Improving approximate determination of the noninteracting electronic kinetic energy density from electron density
This work describes a new approach for approximate obtaining the positively defined electronic kinetic energy density (KED) from electron density. KED is presented as a sum of the Weizsäcker KED, which is calculated in terms of electron density exactly, and unknown Pauli KED. The latter is presented...
Saved in:
Published in | International journal of quantum chemistry Vol. 116; no. 3; pp. 237 - 246 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Blackwell Publishing Ltd
05.02.2016
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This work describes a new approach for approximate obtaining the positively defined electronic kinetic energy density (KED) from electron density. KED is presented as a sum of the Weizsäcker KED, which is calculated in terms of electron density exactly, and unknown Pauli KED. The latter is presented via local Pauli potential and Gritsenko–van Leeuwen–Baerends kinetic response potential, to which the second‐order gradient expansion is applied. The resulting expression for KED contains only one empirical parameter. The approach allowed to correctly reproduce all the features of KED, and electron localization descriptors as electron localization function and phase‐space defined Fisher information density for main types of bonds in molecules and molecular crystals. It is also demonstrated that the method is immediately applicable to derivation of mentioned bonding descriptors from experimental electron density. Herewith the method is significantly free from the drawback of Kirzhnits approximation, which is now commonly accepted for evaluation of the electronic kinetic energy characteristics from precise X‐ray diffraction experiment. © 2015 Wiley Periodicals, Inc.
The kinetic energy density (KED) can be extracted from the electron density using local Pauli potential and second‐order gradient expansion scheme. This approach is able to correctly reproduce all the features of KED and electron localization descriptors as electron localization function and the phase‐space defined Fisher information density for many types of bonds in molecules and crystals. This method can be applied for the derivation of bonding descriptors from experimental electron density. |
---|---|
AbstractList | This work describes a new approach for approximate obtaining the positively defined electronic kinetic energy density (KED) from electron density. KED is presented as a sum of the Weizsäcker KED, which is calculated in terms of electron density exactly, and unknown Pauli KED. The latter is presented via local Pauli potential and Gritsenko–van Leeuwen–Baerends kinetic response potential, to which the second‐order gradient expansion is applied. The resulting expression for KED contains only one empirical parameter. The approach allowed to correctly reproduce all the features of KED, and electron localization descriptors as electron localization function and phase‐space defined Fisher information density for main types of bonds in molecules and molecular crystals. It is also demonstrated that the method is immediately applicable to derivation of mentioned bonding descriptors from experimental electron density. Herewith the method is significantly free from the drawback of Kirzhnits approximation, which is now commonly accepted for evaluation of the electronic kinetic energy characteristics from precise X‐ray diffraction experiment. © 2015 Wiley Periodicals, Inc.
The kinetic energy density (KED) can be extracted from the electron density using local Pauli potential and second‐order gradient expansion scheme. This approach is able to correctly reproduce all the features of KED and electron localization descriptors as electron localization function and the phase‐space defined Fisher information density for many types of bonds in molecules and crystals. This method can be applied for the derivation of bonding descriptors from experimental electron density. This work describes a new approach for approximate obtaining the positively defined electronic kinetic energy density (KED) from electron density. KED is presented as a sum of the Weizsäcker KED, which is calculated in terms of electron density exactly, and unknown Pauli KED. The latter is presented via local Pauli potential and Gritsenko–van Leeuwen–Baerends kinetic response potential, to which the second‐order gradient expansion is applied. The resulting expression for KED contains only one empirical parameter. The approach allowed to correctly reproduce all the features of KED, and electron localization descriptors as electron localization function and phase‐space defined Fisher information density for main types of bonds in molecules and molecular crystals. It is also demonstrated that the method is immediately applicable to derivation of mentioned bonding descriptors from experimental electron density. Herewith the method is significantly free from the drawback of Kirzhnits approximation, which is now commonly accepted for evaluation of the electronic kinetic energy characteristics from precise X‐ray diffraction experiment. © 2015 Wiley Periodicals, Inc. |
Author | Astakhov, Andrey A. Stash, Adam I. Tsirelson, Vladimir G. |
Author_xml | – sequence: 1 givenname: Andrey A. surname: Astakhov fullname: Astakhov, Andrey A. organization: Department of Quantum Chemistry, D.I. Mendeleev University of Chemical Technology, Miusskaya Square, 9, 125047, Moscow, Russia Federation – sequence: 2 givenname: Adam I. surname: Stash fullname: Stash, Adam I. organization: Department of Quantum Chemistry, D.I. Mendeleev University of Chemical Technology, Miusskaya Square, 9, 125047, Moscow, Russia Federation – sequence: 3 givenname: Vladimir G. surname: Tsirelson fullname: Tsirelson, Vladimir G. email: vtsirelson@yandex.ru organization: Department of Quantum Chemistry, D.I. Mendeleev University of Chemical Technology, Miusskaya Square, 9, 125047, Moscow, Russia Federation |
BookMark | eNp1kE9PwkAQxTcGEwE9-A2aePJQ2N22u-2REAUM8U8i6m1TtlNcoFvYLkq_vYsVbp5m8ub3ZjKvg1q61IDQNcE9gjHtb3dpj4ZJxM9Qm-CE-yEjHy3UdjPsc4bjC9SpqiXGmAWMt9F2UmxM-aX0wks3rturIrXgZWDBFEqnVpXaK3PPfoLnTint9FTaAw9rkNY4TXorpcG6ChrMonZuXSlbe7kpixN2VC_ReZ6uK7j6q100u797HY796dNoMhxMfRmGmPtcUpJkGc5kQCMeERwkMZ-zmJAoZhmTkmUkjzIylxTnQCmOcwiChMoUkzmQOOiim2av-2q7g8qKZbkz2p0UxO1jNIlo4qjbhpKmrCoDudgYF4GpBcHikKhwiYrfRB3bb9hvtYb6f1C8zAZHh984VGVhf3KkZiUYD3gk3h9Hgj-PR28hjcRD8ANOVosS |
CODEN | IJQCB2 |
CitedBy_id | crossref_primary_10_1080_00268976_2015_1101173 crossref_primary_10_1016_j_cplett_2018_02_009 crossref_primary_10_1088_1367_2630_abbf5d crossref_primary_10_1080_00268976_2015_1113314 crossref_primary_10_3390_molecules27175411 crossref_primary_10_1002_qua_25396 crossref_primary_10_1103_PhysRevB_101_165144 crossref_primary_10_1002_qua_26022 crossref_primary_10_1107_S2052520619001471 crossref_primary_10_1063_1_4975092 crossref_primary_10_1016_j_molstruc_2020_129724 crossref_primary_10_1021_acs_cgd_2c01286 crossref_primary_10_1063_5_0015611 crossref_primary_10_1107_S2052520620006113 crossref_primary_10_1107_S2052252523007108 crossref_primary_10_1002_qua_25548 crossref_primary_10_1002_qua_26679 crossref_primary_10_1002_jcc_27131 crossref_primary_10_1002_jcc_27170 crossref_primary_10_1002_chem_202005497 crossref_primary_10_1007_s00214_023_02996_9 crossref_primary_10_1107_S1600576722002321 crossref_primary_10_1063_5_0059283 crossref_primary_10_1107_S2052520620009178 crossref_primary_10_22331_q_2024_01_10_1223 crossref_primary_10_1063_1_5048907 crossref_primary_10_1002_jcc_26507 |
Cites_doi | 10.1063/1.1675044 10.1103/PhysRevB.58.13465 10.1107/S0108768106016326 10.1002/jcc.20531 10.1103/PhysRev.121.1704 10.1063/1.437511 10.1103/PhysRevA.37.31 10.1103/PhysRevA.30.2745 10.1021/cg3015223 10.1107/S0108767300013155 10.1021/jp961297j 10.1039/c3cp44162h 10.1103/PhysRevA.34.2614 10.1103/PhysRevA.34.4575 10.1016/j.theochem.2009.10.030 10.1002/qua.560140813 10.1073/pnas.81.24.8028 10.1103/PhysRevB.12.2111 10.1126/science.187.4177.605 10.1103/PhysRev.136.B864 10.1016/S0166-1280(00)00477-2 10.1063/1.2733665 10.1038/371683a0 10.1103/RevModPhys.34.326 10.1103/PhysRevA.49.2421 10.1063/1.1384012 10.1063/1.430509 10.1007/430_2010_32 10.1021/jp1029745 10.1007/BF01337700 10.1063/1.1677699 10.1016/j.comptc.2012.11.015 10.1063/1.440248 10.1063/1.524501 10.1016/S0009-2614(01)01361-6 10.1063/1.462256 10.1007/BF01340281 10.1107/S010876739601495X 10.1103/PhysRevB.91.035126 10.1016/j.cplett.2011.03.055 10.1063/1.2774974 10.1063/1.2747247 10.1088/1751-8113/40/33/004 10.1021/jz400257n 10.1007/978-90-481-3836-4 10.1103/PhysRevA.78.044501 10.1080/00319109208027285 10.1063/1.3607313 10.1107/S1600576714021566 10.1103/PhysRevB.75.155109 10.1142/8633 10.1063/1.3492377 10.1007/978-3-642-86105-5 10.1063/1.446956 10.1002/jcc.20553 10.1002/qua.560030308 10.1103/PhysRevB.10.2221 10.1039/C2CP23142E 10.1016/0009-2614(90)87161-J 10.1139/p73-189 10.1103/PhysRev.107.1283 10.1021/cg5005243 10.1063/1.2968612 10.1021/ct400293m 10.1103/PhysRevA.38.625 10.1103/PhysRevLett.55.622 10.1002/pssb.2221550119 10.1063/1.447257 10.1063/1.1875052 10.1103/PhysRevA.24.680 10.1103/PhysRevA.44.768 10.1103/PhysRevA.64.016501 10.1088/0953-4075/30/9/007 10.1002/qua.24230 10.1021/jp405119x 10.1016/0370-2693(80)90457-8 10.1016/S0009-2614(98)00036-0 10.1107/S010876730401339X 10.1103/PhysRevB.49.7124 10.1002/anie.199201871 10.1107/S0108767300003202 10.1021/cg500958q 10.1002/qua.989 10.1107/S0108768102005517 10.1016/j.chemphys.2014.03.006 10.1002/anie.200805739 10.1107/S0108768102012338 10.1021/ja011492y 10.1103/PhysRevA.42.193 10.1021/jp904836j 10.1524/zkri.220.5.399.65073 10.1103/RevModPhys.71.1253 10.1016/j.cplett.2007.01.084 10.1107/S0108767307001663 10.1080/00319100008030321 10.1002/jcc.21135 10.1103/PhysRevA.76.052504 10.1016/0375-9601(86)90123-4 10.1002/jcc.22885 10.1107/S0021889802003230 10.1002/qua.22497 10.1063/1.439358 10.1002/9783527610709.ch10 10.1002/anie.197305461 10.1063/1.468024 10.1103/PhysRevA.24.1682 10.1103/PhysRevB.60.16350 10.1002/qua.560230104 10.1063/1.452230 10.1007/978-1-4020-3286-8_9 10.1103/PhysRevA.90.062515 10.1063/1.458517 10.1103/PhysRevB.17.3735 |
ContentType | Journal Article |
Copyright | 2015 Wiley Periodicals, Inc. 2016 Wiley Periodicals, Inc. |
Copyright_xml | – notice: 2015 Wiley Periodicals, Inc. – notice: 2016 Wiley Periodicals, Inc. |
DBID | BSCLL AAYXX CITATION |
DOI | 10.1002/qua.24957 |
DatabaseName | Istex CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1097-461X |
EndPage | 246 |
ExternalDocumentID | 3904309831 10_1002_qua_24957 QUA24957 ark_67375_WNG_7PHGV425_J |
Genre | miscellaneous |
GrantInformation_xml | – fundername: Russian Foundation for Basic Research funderid: 13‐03‐00767a |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABDBF ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACIWK ACNCT ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBS EJD ESX F00 F01 F04 F5P G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ I-F IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K ROL RWI RWK RX1 SUPJJ TN5 TUS UB1 UPT V2E V8K W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ZZTAW ~IA ~WT AAYXX CITATION |
ID | FETCH-LOGICAL-c4407-7c219dd0dc32575103987b6811586d6cc6d1f5d1bc20fe2208fe3392ca01be183 |
IEDL.DBID | DR2 |
ISSN | 0020-7608 |
IngestDate | Thu Oct 10 20:15:56 EDT 2024 Fri Aug 23 01:16:53 EDT 2024 Sat Aug 24 01:03:07 EDT 2024 Wed Oct 30 09:50:42 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4407-7c219dd0dc32575103987b6811586d6cc6d1f5d1bc20fe2208fe3392ca01be183 |
Notes | ArticleID:QUA24957 Russian Foundation for Basic Research - No. 13-03-00767a istex:5BF2F6FC92B36B2719E22606654DD699079E241B ark:/67375/WNG-7PHGV425-J |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/qua.24957 |
PQID | 1751629529 |
PQPubID | 1026346 |
PageCount | 10 |
ParticipantIDs | proquest_journals_1751629529 crossref_primary_10_1002_qua_24957 wiley_primary_10_1002_qua_24957_QUA24957 istex_primary_ark_67375_WNG_7PHGV425_J |
PublicationCentury | 2000 |
PublicationDate | February 5, 2016 |
PublicationDateYYYYMMDD | 2016-02-05 |
PublicationDate_xml | – month: 02 year: 2016 text: February 5, 2016 day: 05 |
PublicationDecade | 2010 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | International journal of quantum chemistry |
PublicationTitleAlternate | Int. J. Quantum Chem |
PublicationYear | 2016 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
References | C. C. Shih, D. R. Murphy, W. P. Wang, J. Chem. Phys. 1980, 73, 1340. N. H. March, Á. Nagy, Phys. Rev. A 2008, 78, 044501-1. B. Silvi, R. J. Gillespie, C. Gatti, In Comprehensive Inorganic Chemistry II, vol. 9; Elsevier: Amsterdam, 2014; pp 187-226. M. M. Morrell, R. G. Parr, M. Levy, J. Chem. Phys. 1975, 62, 549. F. Bloch, Z. Phys. 1929, 57, 545. T. Lu, F. Chen, J. Comput. Chem. 2012, 33, 580. Á. Nagy, N. H. March, Phys. Chem. Liq. 1992, 25, 37. R. F. W. Bader, In The force concept in chemistry, chap. 2; B. M. Deb, Ed.; Van Nostrand-Reinhold: New York, 1981; pp 39-136. T. L. Gilbert, Phys. Rev. 1975, 12, 2111. R. F. W. Bader, H. Essén, J. Chem. Phys. 1984, 80, 1943. W. Yang, Phys. Rev. A 1986, 34, 4575. R. F. W. Bader, H. J. Preston, Int. J. Quantum Chem. 1969, 3, 327. T. A. Wesolowski, Y. A. Wang (Eds.), Resent Progress in Orbital-Free Density Functional Theory, World Sci. Publ.: Singapore, 2013. L. Cohen, J. Chem. Phys. 1984, 80, 4277. O. Gritsenko, R. van Leeuwen, E. J. Baerends, J. Chem. Phys. 1994, 101, 8955. V. Tsirelson, A. Stash, Acta Cryst. 2004, A60, 418. T. Bitter, K. Ruedenberg, W.H.E. Schwarz, J. Comput. Chem. 2007, 28, 411. V. G. Tsirelson, A. I. Stash, S. Liu, J. Chem. Phys. 2010, 133, 114110. A. Holas, N. H. March, Phys. Rev. A 2001, 64, 016501. T. T. Bui, S. Dahaoui, C. Lecomte, G. R. Desiraju, E. Espinosa, Angew. Chem. Int. Ed. 2009, 48, 3838. M. J. Feinberg, K. Ruedenberg, J. Chem. Phys. 1971, 54, 1495. I. Mata, I. Alkorta, E. Espinosa, E. Molins, Chem. Phys. Lett. 2011, 507, 185. J. P. Perdew, L. A. Constantin, Phys. Rev. B 2007, 75, 155109-1. H. Lee, C. Lee, R. G. Parr, Phys. Rev. A 1991, 44, 768. B. Silvi, A. Savin, Nature 1994, 371, 683. E. V. Bartashevich, I. D. Yushina, A. I. Stash, V. G. Tsirelson. Cryst. Growth Des. 2014, 14, 5674. W. H. E. Schwarz, B. Müller, Chem. Phys. Lett. 1990, 166, 621. V. L. Ligneres, E. A. Carter, In Handbook of Materials Modeling; S. Yip Ed.; Springer: Amsterdam, 2005; pp 137-148. R. Flaig, T. Koritsanszky, B. Dittrich, A. Wagner, P. Luger, J. Am. Chem. Soc. 2002, 124, 3407. Y. Tal, R. F. W. Bader, Int. J. Quantum Chem. 1978, 14, 153. D. García-Aldea, J. E. Alvarellos, J. Chem. Phys. 2008, 129, 074103-1. V. Yu. Kolmanovich, I. M. Reznik, Dokl. Acad. Nauk SSSR, 1981, 285, 1100 (in Russian). Á. Nagy, N. H. March, Phys. Chem. Liq. 2000, 38, 759. H. Levämäki, Á. Nagy, K. Kokko, L. Vitos, Phys. Rev. A 2014, 90, 062515. P. Fuentealba, J. Phys. B: At. Mol. Opt. Phys. 1997, 30, 2039. A. D. Becke, K. E. Edgecombe, J. Chem. Phys. 1990, 92, 5397. V. G. Tsirelson, Á. Nagy, J. Phys. Chem. A 2009, 113, 9022. J. S. M. Anderson, P. W. Ayers, J. I. Rodríguez-Hernández, J. Phys. Chem. A 2010, 114, 8884. A. Volkov, Y. Abramov, P. Coppens, C. Gatti, Acta Cryst. 2000, A56, 332. H. Schmider, V. H. Smith, W. Weyrich, J. Chem. Phys. 1992, 96, 8986. A. Tachibana, J. Chem. Phys. 2001, 115, 3497. K. Ruedenberg, M.W. Schmidt, J. Comput. Chem. 2007, 28, 391. C. Gatti, Z. Kristallogr. 2005, 220, 399. V. Sahni, M. Slamet, X.-Y. Pan, J. Chem. Phys. 2007, 126, 204106-1. Y. A. Wang, E. A. Carter, In Theoretical Methods in Condensed Phase Chemistry chap. 5; S. D. Schwatz Ed.; Kluwer: Dordrecht, 2000; pp 117-184. K. Ruedenberg, Rev. Mod. Phys. 1962, 34, 326. E. Espinosa, E. Molins, C. Lecomte, Chem. Phys. Lett. 1998, 285, 170. J. E. Harriman, Phys. Rev. A 1981, 24, 680. A. Genoni, J. Phys. Chem. Lett. 2013, 4, 1093. R. F.W. Bader, P. M. Bedall, J. Chem. Phys. 1972, 56, 3320. D. García-Aldea, J. E. Alvarellos, Phys. Chem. Chem. Phys. 2012, 14, 1756. A. Stash, V. Tsirelson. J. Appl. Cryst. 2014, 47, 2086. N. H. March, Phys. Lett. A 1985, 113, 476. H. L. Schmider, A. D. Becke, J. Mol. Struct. (THEOCHEM) 2000, 527, 51. L. Kleinman, Phys. Rev. B 1974, 10, 2221. J. A. Alonso, L. A. Girifalco, Phys. Rev. B 1978, 17, 3735. Á. Nagy, Int. J. Quantum Chem. 2010, 110, 2117. Á. Nagy, J. Chem. Phys. 2011, 135, 044106-1. A. A. Astakhov, V. G. Tsirelson, Chem. Phys. 2014, 435, 49. W. Kutzelnigg, Angew. Chem. Int. Edit. 1973, 12, 546. R. van Leeuven, E. J. Baerends, Phys. Rev. A 1994, 49, 2421. L. Cohen, Y. I. Zaparovanny, J. Math. Phys. 1980, 21, 794. A. V. Shishkina, V. V. Zhurov, A. I. Stash, M. V. Vener, A. A. Pinkerton, V. G. Tsirelson. Cryst. Growth Des. 2013, 13, 816. C. Herring, Phys. Rev. A 1986, 34, 2614. D. Jayatilaka, D. J. Grimwood, Acta Cryst. 2001, A57, 76. D. R. Murphy, Phys. Rev. A 1981, 24, 1682. L. Cohen, J. Chem. Phys. 1979, 70, 788. I. Hornyák, Á. Nagy, Chem. Phys. Lett. 2007, 437, 132. R. F. W. Bader, S. Johnson, T.-H. Tang, P. L. A. Popelier, J. Phys. Chem. 1996, 100, 15398. C. F. von Weizsäcker, Z. Phys. 1935, 96, 431. A. S. Kompaneets, E. S. Pavlovskii, Sov. Phys. JETP 1957, 4, 328. V. G. Tsirelson, A. I. Stash, V. A. Potemkin, A. A. Rykounov, A. D. Shutalev, E. A. Zhurova, V. V. Zhurov, A. A. Pinkerton, G. V. Gurskaya, V. E. Zavodnik, Acta Cryst. 2006, B62, 676. V. G. Tsirelson, R. P. Ozerov, Electron Density and Bonding in Crystals; Taylor & Francis Group: New York, 1996. N. H. March, J. Mol. Struct. (THEOCHEM) 2010, 943, 77. F. Della Sala, E. Fabiano, L. A. Constantin, Phys. Rev. B 2015, 91, 035126. A. Stash, V. Tsirelson, J. Appl. Cryst. 2002, 35, 371. G. A. Baraff, S. Borowitz, Phys. Rev. 1961, 121, 1704. W. Kohn, Rev. Mod. Phys. 1999, 71, 1253. J.-M. Gillet, Acta Cryst. 2007, A63, 234. R. G. Parr, W. Yang, Density Functional Theory of Atoms and Molecules; Oxford University Press: Oxford, 1989. R. M. Dreizler, E. K. U. Gross, Density Functional Theory: An Approach to the Quantum Many-Body Problem; Springer-Verlag: New York, 1990. S. Golden, Phys. Rev. 1957, 107, 1283. J. Ferreirinho, R. Ruffini, L. Stella, Phys. Lett. B 1980, 91, 314. A. Savin, O. Jepsen, J. Flad, O. K. Andersen, H. Preuss, H. G. von Schnering, Angew. Chem. Int. Ed. Engl. 1992, 31, 187. S. T. Howard, J. P. Huke, P. R. Mallinson, C. S. Frampton, Phys. Rev. B 1994, 49, 7124. L. J. Bartolotti, R. G. Parr, J. Chem. Phys. 1980, 72, 1593. M. Levy, J. P. Perdew, V. Sahni, Phys. Rev. A 1984, 30, 2745. R. F. W. Bader, Atoms in Molecules: A Quantum Theory; Oxford University Press: Oxford, 1990. P. W. Ayers, R. G. Parr, Á. Nagy, Int. J. Quantum Chem. 2002, 90, 309. V. F. Weisskopf, Science 1975, 187, 605. V. G. Tsirelson, M. M. Mestechkin, R. P. Ozerov, Sov. Phys. Dokl. 1977, 233, 108 (in Russian). V. G. Tsirelson, Acta Cryst. 2002, B58, 632. R. Nalewajski, Information Origins of the Chemical Bond; Nova Science Publisher: New York, 2011. D. García-Aldea, J. E. Alvarellos, J. Chem. Phys. 2007, 127, 144109-1. A. C. Cancio, C. E. Wagner, S. A. Wood, Int. J. Quantum Chem. 2012, 112, 3796. Yu. V. Aleksandrov, V. G. Tsirelson, I. M. Reznik, R. P. Ozerov, Stat. Solidi 1989, 155, 201. Y. A. Wang, N. Govind, E. A. Carter, Phys. Rev. B 1999, 60, 16350. C. Herring, M. Chopra, Phys. Rev. A 1988, 37, 31. H. Jacobsen, J. Comput. Chem. 2009, 30, 1093. S. K. Ghosh, M. Berkowitz, R. G. Parr, Proc. Natl. Acad. Sci. USA 1984, 81, 8028. M. Levy, H. Ou-Yang, Phys. Rev. A 1988, 38, 625. J. G. Muga, D. Seidel, G. C. Hegerfeldt, J. Chem. Phys. 2005, 122, 154106-1. V. G. Tsirelson, A. I. Stash, V. V. Karasiev, S. Liu, Comp. Theory Chem. 2013, 1006, 92. V. Tsirelson, A. Stash, Acta Cryst. 2002, B58, 780. C. Gatti, P. Macchi (Eds.), Modern Charge-Density Analysis; Springer: Berlin, 2012. D. A. Kirzhnits, Sov. Phys. JETR 1957, 5, 64. Yu. Abramov, Acta Cryst. 1997, A53, 264. T. Koritsanszky, A. Volkov, M. Chodkiewicz, Struct. Bond. 2012, 147, 1. V. G. Tsirelson, In VII National Crystal Chemistry Conference, Abstracts. Suzdal, Russia, June 17-21, 2013, P. 56. C. H. Hodges, Can. J. Phys. 1973, 51, 1428. W. L. Clinton, C. A. Frishberg, L. J. Massa, P. A. Oldfield, Int. J. Quantum Chem. 1973, 7(Suppl. S7), 505. V. V. Karasiev, R. S. Jones, S. B. Trickey, F. E. Harris, In New Developments in Quantum Chemistry, chap. 2; J. L. Paz, A. J. Hernandez, Eds.; Transworld Research Network: Kerala, 2009; pp. 25-54. L. Massa, M. Goldberg, C. Frishberg, R. F. Boehme, S. J. La Placa, Phys. Rev. Lett. 1985, 55, 622. M. V. Vener, A. V. Shishkina, A. A. Rykounov, V. G. Tsirelson, J. Phys. Chem. A 2013, 117, 8459. M. V. Vener, E. O. Levina, O. A. Koloskov, A. A. Rykounov, A. P. Voronin, V. G. Tsirelson, Cryst. Growth Des. 2014, 14, 4997. Y. A. Wang, N. Govind, E. A. Carter, Phys. Rev. B 1998, 58, 13465. V. G. Tsirelson, In The Quantum Theory of Atoms in Molecules: From Solid State to DNA and Drug Design, chap. 10; C. Matta, R. Boyd, Eds.; Wiley-VCH: Weinheim, 2007; pp 257-284. H. Jacobsen, Phys. Chem. Chem. Phys. 2013, 15, 5057. B. M. Deb, S. K. Ghosh, Int. J. Quantum Chem. 1983, 23, 1. P. Hohenberg, W. Kohn, Phys. Rev. B 1964, 136, 864. C. Lee, R. G. Parr, Phys. Rev. A 1990, 42, 193. V. Tsirelson, A. Stash, Chem. Phys. Lett. 2002, 351,142. S. Liu, J. Chem. Phys. 2007, 126, 244103-1. A. E. DePristo, J. D. Kress, J. Chem. Phys. 1987, 86, 1425. L. Salasnich, J. Phys. A 2007, 40, 9987. D. García-Aldea, J. E. Alvarellos, Phys. Rev. A 2007, 76, 052504-1. A. Genoni, J. Chem. Theory Comput. 2013, 9, 3004. 2013; 4 1957; 107 1973; 12 1994; 371 1975; 12 2009; 113 1962; 34 2007; 75 2012; 14 2004; A60 2007; 76 1997; A53 1964; 136 2013; 9 2002; B58 1990; 42 1990 2005; 220 2010; 114 2000; 527 2013; 117 2010; 110 2014; 14 2002; 90 1981 2015; 91 1975; 187 1972; 56 1998; 285 1989 1983; 23 2014; 435 2011; 135 1981; 285 1981; 24 2008; 129 1996 2014; 47 1992; 31 2012; 33 2007; A63 1984; 30 2007; 437 2012; 112 2005; 122 1997; 30 2002; 124 1961; 121 2001; A57 1992; 25 1977; 233 1973; 7 1929; 57 1973; 51 1974; 10 2002; 351 2010; 943 1986; 34 1988; 37 1988; 38 1989; 155 2008; 78 1996; 100 1980; 91 1979; 70 2009; 48 1992; 96 2007; 28 1994; 101 1971; 54 2013; 15 1987; 86 2013; 1006 2000 1969; 3 2013; 13 1980; 73 1980; 72 1991; 44 1985; 55 1990; 92 1998; 58 2007; 126 1984; 80 1984; 81 2007; 127 1935; 96 2014; 90 2000; A56 2012 2011 2002; 35 1980; 21 2009 2007 1978; 17 1994; 49 2005 1978; 14 1999; 60 2012; 147 1990; 166 1957; 5 2001; 64 1957; 4 2006; B62 2009; 30 2000; 38 2011; 507 1985; 113 2010; 133 2015 2014 2007; 40 2013 1999; 71 1975; 62 2001; 115 e_1_2_9_75_1 e_1_2_9_98_1 e_1_2_9_52_1 e_1_2_9_79_1 e_1_2_9_94_1 e_1_2_9_10_1 Bader R. F. W. (e_1_2_9_26_1) 1990 e_1_2_9_56_1 e_1_2_9_33_1 e_1_2_9_90_1 e_1_2_9_71_1 e_1_2_9_103_1 e_1_2_9_126_1 Parr R. G. (e_1_2_9_59_1) 1989 e_1_2_9_107_1 e_1_2_9_122_1 e_1_2_9_14_1 e_1_2_9_37_1 e_1_2_9_18_1 e_1_2_9_64_1 e_1_2_9_87_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_6_1 e_1_2_9_119_1 e_1_2_9_60_1 e_1_2_9_2_1 e_1_2_9_111_1 Kompaneets A. S. (e_1_2_9_55_1) 1957; 4 e_1_2_9_115_1 e_1_2_9_49_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_99_1 e_1_2_9_72_1 e_1_2_9_11_1 Tsirelson V. G. (e_1_2_9_28_1) 2014 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_95_1 e_1_2_9_76_1 e_1_2_9_91_1 Karasiev V. V. (e_1_2_9_42_1) 2009 e_1_2_9_102_1 e_1_2_9_129_1 e_1_2_9_106_1 Clinton W. L. (e_1_2_9_66_1) 1973; 7 e_1_2_9_125_1 e_1_2_9_38_1 e_1_2_9_121_1 e_1_2_9_19_1 e_1_2_9_88_1 Wang Y. A. (e_1_2_9_41_1) 2000 e_1_2_9_61_1 e_1_2_9_46_1 e_1_2_9_84_1 e_1_2_9_23_1 e_1_2_9_80_1 e_1_2_9_5_1 e_1_2_9_1_1 e_1_2_9_114_1 e_1_2_9_118_1 Tsirelson V. G. (e_1_2_9_25_1) 2013 e_1_2_9_9_1 Kirzhnits D. A. (e_1_2_9_54_1) 1957; 5 Tsirelson V. G. (e_1_2_9_65_1) 1996 e_1_2_9_27_1 e_1_2_9_69_1 e_1_2_9_110_1 e_1_2_9_31_1 e_1_2_9_50_1 e_1_2_9_73_1 e_1_2_9_35_1 e_1_2_9_77_1 e_1_2_9_96_1 e_1_2_9_12_1 e_1_2_9_92_1 e_1_2_9_109_1 e_1_2_9_101_1 e_1_2_9_128_1 e_1_2_9_105_1 e_1_2_9_124_1 e_1_2_9_39_1 e_1_2_9_120_1 e_1_2_9_16_1 e_1_2_9_58_1 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_89_1 Silvi B. (e_1_2_9_15_1) 2014 e_1_2_9_85_1 Yu. Kolmanovich V. (e_1_2_9_83_1) 1981; 285 e_1_2_9_81_1 e_1_2_9_4_1 e_1_2_9_113_1 Tsirelson V. G. (e_1_2_9_67_1) 1977; 233 e_1_2_9_117_1 e_1_2_9_47_1 Bader R. F. W. (e_1_2_9_8_1) 1981 e_1_2_9_74_1 e_1_2_9_51_1 e_1_2_9_78_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_97_1 e_1_2_9_93_1 e_1_2_9_108_1 e_1_2_9_70_1 e_1_2_9_127_1 e_1_2_9_100_1 e_1_2_9_123_1 e_1_2_9_104_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_63_1 e_1_2_9_40_1 e_1_2_9_21_1 e_1_2_9_44_1 e_1_2_9_86_1 e_1_2_9_7_1 e_1_2_9_82_1 e_1_2_9_3_1 e_1_2_9_112_1 Wesolowski T. A. (e_1_2_9_43_1) 2013 e_1_2_9_116_1 Nalewajski R. (e_1_2_9_24_1) 2011 e_1_2_9_48_1 e_1_2_9_29_1 |
References_xml | – year: 2011 – volume: 30 start-page: 2745 year: 1984 publication-title: Phys. Rev. A – volume: 92 start-page: 5397 year: 1990 publication-title: J. Chem. Phys. – volume: 34 start-page: 326 year: 1962 publication-title: Rev. Mod. Phys. – volume: 435 start-page: 49 year: 2014 publication-title: Chem. Phys. – volume: 51 start-page: 1428 year: 1973 publication-title: Can. J. Phys. – volume: 96 start-page: 431 year: 1935 publication-title: Z. Phys. – volume: 78 start-page: 044501 year: 2008 end-page: 1 publication-title: Phys. Rev. A – year: 1989 – volume: 34 start-page: 2614 year: 1986 publication-title: Phys. Rev. A – volume: 126 start-page: 244103 year: 2007 end-page: 1 publication-title: J. Chem. Phys. – volume: 220 start-page: 399 year: 2005 publication-title: Z. Kristallogr. – start-page: 137 year: 2005 end-page: 148 – volume: 70 start-page: 788 year: 1979 publication-title: J. Chem. Phys. – volume: 64 start-page: 016501 year: 2001 publication-title: Phys. Rev. A – volume: 55 start-page: 622 year: 1985 publication-title: Phys. Rev. Lett. – volume: 136 start-page: 864 year: 1964 publication-title: Phys. Rev. B – year: 1990 – year: 2014 – volume: 14 start-page: 4997 year: 2014 publication-title: Cryst. Growth Des. – volume: 91 start-page: 314 year: 1980 publication-title: Phys. Lett. B – volume: 155 start-page: 201 year: 1989 publication-title: Stat. Solidi – volume: B58 start-page: 632 year: 2002 publication-title: Acta Cryst. – volume: 38 start-page: 625 year: 1988 publication-title: Phys. Rev. A – volume: 21 start-page: 794 year: 1980 publication-title: J. Math. Phys. – volume: 34 start-page: 4575 year: 1986 publication-title: Phys. Rev. A – volume: 124 start-page: 3407 year: 2002 publication-title: J. Am. Chem. Soc. – volume: 96 start-page: 8986 year: 1992 publication-title: J. Chem. Phys. – volume: 35 start-page: 371 year: 2002 publication-title: J. Appl. Cryst. – volume: 73 start-page: 1340 year: 1980 publication-title: J. Chem. Phys. – volume: 107 start-page: 1283 year: 1957 publication-title: Phys. Rev. – volume: 72 start-page: 1593 year: 1980 publication-title: J. Chem. Phys. – volume: 28 start-page: 391 year: 2007 publication-title: J. Comput. Chem. – volume: 7 start-page: 505 issue: Suppl. S7 year: 1973 publication-title: Int. J. Quantum Chem. – volume: 49 start-page: 7124 year: 1994 publication-title: Phys. Rev. B – volume: 80 start-page: 4277 year: 1984 publication-title: J. Chem. Phys. – volume: 129 start-page: 074103 year: 2008 end-page: 1 publication-title: J. Chem. Phys. – start-page: 257 year: 2007 end-page: 284 – volume: 12 start-page: 546 year: 1973 publication-title: Angew. Chem. Int. Edit. – volume: 23 start-page: 1 year: 1983 publication-title: Int. J. Quantum Chem. – volume: 47 start-page: 2086 year: 2014 publication-title: J. Appl. Cryst. – volume: 114 start-page: 8884 year: 2010 publication-title: J. Phys. Chem. A – volume: 187 start-page: 605 year: 1975 publication-title: Science – volume: 44 start-page: 768 year: 1991 publication-title: Phys. Rev. A – volume: 14 start-page: 1756 year: 2012 publication-title: Phys. Chem. Chem. Phys. – volume: 58 start-page: 13465 year: 1998 publication-title: Phys. Rev. B – volume: 49 start-page: 2421 year: 1994 publication-title: Phys. Rev. A – volume: 90 start-page: 062515 year: 2014 publication-title: Phys. Rev. A – volume: 13 start-page: 816 year: 2013 publication-title: Cryst. Growth Des. – volume: 9 start-page: 3004 year: 2013 publication-title: J. Chem. Theory Comput. – volume: 86 start-page: 1425 year: 1987 publication-title: J. Chem. Phys. – volume: 