXUpoy0YzOu5fQIiKlJlbOGktZEqo0QnMVKDBJMwQKmdB_76O-ZmxXLOh21UecfPLHOe2byfWQ9e9-UXHb_HH0tus1jkhEyYXtdwHJJpyHUiCyeVBztraclXVuA8J3DMZDsESj142b8m_eWfMji39ZLLhDT8iICiB487Kes7wlnDQawDD2QrK3_pYT4cHwz7u6f_UukF3DwaT_P9N4fvtuEWP-6CHXdg0Jwt7TMCYE3xvNWxnwgqJzY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Single+Atomically+Sharp+Lateral+Monolayer+p-n+Heterojunction+Solar+Cells+with+Extraordinarily+High+Power+Conversion+Efficiency&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Tsai%2C+Meng-Lin&rft.au=Li%2C+Ming-Yang&rft.au=Retamal%2C+Jos%C3%A9+Ram%C3%B3n+Dur%C3%A1n&rft.au=Lam%2C+Kai-Tak&rft.date=2017-08-01&rft.issn=1521-4095&rft.eissn=1521-4095&rft.volume=29&rft.issue=32&rft_id=info:doi/10.1002%2Fadma.201701168&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |