A new global database of Mars impact craters ≥1 km: 1. Database creation, properties, and parameters
Impact craters have been used as a standard metric for a plethora of planetary applications for many decades, including age‐dating, geologic mapping and stratigraphic relationships, as tracers for surface processes, and as locations for sampling lower crust and upper mantle material. Utilizing crate...
Saved in:
Published in | Journal of Geophysical Research: Planets Vol. 117; no. E5 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Washington, DC
Blackwell Publishing Ltd
01.05.2012
American Geophysical Union |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Impact craters have been used as a standard metric for a plethora of planetary applications for many decades, including age‐dating, geologic mapping and stratigraphic relationships, as tracers for surface processes, and as locations for sampling lower crust and upper mantle material. Utilizing craters for these and other investigations is significantly aided by a uniform catalog of craters across the surface of interest. Consequently, catalogs of craters have been developed for decades for the Moon and other planets. We present a new global catalog of Martian craters statistically complete to diameters D ≥ 1 km. It contains 384,343 craters, and for each crater it lists detailed positional, interior morphologic, ejecta morphologic and morphometric data, and modification state information if it could be determined. In this paper, we detail how the database was created, the different fields assigned, and statistical uncertainties and checks. In our companion paper (Robbins and Hynek, 2012), we discuss the first broad science applications and results of this work.
Key Points
New global Mars crater database with diameters greater than or equal to 1.0 km
This database compares well with previous ones where there is overlap
The database contains numerous morphometric and morphologic data per crater |
---|---|
AbstractList | Impact craters have been used as a standard metric for a plethora of planetary applications for many decades, including age-dating, geologic mapping and stratigraphic relationships, as tracers for surface processes, and as locations for sampling lower crust and upper mantle material. Utilizing craters for these and other investigations is significantly aided by a uniform catalog of craters across the surface of interest. Consequently, catalogs of craters have been developed for decades for the Moon and other planets. We present a new global catalog of Martian craters statistically complete to diameters D 1 km. It contains 384,343 craters, and for each crater it lists detailed positional, interior morphologic, ejecta morphologic and morphometric data, and modification state information if it could be determined. In this paper, we detail how the database was created, the different fields assigned, and statistical uncertainties and checks. In our companion paper (Robbins and Hynek, 2012), we discuss the first broad science applications and results of this work. Impact craters have been used as a standard metric for a plethora of planetary applications for many decades, including age‐dating, geologic mapping and stratigraphic relationships, as tracers for surface processes, and as locations for sampling lower crust and upper mantle material. Utilizing craters for these and other investigations is significantly aided by a uniform catalog of craters across the surface of interest. Consequently, catalogs of craters have been developed for decades for the Moon and other planets. We present a new global catalog of Martian craters statistically complete to diameters D ≥ 1 km. It contains 384,343 craters, and for each crater it lists detailed positional, interior morphologic, ejecta morphologic and morphometric data, and modification state information if it could be determined. In this paper, we detail how the database was created, the different fields assigned, and statistical uncertainties and checks. In our companion paper (Robbins and Hynek, 2012), we discuss the first broad science applications and results of this work. New global Mars crater database with diameters greater than or equal to 1.0 km This database compares well with previous ones where there is overlap The database contains numerous morphometric and morphologic data per crater Impact craters have been used as a standard metric for a plethora of planetary applications for many decades, including age‐dating, geologic mapping and stratigraphic relationships, as tracers for surface processes, and as locations for sampling lower crust and upper mantle material. Utilizing craters for these and other investigations is significantly aided by a uniform catalog of craters across the surface of interest. Consequently, catalogs of craters have been developed for decades for the Moon and other planets. We present a new global catalog of Martian craters statistically complete to diameters D ≥ 1 km. It contains 384,343 craters, and for each crater it lists detailed positional, interior morphologic, ejecta morphologic and morphometric data, and modification state information if it could be determined. In this paper, we detail how the database was created, the different fields assigned, and statistical uncertainties and checks. In our companion paper (Robbins and Hynek, 2012), we discuss the first broad science applications and results of this work. Key Points New global Mars crater database with diameters greater than or equal to 1.0 km This database compares well with previous ones where there is overlap The database contains numerous morphometric and morphologic data per crater |
Author | Robbins, Stuart J. Hynek, Brian M. |
Author_xml | – sequence: 1 givenname: Stuart J. surname: Robbins fullname: Robbins, Stuart J. email: stuart.robbins@colorado.edu, stuart.robbins@colorado.edu organization: Laboratory for Atmospheric and Space Physics, University of Colorado at Boulder, Boulder, Colorado, USA – sequence: 2 givenname: Brian M. surname: Hynek fullname: Hynek, Brian M. organization: Laboratory for Atmospheric and Space Physics, University of Colorado at Boulder, Boulder, Colorado, USA |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26312571$$DView record in Pascal Francis |
BookMark | eNqFkMtu1DAUhi1UJIbSHQ9gCbGbtL7EPgm7UoYpo7YgxGVpnTg2cptJgu2q9BH6IH0xnoQM01aIBRwvjix9n3_rf0p2-qF3hDznbJ8zUR8IxvlqwZistX5EZoIrXQjBxA6ZMV5WBRMCnpC9lM7ZNKXSJeMz4g9p767ot25osKMtZmwwOTp4eoox0bAe0WZqI2Y3XX_e3HJ6sX5F-T59c8_a6DCHoZ_TMQ6jizm4NKfYt3TEiGu3MZ-Rxx675Pbu9i75_Hbx6ei4OHm_fHd0eFLYsmRQSK950zAENh1ftrWUUpdeaXCqripouBJlo5qWg2YADrSW3ipZAbTKo5W75MX23ekr3y9dyuZ8uIz9FGk441qBgopP1Ms7CpPFzkfsbUhmjGGN8doILblQsOHmW87GIaXo_APCmdmUbv4sfcLFX7gN-Xc1OWLo_iNdhc5d_zPArJYfF5JxmKRiK4WU3Y8HCeOF0SBBma9nS_P6dPWh_iKEAfkLuH2gyA |
CitedBy_id | crossref_primary_10_1088_0034_4885_76_6_066601 crossref_primary_10_3847_PSJ_acb924 crossref_primary_10_1029_2020EA001598 crossref_primary_10_1109_TGRS_2018_2825608 crossref_primary_10_1029_2019JE006108 crossref_primary_10_1029_2017JE005461 crossref_primary_10_1007_s12303_024_0007_3 crossref_primary_10_1029_2019EA001005 crossref_primary_10_1016_j_icarus_2013_03_019 crossref_primary_10_3390_rs16193645 crossref_primary_10_1016_j_epsl_2019_115847 crossref_primary_10_1029_2021EA002177 crossref_primary_10_1002_2017GL075663 crossref_primary_10_1016_j_icarus_2012_05_027 crossref_primary_10_3390_rs16101743 crossref_primary_10_1080_24694452_2021_1877527 crossref_primary_10_1002_2015JE004959 crossref_primary_10_5026_jgeography_125_13 crossref_primary_10_1016_j_icarus_2015_09_019 crossref_primary_10_1029_2024EA003796 crossref_primary_10_1002_2015JE004799 crossref_primary_10_1007_s11430_023_1284_9 crossref_primary_10_1016_j_asr_2014_08_018 crossref_primary_10_1111_maps_12416 crossref_primary_10_3390_rs13112116 crossref_primary_10_1109_JSTARS_2023_3314128 crossref_primary_10_1002_jgre_20053 crossref_primary_10_1016_j_icarus_2020_113749 crossref_primary_10_1016_j_icarus_2022_115045 crossref_primary_10_1016_j_icarus_2024_116218 crossref_primary_10_1016_j_icarus_2023_115761 crossref_primary_10_1111_maps_12895 crossref_primary_10_52912_jsta_2021_1_1_49 crossref_primary_10_1016_j_pss_2022_105575 crossref_primary_10_1016_j_icarus_2024_116100 crossref_primary_10_1016_j_icarus_2015_01_022 crossref_primary_10_1002_2014JE004685 crossref_primary_10_1038_s41467_022_34974_3 crossref_primary_10_1080_24694452_2024_2373787 crossref_primary_10_1016_j_pss_2013_06_019 crossref_primary_10_1007_s10346_019_01275_8 crossref_primary_10_1016_j_icarus_2020_113873 crossref_primary_10_1002_2017JE005412 crossref_primary_10_1016_j_icarus_2023_115918 crossref_primary_10_1016_j_geomorph_2024_109428 crossref_primary_10_1029_2020JE006581 crossref_primary_10_1029_2017JE005448 crossref_primary_10_1111_maps_12884 crossref_primary_10_1111_maps_13057 crossref_primary_10_1016_j_pss_2018_03_014 crossref_primary_10_3847_PSJ_ad5e6f crossref_primary_10_1002_2018EA000372 crossref_primary_10_1002_jgre_20105 crossref_primary_10_1002_2015JE004938 crossref_primary_10_1016_j_icarus_2016_11_031 crossref_primary_10_1029_2018JE005545 crossref_primary_10_1109_JSTARS_2019_2918302 crossref_primary_10_1002_2014JE004676 crossref_primary_10_1016_j_icarus_2013_04_021 crossref_primary_10_1016_j_icarus_2018_12_023 crossref_primary_10_1038_ncomms15766 crossref_primary_10_1111_maps_12956 crossref_primary_10_1111_maps_12438 crossref_primary_10_1029_2023EA002863 crossref_primary_10_1093_mnras_stac482 crossref_primary_10_1002_2017EA000324 crossref_primary_10_1111_gbi_12583 crossref_primary_10_1029_2023GL105910 crossref_primary_10_1111_maps_13244 crossref_primary_10_1016_j_icarus_2022_115146 crossref_primary_10_1029_2018JE005681 crossref_primary_10_1080_17445647_2018_1496858 crossref_primary_10_1080_19475705_2017_1327463 crossref_primary_10_1109_TGRS_2024_3478807 crossref_primary_10_1016_j_icarus_2014_06_023 crossref_primary_10_1029_2022JE007676 crossref_primary_10_1002_2017JE005270 crossref_primary_10_3847_PSJ_ac25ed crossref_primary_10_1002_2016JE005094 crossref_primary_10_1093_nsr_nwad237 crossref_primary_10_1002_2015JE004882 crossref_primary_10_1016_j_asr_2019_02_005 crossref_primary_10_1002_2017JE005432 crossref_primary_10_1016_j_pss_2022_105500 crossref_primary_10_3390_life13122349 crossref_primary_10_1002_jgre_20083 crossref_primary_10_1016_j_icarus_2018_06_011 crossref_primary_10_1515_astro_2020_0019 crossref_primary_10_1002_2017JE005398 crossref_primary_10_1002_2017JE005276 crossref_primary_10_3390_rs15122954 crossref_primary_10_1029_2018JE005572 crossref_primary_10_1016_j_icarus_2023_115776 crossref_primary_10_1016_j_icarus_2014_01_034 crossref_primary_10_1029_2021GL093118 crossref_primary_10_1080_13658816_2024_2397441 crossref_primary_10_1002_2015JE004879 crossref_primary_10_1007_s12145_025_01818_9 crossref_primary_10_1029_2022GL101097 crossref_primary_10_1103_PhysRevLett_124_178002 crossref_primary_10_3847_PSJ_ac9a4e crossref_primary_10_1016_j_icarus_2014_01_038 crossref_primary_10_1016_j_icarus_2016_10_021 crossref_primary_10_1080_17445647_2017_1379913 crossref_primary_10_1002_2017JE005287 crossref_primary_10_1029_2019JE006255 crossref_primary_10_1002_2014GL060314 crossref_primary_10_1016_j_icarus_2021_114678 crossref_primary_10_1029_2011JE003967 crossref_primary_10_1029_2020GL091653 crossref_primary_10_1002_2015JE004989 crossref_primary_10_1007_s11038_020_09535_7 crossref_primary_10_1029_2024JE008387 crossref_primary_10_1002_2016JE005196 crossref_primary_10_1126_sciadv_adn2378 crossref_primary_10_1109_TGRS_2025_3543861 crossref_primary_10_3390_rs15010266 crossref_primary_10_1029_2018JE005592 crossref_primary_10_1029_2018JE005861 crossref_primary_10_3390_rs13173467 crossref_primary_10_1016_j_icarus_2024_116150 crossref_primary_10_1111_maps_13253 crossref_primary_10_1002_2014JE004630 crossref_primary_10_1038_s41598_020_64676_z crossref_primary_10_1029_2018EA000405 crossref_primary_10_1029_2018EA000406 crossref_primary_10_1038_s43247_024_01820_x crossref_primary_10_3847_PSJ_aca282 |
Cites_doi | 10.1029/2006JE002808 10.1029/2003GL019075 10.1016/j.epsl.2009.11.007 10.1126/science.288.5475.2330 10.1016/j.pss.2010.11.003 10.1029/GL015i003p00229 10.1029/2010JE003755 10.1023/B:SPAC.0000021008.16305.94 10.1029/2010GL046450 10.1029/2000JE001258 10.1007/BF00057747 10.1029/97JE01084 10.1029/95JE02492 10.1029/2011JE003820 10.1109/34.765658 10.5479/sil.95438.39088015628597 10.1038/nature01436 10.1130/0091‐7613(2001)029<0407:EFEDOT>2.0.CO;2 10.1029/2000JE001364 10.1016/j.icarus.2009.04.026 10.1029/92JE00341 10.10160019‐1035(81)90181‐0 10.1029/2011JE003967 10.1029/93JE00121 10.1126/science.156.3775.636 10.1029/2003GL017048 10.1016/j.icarus.2004.11.023 10.1111/j.1945‐5100.2006.tb00433.x 10.1029/JB084iB14p08011 10.1029/2008GL033515 10.1029/JB087iB12p09803 10.1029/2003JE002147 10.1016/0019‐1035(80)90083‐4 10.1016/j.pss.2011.09.003 10.1029/98JE02025 10.1016/0019‐1035(88)90006‐1 10.1016/0019‐1035(79)90009‐5 10.1016/0019‐1035(90)90026‐6 10.1130/0‐8137‐2384‐1.1 10.1016/j.epsl.2011.07.023 10.1029/JB093iB11p13776 10.1111/j.1945‐5100.2006.tb00427.x 10.1029/JB094iB03p02753 |
ContentType | Journal Article |
Copyright | Copyright 2012 by the American Geophysical Union 2015 INIST-CNRS |
Copyright_xml | – notice: Copyright 2012 by the American Geophysical Union – notice: 2015 INIST-CNRS |
DBID | BSCLL AAYXX CITATION IQODW 3V. 7TG 7XB 88I 8FD 8FE 8FG 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR CCPQU DWQXO GNUQQ H8D HCIFZ KL. L7M M2P P5Z P62 PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI Q9U |
DOI | 10.1029/2011JE003966 |
DatabaseName | Istex CrossRef Pascal-Francis ProQuest Central (Corporate) Meteorological & Geoastrophysical Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection ProQuest One ProQuest Central Korea ProQuest Central Student Aerospace Database SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Advanced Technologies Database with Aerospace Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic |
DatabaseTitle | CrossRef ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest One Applied & Life Sciences Aerospace Database ProQuest One Sustainability Meteorological & Geoastrophysical Abstracts Natural Science Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest Central (Alumni) ProQuest One Academic (New) |
DatabaseTitleList | ProQuest Central Student CrossRef |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Meteorology & Climatology Biology Oceanography Geology Astronomy & Astrophysics Physics |
EISSN | 2156-2202 2169-9100 |
EndPage | n/a |
ExternalDocumentID | 2671172531 26312571 10_1029_2011JE003966 JGRE3017 ark_67375_WNG_BMJP9V22_7 |
Genre | article Feature |
GroupedDBID | 12K 1OC 24P 7XC 88I 8FE 8FH 8G5 8R4 8R5 AANLZ AAXRX ABUWG ACAHQ ACCZN ACXBN AEIGN AEUYR AFFPM AHBTC AITYG ALMA_UNASSIGNED_HOLDINGS AMYDB ATCPS BBNVY BENPR BHPHI BKSAR BPHCQ BRXPI BSCLL DCZOG DRFUL DRSTM DU5 DWQXO GNUQQ GUQSH HCIFZ LATKE LITHE LOXES LUTES LYRES M2O M2P MEWTI MSFUL MSSTM MXFUL MXSTM P-X Q2X RNS WHG WIN WXSBR XSW ~OA ~~A AAHQN AAMNL AAYXX AGYGG CITATION IQODW 05W 0R~ 33P 3V. 52M 702 7TG 7XB 8FD 8FG 8FK AAESR AASGY AAZKR ACGOD ACPOU ACXQS ADKYN ADOZA ADXAS ADZMN AEUYN AEYWJ AFKRA AIURR ALVPJ ARAPS ASPBG AVWKF AZFZN AZQEC AZVAB BFHJK BGLVJ BMXJE CCPQU D1K DPXWK FEDTE H8D HGLYW HVGLF HZ~ K6- KL. L7M LEEKS LK5 M7R MY~ O9- P2W P62 PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PROAC Q9U R.K SUPJJ WBKPD |
ID | FETCH-LOGICAL-c4407-3f61bb0a70707f4d933364f567e59887b1524b5bd176077e7663fc53877d5fac3 |
IEDL.DBID | BENPR |
ISSN | 0148-0227 2169-9097 |
IngestDate | Sat Jul 26 00:17:40 EDT 2025 Mon Jul 21 09:15:01 EDT 2025 Tue Jul 01 01:55:50 EDT 2025 Thu Apr 24 22:55:40 EDT 2025 Wed Jan 22 16:35:09 EST 2025 Wed Oct 30 10:01:21 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | E5 |
Keywords | impact craters Moon tracers sampling upper mantle global cartography lower crust ejecta Mars materials standard samples Astronomical catalogues dating data bases uncertainties age Diameter |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4407-3f61bb0a70707f4d933364f567e59887b1524b5bd176077e7663fc53877d5fac3 |
Notes | ArticleID:2011JE003966 istex:9BBC68C22E7D5B39024C32F3CC3BFEE0E943B2DC ark:/67375/WNG-BMJP9V22-7 Tab-delimited Table 1.Tab-delimited Table 2. This is a companion to DOI 10.1029/2011JE003967 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 |
PQID | 1016575781 |
PQPubID | 54729 |
PageCount | 18 |
ParticipantIDs | proquest_journals_1016575781 pascalfrancis_primary_26312571 crossref_primary_10_1029_2011JE003966 crossref_citationtrail_10_1029_2011JE003966 wiley_primary_10_1029_2011JE003966_JGRE3017 istex_primary_ark_67375_WNG_BMJP9V22_7 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2012 |
PublicationDateYYYYMMDD | 2012-05-01 |
PublicationDate_xml | – month: 05 year: 2012 text: May 2012 |
PublicationDecade | 2010 |
PublicationPlace | Washington, DC |
PublicationPlace_xml | – name: Washington, DC – name: Washington |
PublicationTitle | Journal of Geophysical Research: Planets |
PublicationTitleAlternate | J. Geophys. Res |
PublicationYear | 2012 |
Publisher | Blackwell Publishing Ltd American Geophysical Union |
Publisher_xml | – name: Blackwell Publishing Ltd – name: American Geophysical Union |
References | Craddock, R. A., T. A. Maxwell, and A. D. Howard (1997), Crater morphometry and modification in the Sinus Sabaeus and Margaritifer Sinus regions of Mars, J. Geophys. Res., 102(E6), 13,321-13,340, doi:10.1029/97JE01084. Salamunićcar, G., S. Lončarić, P. Pina, L. Bandeira, and J. Saraiva (2011), MA130301GT catalogue of Martian impact craters and advanced evaluation of crater detection algorithms using diverse topography and image datasets, Planet. Space Sci., 59, 111-131, doi:10.1016/j.pss.2010.11.003. Turtle, E. P., E. Pierazzo, G. S. Collins, G. R. Osinski, H. J. Melosh, J. V. Morgan, and W. U. Reimold (2005), Impact structures: What does crater diameter mean?, Spec. Pap. Geol. Soc. Am., 384, 1-24, doi:10.1130/0-8137-2384-1.1. Barlow, N. G. (1988), Crater size-frequency distributions and a revised Martian relative chronology, Icarus, 75, 285-305, doi:10.1016/0019-1035(88)90006-1. Barlow, N. G. (2005), A review of Martian impact crater ejecta structures and their implications for target properties, Spec. Pap. Geol. Soc. Am., 384, 433-442. Costard, F. M. (1989), The spatial distribution of the volatiles in the Martian hydrolithosphere, Earth Moon Planets, 45, 265-290, doi:10.1007/BF00057747. Robbins, S. J., and B. M. Hynek (2011a), Distant secondary craters from Lyot crater, Mars, and implications for the surface ages of planetary bodies, Geophys. Res. Lett., 38, L05201, doi:10.1029/2010GL046450. Zuber, M. T., D. E. Smith, S. C. Solomon, D. O. Muhleman, J. W. Head, J. B. Garvin, J. B. Abshire, and J. L. Bufton (1992), The Mars Observer laser altimeter investigation, J. Geophys. Res., 97(E5), 7781-7797, doi:10.1029/92JE00341. Kargel, J. S. (1986), Morphologic variations of Martian rampart crater ejecta and their dependencies and implications, Lunar Planet. Sci., XVII, 410-411. Frey, H. V., and R. A. Schultz (1988), Large impact basins and the mega-impact origin for the crustal dichotomy on Mars, Geophys. Res. Lett., 15(3), 229-232, doi:10.1029/GL015i003p00229. Pike, R. J. (1980), Formation of complex impact craters: Evidence from Mars and other planets, Icarus, 43, 1-19, doi:10.1016/0019-1035(80)90083-4. Gwinner, K., F. Scholten, F. Preusker, S. Elgner, T. Roatsch, M. Spiegel, R. Schmidt, J. Oberst, R. Jaumann, and C. Heipke (2010), Topography of Mars from global mapping by HRSC high-resolution digital terrain models and orthoimages: Characteristics and performance, Earth Planet. Sci. Lett., 294, 506-519, doi:10.1016/j.epsl.2009.11.007. Mouginis-Mark, P. J. (1979), Martian fluidized crater morphology: Variations with crater size, latitude, altitude, and target material, J. Geophys. Res., 84(B14), 8011-8022, doi:10.1029/JB084iB14p08011. Christensen, P. R. (2003), Formation of recent Martian gullies through melting of extensive water-rich snow deposits, Nature, 422, 45-48, doi:10.1038/nature01436. Barlow, N. G. (2004), Martian subsurface volatile concentrations as a function of time: Clues from layered ejecta craters, Geophys. Res. Lett., 31, L05703, doi:10.1029/2003GL019075. Robbins, S. J., and B. M. Hynek (2012), A new global database of Mars impact craters ≥ 1 km: 2. Global crater properties and regional variations of the simple-to-complex transition diameter, J. Geophys. Res., doi:10.1029/2011JE003967, in press. Collins, G. S., T. Davidson, D. Elbeshausen, S. J. Robbins, and B. M. Hynek (2011), The relationship between impact angle and crater ellipticity, Earth Planet. Sci. Lett., 310(1-2), 1-8, doi:10.1016/j.epsl.2011.07.023. Christensen, P. R., et al. (2004), The Thermal Emission Imaging System (THEMIS) for the Mars 2001 Odyssey Mission, Space Sci. Rev., 110(1), 85-130, doi:10.1023/B:SPAC.0000021008.16305.94. Fitzgibbon, A., M. Pilu, and R. B. Fisher (1999), Direct least square fitting of ellipses, IEEE Trans. Pattern Anal. Mach. Intell., 21(5), 476-480, doi:10.1109/34.765658. Grant, J. A., and P. H. Schultz (1993), Degradation of selected terrestrial and Martian impact craters, J. Geophys. Res., 98(E6), 11,025-11,042, doi:10.1029/93JE00121. Mandelbrot, B. (1967), How