A new global database of Mars impact craters ≥1 km: 1. Database creation, properties, and parameters

Impact craters have been used as a standard metric for a plethora of planetary applications for many decades, including age‐dating, geologic mapping and stratigraphic relationships, as tracers for surface processes, and as locations for sampling lower crust and upper mantle material. Utilizing crate...

Full description

Saved in:
Bibliographic Details
Published inJournal of Geophysical Research: Planets Vol. 117; no. E5
Main Authors Robbins, Stuart J., Hynek, Brian M.
Format Journal Article
LanguageEnglish
Published Washington, DC Blackwell Publishing Ltd 01.05.2012
American Geophysical Union
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Impact craters have been used as a standard metric for a plethora of planetary applications for many decades, including age‐dating, geologic mapping and stratigraphic relationships, as tracers for surface processes, and as locations for sampling lower crust and upper mantle material. Utilizing craters for these and other investigations is significantly aided by a uniform catalog of craters across the surface of interest. Consequently, catalogs of craters have been developed for decades for the Moon and other planets. We present a new global catalog of Martian craters statistically complete to diameters D ≥ 1 km. It contains 384,343 craters, and for each crater it lists detailed positional, interior morphologic, ejecta morphologic and morphometric data, and modification state information if it could be determined. In this paper, we detail how the database was created, the different fields assigned, and statistical uncertainties and checks. In our companion paper (Robbins and Hynek, 2012), we discuss the first broad science applications and results of this work. Key Points New global Mars crater database with diameters greater than or equal to 1.0 km This database compares well with previous ones where there is overlap The database contains numerous morphometric and morphologic data per crater
AbstractList Impact craters have been used as a standard metric for a plethora of planetary applications for many decades, including age-dating, geologic mapping and stratigraphic relationships, as tracers for surface processes, and as locations for sampling lower crust and upper mantle material. Utilizing craters for these and other investigations is significantly aided by a uniform catalog of craters across the surface of interest. Consequently, catalogs of craters have been developed for decades for the Moon and other planets. We present a new global catalog of Martian craters statistically complete to diameters D 1 km. It contains 384,343 craters, and for each crater it lists detailed positional, interior morphologic, ejecta morphologic and morphometric data, and modification state information if it could be determined. In this paper, we detail how the database was created, the different fields assigned, and statistical uncertainties and checks. In our companion paper (Robbins and Hynek, 2012), we discuss the first broad science applications and results of this work.
Impact craters have been used as a standard metric for a plethora of planetary applications for many decades, including age‐dating, geologic mapping and stratigraphic relationships, as tracers for surface processes, and as locations for sampling lower crust and upper mantle material. Utilizing craters for these and other investigations is significantly aided by a uniform catalog of craters across the surface of interest. Consequently, catalogs of craters have been developed for decades for the Moon and other planets. We present a new global catalog of Martian craters statistically complete to diameters D ≥ 1 km. It contains 384,343 craters, and for each crater it lists detailed positional, interior morphologic, ejecta morphologic and morphometric data, and modification state information if it could be determined. In this paper, we detail how the database was created, the different fields assigned, and statistical uncertainties and checks. In our companion paper (Robbins and Hynek, 2012), we discuss the first broad science applications and results of this work. New global Mars crater database with diameters greater than or equal to 1.0 km This database compares well with previous ones where there is overlap The database contains numerous morphometric and morphologic data per crater
Impact craters have been used as a standard metric for a plethora of planetary applications for many decades, including age‐dating, geologic mapping and stratigraphic relationships, as tracers for surface processes, and as locations for sampling lower crust and upper mantle material. Utilizing craters for these and other investigations is significantly aided by a uniform catalog of craters across the surface of interest. Consequently, catalogs of craters have been developed for decades for the Moon and other planets. We present a new global catalog of Martian craters statistically complete to diameters D ≥ 1 km. It contains 384,343 craters, and for each crater it lists detailed positional, interior morphologic, ejecta morphologic and morphometric data, and modification state information if it could be determined. In this paper, we detail how the database was created, the different fields assigned, and statistical uncertainties and checks. In our companion paper (Robbins and Hynek, 2012), we discuss the first broad science applications and results of this work. Key Points New global Mars crater database with diameters greater than or equal to 1.0 km This database compares well with previous ones where there is overlap The database contains numerous morphometric and morphologic data per crater
Author Robbins, Stuart J.
Hynek, Brian M.
Author_xml – sequence: 1
  givenname: Stuart J.
  surname: Robbins
  fullname: Robbins, Stuart J.
  email: stuart.robbins@colorado.edu, stuart.robbins@colorado.edu
  organization: Laboratory for Atmospheric and Space Physics, University of Colorado at Boulder, Boulder, Colorado, USA
– sequence: 2
  givenname: Brian M.
  surname: Hynek
  fullname: Hynek, Brian M.
  organization: Laboratory for Atmospheric and Space Physics, University of Colorado at Boulder, Boulder, Colorado, USA
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26312571$$DView record in Pascal Francis
BookMark eNqFkMtu1DAUhi1UJIbSHQ9gCbGbtL7EPgm7UoYpo7YgxGVpnTg2cptJgu2q9BH6IH0xnoQM01aIBRwvjix9n3_rf0p2-qF3hDznbJ8zUR8IxvlqwZistX5EZoIrXQjBxA6ZMV5WBRMCnpC9lM7ZNKXSJeMz4g9p767ot25osKMtZmwwOTp4eoox0bAe0WZqI2Y3XX_e3HJ6sX5F-T59c8_a6DCHoZ_TMQ6jizm4NKfYt3TEiGu3MZ-Rxx675Pbu9i75_Hbx6ei4OHm_fHd0eFLYsmRQSK950zAENh1ftrWUUpdeaXCqripouBJlo5qWg2YADrSW3ipZAbTKo5W75MX23ekr3y9dyuZ8uIz9FGk441qBgopP1Ms7CpPFzkfsbUhmjGGN8doILblQsOHmW87GIaXo_APCmdmUbv4sfcLFX7gN-Xc1OWLo_iNdhc5d_zPArJYfF5JxmKRiK4WU3Y8HCeOF0SBBma9nS_P6dPWh_iKEAfkLuH2gyA
CitedBy_id crossref_primary_10_1088_0034_4885_76_6_066601
crossref_primary_10_3847_PSJ_acb924
crossref_primary_10_1029_2020EA001598
crossref_primary_10_1109_TGRS_2018_2825608
crossref_primary_10_1029_2019JE006108
crossref_primary_10_1029_2017JE005461
crossref_primary_10_1007_s12303_024_0007_3
crossref_primary_10_1029_2019EA001005
crossref_primary_10_1016_j_icarus_2013_03_019
crossref_primary_10_3390_rs16193645
crossref_primary_10_1016_j_epsl_2019_115847
crossref_primary_10_1029_2021EA002177
crossref_primary_10_1002_2017GL075663
crossref_primary_10_1016_j_icarus_2012_05_027
crossref_primary_10_3390_rs16101743
crossref_primary_10_1080_24694452_2021_1877527
crossref_primary_10_1002_2015JE004959
crossref_primary_10_5026_jgeography_125_13
crossref_primary_10_1016_j_icarus_2015_09_019
crossref_primary_10_1029_2024EA003796
crossref_primary_10_1002_2015JE004799
crossref_primary_10_1007_s11430_023_1284_9
crossref_primary_10_1016_j_asr_2014_08_018
crossref_primary_10_1111_maps_12416
crossref_primary_10_3390_rs13112116
crossref_primary_10_1109_JSTARS_2023_3314128
crossref_primary_10_1002_jgre_20053
crossref_primary_10_1016_j_icarus_2020_113749
crossref_primary_10_1016_j_icarus_2022_115045
crossref_primary_10_1016_j_icarus_2024_116218
crossref_primary_10_1016_j_icarus_2023_115761
crossref_primary_10_1111_maps_12895
crossref_primary_10_52912_jsta_2021_1_1_49
crossref_primary_10_1016_j_pss_2022_105575
crossref_primary_10_1016_j_icarus_2024_116100
crossref_primary_10_1016_j_icarus_2015_01_022
crossref_primary_10_1002_2014JE004685
crossref_primary_10_1038_s41467_022_34974_3
crossref_primary_10_1080_24694452_2024_2373787
crossref_primary_10_1016_j_pss_2013_06_019
crossref_primary_10_1007_s10346_019_01275_8
crossref_primary_10_1016_j_icarus_2020_113873
crossref_primary_10_1002_2017JE005412
crossref_primary_10_1016_j_icarus_2023_115918
crossref_primary_10_1016_j_geomorph_2024_109428
crossref_primary_10_1029_2020JE006581
crossref_primary_10_1029_2017JE005448
crossref_primary_10_1111_maps_12884
crossref_primary_10_1111_maps_13057
crossref_primary_10_1016_j_pss_2018_03_014
crossref_primary_10_3847_PSJ_ad5e6f
crossref_primary_10_1002_2018EA000372
crossref_primary_10_1002_jgre_20105
crossref_primary_10_1002_2015JE004938
crossref_primary_10_1016_j_icarus_2016_11_031
crossref_primary_10_1029_2018JE005545
crossref_primary_10_1109_JSTARS_2019_2918302
crossref_primary_10_1002_2014JE004676
crossref_primary_10_1016_j_icarus_2013_04_021
crossref_primary_10_1016_j_icarus_2018_12_023
crossref_primary_10_1038_ncomms15766
crossref_primary_10_1111_maps_12956
crossref_primary_10_1111_maps_12438
crossref_primary_10_1029_2023EA002863
crossref_primary_10_1093_mnras_stac482
crossref_primary_10_1002_2017EA000324
crossref_primary_10_1111_gbi_12583
crossref_primary_10_1029_2023GL105910
crossref_primary_10_1111_maps_13244
crossref_primary_10_1016_j_icarus_2022_115146
crossref_primary_10_1029_2018JE005681
crossref_primary_10_1080_17445647_2018_1496858
crossref_primary_10_1080_19475705_2017_1327463
crossref_primary_10_1109_TGRS_2024_3478807
crossref_primary_10_1016_j_icarus_2014_06_023
crossref_primary_10_1029_2022JE007676
crossref_primary_10_1002_2017JE005270
crossref_primary_10_3847_PSJ_ac25ed
crossref_primary_10_1002_2016JE005094
crossref_primary_10_1093_nsr_nwad237
crossref_primary_10_1002_2015JE004882
crossref_primary_10_1016_j_asr_2019_02_005
crossref_primary_10_1002_2017JE005432
crossref_primary_10_1016_j_pss_2022_105500
crossref_primary_10_3390_life13122349
crossref_primary_10_1002_jgre_20083
crossref_primary_10_1016_j_icarus_2018_06_011
crossref_primary_10_1515_astro_2020_0019
crossref_primary_10_1002_2017JE005398
crossref_primary_10_1002_2017JE005276
crossref_primary_10_3390_rs15122954
crossref_primary_10_1029_2018JE005572
crossref_primary_10_1016_j_icarus_2023_115776
crossref_primary_10_1016_j_icarus_2014_01_034
crossref_primary_10_1029_2021GL093118
crossref_primary_10_1080_13658816_2024_2397441
crossref_primary_10_1002_2015JE004879
crossref_primary_10_1007_s12145_025_01818_9
crossref_primary_10_1029_2022GL101097
crossref_primary_10_1103_PhysRevLett_124_178002
crossref_primary_10_3847_PSJ_ac9a4e
crossref_primary_10_1016_j_icarus_2014_01_038
crossref_primary_10_1016_j_icarus_2016_10_021
crossref_primary_10_1080_17445647_2017_1379913
crossref_primary_10_1002_2017JE005287
crossref_primary_10_1029_2019JE006255
crossref_primary_10_1002_2014GL060314
crossref_primary_10_1016_j_icarus_2021_114678
crossref_primary_10_1029_2011JE003967
crossref_primary_10_1029_2020GL091653
crossref_primary_10_1002_2015JE004989
crossref_primary_10_1007_s11038_020_09535_7
crossref_primary_10_1029_2024JE008387
crossref_primary_10_1002_2016JE005196
crossref_primary_10_1126_sciadv_adn2378
crossref_primary_10_1109_TGRS_2025_3543861
crossref_primary_10_3390_rs15010266
crossref_primary_10_1029_2018JE005592
crossref_primary_10_1029_2018JE005861
crossref_primary_10_3390_rs13173467
crossref_primary_10_1016_j_icarus_2024_116150
crossref_primary_10_1111_maps_13253
crossref_primary_10_1002_2014JE004630
crossref_primary_10_1038_s41598_020_64676_z
crossref_primary_10_1029_2018EA000405
crossref_primary_10_1029_2018EA000406
crossref_primary_10_1038_s43247_024_01820_x
crossref_primary_10_3847_PSJ_aca282
Cites_doi 10.1029/2006JE002808
10.1029/2003GL019075
10.1016/j.epsl.2009.11.007
10.1126/science.288.5475.2330
10.1016/j.pss.2010.11.003
10.1029/GL015i003p00229
10.1029/2010JE003755
10.1023/B:SPAC.0000021008.16305.94
10.1029/2010GL046450
10.1029/2000JE001258
10.1007/BF00057747
10.1029/97JE01084
10.1029/95JE02492
10.1029/2011JE003820
10.1109/34.765658
10.5479/sil.95438.39088015628597
10.1038/nature01436
10.1130/0091‐7613(2001)029<0407:EFEDOT>2.0.CO;2
10.1029/2000JE001364
10.1016/j.icarus.2009.04.026
10.1029/92JE00341
10.10160019‐1035(81)90181‐0
10.1029/2011JE003967
10.1029/93JE00121
10.1126/science.156.3775.636
10.1029/2003GL017048
10.1016/j.icarus.2004.11.023
10.1111/j.1945‐5100.2006.tb00433.x
10.1029/JB084iB14p08011
10.1029/2008GL033515
10.1029/JB087iB12p09803
10.1029/2003JE002147
10.1016/0019‐1035(80)90083‐4
10.1016/j.pss.2011.09.003
10.1029/98JE02025
10.1016/0019‐1035(88)90006‐1
10.1016/0019‐1035(79)90009‐5
10.1016/0019‐1035(90)90026‐6
10.1130/0‐8137‐2384‐1.1
10.1016/j.epsl.2011.07.023
10.1029/JB093iB11p13776
10.1111/j.1945‐5100.2006.tb00427.x
10.1029/JB094iB03p02753
ContentType Journal Article
Copyright Copyright 2012 by the American Geophysical Union
2015 INIST-CNRS
Copyright_xml – notice: Copyright 2012 by the American Geophysical Union
– notice: 2015 INIST-CNRS
DBID BSCLL
AAYXX
CITATION
IQODW
3V.
7TG
7XB
88I
8FD
8FE
8FG
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
DWQXO
GNUQQ
H8D
HCIFZ
KL.
L7M
M2P
P5Z
P62
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
DOI 10.1029/2011JE003966
DatabaseName Istex
CrossRef
Pascal-Francis
ProQuest Central (Corporate)
Meteorological & Geoastrophysical Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest One
ProQuest Central Korea
ProQuest Central Student
Aerospace Database
SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Advanced Technologies Database with Aerospace
Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Applied & Life Sciences
Aerospace Database
ProQuest One Sustainability
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList ProQuest Central Student
CrossRef

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Biology
Oceanography
Geology
Astronomy & Astrophysics
Physics
EISSN 2156-2202
2169-9100
EndPage n/a
ExternalDocumentID 2671172531
26312571
10_1029_2011JE003966
JGRE3017
ark_67375_WNG_BMJP9V22_7
Genre article
Feature
GroupedDBID 12K
1OC
24P
7XC
88I
8FE
8FH
8G5
8R4
8R5
AANLZ
AAXRX
ABUWG
ACAHQ
ACCZN
ACXBN
AEIGN
AEUYR
AFFPM
AHBTC
AITYG
ALMA_UNASSIGNED_HOLDINGS
AMYDB
ATCPS
BBNVY
BENPR
BHPHI
BKSAR
BPHCQ
BRXPI
BSCLL
DCZOG
DRFUL
DRSTM
DU5
DWQXO
GNUQQ
GUQSH
HCIFZ
LATKE
LITHE
LOXES
LUTES
LYRES
M2O
M2P
MEWTI
MSFUL
MSSTM
MXFUL
MXSTM
P-X
Q2X
RNS
WHG
WIN
WXSBR
XSW
~OA
~~A
AAHQN
AAMNL
AAYXX
AGYGG
CITATION
IQODW
05W
0R~
33P
3V.
52M
702
7TG
7XB
8FD
8FG
8FK
AAESR
AASGY
AAZKR
ACGOD
ACPOU
ACXQS
ADKYN
ADOZA
ADXAS
ADZMN
AEUYN
AEYWJ
AFKRA
AIURR
ALVPJ
ARAPS
ASPBG
AVWKF
AZFZN
AZQEC
AZVAB
BFHJK
BGLVJ
BMXJE
CCPQU
D1K
DPXWK
FEDTE
H8D
HGLYW
HVGLF
HZ~
K6-
KL.
L7M
LEEKS
LK5
M7R
MY~
O9-
P2W
P62
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PROAC
Q9U
R.K
SUPJJ
WBKPD
ID FETCH-LOGICAL-c4407-3f61bb0a70707f4d933364f567e59887b1524b5bd176077e7663fc53877d5fac3
IEDL.DBID BENPR
ISSN 0148-0227
2169-9097
IngestDate Sat Jul 26 00:17:40 EDT 2025
Mon Jul 21 09:15:01 EDT 2025
Tue Jul 01 01:55:50 EDT 2025
Thu Apr 24 22:55:40 EDT 2025
Wed Jan 22 16:35:09 EST 2025
Wed Oct 30 10:01:21 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue E5
Keywords impact craters
Moon
tracers
sampling
upper mantle
global
cartography
lower crust
ejecta
Mars
materials
standard samples
Astronomical catalogues
dating
data bases
uncertainties
age
Diameter
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4407-3f61bb0a70707f4d933364f567e59887b1524b5bd176077e7663fc53877d5fac3
Notes ArticleID:2011JE003966
istex:9BBC68C22E7D5B39024C32F3CC3BFEE0E943B2DC
ark:/67375/WNG-BMJP9V22-7
Tab-delimited Table 1.Tab-delimited Table 2.
This is a companion to DOI
10.1029/2011JE003967
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
PQID 1016575781
PQPubID 54729
PageCount 18
ParticipantIDs proquest_journals_1016575781
pascalfrancis_primary_26312571
crossref_primary_10_1029_2011JE003966
crossref_citationtrail_10_1029_2011JE003966
wiley_primary_10_1029_2011JE003966_JGRE3017
istex_primary_ark_67375_WNG_BMJP9V22_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2012
PublicationDateYYYYMMDD 2012-05-01
PublicationDate_xml – month: 05
  year: 2012
  text: May 2012
PublicationDecade 2010
PublicationPlace Washington, DC
PublicationPlace_xml – name: Washington, DC
– name: Washington
PublicationTitle Journal of Geophysical Research: Planets
PublicationTitleAlternate J. Geophys. Res
PublicationYear 2012
Publisher Blackwell Publishing Ltd
American Geophysical Union
Publisher_xml – name: Blackwell Publishing Ltd
– name: American Geophysical Union
References Craddock, R. A., T. A. Maxwell, and A. D. Howard (1997), Crater morphometry and modification in the Sinus Sabaeus and Margaritifer Sinus regions of Mars, J. Geophys. Res., 102(E6), 13,321-13,340, doi:10.1029/97JE01084.
Salamunićcar, G., S. Lončarić, P. Pina, L. Bandeira, and J. Saraiva (2011), MA130301GT catalogue of Martian impact craters and advanced evaluation of crater detection algorithms using diverse topography and image datasets, Planet. Space Sci., 59, 111-131, doi:10.1016/j.pss.2010.11.003.
Turtle, E. P., E. Pierazzo, G. S. Collins, G. R. Osinski, H. J. Melosh, J. V. Morgan, and W. U. Reimold (2005), Impact structures: What does crater diameter mean?, Spec. Pap. Geol. Soc. Am., 384, 1-24, doi:10.1130/0-8137-2384-1.1.
Barlow, N. G. (1988), Crater size-frequency distributions and a revised Martian relative chronology, Icarus, 75, 285-305, doi:10.1016/0019-1035(88)90006-1.
Barlow, N. G. (2005), A review of Martian impact crater ejecta structures and their implications for target properties, Spec. Pap. Geol. Soc. Am., 384, 433-442.
Costard, F. M. (1989), The spatial distribution of the volatiles in the Martian hydrolithosphere, Earth Moon Planets, 45, 265-290, doi:10.1007/BF00057747.
Robbins, S. J., and B. M. Hynek (2011a), Distant secondary craters from Lyot crater, Mars, and implications for the surface ages of planetary bodies, Geophys. Res. Lett., 38, L05201, doi:10.1029/2010GL046450.
Zuber, M. T., D. E. Smith, S. C. Solomon, D. O. Muhleman, J. W. Head, J. B. Garvin, J. B. Abshire, and J. L. Bufton (1992), The Mars Observer laser altimeter investigation, J. Geophys. Res., 97(E5), 7781-7797, doi:10.1029/92JE00341.
Kargel, J. S. (1986), Morphologic variations of Martian rampart crater ejecta and their dependencies and implications, Lunar Planet. Sci., XVII, 410-411.
Frey, H. V., and R. A. Schultz (1988), Large impact basins and the mega-impact origin for the crustal dichotomy on Mars, Geophys. Res. Lett., 15(3), 229-232, doi:10.1029/GL015i003p00229.
Pike, R. J. (1980), Formation of complex impact craters: Evidence from Mars and other planets, Icarus, 43, 1-19, doi:10.1016/0019-1035(80)90083-4.
Gwinner, K., F. Scholten, F. Preusker, S. Elgner, T. Roatsch, M. Spiegel, R. Schmidt, J. Oberst, R. Jaumann, and C. Heipke (2010), Topography of Mars from global mapping by HRSC high-resolution digital terrain models and orthoimages: Characteristics and performance, Earth Planet. Sci. Lett., 294, 506-519, doi:10.1016/j.epsl.2009.11.007.
Mouginis-Mark, P. J. (1979), Martian fluidized crater morphology: Variations with crater size, latitude, altitude, and target material, J. Geophys. Res., 84(B14), 8011-8022, doi:10.1029/JB084iB14p08011.
Christensen, P. R. (2003), Formation of recent Martian gullies through melting of extensive water-rich snow deposits, Nature, 422, 45-48, doi:10.1038/nature01436.
Barlow, N. G. (2004), Martian subsurface volatile concentrations as a function of time: Clues from layered ejecta craters, Geophys. Res. Lett., 31, L05703, doi:10.1029/2003GL019075.
Robbins, S. J., and B. M. Hynek (2012), A new global database of Mars impact craters ≥ 1 km: 2. Global crater properties and regional variations of the simple-to-complex transition diameter, J. Geophys. Res., doi:10.1029/2011JE003967, in press.
Collins, G. S., T. Davidson, D. Elbeshausen, S. J. Robbins, and B. M. Hynek (2011), The relationship between impact angle and crater ellipticity, Earth Planet. Sci. Lett., 310(1-2), 1-8, doi:10.1016/j.epsl.2011.07.023.
Christensen, P. R., et al. (2004), The Thermal Emission Imaging System (THEMIS) for the Mars 2001 Odyssey Mission, Space Sci. Rev., 110(1), 85-130, doi:10.1023/B:SPAC.0000021008.16305.94.
Fitzgibbon, A., M. Pilu, and R. B. Fisher (1999), Direct least square fitting of ellipses, IEEE Trans. Pattern Anal. Mach. Intell., 21(5), 476-480, doi:10.1109/34.765658.
Grant, J. A., and P. H. Schultz (1993), Degradation of selected terrestrial and Martian impact craters, J. Geophys. Res., 98(E6), 11,025-11,042, doi:10.1029/93JE00121.
Mandelbrot, B. (1967), How long is the coast of Britain? Statistical self-similarity and fractional dimension, Science, 156, 636-638, doi:10.1126/science.156.3775.636.
Hynek, B. M., and R. J. Phillips (2001), Evidence for extensive denudation of the Martian highlands, Geology, 29(5), 407-410, doi:10.1130/0091-7613(2001)029<0407:EFEDOT>2.0.CO;2.
Mouginis-Mark, P. J., H. Garbeil, J. M. Boyce, S. E. C. Ui, and S. M. Baloga (2004), Geometry of Martian impact craters: First results from an interactive software package, J. Geophys. Res., 109, E08006, doi:10.1029/2003JE002147.
Malin, M. C., and K. S. Edgett (2000), Evidence for recent groundwater seepage and surface runoff on Mars, Science, 288, 2330-2335, doi:10.1126/science.288.5475.2330.
Schimerman, L. A. (Ed.) (1973), The Lunar Cartographic Dossier, NASA-CR Ser. 1464000, NASA and the Defense Mapp. Agency, St. Louis, Mo.
Barlow, N. G. (1995), The degradation of impact craters in Maja Valles in Arabia, Mars, J. Geophys. Res., 100(E11), 23,307-23,316, doi:10.1029/95JE02492.
Stewart, S. T., and G. J. Valiant (2006), Martian subsurface properties and crater formation processes inferred from fresh impact crater geometries, Meteorit. Planet. Sci., 41(10), 1509-1537, doi:10.1111/j.1945-5100.2006.tb00433.x.
Barlow, N. G., J. M. Boyce, F. M. Costard, R. A. Craddock, J. B. Garvin, S. E. H. Sakimoto, R. O. Kuzmin, D. J. Roddy, and L. A. Soderblom (2000), Standardizing the nomenclature of Martian impact crater ejecta morphologies, J. Geophys. Res., 105(E11), 26,733-26,738, doi:10.1029/2000JE001258.
Neumann, G. A., J. B. Abshire, O. Aharonson, J. B. Garvin, X. Sun, and M. T. Zuber (2003a), Mars Orbiter Laser Altimeter pulse width measurements and footprint-scale roughness, Geophys. Res. Lett., 30(11), 1561, doi:10.1029/2003GL017048.
Edwards, C. S., K. J. Nowicki, P. R. Christensen, J. Hill, N. Gorelick, and K. Murray (2011), Mosaicking of global planetary image datasets: 1. Techniques and data processing for Thermal Emission Imaging System (THEMIS) multi-spectral data, J. Geophys. Res., 116, E10008, doi:10.1029/2010JE003755.
Barlow, N. G., and T. L. Bradley (1990), Martian impact craters: Correlations of ejecta and interior morphologies with diameter, latitude, and terrain, Icarus, 87, 156-179, doi:10.1016/0019-1035(90)90026-6.
Salamunićcar, G., S. Lončarić, and E. Mazarico (2012), LU60645GT and MA132843GT catalogues of lunar and Martian impact craters developed using a crater shape-based interpolation crater detection algorithm for topography data, Planet. Space Sci., 60(1), 236-247, doi:10.1016/j.pss.2011.09.003.
Hartmann, W. K. (2005), Martian cratering 8: Isochron refinement and the chronology of Mars, Icarus, 174, 294-320, doi:10.1016/j.icarus.2004.11.023.
Pike, R. J. (1977), Apparent depth/apparent diameter relation for lunar craters, Proc. Lunar. Sci. Conf., 8th, 3427-3436.
Barlow, N. G. (2006), Impact craters in the northern hemisphere of Mars: Layered ejecta and central pit characteristics, Meteorit. Planet. Sci., 41(10), 1425-1436, doi:10.1111/j.1945-5100.2006.tb00427.x.
Wood, C. A., and L. Andersson (1978), Lunar crater morphometry: New data, Proc. Lunar Planet. Sci. Conf., 9th, 1267-1269.
Neukum, G., and R. Jaumann (2004), HRSC: The High Resolution Stereo Camera of Mars Express, ESA Spec. Publ., ESA-SP 1240, 17-35.
Kuiper, G. P. (1960), Photographic Lunar Atlas, Univ. of Chicago Press, Chicago, Ill.
Schultz, P. H., R. A. Schultz, and J. Rogers (1982), The structure and evolution of ancient impact basins on Mars, J. Geophys. Res., 87(B12), 9803-9820, doi:10.1029/JB087iB12p09803.
Hartmann, W. K., D. P. Cruikshank, J. Degewij, and R. W. Capps (1981), Surface materials on unusual planetary object Chiron, Icarus, 47, 333-341, doi:10.10160019-1035(81)90181-0.
Smith, D. E., et al. (2001), Mars Orbiter Laser Altimeter: Experiment summary after the first year of global mapping on Mars, J. Geophys. Res., 106(E10), 23,689-23,722, doi:10.1029/2000JE001364.
Bridges, N. T., and N. G. Barlow (1989), Variation of Martian rampart crater ejecta lobateness in comparison to latitude, longitude, terrain, and crater diameter, Lunar Planet. Sci., XX, 105-106.
Neumann, G. A., F. G. Lemoine, D. E. Smith, and M. T. Zuber (2003b), The Mars Orbiter Laser Altimeter archive: Final precision experiment data record release and status of radiometry, Lunar Planet. Sci., XXXIV, Abstract 1978.
Stepinski, T. F., M. P. Mendenhall, and B. D. Bue (2009), Machine cataloging of impact craters on Mars, Icarus, 203, 77-87, doi:10.1016/j.icarus.2009.04.026.
Melosh, H. J. (1989), Impact Cratering: A Geologic Process, Oxford Univ. Press, New York.
Galilei, G. (1610), Sidereus Nuncius, pp. 1-29, Thomas Baglioni, Venice, Italy.
Lissauer, J. J., S. W. Squyers, and W. K. Hartmann (1988), Bombardment history of the Saturn system, J. Geophys. Res., 93(B11), 13,776-13,804, doi:10.1029/JB093iB11p13776.
Robbins, S. J., and B. M. Hynek (2011b), Secondary crater fields from 24 large primary craters on Mars: Insights into nearby secondary crater production, J. Geophys. Res., 116, E10003, doi:10.1029/2011JE003820.
McGill, G. E. (1989), Buried topography of Utopia, Mars: Persistence of a giant impact depression, J. Geophys. Res., 94, 2753-2759, doi:10.1029/JB094iB03p02753.
Malin, M. C., et al. (2007), Context Camera investigation on board the Mars Reconnaissance Orbiter, J. Geophys. Res., 112, E05S04, doi:10.1029/2006JE002808.
Barnouin-Jha, O. S., and P. H. Schultz (1998), Lobateness of impact ejecta deposits from atmospheric interactions, J. Geophys. Res., 103(E11), 25,739-25,756, doi:10.1029/98JE02025.
Frey, H. V. (2008), Ages of very large impact basins on Mars: Implications for the late heavy bombardment in the inner solar system, Geophys. Res. Lett., 35, L13203, doi:10.1029/2008GL033515.
Crater Analysis Techniques Working Group (1979), Standard techniques for presentation and analysis of crater size-frequency data, Icarus, 37, 467-474, doi:10.1016/0019-1035(79)90009-5.
2011; 116
2012; 60
1989; XX
1989; 45
1979; 37
2005; 174
1978; 9th
1980; 43
1981; 47
1967; 156
2008; 35
1610
1973
2011; 59
1988; 75
1992; 97
2011; 310
2001; 106
1997; 102
2004; 31
1990; 87
2005; 384
2003; XXXIV
2000; 288
2004; ESA‐SP 1240
2009; 203
1986; XVII
1989
1988
2012
1988; 15
1999; 21
2004
2003
2001; 29
2004; 109
2011; 38
1988; 93
2003; 30
2004; 110
2007; 112
1989; 94
1977; 8th
2006; 41
2000; 105
1993; 98
1982; 87
1998; 103
2010; 294
1960
1995; 100
2003; 422
1979; 84
e_1_2_13_24_1
e_1_2_13_49_1
e_1_2_13_26_1
e_1_2_13_47_1
e_1_2_13_20_1
Pike R. J. (e_1_2_13_43_1) 1988
e_1_2_13_45_1
Neukum G. (e_1_2_13_38_1) 2004; 1240
Galilei G. (e_1_2_13_22_1) 1610
Pike R. J. (e_1_2_13_41_1) 1977; 8
e_1_2_13_8_1
Bridges N. T. (e_1_2_13_11_1) 1989
Wood C. A. (e_1_2_13_55_1) 1978; 9
e_1_2_13_17_1
e_1_2_13_19_1
e_1_2_13_13_1
e_1_2_13_36_1
e_1_2_13_15_1
e_1_2_13_57_1
Kuiper G. P. (e_1_2_13_29_1) 1960
e_1_2_13_32_1
e_1_2_13_34_1
e_1_2_13_53_1
e_1_2_13_51_1
e_1_2_13_30_1
e_1_2_13_4_1
Melosh H. J. (e_1_2_13_35_1) 1989
e_1_2_13_2_1
e_1_2_13_25_1
Kargel J. S. (e_1_2_13_28_1) 1986
e_1_2_13_48_1
e_1_2_13_27_1
e_1_2_13_46_1
e_1_2_13_21_1
e_1_2_13_44_1
e_1_2_13_23_1
Neumann G. A. (e_1_2_13_40_1) 2003
e_1_2_13_42_1
e_1_2_13_9_1
e_1_2_13_7_1
e_1_2_13_18_1
e_1_2_13_39_1
e_1_2_13_14_1
e_1_2_13_16_1
e_1_2_13_37_1
e_1_2_13_10_1
e_1_2_13_31_1
e_1_2_13_56_1
Barlow N. G. (e_1_2_13_6_1) 2005; 384
e_1_2_13_12_1
e_1_2_13_33_1
e_1_2_13_54_1
e_1_2_13_52_1
e_1_2_13_50_1
e_1_2_13_5_1
e_1_2_13_3_1
References_xml – reference: Stepinski, T. F., M. P. Mendenhall, and B. D. Bue (2009), Machine cataloging of impact craters on Mars, Icarus, 203, 77-87, doi:10.1016/j.icarus.2009.04.026.
– reference: Turtle, E. P., E. Pierazzo, G. S. Collins, G. R. Osinski, H. J. Melosh, J. V. Morgan, and W. U. Reimold (2005), Impact structures: What does crater diameter mean?, Spec. Pap. Geol. Soc. Am., 384, 1-24, doi:10.1130/0-8137-2384-1.1.
– reference: Galilei, G. (1610), Sidereus Nuncius, pp. 1-29, Thomas Baglioni, Venice, Italy.
– reference: Robbins, S. J., and B. M. Hynek (2011b), Secondary crater fields from 24 large primary craters on Mars: Insights into nearby secondary crater production, J. Geophys. Res., 116, E10003, doi:10.1029/2011JE003820.
– reference: Lissauer, J. J., S. W. Squyers, and W. K. Hartmann (1988), Bombardment history of the Saturn system, J. Geophys. Res., 93(B11), 13,776-13,804, doi:10.1029/JB093iB11p13776.
– reference: Frey, H. V. (2008), Ages of very large impact basins on Mars: Implications for the late heavy bombardment in the inner solar system, Geophys. Res. Lett., 35, L13203, doi:10.1029/2008GL033515.
– reference: Kargel, J. S. (1986), Morphologic variations of Martian rampart crater ejecta and their dependencies and implications, Lunar Planet. Sci., XVII, 410-411.
– reference: Mandelbrot, B. (1967), How long is the coast of Britain? Statistical self-similarity and fractional dimension, Science, 156, 636-638, doi:10.1126/science.156.3775.636.
– reference: Hartmann, W. K., D. P. Cruikshank, J. Degewij, and R. W. Capps (1981), Surface materials on unusual planetary object Chiron, Icarus, 47, 333-341, doi:10.10160019-1035(81)90181-0.
– reference: Melosh, H. J. (1989), Impact Cratering: A Geologic Process, Oxford Univ. Press, New York.
– reference: Barlow, N. G. (2005), A review of Martian impact crater ejecta structures and their implications for target properties, Spec. Pap. Geol. Soc. Am., 384, 433-442.
– reference: Barlow, N. G. (2006), Impact craters in the northern hemisphere of Mars: Layered ejecta and central pit characteristics, Meteorit. Planet. Sci., 41(10), 1425-1436, doi:10.1111/j.1945-5100.2006.tb00427.x.
– reference: Gwinner, K., F. Scholten, F. Preusker, S. Elgner, T. Roatsch, M. Spiegel, R. Schmidt, J. Oberst, R. Jaumann, and C. Heipke (2010), Topography of Mars from global mapping by HRSC high-resolution digital terrain models and orthoimages: Characteristics and performance, Earth Planet. Sci. Lett., 294, 506-519, doi:10.1016/j.epsl.2009.11.007.
– reference: Smith, D. E., et al. (2001), Mars Orbiter Laser Altimeter: Experiment summary after the first year of global mapping on Mars, J. Geophys. Res., 106(E10), 23,689-23,722, doi:10.1029/2000JE001364.
– reference: Craddock, R. A., T. A. Maxwell, and A. D. Howard (1997), Crater morphometry and modification in the Sinus Sabaeus and Margaritifer Sinus regions of Mars, J. Geophys. Res., 102(E6), 13,321-13,340, doi:10.1029/97JE01084.
– reference: Frey, H. V., and R. A. Schultz (1988), Large impact basins and the mega-impact origin for the crustal dichotomy on Mars, Geophys. Res. Lett., 15(3), 229-232, doi:10.1029/GL015i003p00229.
– reference: Salamunićcar, G., S. Lončarić, P. Pina, L. Bandeira, and J. Saraiva (2011), MA130301GT catalogue of Martian impact craters and advanced evaluation of crater detection algorithms using diverse topography and image datasets, Planet. Space Sci., 59, 111-131, doi:10.1016/j.pss.2010.11.003.
– reference: Barlow, N. G. (2004), Martian subsurface volatile concentrations as a function of time: Clues from layered ejecta craters, Geophys. Res. Lett., 31, L05703, doi:10.1029/2003GL019075.
– reference: Barlow, N. G., J. M. Boyce, F. M. Costard, R. A. Craddock, J. B. Garvin, S. E. H. Sakimoto, R. O. Kuzmin, D. J. Roddy, and L. A. Soderblom (2000), Standardizing the nomenclature of Martian impact crater ejecta morphologies, J. Geophys. Res., 105(E11), 26,733-26,738, doi:10.1029/2000JE001258.
– reference: Robbins, S. J., and B. M. Hynek (2012), A new global database of Mars impact craters ≥ 1 km: 2. Global crater properties and regional variations of the simple-to-complex transition diameter, J. Geophys. Res., doi:10.1029/2011JE003967, in press.
– reference: Zuber, M. T., D. E. Smith, S. C. Solomon, D. O. Muhleman, J. W. Head, J. B. Garvin, J. B. Abshire, and J. L. Bufton (1992), The Mars Observer laser altimeter investigation, J. Geophys. Res., 97(E5), 7781-7797, doi:10.1029/92JE00341.
– reference: Barlow, N. G. (1988), Crater size-frequency distributions and a revised Martian relative chronology, Icarus, 75, 285-305, doi:10.1016/0019-1035(88)90006-1.
– reference: Neumann, G. A., J. B. Abshire, O. Aharonson, J. B. Garvin, X. Sun, and M. T. Zuber (2003a), Mars Orbiter Laser Altimeter pulse width measurements and footprint-scale roughness, Geophys. Res. Lett., 30(11), 1561, doi:10.1029/2003GL017048.
– reference: Hartmann, W. K. (2005), Martian cratering 8: Isochron refinement and the chronology of Mars, Icarus, 174, 294-320, doi:10.1016/j.icarus.2004.11.023.
– reference: Schimerman, L. A. (Ed.) (1973), The Lunar Cartographic Dossier, NASA-CR Ser. 1464000, NASA and the Defense Mapp. Agency, St. Louis, Mo.
– reference: Barlow, N. G. (1995), The degradation of impact craters in Maja Valles in Arabia, Mars, J. Geophys. Res., 100(E11), 23,307-23,316, doi:10.1029/95JE02492.
– reference: Barlow, N. G., and T. L. Bradley (1990), Martian impact craters: Correlations of ejecta and interior morphologies with diameter, latitude, and terrain, Icarus, 87, 156-179, doi:10.1016/0019-1035(90)90026-6.
– reference: Pike, R. J. (1977), Apparent depth/apparent diameter relation for lunar craters, Proc. Lunar. Sci. Conf., 8th, 3427-3436.
– reference: Grant, J. A., and P. H. Schultz (1993), Degradation of selected terrestrial and Martian impact craters, J. Geophys. Res., 98(E6), 11,025-11,042, doi:10.1029/93JE00121.
– reference: Costard, F. M. (1989), The spatial distribution of the volatiles in the Martian hydrolithosphere, Earth Moon Planets, 45, 265-290, doi:10.1007/BF00057747.
– reference: Malin, M. C., et al. (2007), Context Camera investigation on board the Mars Reconnaissance Orbiter, J. Geophys. Res., 112, E05S04, doi:10.1029/2006JE002808.
– reference: Neumann, G. A., F. G. Lemoine, D. E. Smith, and M. T. Zuber (2003b), The Mars Orbiter Laser Altimeter archive: Final precision experiment data record release and status of radiometry, Lunar Planet. Sci., XXXIV, Abstract 1978.
– reference: Christensen, P. R., et al. (2004), The Thermal Emission Imaging System (THEMIS) for the Mars 2001 Odyssey Mission, Space Sci. Rev., 110(1), 85-130, doi:10.1023/B:SPAC.0000021008.16305.94.
– reference: Pike, R. J. (1980), Formation of complex impact craters: Evidence from Mars and other planets, Icarus, 43, 1-19, doi:10.1016/0019-1035(80)90083-4.
– reference: Crater Analysis Techniques Working Group (1979), Standard techniques for presentation and analysis of crater size-frequency data, Icarus, 37, 467-474, doi:10.1016/0019-1035(79)90009-5.
– reference: Malin, M. C., and K. S. Edgett (2000), Evidence for recent groundwater seepage and surface runoff on Mars, Science, 288, 2330-2335, doi:10.1126/science.288.5475.2330.
– reference: Neukum, G., and R. Jaumann (2004), HRSC: The High Resolution Stereo Camera of Mars Express, ESA Spec. Publ., ESA-SP 1240, 17-35.
– reference: Bridges, N. T., and N. G. Barlow (1989), Variation of Martian rampart crater ejecta lobateness in comparison to latitude, longitude, terrain, and crater diameter, Lunar Planet. Sci., XX, 105-106.
– reference: Mouginis-Mark, P. J., H. Garbeil, J. M. Boyce, S. E. C. Ui, and S. M. Baloga (2004), Geometry of Martian impact craters: First results from an interactive software package, J. Geophys. Res., 109, E08006, doi:10.1029/2003JE002147.
– reference: Stewart, S. T., and G. J. Valiant (2006), Martian subsurface properties and crater formation processes inferred from fresh impact crater geometries, Meteorit. Planet. Sci., 41(10), 1509-1537, doi:10.1111/j.1945-5100.2006.tb00433.x.
– reference: Edwards, C. S., K. J. Nowicki, P. R. Christensen, J. Hill, N. Gorelick, and K. Murray (2011), Mosaicking of global planetary image datasets: 1. Techniques and data processing for Thermal Emission Imaging System (THEMIS) multi-spectral data, J. Geophys. Res., 116, E10008, doi:10.1029/2010JE003755.
– reference: Schultz, P. H., R. A. Schultz, and J. Rogers (1982), The structure and evolution of ancient impact basins on Mars, J. Geophys. Res., 87(B12), 9803-9820, doi:10.1029/JB087iB12p09803.
– reference: Kuiper, G. P. (1960), Photographic Lunar Atlas, Univ. of Chicago Press, Chicago, Ill.
– reference: Wood, C. A., and L. Andersson (1978), Lunar crater morphometry: New data, Proc. Lunar Planet. Sci. Conf., 9th, 1267-1269.
– reference: Christensen, P. R. (2003), Formation of recent Martian gullies through melting of extensive water-rich snow deposits, Nature, 422, 45-48, doi:10.1038/nature01436.
– reference: Fitzgibbon, A., M. Pilu, and R. B. Fisher (1999), Direct least square fitting of ellipses, IEEE Trans. Pattern Anal. Mach. Intell., 21(5), 476-480, doi:10.1109/34.765658.
– reference: Salamunićcar, G., S. Lončarić, and E. Mazarico (2012), LU60645GT and MA132843GT catalogues of lunar and Martian impact craters developed using a crater shape-based interpolation crater detection algorithm for topography data, Planet. Space Sci., 60(1), 236-247, doi:10.1016/j.pss.2011.09.003.
– reference: Collins, G. S., T. Davidson, D. Elbeshausen, S. J. Robbins, and B. M. Hynek (2011), The relationship between impact angle and crater ellipticity, Earth Planet. Sci. Lett., 310(1-2), 1-8, doi:10.1016/j.epsl.2011.07.023.
– reference: Mouginis-Mark, P. J. (1979), Martian fluidized crater morphology: Variations with crater size, latitude, altitude, and target material, J. Geophys. Res., 84(B14), 8011-8022, doi:10.1029/JB084iB14p08011.
– reference: Robbins, S. J., and B. M. Hynek (2011a), Distant secondary craters from Lyot crater, Mars, and implications for the surface ages of planetary bodies, Geophys. Res. Lett., 38, L05201, doi:10.1029/2010GL046450.
– reference: Barnouin-Jha, O. S., and P. H. Schultz (1998), Lobateness of impact ejecta deposits from atmospheric interactions, J. Geophys. Res., 103(E11), 25,739-25,756, doi:10.1029/98JE02025.
– reference: Hynek, B. M., and R. J. Phillips (2001), Evidence for extensive denudation of the Martian highlands, Geology, 29(5), 407-410, doi:10.1130/0091-7613(2001)029<0407:EFEDOT>2.0.CO;2.
– reference: McGill, G. E. (1989), Buried topography of Utopia, Mars: Persistence of a giant impact depression, J. Geophys. Res., 94, 2753-2759, doi:10.1029/JB094iB03p02753.
– volume: 87
  start-page: 156
  year: 1990
  end-page: 179
  article-title: Martian impact craters: Correlations of ejecta and interior morphologies with diameter, latitude, and terrain
  publication-title: Icarus
– volume: 203
  start-page: 77
  year: 2009
  end-page: 87
  article-title: Machine cataloging of impact craters on Mars
  publication-title: Icarus
– year: 1989
– volume: 109
  year: 2004
  article-title: Geometry of Martian impact craters: First results from an interactive software package
  publication-title: J. Geophys. Res.
– volume: 41
  start-page: 1425
  issue: 10
  year: 2006
  end-page: 1436
  article-title: Impact craters in the northern hemisphere of Mars: Layered ejecta and central pit characteristics
  publication-title: Meteorit. Planet. Sci.
– volume: 21
  start-page: 476
  issue: 5
  year: 1999
  end-page: 480
  article-title: Direct least square fitting of ellipses
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 75
  start-page: 285
  year: 1988
  end-page: 305
  article-title: Crater size‐frequency distributions and a revised Martian relative chronology
  publication-title: Icarus
– volume: 384
  start-page: 433
  year: 2005
  end-page: 442
  article-title: A review of Martian impact crater ejecta structures and their implications for target properties
  publication-title: Spec. Pap. Geol. Soc. Am.
– volume: XX
  start-page: 105
  year: 1989
  end-page: 106
  article-title: Variation of Martian rampart crater ejecta lobateness in comparison to latitude, longitude, terrain, and crater diameter
  publication-title: Lunar Planet. Sci.
– year: 2012
  article-title: A new global database of Mars impact craters ≥ 1 km: 2. Global crater properties and regional variations of the simple‐to‐complex transition diameter
  publication-title: J. Geophys. Res.
– volume: 106
  start-page: 23,689
  issue: E10
  year: 2001
  end-page: 23,722
  article-title: Mars Orbiter Laser Altimeter: Experiment summary after the first year of global mapping on Mars
  publication-title: J. Geophys. Res.
– volume: XXXIV
  year: 2003
  article-title: The Mars Orbiter Laser Altimeter archive: Final precision experiment data record release and status of radiometry
  publication-title: Lunar Planet. Sci.
– volume: 116
  year: 2011
  article-title: Mosaicking of global planetary image datasets: 1. Techniques and data processing for Thermal Emission Imaging System (THEMIS) multi‐spectral data
  publication-title: J. Geophys. Res.
– volume: 9th
  start-page: 1267
  year: 1978
  end-page: 1269
  article-title: Lunar crater morphometry: New data
  publication-title: Proc. Lunar Planet. Sci. Conf.
– volume: 156
  start-page: 636
  year: 1967
  end-page: 638
  article-title: How long is the coast of Britain? Statistical self‐similarity and fractional dimension
  publication-title: Science
– volume: 30
  issue: 11
  year: 2003
  article-title: Mars Orbiter Laser Altimeter pulse width measurements and footprint‐scale roughness
  publication-title: Geophys. Res. Lett.
– volume: 84
  start-page: 8011
  issue: B14
  year: 1979
  end-page: 8022
  article-title: Martian fluidized crater morphology: Variations with crater size, latitude, altitude, and target material
  publication-title: J. Geophys. Res.
– volume: 8th
  start-page: 3427
  year: 1977
  end-page: 3436
  article-title: Apparent depth/apparent diameter relation for lunar craters
  publication-title: Proc. Lunar. Sci. Conf.
– volume: 93
  start-page: 13,776
  issue: B11
  year: 1988
  end-page: 13,804
  article-title: Bombardment history of the Saturn system
  publication-title: J. Geophys. Res.
– volume: 102
  start-page: 13,321
  issue: E6
  year: 1997
  end-page: 13,340
  article-title: Crater morphometry and modification in the Sinus Sabaeus and Margaritifer Sinus regions of Mars
  publication-title: J. Geophys. Res.
– year: 2004
– volume: 60
  start-page: 236
  issue: 1
  year: 2012
  end-page: 247
  article-title: LU60645GT and MA132843GT catalogues of lunar and Martian impact craters developed using a crater shape‐based interpolation crater detection algorithm for topography data
  publication-title: Planet. Space Sci.
– volume: 41
  start-page: 1509
  issue: 10
  year: 2006
  end-page: 1537
  article-title: Martian subsurface properties and crater formation processes inferred from fresh impact crater geometries
  publication-title: Meteorit. Planet. Sci.
– volume: 100
  start-page: 23,307
  issue: E11
  year: 1995
  end-page: 23,316
  article-title: The degradation of impact craters in Maja Valles in Arabia, Mars
  publication-title: J. Geophys. Res.
– volume: 105
  start-page: 26,733
  issue: E11
  year: 2000
  end-page: 26,738
  article-title: Standardizing the nomenclature of Martian impact crater ejecta morphologies
  publication-title: J. Geophys. Res.
– start-page: 1
  year: 1610
  end-page: 29
– volume: 110
  start-page: 85
  issue: 1
  year: 2004
  end-page: 130
  article-title: The Thermal Emission Imaging System (THEMIS) for the Mars 2001 Odyssey Mission
  publication-title: Space Sci. Rev.
– volume: 31
  year: 2004
  article-title: Martian subsurface volatile concentrations as a function of time: Clues from layered ejecta craters
  publication-title: Geophys. Res. Lett.
– volume: 43
  start-page: 1
  year: 1980
  end-page: 19
  article-title: Formation of complex impact craters: Evidence from Mars and other planets
  publication-title: Icarus
– volume: ESA‐SP 1240
  start-page: 17
  year: 2004
  end-page: 35
  article-title: HRSC: The High Resolution Stereo Camera of Mars Express
  publication-title: ESA Spec. Publ.
– volume: 97
  start-page: 7781
  issue: E5
  year: 1992
  end-page: 7797
  article-title: The Mars Observer laser altimeter investigation
  publication-title: J. Geophys. Res.
– volume: 37
  start-page: 467
  year: 1979
  end-page: 474
  article-title: Standard techniques for presentation and analysis of crater size‐frequency data
  publication-title: Icarus
– year: 1960
– volume: 94
  start-page: 2753
  year: 1989
  end-page: 2759
  article-title: Buried topography of Utopia, Mars: Persistence of a giant impact depression
  publication-title: J. Geophys. Res.
– volume: 98
  start-page: 11,025
  issue: E6
  year: 1993
  end-page: 11,042
  article-title: Degradation of selected terrestrial and Martian impact craters
  publication-title: J. Geophys. Res.
– volume: 294
  start-page: 506
  year: 2010
  end-page: 519
  article-title: Topography of Mars from global mapping by HRSC high‐resolution digital terrain models and orthoimages: Characteristics and performance
  publication-title: Earth Planet. Sci. Lett.
– year: 2003
– year: 1973
– volume: 174
  start-page: 294
  year: 2005
  end-page: 320
  article-title: Martian cratering 8: Isochron refinement and the chronology of Mars
  publication-title: Icarus
– volume: 47
  start-page: 333
  year: 1981
  end-page: 341
  article-title: Surface materials on unusual planetary object Chiron
  publication-title: Icarus
– volume: 35
  year: 2008
  article-title: Ages of very large impact basins on Mars: Implications for the late heavy bombardment in the inner solar system
  publication-title: Geophys. Res. Lett.
– volume: 116
  year: 2011
  article-title: Secondary crater fields from 24 large primary craters on Mars: Insights into nearby secondary crater production
  publication-title: J. Geophys. Res.
– volume: 15
  start-page: 229
  issue: 3
  year: 1988
  end-page: 232
  article-title: Large impact basins and the mega‐impact origin for the crustal dichotomy on Mars
  publication-title: Geophys. Res. Lett.
– volume: 288
  start-page: 2330
  year: 2000
  end-page: 2335
  article-title: Evidence for recent groundwater seepage and surface runoff on Mars
  publication-title: Science
– volume: XVII
  start-page: 410
  year: 1986
  end-page: 411
  article-title: Morphologic variations of Martian rampart crater ejecta and their dependencies and implications
  publication-title: Lunar Planet. Sci.
– volume: 422
  start-page: 45
  year: 2003
  end-page: 48
  article-title: Formation of recent Martian gullies through melting of extensive water‐rich snow deposits
  publication-title: Nature
– volume: 29
  start-page: 407
  issue: 5
  year: 2001
  end-page: 410
  article-title: Evidence for extensive denudation of the Martian highlands
  publication-title: Geology
– volume: 45
  start-page: 265
  year: 1989
  end-page: 290
  article-title: The spatial distribution of the volatiles in the Martian hydrolithosphere
  publication-title: Earth Moon Planets
– volume: 87
  start-page: 9803
  issue: B12
  year: 1982
  end-page: 9820
  article-title: The structure and evolution of ancient impact basins on Mars
  publication-title: J. Geophys. Res.
– volume: 310
  start-page: 1
  issue: 1–2
  year: 2011
  end-page: 8
  article-title: The relationship between impact angle and crater ellipticity
  publication-title: Earth Planet. Sci. Lett.
– volume: 38
  year: 2011
  article-title: Distant secondary craters from Lyot crater, Mars, and implications for the surface ages of planetary bodies
  publication-title: Geophys. Res. Lett.
– volume: 59
  start-page: 111
  year: 2011
  end-page: 131
  article-title: MA130301GT catalogue of Martian impact craters and advanced evaluation of crater detection algorithms using diverse topography and image datasets
  publication-title: Planet. Space Sci.
– volume: 103
  start-page: 25,739
  issue: E11
  year: 1998
  end-page: 25,756
  article-title: Lobateness of impact ejecta deposits from atmospheric interactions
  publication-title: J. Geophys. Res.
– volume: 384
  start-page: 1
  year: 2005
  end-page: 24
  article-title: Impact structures: What does crater diameter mean?
  publication-title: Spec. Pap. Geol. Soc. Am.
– start-page: 165
  year: 1988
  end-page: 273
– volume: 112
  year: 2007
  article-title: Context Camera investigation on board the Mars Reconnaissance Orbiter
  publication-title: J. Geophys. Res.
– ident: e_1_2_13_32_1
  doi: 10.1029/2006JE002808
– ident: e_1_2_13_5_1
  doi: 10.1029/2003GL019075
– volume: 8
  start-page: 3427
  year: 1977
  ident: e_1_2_13_41_1
  article-title: Apparent depth/apparent diameter relation for lunar craters
  publication-title: Proc. Lunar. Sci. Conf.
– ident: e_1_2_13_24_1
  doi: 10.1016/j.epsl.2009.11.007
– ident: e_1_2_13_31_1
  doi: 10.1126/science.288.5475.2330
– ident: e_1_2_13_47_1
  doi: 10.1016/j.pss.2010.11.003
– ident: e_1_2_13_21_1
  doi: 10.1029/GL015i003p00229
– ident: e_1_2_13_18_1
  doi: 10.1029/2010JE003755
– ident: e_1_2_13_13_1
  doi: 10.1023/B:SPAC.0000021008.16305.94
– ident: e_1_2_13_44_1
  doi: 10.1029/2010GL046450
– ident: e_1_2_13_4_1
– start-page: 410
  year: 1986
  ident: e_1_2_13_28_1
  article-title: Morphologic variations of Martian rampart crater ejecta and their dependencies and implications
  publication-title: Lunar Planet. Sci.
– ident: e_1_2_13_9_1
  doi: 10.1029/2000JE001258
– ident: e_1_2_13_15_1
  doi: 10.1007/BF00057747
– ident: e_1_2_13_16_1
  doi: 10.1029/97JE01084
– ident: e_1_2_13_3_1
  doi: 10.1029/95JE02492
– volume-title: Impact Cratering: A Geologic Process
  year: 1989
  ident: e_1_2_13_35_1
– ident: e_1_2_13_45_1
  doi: 10.1029/2011JE003820
– ident: e_1_2_13_19_1
  doi: 10.1109/34.765658
– start-page: 1
  volume-title: Sidereus Nuncius
  year: 1610
  ident: e_1_2_13_22_1
  doi: 10.5479/sil.95438.39088015628597
– ident: e_1_2_13_12_1
  doi: 10.1038/nature01436
– ident: e_1_2_13_27_1
  doi: 10.1130/0091‐7613(2001)029<0407:EFEDOT>2.0.CO;2
– volume: 1240
  start-page: 17
  year: 2004
  ident: e_1_2_13_38_1
  article-title: HRSC: The High Resolution Stereo Camera of Mars Express
  publication-title: ESA Spec. Publ.
– ident: e_1_2_13_51_1
  doi: 10.1029/2000JE001364
– ident: e_1_2_13_52_1
  doi: 10.1016/j.icarus.2009.04.026
– ident: e_1_2_13_56_1
  doi: 10.1029/92JE00341
– ident: e_1_2_13_26_1
  doi: 10.10160019‐1035(81)90181‐0
– ident: e_1_2_13_46_1
  doi: 10.1029/2011JE003967
– ident: e_1_2_13_23_1
  doi: 10.1029/93JE00121
– ident: e_1_2_13_33_1
  doi: 10.1126/science.156.3775.636
– ident: e_1_2_13_39_1
  doi: 10.1029/2003GL017048
– ident: e_1_2_13_25_1
  doi: 10.1016/j.icarus.2004.11.023
– ident: e_1_2_13_53_1
  doi: 10.1111/j.1945‐5100.2006.tb00433.x
– ident: e_1_2_13_36_1
  doi: 10.1029/JB084iB14p08011
– ident: e_1_2_13_20_1
  doi: 10.1029/2008GL033515
– start-page: 105
  year: 1989
  ident: e_1_2_13_11_1
  article-title: Variation of Martian rampart crater ejecta lobateness in comparison to latitude, longitude, terrain, and crater diameter
  publication-title: Lunar Planet. Sci.
– ident: e_1_2_13_50_1
  doi: 10.1029/JB087iB12p09803
– year: 2003
  ident: e_1_2_13_40_1
  article-title: The Mars Orbiter Laser Altimeter archive: Final precision experiment data record release and status of radiometry
  publication-title: Lunar Planet. Sci.
– ident: e_1_2_13_37_1
  doi: 10.1029/2003JE002147
– ident: e_1_2_13_57_1
– ident: e_1_2_13_42_1
  doi: 10.1016/0019‐1035(80)90083‐4
– ident: e_1_2_13_48_1
  doi: 10.1016/j.pss.2011.09.003
– volume-title: Photographic Lunar Atlas
  year: 1960
  ident: e_1_2_13_29_1
– ident: e_1_2_13_49_1
– volume: 9
  start-page: 1267
  year: 1978
  ident: e_1_2_13_55_1
  article-title: Lunar crater morphometry: New data
  publication-title: Proc. Lunar Planet. Sci. Conf.
– ident: e_1_2_13_10_1
  doi: 10.1029/98JE02025
– volume: 384
  start-page: 433
  year: 2005
  ident: e_1_2_13_6_1
  article-title: A review of Martian impact crater ejecta structures and their implications for target properties
  publication-title: Spec. Pap. Geol. Soc. Am.
– ident: e_1_2_13_2_1
  doi: 10.1016/0019‐1035(88)90006‐1
– ident: e_1_2_13_17_1
  doi: 10.1016/0019‐1035(79)90009‐5
– ident: e_1_2_13_8_1
  doi: 10.1016/0019‐1035(90)90026‐6
– ident: e_1_2_13_54_1
  doi: 10.1130/0‐8137‐2384‐1.1
– ident: e_1_2_13_14_1
  doi: 10.1016/j.epsl.2011.07.023
– ident: e_1_2_13_30_1
  doi: 10.1029/JB093iB11p13776
– ident: e_1_2_13_7_1
  doi: 10.1111/j.1945‐5100.2006.tb00427.x
– ident: e_1_2_13_34_1
  doi: 10.1029/JB094iB03p02753
– start-page: 165
  volume-title: Mercury
  year: 1988
  ident: e_1_2_13_43_1
SSID ssj0000456401
ssj0014561
ssj0030581
ssj0030583
ssj0043761
ssj0030582
ssj0030585
ssj0030584
ssj0030586
ssj0000816913
Score 2.5070183
Snippet Impact craters have been used as a standard metric for a plethora of planetary applications for many decades, including age‐dating, geologic mapping and...
Impact craters have been used as a standard metric for a plethora of planetary applications for many decades, including age-dating, geologic mapping and...
SourceID proquest
pascalfrancis
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
SubjectTerms Comets
Earth sciences
Earth, ocean, space
Exact sciences and technology
Geologic mapping
Mars
Mars crater database
Mars craters
Planetology
Planets
Upper mantle
Title A new global database of Mars impact craters ≥1 km: 1. Database creation, properties, and parameters
URI https://api.istex.fr/ark:/67375/WNG-BMJP9V22-7/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2011JE003966
https://www.proquest.com/docview/1016575781
Volume 117
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwELYKe-mloi-xha58AC4lJbEdO-6lWtrdRSvtCqHScrPi14Xuoxsqtf--HsdZ4FBujjSOLI8z82U88w1CR5T6WldEZtYUPmMy11ktmM4s5dQG_yi1gwLn2ZxfXLPpTXmTAm5NSqvsbGI01HZlIEZ-FutugHy9-Lz-lUHXKLhdTS00dlAvmOAq_Hz1zkfzy6ttlAXaSsjYI5mEQSZzKVL2e07kGTi_6QjKUyNJ4r1f6sEW_4E8yboJW-XbHhePQOhDKBt90XgPvUggEg9brb9Ez9zyFdofNhDWXi3-4hMcx23UonmNzBAH9Ixb8g8MSaHgvPDK41n4r8VtpSQ2wBoRHgt8u_iEi4_4ayfYIctTvIbY_QZIWE9xvbQYmMMXkFHTvEHX49G3LxdZ6q6QGcYgOOl5oXVeCyD88cxKSilnvuTClTKYHh08O9OltoXguRBOBGziTbCPQtjS14a-RbvL1dLtI2wqCciReuksK4EuRhJuSem407zKTR996PZWmUQ9Dh0wfqp4BU6keqiJPjreSq9byo3_yJ1ENW2F6s0tpKmJUv2YT9T5bHopvxOiRB8NHulxO4FwGvCdKProsFOsSp9wo-4PXFh-VPaTq1HTydUoWEvx7umXHaDnYRppcyYP0e7d5rd7H3DNnR6gnWo8GaQj_A_Aq_B4
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LUxQxEE4hHPRi4atYQcxBuMjITJJJNlZZ1ir7YGG3LAuEW5y8LrgPd7CUP-VvNJ2ZWeAgN26Zqp5UKt3p7nS6v0boDaW-0G0iE2synzCZ6qQQTCeWcmqDfZTaQYHzaMwHp2x4np-voL9NLQykVTY6MSpqOzMQI9-PdTcAvp59nP9MoGsUvK42LTQqsThyV7_Dla38cHgQ-LtDSK978nmQ1F0FEsMYBOU8z7ROCwFAN57ZcKOnnPmcC5fLcOR0sGhM59pmgqdCOBFssjdBLwhhc18YGuZ9gNYYpRJOVLvXX8Z0oImFjB2ZSRgkMpWizrVPidwHUzvsQjFshGS8toJrwNA_kJVZlIExvuqoccvlvek4R8vXW0ePa5cVdyoZe4JW3PQp2uiUEESfTa7wLo7jKkZSPkOmg4OvjiuoEQwpqGAq8czjUbhF46ouExvAqAifGb6YvMfZO3zQEDZ-7B6ew0vBAiBf93AxtRhwyieQv1M-R6f3susv0Op0NnUbCJu2BD-VeuksywGcRhJuSe6407ydmhZ62-ytMjXQOfTb-KHigzuR6iYnWmhnST2vAD7-Q7cb2bQkKhYXkBQncnU27qtPo-EX-Y0QJVpo-xYflz8QToM3KbIW2moYq2qFUapr8Q7Lj8y-czVq2P_aDbpZvLx7stfo4eBkdKyOD8dHm-hRmIJU2ZpbaPVy8cu9Ch7Vpd6OYozR9_s-N_8AkyUovw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxsxELZoIlW9VKUPkZZSHwqXss2ud9eOK6EqNAkQmihCpeXmrl8XmkezVIW_xq_rzD4CHMqNm1fyjizPeGY8nvmGkPdx7DPdYTKwJvJBIkMdZCLRgY15bME-Su2wwHk05oenyfAsPVsj13UtDKZV1jqxUNR2bjBG3i7qbhB8PWr7Ki1i0ht8XvwOsIMUvrTW7TRKETl2V3_h-pbvHfWA19uMDfrfvhwGVYeBwCQJBug8j7QOM4GgNz6xcLuPeeJTLlwq4fhpsG6JTrWNBA-FcALsszegI4Swqc9MDHQfkaYAWmGDNPf748nJKsKDLS1k0Z-ZwSCQoRRV5n3IZBsN77CPpbEFQOONTWwiey8xRzPLgU2-7K9xxwG-7UYXdnDwjDytHFjaLSVunay52XOy0c0xpD6fXtEdWozLiEn-gpguBc-dlsAjFBNS0XDSuacjuFPTskqTGkSsgM-Ink8_0egj7dUTa692ly7w3WCJALC7NJtZiqjlU8zmyV-S0wfZ91ekMZvP3AahpiPRa429dDZJEapGMm5Z6rjTvBOaFvlQ760yFew5dt_4pYrndybVbU60yPZq9qKE-_jPvJ2CTatJ2fIcU-REqn6MD9T-aDiR3xlTokW27vBx9QPjMfiWImqRzZqxqlIfuboRdlh-wex7V6OGByd90NTi9f3E3pHHcGbU16Px8RvyBCiwMnVzkzQuln_cW3CvLvRWJceU_Hzoo_MP6SQuUQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+global+database+of+Mars+impact+craters+%E2%89%A51+km%3A+1.+Database+creation%2C+properties%2C+and+parameters&rft.jtitle=Journal+of+geophysical+research&rft.au=ROBBINS%2C+Stuart+J&rft.au=HYNEK%2C+Brian+M&rft.date=2012-05-01&rft.pub=American+Geophysical+Union&rft.issn=0148-0227&rft.volume=117&rft.issue=E5&rft_id=info:doi/10.1029%2F2011je003966&rft.externalDBID=n%2Fa&rft.externalDocID=26312571
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0148-0227&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0148-0227&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0148-0227&client=summon