80 start-page: 1943 year: 1984 publication-title: J. Chem. Phys. – volume: 15 start-page: 5057 year: 2013 publication-title: Phys. Chem. Chem. Phys. – start-page: 39 year: 1981 end-page: 136 – volume: 75 start-page: 155109 year: 2007 end-page: 1 publication-title: Phys. Rev. B – volume: 24 start-page: 680 year: 1981 publication-title: Phys. Rev. A – volume: 3 start-page: 327 year: 1969 publication-title: Int. J. Quantum Chem. – volume: 126 start-page: 204106 year: 2007 end-page: 1 publication-title: J. Chem. Phys. – volume: 91 start-page: 035126 year: 2015 publication-title: Phys. Rev. B – volume: 62 start-page: 549 year: 1975 publication-title: J. Chem. Phys. – volume: 507 start-page: 185 year: 2011 publication-title: Chem. Phys. Lett. – volume: 285 start-page: 170 year: 1998 publication-title: Chem. Phys. Lett. – volume: 54 start-page: 1495 year: 1971 publication-title: J. Chem. Phys. – volume: 117 start-page: 8459 year: 2013 publication-title: J. Phys. Chem. A – start-page: 117 year: 2000 end-page: 184 – volume: 233 start-page: 108 year: 1977 publication-title: Sov. Phys. Dokl. – volume: 113 start-page: 476 year: 1985 publication-title: Phys. Lett. A – volume: 24 start-page: 1682 year: 1981 publication-title: Phys. Rev. A – year: 2013 – volume: 42 start-page: 193 year: 1990 publication-title: Phys. Rev. A – volume: 527 start-page: 51 year: 2000 publication-title: J. Mol. Struct. (THEOCHEM) – volume: 38 start-page: 759 year: 2000 publication-title: Phys. Chem. Liq. – volume: 14 start-page: 153 year: 1978 publication-title: Int. J. Quantum Chem. – volume: 110 start-page: 2117 year: 2010 publication-title: Int. J. Quantum Chem. – volume: 437 start-page: 132 year: 2007 publication-title: Chem. Phys. Lett. – volume: 351 start-page: 142 year: 2002 publication-title: Chem. Phys. Lett. – volume: A57 start-page: 76 year: 2001 publication-title: Acta Cryst. – volume: 101 start-page: 8955 year: 1994 publication-title: J. Chem. Phys. – volume: 71 start-page: 1253 year: 1999 publication-title: Rev. Mod. Phys. – volume: 4 start-page: 328 year: 1957 publication-title: Sov. Phys. JETP – volume: 12 start-page: 2111 year: 1975 publication-title: Phys. Rev. – volume: 81 start-page: 8028 year: 1984 publication-title: Proc. Natl. Acad. Sci. USA – volume: 14 start-page: 5674 year: 2014 publication-title: Cryst. Growth Des. – volume: 28 start-page: 411 year: 2007 publication-title: J. Comput. Chem. – volume: 30 start-page: 2039 year: 1997 publication-title: J. Phys. B: At. Mol. Opt. Phys. – volume: 48 start-page: 3838 year: 2009 publication-title: Angew. Chem. Int. Ed. – volume: 127 start-page: 144109 year: 2007 end-page: 1 publication-title: J. Chem. Phys. – volume: 113 start-page: 9022 year: 2009 publication-title: J. Phys. Chem. A – volume: 33 start-page: 580 year: 2012 publication-title: J. Comput. Chem. – volume: 56 start-page: 3320 year: 1972 publication-title: J. Chem. Phys. – volume: 133 start-page: 114110 year: 2010 publication-title: J. Chem. Phys. – volume: 25 start-page: 37 year: 1992 publication-title: Phys. Chem. Liq. – start-page: 187 year: 2014 end-page: 226 – volume: 4 start-page: 1093 year: 2013 publication-title: J. Phys. Chem. Lett. – volume: 90 start-page: 309 year: 2002 publication-title: Int. J. Quantum Chem. – start-page: 25 year: 2009 end-page: 54 – volume: 122 start-page: 154106 year: 2005 end-page: 1 publication-title: J. Chem. Phys. – volume: 147 start-page: 1 year: 2012 publication-title: Struct. Bond. – volume: 100 start-page: 15398 year: 1996 publication-title: J. Phys. Chem. – year: 2015 – volume: 57 start-page: 545 year: 1929 publication-title: Z. Phys. – volume: A56 start-page: 332 year: 2000 publication-title: Acta Cryst. – volume: 166 start-page: 621 year: 1990 publication-title: Chem. Phys. Lett. – volume: 943 start-page: 77 year: 2010 publication-title: J. Mol. Struct. (THEOCHEM) – volume: B62 start-page: 676 year: 2006 publication-title: Acta Cryst. – volume: 40 start-page: 9987 year: 2007 publication-title: J. Phys. A – volume: B58 start-page: 780 year: 2002 publication-title: Acta Cryst. – year: 1996 – volume: A63 start-page: 234 year: 2007 publication-title: Acta Cryst. – volume: 115 start-page: 3497 year: 2001 publication-title: J. Chem. Phys. – volume: 30 start-page: 1093 year: 2009 publication-title: J. Comput. Chem. – volume: 371 start-page: 683 year: 1994 publication-title: Nature – volume: 60 start-page: 16350 year: 1999 publication-title: Phys. Rev. B – volume: 135 start-page: 044106 year: 2011 end-page: 1 publication-title: J. Chem. Phys. – year: 2012 – volume: 1006 start-page: 92 year: 2013 publication-title: Comp. Theory Chem. – volume: 37 start-page: 31 year: 1988 publication-title: Phys. Rev. A – volume: 5 start-page: 64 year: 1957 publication-title: Sov. Phys. JETR – volume: A60 start-page: 418 year: 2004 publication-title: Acta Cryst. – volume: A53 start-page: 264 year: 1997 publication-title: Acta Cryst. – volume: 10 start-page: 2221 year: 1974 publication-title: Phys. Rev. B – volume: 285 start-page: 1100 year: 1981 publication-title: Dokl. Acad. Nauk SSSR – volume: 112 start-page: 3796 year: 2012 publication-title: Int. J. Quantum Chem. – start-page: 56 year: 2013 – volume: 76 start-page: 052504 year: 2007 end-page: 1 publication-title: Phys. Rev. A – volume: 121 start-page: 1704 year: 1961 publication-title: Phys. Rev. – volume: 17 start-page: 3735 year: 1978 publication-title: Phys. Rev. B – volume: 31 start-page: 187 year: 1992 publication-title: Angew. Chem. Int. Ed. Engl. – ident: e_1_2_9_3_1 doi: 10.1063/1.1675044 – ident: e_1_2_9_50_1 doi: 10.1103/PhysRevB.58.13465 – ident: e_1_2_9_87_1 doi: 10.1107/S0108768106016326 – ident: e_1_2_9_10_1 doi: 10.1002/jcc.20531 – ident: e_1_2_9_128_1 doi: 10.1103/PhysRev.121.1704 – ident: e_1_2_9_34_1 doi: 10.1063/1.437511 – ident: e_1_2_9_96_1 doi: 10.1103/PhysRevA.37.31 – ident: e_1_2_9_99_1 doi: 10.1103/PhysRevA.30.2745 – ident: e_1_2_9_31_1 doi: 10.1021/cg3015223 – ident: e_1_2_9_73_1 doi: 10.1107/S0108767300013155 – volume-title: Molecular Systems and Solids year: 2014 ident: e_1_2_9_28_1 contributor: fullname: Tsirelson V. G. – ident: e_1_2_9_13_1 doi: 10.1021/jp961297j – ident: e_1_2_9_39_1 doi: 10.1039/c3cp44162h – ident: e_1_2_9_95_1 doi: 10.1103/PhysRevA.34.2614 – ident: e_1_2_9_46_1 doi: 10.1103/PhysRevA.34.4575 – ident: e_1_2_9_81_1 doi: 10.1016/j.theochem.2009.10.030 – volume-title: Atoms in Molecules: A Quantum Theory year: 1990 ident: e_1_2_9_26_1 contributor: fullname: Bader R. F. W. – ident: e_1_2_9_36_1 doi: 10.1002/qua.560140813 – ident: e_1_2_9_21_1 doi: 10.1073/pnas.81.24.8028 – ident: e_1_2_9_82_1 doi: 10.1103/PhysRevB.12.2111 – ident: e_1_2_9_125_1 doi: 10.1126/science.187.4177.605 – ident: e_1_2_9_40_1 doi: 10.1103/PhysRev.136.B864 – ident: e_1_2_9_17_1 doi: 10.1016/S0166-1280(00)00477-2 – ident: e_1_2_9_90_1 doi: 10.1063/1.2733665 – ident: e_1_2_9_123_1 doi: 10.1038/371683a0 – ident: e_1_2_9_1_1 doi: 10.1103/RevModPhys.34.326 – ident: e_1_2_9_117_1 doi: 10.1103/PhysRevA.49.2421 – ident: e_1_2_9_6_1 doi: 10.1063/1.1384012 – volume-title: Electron Density and Bonding in Crystals year: 1996 ident: e_1_2_9_65_1 contributor: fullname: Tsirelson V. G. – ident: e_1_2_9_116_1 doi: 10.1063/1.430509 – ident: e_1_2_9_88_1 doi: 10.1007/430_2010_32 – ident: e_1_2_9_38_1 doi: 10.1021/jp1029745 – ident: e_1_2_9_80_1 doi: 10.1007/BF01337700 – ident: e_1_2_9_4_1 doi: 10.1063/1.1677699 – ident: e_1_2_9_106_1 doi: 10.1016/j.comptc.2012.11.015 – ident: e_1_2_9_61_1 doi: 10.1063/1.440248 – ident: e_1_2_9_37_1 doi: 10.1063/1.524501 – ident: e_1_2_9_16_1 doi: 10.1016/S0009-2614(01)01361-6 – ident: e_1_2_9_71_1 doi: 10.1063/1.462256 – ident: e_1_2_9_129_1 doi: 10.1007/BF01340281 – ident: e_1_2_9_56_1 doi: 10.1107/S010876739601495X – ident: e_1_2_9_120_1 doi: 10.1103/PhysRevB.91.035126 – ident: e_1_2_9_29_1 doi: 10.1016/j.cplett.2011.03.055 – volume: 285 start-page: 1100 year: 1981 ident: e_1_2_9_83_1 publication-title: Dokl. Acad. Nauk SSSR contributor: fullname: Yu. Kolmanovich V. – ident: e_1_2_9_47_1 doi: 10.1063/1.2774974 – ident: e_1_2_9_104_1 doi: 10.1063/1.2747247 – ident: e_1_2_9_58_1 doi: 10.1088/1751-8113/40/33/004 – start-page: 56 volume-title: VII National Crystal Chemistry Conference, Abstracts year: 2013 ident: e_1_2_9_25_1 contributor: fullname: Tsirelson V. G. – ident: e_1_2_9_75_1 doi: 10.1021/jz400257n – volume: 5 start-page: 64 year: 1957 ident: e_1_2_9_54_1 publication-title: Sov. Phys. JETR contributor: fullname: Kirzhnits D. A. – ident: e_1_2_9_89_1 doi: 10.1007/978-90-481-3836-4 – start-page: 187 volume-title: Comprehensive Inorganic Chemistry II year: 2014 ident: e_1_2_9_15_1 contributor: fullname: Silvi B. – ident: e_1_2_9_101_1 doi: 10.1103/PhysRevA.78.044501 – ident: e_1_2_9_113_1 doi: 10.1080/00319109208027285 – start-page: 39 volume-title: The force concept in chemistry year: 1981 ident: e_1_2_9_8_1 contributor: fullname: Bader R. F. W. – ident: e_1_2_9_77_1 doi: 10.1063/1.3607313 – ident: e_1_2_9_122_1 doi: 10.1107/S1600576714021566 – ident: e_1_2_9_49_1 doi: 10.1103/PhysRevB.75.155109 – volume-title: Resent Progress in Orbital‐Free Density Functional Theory year: 2013 ident: e_1_2_9_43_1 doi: 10.1142/8633 contributor: fullname: Wesolowski T. A. – volume-title: Information Origins of the Chemical Bond year: 2011 ident: e_1_2_9_24_1 contributor: fullname: Nalewajski R. – ident: e_1_2_9_105_1 doi: 10.1063/1.3492377 – ident: e_1_2_9_60_1 doi: 10.1007/978-3-642-86105-5 – ident: e_1_2_9_27_1 doi: 10.1063/1.446956 – ident: e_1_2_9_9_1 doi: 10.1002/jcc.20553 – ident: e_1_2_9_2_1 doi: 10.1002/qua.560030308 – ident: e_1_2_9_107_1 doi: 10.1103/PhysRevB.10.2221 – ident: e_1_2_9_53_1 doi: 10.1039/C2CP23142E – ident: e_1_2_9_70_1 doi: 10.1016/0009-2614(90)87161-J – ident: e_1_2_9_44_1 doi: 10.1139/p73-189 – ident: e_1_2_9_127_1 doi: 10.1103/PhysRev.107.1283 – ident: e_1_2_9_33_1 doi: 10.1021/cg5005243 – ident: e_1_2_9_52_1 doi: 10.1063/1.2968612 – ident: e_1_2_9_76_1 doi: 10.1021/ct400293m – ident: e_1_2_9_98_1 doi: 10.1103/PhysRevA.38.625 – ident: e_1_2_9_68_1 doi: 10.1103/PhysRevLett.55.622 – ident: e_1_2_9_69_1 doi: 10.1002/pssb.2221550119 – ident: e_1_2_9_35_1 doi: 10.1063/1.447257 – ident: e_1_2_9_78_1 doi: 10.1063/1.1875052 – ident: e_1_2_9_84_1 doi: 10.1103/PhysRevA.24.680 – ident: e_1_2_9_111_1 doi: 10.1103/PhysRevA.44.768 – ident: e_1_2_9_92_1 doi: 10.1103/PhysRevA.64.016501 – ident: e_1_2_9_114_1 doi: 10.1088/0953-4075/30/9/007 – ident: e_1_2_9_112_1 doi: 10.1002/qua.24230 – ident: e_1_2_9_79_1 doi: 10.1021/jp405119x – ident: e_1_2_9_62_1 doi: 10.1016/0370-2693(80)90457-8 – ident: e_1_2_9_32_1 doi: 10.1016/S0009-2614(98)00036-0 – ident: e_1_2_9_63_1 doi: 10.1107/S010876730401339X – ident: e_1_2_9_72_1 doi: 10.1103/PhysRevB.49.7124 – ident: e_1_2_9_14_1 doi: 10.1002/anie.199201871 – volume-title: Density Functional Theory of Atoms and Molecules year: 1989 ident: e_1_2_9_59_1 contributor: fullname: Parr R. G. – ident: e_1_2_9_85_1 doi: 10.1107/S0108767300003202 – ident: e_1_2_9_30_1 doi: 10.1021/cg500958q – start-page: 117 volume-title: Theoretical Methods in Condensed Phase Chemistry year: 2000 ident: e_1_2_9_41_1 contributor: fullname: Wang Y. A. – ident: e_1_2_9_7_1 doi: 10.1002/qua.989 – ident: e_1_2_9_57_1 doi: 10.1107/S0108768102005517 – ident: e_1_2_9_118_1 – ident: e_1_2_9_20_1 doi: 