long is the coast of Britain? Statistical self-similarity and fractional dimension, Science, 156, 636-638, doi:10.1126/science.156.3775.636. Hynek, B. M., and R. J. Phillips (2001), Evidence for extensive denudation of the Martian highlands, Geology, 29(5), 407-410, doi:10.1130/0091-7613(2001)029<0407:EFEDOT>2.0.CO;2. Mouginis-Mark, P. J., H. Garbeil, J. M. Boyce, S. E. C. Ui, and S. M. Baloga (2004), Geometry of Martian impact craters: First results from an interactive software package, J. Geophys. Res., 109, E08006, doi:10.1029/2003JE002147. Malin, M. C., and K. S. Edgett (2000), Evidence for recent groundwater seepage and surface runoff on Mars, Science, 288, 2330-2335, doi:10.1126/science.288.5475.2330. Schimerman, L. A. (Ed.) (1973), The Lunar Cartographic Dossier, NASA-CR Ser. 1464000, NASA and the Defense Mapp. Agency, St. Louis, Mo. Barlow, N. G. (1995), The degradation of impact craters in Maja Valles in Arabia, Mars, J. Geophys. Res., 100(E11), 23,307-23,316, doi:10.1029/95JE02492. Stewart, S. T., and G. J. Valiant (2006), Martian subsurface properties and crater formation processes inferred from fresh impact crater geometries, Meteorit. Planet. Sci., 41(10), 1509-1537, doi:10.1111/j.1945-5100.2006.tb00433.x. Barlow, N. G., J. M. Boyce, F. M. Costard, R. A. Craddock, J. B. Garvin, S. E. H. Sakimoto, R. O. Kuzmin, D. J. Roddy, and L. A. Soderblom (2000), Standardizing the nomenclature of Martian impact crater ejecta morphologies, J. Geophys. Res., 105(E11), 26,733-26,738, doi:10.1029/2000JE001258. Neumann, G. A., J. B. Abshire, O. Aharonson, J. B. Garvin, X. Sun, and M. T. Zuber (2003a), Mars Orbiter Laser Altimeter pulse width measurements and footprint-scale roughness, Geophys. Res. Lett., 30(11), 1561, doi:10.1029/2003GL017048. Edwards, C. S., K. J. Nowicki, P. R. Christensen, J. Hill, N. Gorelick, and K. Murray (2011), Mosaicking of global planetary image datasets: 1. Techniques and data processing for Thermal Emission Imaging System (THEMIS) multi-spectral data, J. Geophys. Res., 116, E10008, doi:10.1029/2010JE003755. Barlow, N. G., and T. L. Bradley (1990), Martian impact craters: Correlations of ejecta and interior morphologies with diameter, latitude, and terrain, Icarus, 87, 156-179, doi:10.1016/0019-1035(90)90026-6. Salamunićcar, G., S. Lončarić, and E. Mazarico (2012), LU60645GT and MA132843GT catalogues of lunar and Martian impact craters developed using a crater shape-based interpolation crater detection algorithm for topography data, Planet. Space Sci., 60(1), 236-247, doi:10.1016/j.pss.2011.09.003. Hartmann, W. K. (2005), Martian cratering 8: Isochron refinement and the chronology of Mars, Icarus, 174, 294-320, doi:10.1016/j.icarus.2004.11.023. Pike, R. J. (1977), Apparent depth/apparent diameter relation for lunar craters, Proc. Lunar. Sci. Conf., 8th, 3427-3436. Barlow, N. G. (2006), Impact craters in the northern hemisphere of Mars: Layered ejecta and central pit characteristics, Meteorit. Planet. Sci., 41(10), 1425-1436, doi:10.1111/j.1945-5100.2006.tb00427.x. Wood, C. A., and L. Andersson (1978), Lunar crater morphometry: New data, Proc. Lunar Planet. Sci. Conf., 9th, 1267-1269. Neukum, G., and R. Jaumann (2004), HRSC: The High Resolution Stereo Camera of Mars Express, ESA Spec. Publ., ESA-SP 1240, 17-35. Kuiper, G. P. (1960), Photographic Lunar Atlas, Univ. of Chicago Press, Chicago, Ill. Schultz, P. H., R. A. Schultz, and J. Rogers (1982), The structure and evolution of ancient impact basins on Mars, J. Geophys. Res., 87(B12), 9803-9820, doi:10.1029/JB087iB12p09803. Hartmann, W. K., D. P. Cruikshank, J. Degewij, and R. W. Capps (1981), Surface materials on unusual planetary object Chiron, Icarus, 47, 333-341, doi:10.10160019-1035(81)90181-0. Smith, D. E., et al. (2001), Mars Orbiter Laser Altimeter: Experiment summary after the first year of global mapping on Mars, J. Geophys. Res., 106(E10), 23,689-23,722, doi:10.1029/2000JE001364. Bridges, N. T., and N. G. Barlow (1989), Variation of Martian rampart crater ejecta lobateness in comparison to latitude, longitude, terrain, and crater diameter, Lunar Planet. Sci., XX, 105-106. Neumann, G. A., F. G. Lemoine, D. E. Smith, and M. T. Zuber (2003b), The Mars Orbiter Laser Altimeter archive: Final precision experiment data record release and status of radiometry, Lunar Planet. Sci., XXXIV, Abstract 1978. Stepinski, T. F., M. P. Mendenhall, and B. D. Bue (2009), Machine cataloging of impact craters on Mars, Icarus, 203, 77-87, doi:10.1016/j.icarus.2009.04.026. Melosh, H. J. (1989), Impact Cratering: A Geologic Process, Oxford Univ. Press, New York. Galilei, G. (1610), Sidereus Nuncius, pp. 1-29, Thomas Baglioni, Venice, Italy. Lissauer, J. J., S. W. Squyers, and W. K. Hartmann (1988), Bombardment history of the Saturn system, J. Geophys. Res., 93(B11), 13,776-13,804, doi:10.1029/JB093iB11p13776. Robbins, S. J., and B. M. Hynek (2011b), Secondary crater fields from 24 large primary craters on Mars: Insights into nearby secondary crater production, J. Geophys. Res., 116, E10003, doi:10.1029/2011JE003820. McGill, G. E. (1989), Buried topography of Utopia, Mars: Persistence of a giant impact depression, J. Geophys. Res., 94, 2753-2759, doi:10.1029/JB094iB03p02753. Malin, M. C., et al. (2007), Context Camera investigation on board the Mars Reconnaissance Orbiter, J. Geophys. Res., 112, E05S04, doi:10.1029/2006JE002808. Barnouin-Jha, O. S., and P. H. Schultz (1998), Lobateness of impact ejecta deposits from atmospheric interactions, J. Geophys. Res., 103(E11), 25,739-25,756, doi:10.1029/98JE02025. Frey, H. V. (2008), Ages of very large impact basins on Mars: Implications for the late heavy bombardment in the inner solar system, Geophys. Res. Lett., 35, L13203, doi:10.1029/2008GL033515. Crater Analysis Techniques Working Group (1979), Standard techniques for presentation and analysis of crater size-frequency data, Icarus, 37, 467-474, doi:10.1016/0019-1035(79)90009-5. 2011; 116 2012; 60 1989; XX 1989; 45 1979; 37 2005; 174 1978; 9th 1980; 43 1981; 47 1967; 156 2008; 35 1610 1973 2011; 59 1988; 75 1992; 97 2011; 310 2001; 106 1997; 102 2004; 31 1990; 87 2005; 384 2003; XXXIV 2000; 288 2004; ESA‐SP 1240 2009; 203 1986; XVII 1989 1988 2012 1988; 15 1999; 21 2004 2003 2001; 29 2004; 109 2011; 38 1988; 93 2003; 30 2004; 110 2007; 112 1989; 94 1977; 8th 2006; 41 2000; 105 1993; 98 1982; 87 1998; 103 2010; 294 1960 1995; 100 2003; 422 1979; 84 e_1_2_13_24_1 e_1_2_13_49_1 e_1_2_13_26_1 e_1_2_13_47_1 e_1_2_13_20_1 Pike R. J. (e_1_2_13_43_1) 1988 e_1_2_13_45_1 Neukum G. (e_1_2_13_38_1) 2004; 1240 Galilei G. (e_1_2_13_22_1) 1610 Pike R. J. (e_1_2_13_41_1) 1977; 8 e_1_2_13_8_1 Bridges N. T. (e_1_2_13_11_1) 1989 Wood C. A. (e_1_2_13_55_1) 1978; 9 e_1_2_13_17_1 e_1_2_13_19_1 e_1_2_13_13_1 e_1_2_13_36_1 e_1_2_13_15_1 e_1_2_13_57_1 Kuiper G. P. (e_1_2_13_29_1) 1960 e_1_2_13_32_1 e_1_2_13_34_1 e_1_2_13_53_1 e_1_2_13_51_1 e_1_2_13_30_1 e_1_2_13_4_1 Melosh H. J. (e_1_2_13_35_1) 1989 e_1_2_13_2_1 e_1_2_13_25_1 Kargel J. S. (e_1_2_13_28_1) 1986 e_1_2_13_48_1 e_1_2_13_27_1 e_1_2_13_46_1 e_1_2_13_21_1 e_1_2_13_44_1 e_1_2_13_23_1 Neumann G. A. (e_1_2_13_40_1) 2003 e_1_2_13_42_1 e_1_2_13_9_1 e_1_2_13_7_1 e_1_2_13_18_1 e_1_2_13_39_1 e_1_2_13_14_1 e_1_2_13_16_1 e_1_2_13_37_1 e_1_2_13_10_1 e_1_2_13_31_1 e_1_2_13_56_1 Barlow N. G. (e_1_2_13_6_1) 2005; 384 e_1_2_13_12_1 e_1_2_13_33_1 e_1_2_13_54_1 e_1_2_13_52_1 e_1_2_13_50_1 e_1_2_13_5_1 e_1_2_13_3_1 |
References_xml | – reference: Stepinski, T. F., M. P. Mendenhall, and B. D. Bue (2009), Machine cataloging of impact craters on Mars, Icarus, 203, 77-87, doi:10.1016/j.icarus.2009.04.026. – reference: Turtle, E. P., E. Pierazzo, G. S. Collins, G. R. Osinski, H. J. Melosh, J. V. Morgan, and W. U. Reimold (2005), Impact structures: What does crater diameter mean?, Spec. Pap. Geol. Soc. Am., 384, 1-24, doi:10.1130/0-8137-2384-1.1. – reference: Galilei, G. (1610), Sidereus Nuncius, pp. 1-29, Thomas Baglioni, Venice, Italy. – reference: Robbins, S. J., and B. M. Hynek (2011b), Secondary crater fields from 24 large primary craters on Mars: Insights into nearby secondary crater production, J. Geophys. Res., 116, E10003, doi:10.1029/2011JE003820. – reference: Lissauer, J. J., S. W. Squyers, and W. K. Hartmann (1988), Bombardment history of the Saturn system, J. Geophys. Res., 93(B11), 13,776-13,804, doi:10.1029/JB093iB11p13776. – reference: Frey, H. V. (2008), Ages of very large impact basins on Mars: Implications for the late heavy bombardment in the inner solar system, Geophys. Res. Lett., 35, L13203, doi:10.1029/2008GL033515. – reference: Kargel, J. S. (1986), Morphologic variations of Martian rampart crater ejecta and their dependencies and implications, Lunar Planet. Sci., XVII, 410-411. – reference: Mandelbrot, B. (1967), How long is the coast of Britain? Statistical self-similarity and fractional dimension, Science, 156, 636-638, doi:10.1126/science.156.3775.636. – reference: Hartmann, W. K., D. P. Cruikshank, J. Degewij, and R. W. Capps (1981), Surface materials on unusual planetary object Chiron, Icarus, 47, 333-341, doi:10.10160019-1035(81)90181-0. – reference: Melosh, H. J. (1989), Impact Cratering: A Geologic Process, Oxford Univ. Press, New York. – reference: Barlow, N. G. (2005), A review of Martian impact crater ejecta structures and their implications for target properties, Spec. Pap. Geol. Soc. Am., 384, 433-442. – reference: Barlow, N. G. (2006), Impact craters in the northern hemisphere of Mars: Layered ejecta and central pit characteristics, Meteorit. Planet. Sci., 41(10), 1425-1436, doi:10.1111/j.1945-5100.2006.tb00427.x. – reference: Gwinner, K., F. Scholten, F. Preusker, S. Elgner, T. Roatsch, M. Spiegel, R. Schmidt, J. Oberst, R. Jaumann, and C. Heipke (2010), Topography of Mars from global mapping by HRSC high-resolution digital terrain models and orthoimages: Characteristics and performance, Earth Planet. Sci. Lett., 294, 506-519, doi:10.1016/j.epsl.2009.11.007. – reference: Smith, D. E., et al. (2001), Mars Orbiter Laser Altimeter: Experiment summary after the first year of global mapping on Mars, J. Geophys. Res., 106(E10), 23,689-23,722, doi:10.1029/2000JE001364. – reference: Craddock, R. A., T. A. Maxwell, and A. D. Howard (1997), Crater morphometry and modification in the Sinus Sabaeus and Margaritifer Sinus regions of Mars, J. Geophys. Res., 102(E6), 13,321-13,340, doi:10.1029/97JE01084. – reference: Frey, H. V., and R. A. Schultz (1988), Large impact basins and the mega-impact origin for the crustal dichotomy on Mars, Geophys. Res. Lett., 15(3), 229-232, doi:10.1029/GL015i003p00229. – reference: Salamunićcar, G., S. Lončarić, P. Pina, L. Bandeira, and J. Saraiva (2011), MA130301GT catalogue of Martian impact craters and advanced evaluation of crater detection algorithms using diverse topography and image datasets, Planet. Space Sci., 59, 111-131, doi:10.1016/j.pss.2010.11.003. – reference: Barlow, N. G. (2004), Martian subsurface volatile concentrations as a function of time: Clues from layered ejecta craters, Geophys. Res. Lett., 31, L05703, doi:10.1029/2003GL019075. – reference: Barlow, N. G., J. M. Boyce, F. M. Costard, R. A. Craddock, J. B. Garvin, S. E. H. Sakimoto, R. O. Kuzmin, D. J. Roddy, and L. A. Soderblom (2000), Standardizing the nomenclature of Martian impact crater ejecta morphologies, J. Geophys. Res., 105(E11), 26,733-26,738, doi:10.1029/2000JE001258. – reference: Robbins, S. J., and B. M. Hynek (2012), A new global database of Mars impact craters ≥ 1 km: 2. Global crater properties and regional variations of the simple-to-complex transition diameter, J. Geophys. Res., doi:10.1029/2011JE003967, in press. – reference: Zuber, M. T., D. E. Smith, S. C. Solomon, D. O. Muhleman, J. W. Head, J. B. Garvin, J. B. Abshire, and J. L. Bufton (1992), The Mars Observer laser altimeter investigation, J. Geophys. Res., 97(E5), 7781-7797, doi:10.1029/92JE00341. – reference: Barlow, N. G. (1988), Crater size-frequency distributions and a revised Martian relative chronology, Icarus, 75, 285-305, doi:10.1016/0019-1035(88)90006-1. – reference: Neumann, G. A., J. B. Abshire, O. Aharonson, J. B. Garvin, X. Sun, and M. T. Zuber (2003a), Mars Orbiter Laser Altimeter pulse width measurements and footprint-scale roughness, Geophys. Res. Lett., 30(11), 1561, doi:10.1029/2003GL017048. – reference: Hartmann, W. K. (2005), Martian cratering 8: Isochron refinement and the chronology of Mars, Icarus, 174, 294-320, doi:10.1016/j.icarus.2004.11.023. – reference: Schimerman, L. A. (Ed.) (1973), The Lunar Cartographic Dossier, NASA-CR Ser. 1464000, NASA and the Defense Mapp. Agency, St. Louis, Mo. – reference: Barlow, N. G. (1995), The degradation of impact craters in Maja Valles in Arabia, Mars, J. Geophys. Res., 100(E11), 23,307-23,316, doi:10.1029/95JE02492. – reference: Barlow, N. G., and T. L. Bradley (1990), Martian impact craters: Correlations of ejecta and interior morphologies with diameter, latitude, and terrain, Icarus, 87, 156-179, doi:10.1016/0019-1035(90)90026-6. – reference: Pike, R. J. (1977), Apparent depth/apparent diameter relation for lunar craters, Proc. Lunar. Sci. Conf., 8th, 3427-3436. – reference: Grant, J. A., and P. H. Schultz (1993), Degradation of selected terrestrial and Martian impact craters, J. Geophys. Res., 98(E6), 11,025-11,042, doi:10.1029/93JE00121. – reference: Costard, F. M. (1989), The spatial distribution of the volatiles in the Martian hydrolithosphere, Earth Moon Planets, 45, 265-290, doi:10.1007/BF00057747. – reference: Malin, M. C., et al. (2007), Context Camera investigation on board the Mars Reconnaissance Orbiter, J. Geophys. Res., 112, E05S04, doi:10.1029/2006JE002808. – reference: Neumann, G. A., F. G. Lemoine, D. E. Smith, and M. T. Zuber (2003b), The Mars Orbiter Laser Altimeter archive: Final precision experiment data record release and status of radiometry, Lunar Planet. Sci., XXXIV, Abstract 1978. – reference: Christensen, P. R., et al. (2004), The Thermal Emission Imaging System (THEMIS) for the Mars 2001 Odyssey Mission, Space Sci. Rev., 110(1), 85-130, doi:10.1023/B:SPAC.0000021008.16305.94. – reference: Pike, R. J. (1980), Formation of complex impact craters: Evidence from Mars and other planets, Icarus, 43, 1-19, doi:10.1016/0019-1035(80)90083-4. – reference: Crater Analysis Techniques Working Group (1979), Standard techniques for presentation and analysis of crater size-frequency data, Icarus, 37, 467-474, doi:10.1016/0019-1035(79)90009-5. – reference: Malin, M. C., and K. S. Edgett (2000), Evidence for recent groundwater seepage and surface runoff on Mars, Science, 288, 2330-2335, doi:10.1126/science.288.5475.2330. – reference: Neukum, G., and R. Jaumann (2004), HRSC: The High Resolution Stereo Camera of Mars Express, ESA Spec. Publ., ESA-SP 1240, 17-35. – reference: Bridges, N. T., and N. G. Barlow (1989), Variation of Martian rampart crater ejecta lobateness in comparison to latitude, longitude, terrain, and crater diameter, Lunar Planet. Sci., XX, 105-106. – reference: Mouginis-Mark, P. J., H. Garbeil, J. M. Boyce, S. E. C. Ui, and S. M. Baloga (2004), Geometry of Martian impact craters: First results from an interactive software package, J. Geophys. Res., 109, E08006, doi:10.1029/2003JE002147. – reference: Stewart, S. T., and G. J. Valiant (2006), Martian subsurface properties and crater formation processes inferred from fresh impact crater geometries, Meteorit. Planet. Sci., 41(10), 1509-1537, doi:10.1111/j.1945-5100.2006.tb00433.x. – reference: Edwards, C. S., K. J. Nowicki, P. R. Christensen, J. Hill, N. Gorelick, and K. Murray (2011), Mosaicking of global planetary image datasets: 1. Techniques and data processing for Thermal Emission Imaging System (THEMIS) multi-spectral data, J. Geophys. Res., 116, E10008, doi:10.1029/2010JE003755. – reference: Schultz, P. H., R. A. Schultz, and J. Rogers (1982), The structure and evolution of ancient impact basins on Mars, J. Geophys. Res., 87(B12), 9803-9820, doi:10.1029/JB087iB12p09803. – reference: Kuiper, G. P. (1960), Photographic Lunar Atlas, Univ. of Chicago Press, Chicago, Ill. – reference: Wood, C. A., and L. Andersson (1978), Lunar crater morphometry: New data, Proc. Lunar Planet. Sci. Conf., 9th, 1267-1269. – reference: Christensen, P. R. (2003), Formation of recent Martian gullies through melting of extensive water-rich snow deposits, Nature, 422, 45-48, doi:10.1038/nature01436. – reference: Fitzgibbon, A., M. Pilu, and R. B. Fisher (1999), Direct least square fitting of ellipses, IEEE Trans. Pattern Anal. Mach. Intell., 21(5), 476-480, doi:10.1109/34.765658. – reference: Salamunićcar, G., S. Lončarić, and E. Mazarico (2012), LU60645GT and MA132843GT catalogues of lunar and Martian impact craters developed using a crater shape-based interpolation crater detection algorithm for topography data, Planet. Space Sci., 60(1), 236-247, doi:10.1016/j.pss.2011.09.003. – reference: Collins, G. S., T. Davidson, D. Elbeshausen, S. J. Robbins, and B. M. Hynek (2011), The relationship between impact angle and crater ellipticity, Earth Planet. Sci. Lett., 310(1-2), 1-8, doi:10.1016/j.epsl.2011.07.023. – reference: Mouginis-Mark, P. J. (1979), Martian fluidized crater morphology: Variations with crater size, latitude, altitude, and target material, J. Geophys. Res., 84(B14), 8011-8022, doi:10.1029/JB084iB14p08011. – reference: Robbins, S. J., and B. M. Hynek (2011a), Distant secondary craters from Lyot crater, Mars, and implications for the surface ages of planetary bodies, Geophys. Res. Lett., 38, L05201, doi:10.1029/2010GL046450. – reference: Barnouin-Jha, O. S., and P. H. Schultz (1998), Lobateness of impact ejecta deposits from atmospheric interactions, J. Geophys. Res., 103(E11), 25,739-25,756, doi:10.1029/98JE02025. – reference: Hynek, B. M., and R. J. Phillips (2001), Evidence for extensive denudation of the Martian highlands, Geology, 29(5), 407-410, doi:10.1130/0091-7613(2001)029<0407:EFEDOT>2.0.CO;2. – reference: McGill, G. E. (1989), Buried topography of Utopia, Mars: Persistence of a giant impact depression, J. Geophys. Res., 94, 2753-2759, doi:10.1029/JB094iB03p02753. – volume: 87 start-page: 156 year: 1990 end-page: 179 article-title: Martian impact craters: Correlations of ejecta and interior morphologies with diameter, latitude, and terrain publication-title: Icarus – volume: 203 start-page: 77 year: 2009 end-page: 87 article-title: Machine cataloging of impact craters on Mars publication-title: Icarus – year: 1989 – volume: 109 year: 2004 article-title: Geometry of Martian impact craters: First results from an interactive software package publication-title: J. Geophys. Res. – volume: 41 start-page: 1425 issue: 10 year: 2006 end-page: 1436 article-title: Impact craters in the northern hemisphere of Mars: Layered ejecta and central pit characteristics publication-title: Meteorit. Planet. Sci. – volume: 21 start-page: 476 issue: 5 year: 1999 end-page: 480 article-title: Direct least square fitting of ellipses publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 75 start-page: 285 year: 1988 end-page: 305 article-title: Crater size‐frequency distributions and a revised Martian relative chronology publication-title: Icarus – volume: 384 start-page: 433 year: 2005 end-page: 442 article-title: A review of Martian impact crater ejecta structures and their implications for target properties publication-title: Spec. Pap. Geol. Soc. Am. – volume: XX start-page: 105 year: 1989 end-page: 106 article-title: Variation of Martian rampart crater ejecta lobateness in comparison to latitude, longitude, terrain, and crater diameter publication-title: Lunar Planet. Sci. – year: 2012 article-title: A new global database of Mars impact craters ≥ 1 km: 2. Global crater properties and regional variations of the simple‐to‐complex transition diameter publication-title: J. Geophys. Res. – volume: 106 start-page: 23,689 issue: E10 year: 2001 end-page: 23,722 article-title: Mars Orbiter Laser Altimeter: Experiment summary after the first year of global mapping on Mars publication-title: J. Geophys. Res. – volume: XXXIV year: 2003 article-title: The Mars Orbiter Laser Altimeter archive: Final precision experiment data record release and status of radiometry publication-title: Lunar Planet. Sci. – volume: 116 year: 2011 article-title: Mosaicking of global planetary image datasets: 1. Techniques and data processing for Thermal Emission Imaging System (THEMIS) multi‐spectral data publication-title: J. Geophys. Res. – volume: 9th start-page: 1267 year: 1978 end-page: 1269 article-title: Lunar crater morphometry: New data publication-title: Proc. Lunar Planet. Sci. Conf. – volume: 156 start-page: 636 year: 1967 end-page: 638 article-title: How long is the coast of Britain? Statistical self‐similarity and fractional dimension publication-title: Science – volume: 30 issue: 11 year: 2003 article-title: Mars Orbiter Laser Altimeter pulse width measurements and footprint‐scale roughness publication-title: Geophys. Res. Lett. – volume: 84 start-page: 8011 issue: B14 year: 1979 end-page: 8022 article-title: Martian fluidized crater morphology: Variations with crater size, latitude, altitude, and target material publication-title: J. Geophys. Res. – volume: 8th start-page: 3427 year: 1977 end-page: 3436 article-title: Apparent depth/apparent diameter relation for lunar craters publication-title: Proc. Lunar. Sci. Conf. – volume: 93 start-page: 13,776 issue: B11 year: 1988 end-page: 13,804 article-title: Bombardment history of the Saturn system publication-title: J. Geophys. Res. – volume: 102 start-page: 13,321 issue: E6 year: 1997 end-page: 13,340 article-title: Crater morphometry and modification in the Sinus Sabaeus and Margaritifer Sinus regions of Mars publication-title: J. Geophys. Res. – year: 2004 – volume: 60 start-page: 236 issue: 1 year: 2012 end-page: 247 article-title: LU60645GT and MA132843GT catalogues of lunar and Martian impact craters developed using a crater shape‐based interpolation crater detection algorithm for topography data publication-title: Planet. Space Sci. – volume: 41 start-page: 1509 issue: 10 year: 2006 end-page: 1537 article-title: Martian subsurface properties and crater formation processes inferred from fresh impact crater geometries publication-title: Meteorit. Planet. Sci. – volume: 100 start-page: 23,307 issue: E11 year: 1995 end-page: 23,316 article-title: The degradation of impact craters in Maja Valles in Arabia, Mars publication-title: J. Geophys. Res. – volume: 105 start-page: 26,733 issue: E11 year: 2000 end-page: 26,738 article-title: Standardizing the nomenclature of Martian impact crater ejecta morphologies publication-title: J. Geophys. Res. – start-page: 1 year: 1610 end-page: 29 – volume: 110 start-page: 85 issue: 1 year: 2004 end-page: 130 article-title: The Thermal Emission Imaging System (THEMIS) for the Mars 2001 Odyssey Mission publication-title: Space Sci. Rev. – volume: 31 year: 2004 article-title: Martian subsurface volatile concentrations as a function of time: Clues from layered ejecta craters publication-title: Geophys. Res. Lett. – volume: 43 start-page: 1 year: 1980 end-page: 19 article-title: Formation of complex impact craters: Evidence from Mars and other planets publication-title: Icarus – volume: ESA‐SP 1240 start-page: 17 year: 2004 end-page: 35 article-title: HRSC: The High Resolution Stereo Camera of Mars Express publication-title: ESA Spec. Publ. – volume: 97 start-page: 7781 issue: E5 year: 1992 end-page: 7797 article-title: The Mars Observer laser altimeter investigation publication-title: J. Geophys. Res. – volume: 37 start-page: 467 year: 1979 end-page: 474 article-title: Standard techniques for presentation and analysis of crater size‐frequency data publication-title: Icarus – year: 1960 – volume: 94 start-page: 2753 year: 1989 end-page: 2759 article-title: Buried topography of Utopia, Mars: Persistence of a giant impact depression publication-title: J. Geophys. Res. – volume: 98 start-page: 11,025 issue: E6 year: 1993 end-page: 11,042 article-title: Degradation of selected terrestrial and Martian impact craters publication-title: J. Geophys. Res. – volume: 294 start-page: 506 year: 2010 end-page: 519 article-title: Topography of Mars from global mapping by HRSC high‐resolution digital terrain models and orthoimages: Characteristics and performance publication-title: Earth Planet. Sci. Lett. – year: 2003 – year: 1973 – volume: 174 start-page: 294 year: 2005 end-page: 320 article-title: Martian cratering 8: Isochron refinement and the chronology of Mars publication-title: Icarus – volume: 47 start-page: 333 year: 1981 end-page: 341 article-title: Surface materials on unusual planetary object Chiron publication-title: Icarus – volume: 35 year: 2008 article-title: Ages of very large impact basins on Mars: Implications for the late heavy bombardment in the inner solar system publication-title: Geophys. Res. Lett. – volume: 116 year: 2011 article-title: Secondary crater fields from 24 large primary craters on Mars: Insights into nearby secondary crater production publication-title: J. Geophys. Res. – volume: 15 start-page: 229 issue: 3 year: 1988 end-page: 232 article-title: Large impact basins and the mega‐impact origin for the crustal dichotomy on Mars publication-title: Geophys. Res. Lett. – volume: 288 start-page: 2330 year: 2000 end-page: 2335 article-title: Evidence for recent groundwater seepage and surface runoff on Mars publication-title: Science – volume: XVII start-page: 410 year: 1986 end-page: 411 article-title: Morphologic variations of Martian rampart crater ejecta and their dependencies and implications publication-title: Lunar Planet. Sci. – volume: 422 start-page: 45 year: 2003 end-page: 48 article-title: Formation of recent Martian gullies through melting of extensive water‐rich snow deposits publication-title: Nature – volume: 29 start-page: 407 issue: 5 year: 2001 end-page: 410 article-title: Evidence for extensive denudation of the Martian highlands publication-title: Geology – volume: 45 start-page: 265 year: 1989 end-page: 290 article-title: The spatial distribution of the volatiles in the Martian hydrolithosphere publication-title: Earth Moon Planets – volume: 87 start-page: 9803 issue: B12 year: 1982 end-page: 9820 article-title: The structure and evolution of ancient impact basins on Mars publication-title: J. Geophys. Res. – volume: 310 start-page: 1 issue: 1–2 year: 2011 end-page: 8 article-title: The relationship between impact angle and crater ellipticity publication-title: Earth Planet. Sci. Lett. – volume: 38 year: 2011 article-title: Distant secondary craters from Lyot crater, Mars, and implications for the surface ages of planetary bodies publication-title: Geophys. Res. Lett. – volume: 59 start-page: 111 year: 2011 end-page: 131 article-title: MA130301GT catalogue of Martian impact craters and advanced evaluation of crater detection algorithms using diverse topography and image datasets publication-title: Planet. Space Sci. – volume: 103 start-page: 25,739 issue: E11 year: 1998 end-page: 25,756 article-title: Lobateness of impact ejecta deposits from atmospheric interactions publication-title: J. Geophys. Res. – volume: 384 start-page: 1 year: 2005 end-page: 24 article-title: Impact structures: What does crater diameter mean? publication-title: Spec. Pap. Geol. Soc. Am. – start-page: 165 year: 1988 end-page: 273 – volume: 112 year: 2007 article-title: Context Camera investigation on board the Mars Reconnaissance Orbiter publication-title: J. Geophys. Res. – ident: e_1_2_13_32_1 doi: 10.1029/2006JE002808 – ident: e_1_2_13_5_1 doi: 10.1029/2003GL019075 – volume: 8 start-page: 3427 year: 1977 ident: e_1_2_13_41_1 article-title: Apparent depth/apparent diameter relation for lunar craters publication-title: Proc. Lunar. Sci. Conf. – ident: e_1_2_13_24_1 doi: 10.1016/j.epsl.2009.11.007 – ident: e_1_2_13_31_1 doi: 10.1126/science.288.5475.2330 – ident: e_1_2_13_47_1 doi: 10.1016/j.pss.2010.11.003 – ident: e_1_2_13_21_1 doi: 10.1029/GL015i003p00229 – ident: e_1_2_13_18_1 doi: 10.1029/2010JE003755 – ident: e_1_2_13_13_1 doi: 10.1023/B:SPAC.0000021008.16305.94 – ident: e_1_2_13_44_1 doi: 10.1029/2010GL046450 – ident: e_1_2_13_4_1 – start-page: 410 year: 1986 ident: e_1_2_13_28_1 article-title: Morphologic variations of Martian rampart crater ejecta and their dependencies and implications publication-title: Lunar Planet. Sci. – ident: e_1_2_13_9_1 doi: 10.1029/2000JE001258 – ident: e_1_2_13_15_1 doi: 10.1007/BF00057747 – ident: e_1_2_13_16_1 doi: 10.1029/97JE01084 – ident: e_1_2_13_3_1 doi: 10.1029/95JE02492 – volume-title: Impact Cratering: A Geologic Process year: 1989 ident: e_1_2_13_35_1 – ident: e_1_2_13_45_1 doi: 10.1029/2011JE003820 – ident: e_1_2_13_19_1 doi: 10.1109/34.765658 – start-page: 1 volume-title: Sidereus Nuncius year: 1610 ident: e_1_2_13_22_1 doi: 10.5479/sil.95438.39088015628597 – ident: e_1_2_13_12_1 doi: 10.1038/nature01436 – ident: e_1_2_13_27_1 doi: 10.1130/0091‐7613(2001)029<0407:EFEDOT>2.0.CO;2 – volume: 1240 start-page: 17 year: 2004 ident: e_1_2_13_38_1 article-title: HRSC: The High Resolution Stereo Camera of Mars Express publication-title: ESA Spec. Publ. – ident: e_1_2_13_51_1 doi: 10.1029/2000JE001364 – ident: e_1_2_13_52_1 doi: 10.1016/j.icarus.2009.04.026 – ident: e_1_2_13_56_1 doi: 10.1029/92JE00341 – ident: e_1_2_13_26_1 doi: 10.10160019‐1035(81)90181‐0 – ident: e_1_2_13_46_1 doi: 10.1029/2011JE003967 – ident: e_1_2_13_23_1 doi: 10.1029/93JE00121 – ident: e_1_2_13_33_1 doi: 10.1126/science.156.3775.636 – ident: e_1_2_13_39_1 doi: 10.1029/2003GL017048 – ident: e_1_2_13_25_1 doi: 10.1016/j.icarus.2004.11.023 – ident: e_1_2_13_53_1 doi: 10.1111/j.1945‐5100.2006.tb00433.x – ident: e_1_2_13_36_1 doi: 10.1029/JB084iB14p08011 – ident: e_1_2_13_20_1 doi: 10.1029/2008GL033515 – start-page: 105 year: 1989 ident: e_1_2_13_11_1 article-title: Variation of Martian rampart crater ejecta lobateness in comparison to latitude, longitude, terrain, and crater diameter publication-title: Lunar Planet. Sci. – ident: e_1_2_13_50_1 doi: 10.1029/JB087iB12p09803 – year: 2003 ident: e_1_2_13_40_1 article-title: The Mars Orbiter Laser Altimeter archive: Final precision experiment data record release and status of radiometry publication-title: Lunar Planet. Sci. – ident: e_1_2_13_37_1 doi: 10.1029/2003JE002147 – ident: e_1_2_13_57_1 – ident: e_1_2_13_42_1 doi: 10.1016/0019‐1035(80)90083‐4 – ident: e_1_2_13_48_1 doi: 10.1016/j.pss.2011.09.003 – volume-title: Photographic Lunar Atlas year: 1960 ident: e_1_2_13_29_1 – ident: e_1_2_13_49_1 – volume: 9 start-page: 1267 year: 1978 ident: e_1_2_13_55_1 article-title: Lunar crater morphometry: New data publication-title: Proc. Lunar Planet. Sci. Conf. – ident: e_1_2_13_10_1 doi: 10.1029/98JE02025 – volume: 384 start-page: 433 year: 2005 ident: e_1_2_13_6_1 article-title: A review of Martian impact crater ejecta structures and their implications for target properties publication-title: Spec. Pap. Geol. Soc. Am. – ident: e_1_2_13_2_1 doi: 10.1016/0019‐1035(88)90006‐1 – ident: e_1_2_13_17_1 doi: 10.1016/0019‐1035(79)90009‐5 – ident: e_1_2_13_8_1 doi: 10.1016/0019‐1035(90)90026‐6 – ident: e_1_2_13_54_1 doi: 10.1130/0‐8137‐2384‐1.1 – ident: e_1_2_13_14_1 doi: 10.1016/j.epsl.2011.07.023 – ident: e_1_2_13_30_1 doi: 10.1029/JB093iB11p13776 – ident: e_1_2_13_7_1 doi: 10.1111/j.1945‐5100.2006.tb00427.x – ident: e_1_2_13_34_1 doi: 10.1029/JB094iB03p02753 – start-page: 165 volume-title: Mercury year: 1988 ident: e_1_2_13_43_1 |
SSID | ssj0000456401 ssj0014561 ssj0030581 ssj0030583 ssj0043761 ssj0030582 ssj0030585 ssj0030584 ssj0030586 ssj0000816913 |
Score | 2.5070183 |
Snippet | Impact craters have been used as a standard metric for a plethora of planetary applications for many decades, including age‐dating, geologic mapping and... Impact craters have been used as a standard metric for a plethora of planetary applications for many decades, including age-dating, geologic mapping and... |
SourceID | proquest pascalfrancis crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
SubjectTerms | Comets Earth sciences Earth, ocean, space Exact sciences and technology Geologic mapping Mars Mars crater database Mars craters Planetology Planets Upper mantle |
Title | A new global database of Mars impact craters ≥1 km: 1. Database creation, properties, and parameters |
URI | https://api.istex.fr/ark:/67375/WNG-BMJP9V22-7/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2011JE003966 https://www.proquest.com/docview/1016575781 |
Volume | 117 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwELYKe-mloi-xha58AC4lJbEdO-6lWtrdRSvtCqHScrPi14Xuoxsqtf--HsdZ4FBujjSOLI8z82U88w1CR5T6WldEZtYUPmMy11ktmM4s5dQG_yi1gwLn2ZxfXLPpTXmTAm5NSqvsbGI01HZlIEZ-FutugHy9-Lz-lUHXKLhdTS00dlAvmOAq_Hz1zkfzy6ttlAXaSsjYI5mEQSZzKVL2e07kGTi_6QjKUyNJ4r1f6sEW_4E8yboJW-XbHhePQOhDKBt90XgPvUggEg9brb9Ez9zyFdofNhDWXi3-4hMcx23UonmNzBAH9Ixb8g8MSaHgvPDK41n4r8VtpSQ2wBoRHgt8u_iEi4_4ayfYIctTvIbY_QZIWE9xvbQYmMMXkFHTvEHX49G3LxdZ6q6QGcYgOOl5oXVeCyD88cxKSilnvuTClTKYHh08O9OltoXguRBOBGziTbCPQtjS14a-RbvL1dLtI2wqCciReuksK4EuRhJuSem407zKTR996PZWmUQ9Dh0wfqp4BU6keqiJPjreSq9byo3_yJ1ENW2F6s0tpKmJUv2YT9T5bHopvxOiRB8NHulxO4FwGvCdKProsFOsSp9wo-4PXFh-VPaTq1HTydUoWEvx7umXHaDnYRppcyYP0e7d5rd7H3DNnR6gnWo8GaQj_A_Aq_B4 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LUxQxEE4hHPRi4atYQcxBuMjITJJJNlZZ1ir7YGG3LAuEW5y8LrgPd7CUP-VvNJ2ZWeAgN26Zqp5UKt3p7nS6v0boDaW-0G0iE2synzCZ6qQQTCeWcmqDfZTaQYHzaMwHp2x4np-voL9NLQykVTY6MSpqOzMQI9-PdTcAvp59nP9MoGsUvK42LTQqsThyV7_Dla38cHgQ-LtDSK978nmQ1F0FEsMYBOU8z7ROCwFAN57ZcKOnnPmcC5fLcOR0sGhM59pmgqdCOBFssjdBLwhhc18YGuZ9gNYYpRJOVLvXX8Z0oImFjB2ZSRgkMpWizrVPidwHUzvsQjFshGS8toJrwNA_kJVZlIExvuqoccvlvek4R8vXW0ePa5cVdyoZe4JW3PQp2uiUEESfTa7wLo7jKkZSPkOmg4OvjiuoEQwpqGAq8czjUbhF46ouExvAqAifGb6YvMfZO3zQEDZ-7B6ew0vBAiBf93AxtRhwyieQv1M-R6f3susv0Op0NnUbCJu2BD-VeuksywGcRhJuSe6407ydmhZ62-ytMjXQOfTb-KHigzuR6iYnWmhnST2vAD7-Q7cb2bQkKhYXkBQncnU27qtPo-EX-Y0QJVpo-xYflz8QToM3KbIW2moYq2qFUapr8Q7Lj8y-czVq2P_aDbpZvLx7stfo4eBkdKyOD8dHm-hRmIJU2ZpbaPVy8cu9Ch7Vpd6OYozR9_s-N_8AkyUovw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxsxELZoIlW9VKUPkZZSHwqXss2ud9eOK6EqNAkQmihCpeXmrl8XmkezVIW_xq_rzD4CHMqNm1fyjizPeGY8nvmGkPdx7DPdYTKwJvJBIkMdZCLRgY15bME-Su2wwHk05oenyfAsPVsj13UtDKZV1jqxUNR2bjBG3i7qbhB8PWr7Ki1i0ht8XvwOsIMUvrTW7TRKETl2V3_h-pbvHfWA19uMDfrfvhwGVYeBwCQJBug8j7QOM4GgNz6xcLuPeeJTLlwq4fhpsG6JTrWNBA-FcALsszegI4Swqc9MDHQfkaYAWmGDNPf748nJKsKDLS1k0Z-ZwSCQoRRV5n3IZBsN77CPpbEFQOONTWwiey8xRzPLgU2-7K9xxwG-7UYXdnDwjDytHFjaLSVunay52XOy0c0xpD6fXtEdWozLiEn-gpguBc-dlsAjFBNS0XDSuacjuFPTskqTGkSsgM-Ink8_0egj7dUTa692ly7w3WCJALC7NJtZiqjlU8zmyV-S0wfZ91ekMZvP3AahpiPRa429dDZJEapGMm5Z6rjTvBOaFvlQ760yFew5dt_4pYrndybVbU60yPZq9qKE-_jPvJ2CTatJ2fIcU-REqn6MD9T-aDiR3xlTokW27vBx9QPjMfiWImqRzZqxqlIfuboRdlh-wex7V6OGByd90NTi9f3E3pHHcGbU16Px8RvyBCiwMnVzkzQuln_cW3CvLvRWJceU_Hzoo_MP6SQuUQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+global+database+of+Mars+impact+craters+%E2%89%A51+km%3A+1.+Database+creation%2C+properties%2C+and+parameters&rft.jtitle=Journal+of+geophysical+research&rft.au=ROBBINS%2C+Stuart+J&rft.au=HYNEK%2C+Brian+M&rft.date=2012-05-01&rft.pub=American+Geophysical+Union&rft.issn=0148-0227&rft.volume=117&rft.issue=E5&rft_id=info:doi/10.1029%2F2011je003966&rft.externalDBID=n%2Fa&rft.externalDocID=26312571 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0148-0227&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0148-0227&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0148-0227&client=summon |