10.1016/j.chemphys.2014.03.006 – ident: e_1_2_9_126_1 doi: 10.1002/anie.200805739 – ident: e_1_2_9_19_1 doi: 10.1107/S0108768102012338 – ident: e_1_2_9_86_1 doi: 10.1021/ja011492y – ident: e_1_2_9_110_1 doi: 10.1103/PhysRevA.42.193 – ident: e_1_2_9_23_1 doi: 10.1021/jp904836j – ident: e_1_2_9_64_1 doi: 10.1524/zkri.220.5.399.65073 – ident: e_1_2_9_93_1 doi: 10.1103/RevModPhys.71.1253 – ident: e_1_2_9_124_1 doi: 10.1016/j.cplett.2007.01.084 – volume: 4 start-page: 328 year: 1957 ident: e_1_2_9_55_1 publication-title: Sov. Phys. JETP contributor: fullname: Kompaneets A. S. – ident: e_1_2_9_74_1 doi: 10.1107/S0108767307001663 – ident: e_1_2_9_97_1 doi: 10.1080/00319100008030321 – ident: e_1_2_9_18_1 doi: 10.1002/jcc.21135 – ident: e_1_2_9_48_1 doi: 10.1103/PhysRevA.76.052504 – ident: e_1_2_9_100_1 doi: 10.1016/0375-9601(86)90123-4 – ident: e_1_2_9_119_1 doi: 10.1002/jcc.22885 – ident: e_1_2_9_121_1 doi: 10.1107/S0021889802003230 – ident: e_1_2_9_115_1 doi: 10.1002/qua.22497 – ident: e_1_2_9_22_1 doi: 10.1063/1.439358 – ident: e_1_2_9_11_1 doi: 10.1002/9783527610709.ch10 – ident: e_1_2_9_5_1 doi: 10.1002/anie.197305461 – ident: e_1_2_9_103_1 doi: 10.1063/1.468024 – ident: e_1_2_9_45_1 doi: 10.1103/PhysRevA.24.1682 – ident: e_1_2_9_51_1 doi: 10.1103/PhysRevB.60.16350 – ident: e_1_2_9_94_1 doi: 10.1002/qua.560230104 – volume: 7 start-page: 505 issue: 7 year: 1973 ident: e_1_2_9_66_1 publication-title: Int. J. Quantum Chem. contributor: fullname: Clinton W. L. – ident: e_1_2_9_109_1 doi: 10.1063/1.452230 – ident: e_1_2_9_91_1 doi: 10.1007/978-1-4020-3286-8_9 – ident: e_1_2_9_102_1 doi: 10.1103/PhysRevA.90.062515 – ident: e_1_2_9_12_1 doi: 10.1063/1.458517 – volume: 233 start-page: 108 year: 1977 ident: e_1_2_9_67_1 publication-title: Sov. Phys. Dokl. contributor: fullname: Tsirelson V. G. – start-page: 25 volume-title: New Developments in Quantum Chemistry year: 2009 ident: e_1_2_9_42_1 contributor: fullname: Karasiev V. V. – ident: e_1_2_9_108_1 doi: 10.1103/PhysRevB.17.3735 |
SSID | ssj0006367 |
Score | 2.321959 |
Snippet | This work describes a new approach for approximate obtaining the positively defined electronic kinetic energy density (KED) from electron density. KED is... |
SourceID | proquest crossref wiley istex |
SourceType | Aggregation Database Publisher |
StartPage | 237 |
SubjectTerms | Chemistry density functional theory electron density electron localization function electronic kinetic energy density Physical chemistry precise X-ray experiment Quantum physics |
Title | Improving approximate determination of the noninteracting electronic kinetic energy density from electron density |
URI | https://api.istex.fr/ark:/67375/WNG-7PHGV425-J/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fqua.24957 https://www.proquest.com/docview/1751629529 |
Volume | 116 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS-wwEB5EH_TleD2c9UYQOfjSNW22SYtP3tZFOCLi7eFAaC4FWVhvuyD-emfSbVcFQXwrJSFpJpl8Tb75BmA7Ta3gLi0iawoR4QxxUVGqPMo5iaGRhlVBN7r_zmTvqnN6m95OwV4dC1PpQzQHbrQygr-mBV6Y592JaOjjqGhT4mSKJI-FIjrX0cVEOkoKOU7XyiMleVarCvFkt6n5YS-aoWF9-QA038PVsN905-F_3dOKZtJvj4ambV8_iTj-8FMW4NcYh7L9auIswpQfLMHsYZ3-bRkem-MGFnTHX-4Q23rmavoMGZTdlwwBJBvQmS6FMlsiUbNJah3Wx75hC8yHEEOsPSAOCKOglqZY_XYFrrrHl4e9aJyfIbId_A-MlEV35xx3ViR0fcNFnikjMwSZmXTSWuniMnWxsQkvfZLwrPQC8ZgteGw8-pLfMI0d9H-AlZmRpUBwmnPTyWKflcJYZXCDtYpbqVqwVVtKP1QyHLoSXE40jp4Oo9eCv8GGTYniqU-8NZXqm7MTrc57J9foovRpC9ZrI-vxkn3WiKNimeRpkrdgJ1jr65Y0_m6Eh9XvF12DOQRbFeM7XYfp4dPIbyCgGZpNmNk_ODroboYZ_AZCyvQT |
link.rule.ids | 315,783,787,1378,27936,27937,46306,46730 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dSxwxEB_8eNAX2_qBV20bRMSXPbOb22QXfCm2en4dIn69SNh8LMjB2dM7kP71zmRv97RQKH1bloRkM5nJbyczvwHYTlMruEuLyJpCRLhDXFSUKo9yTmRoxGFV0I3ueU92rzsnd-ndDOzXuTAVP0TjcCPNCPaaFJwc0ntT1tDhuGhT5WQ1C_Oo7oIKN_y4nJJHSSEnBVt5pCTPal4hnuw1Xd-dRvO0sC_voOZbwBpOnMMPcF_PtQo06bfHI9O2v_-gcfzfj_kISxMoyr5Xe-cTzPjBMiwc1BXgVmDYeBxYoB5_eUB465mrI2hIpuyxZIgh2YDcupTNbCmOmk2r67A-Tg5HYD5kGWLvAYWBMMpraZrVb1fh-vDn1UE3mpRoiGwHfwUjZdHiOcedFQnd4HCRZ8rIDHFmJp20Vrq4TF1sbMJLnyQ8K71ASGYLHhuP5mQN5nCCfh1YmRlZCsSnOTedLPZZKYxVBs9Yq7iVqgVbtaj0r4qJQ1ecy4nG1dNh9VqwE4TYtCie-hS6plJ92zvS6qJ7dINWSp-0YLOWsp5o7bNGKBXLJE-TvAW7QVx_H0njH0d4-PzvTb_BQvfq_EyfHfdON2ARsVcVAJ5uwtzoaey_IL4Zma9hG78CvY32uQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swED_SFNq9tOsXTdetopTRFyeyHUs2eypZ0_QrlLF-PBSE9QUjkCZpAmV__U5y7KyFwtibERKSddLpp9Pd7wCOkkTFVCd5oGQeB7hCdJBbngUZdWRojsMqdy-6133Wu21fPCQPNfhWxsIU_BCVwc3tDK-v3QYfadtakIaOZ3nTJU7mS7DcZoh8HSL6seCOYjGb52ulAWc0LWmFaNSqmr46jJbdvL68Qpp_41V_4HTX4bEcauFnMmjOprKpfr9hcfzPf_kIa3MgSk6KlbMBNTPchNVOmf9tC8aVvYF44vGXXwhuDdGl_4yTKHmyBBEkGTqjrotlVs6Lmixy65ABjg17IMbHGGLroXMCIS6qpapWlm7Dbff0Z6cXzBM0BKqNF8GAK9R3WlOt4si939A4S7lkKaLMlGmmFNOhTXQoVUStiSKaWhMjIFM5DaVBZbIDdRyg2QViU8lsjOg0o7Kdhia1sVRc4gmrOFWMN-CwlJQYFTwcomBcjgTOnvCz14CvXoZVjXwycI5rPBH3_TPBb3pnd6ijxEUD9kshi_mefRYIpEIWZUmUNeDYS-v9ngTeN_zH3r9XPYCVm-9dcXXev_wEHxB4Fd7fyT7Up5OZ-YzgZiq_-EX8B-vZ9Wg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improving+approximate+determination+of+the+noninteracting+electronic+kinetic+energy+density+from+electron+density&rft.jtitle=International+journal+of+quantum+chemistry&rft.au=Astakhov%2C+Andrey+A&rft.au=Stash%2C+Adam+I&rft.au=Tsirelson%2C+Vladimir+G&rft.date=2016-02-05&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0020-7608&rft.eissn=1097-461X&rft.volume=116&rft.issue=3&rft.spage=237&rft_id=info:doi/10.1002%2Fqua.24957&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3904309831 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-7608&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-7608&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-7608&client=summon |