A Systematic Study on the Effects of Solvating Solvents and Additives in Localized High‐Concentration Electrolytes over Electrochemical Performance of Lithium‐Ion Batteries

Localized high‐concentration electrolytes (LHCEs) based on five different types of solvents were systematically studied and compared in lithium (Li)‐ion batteries (LIBs). The unique solvation structure of LHCEs promotes the participation of Li salt in forming solid electrolyte interphase (SEI) on gr...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 62; no. 17; pp. e202218005 - n/a
Main Authors Jia, Hao, Kim, Ju‐Myung, Gao, Peiyuan, Xu, Yaobin, Engelhard, Mark H., Matthews, Bethany E., Wang, Chongmin, Xu, Wu
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 17.04.2023
Wiley
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Localized high‐concentration electrolytes (LHCEs) based on five different types of solvents were systematically studied and compared in lithium (Li)‐ion batteries (LIBs). The unique solvation structure of LHCEs promotes the participation of Li salt in forming solid electrolyte interphase (SEI) on graphite (Gr) anode, which enables solvents previously considered incompatible with Gr to achieve reversible lithiation/delithiation. However, the long cyclability of LIBs is still subject to the intrinsic properties of the solvent species in LHCEs. Such issue can be readily resolved by introducing a small amount of additive into LHCEs. The synergetic decompositions of Li salt, solvating solvent and additive yield effective SEIs and cathode electrolyte interphases (CEIs) in most of the studied LHCEs. This study reveals that both the structure and the composition of solvation sheaths in LHCEs have significant effect on SEI and CEI, and consequently, the cycle life of energetically dense LIBs. The effects of microscopic solvation structure, solvating solvent and additive of localized high‐concentration electrolytes (LHCEs) over the electrolyte properties, the electrode/electrolyte interphases and the cycling stability of lithium‐ion batteries (LIBs) were systematically studied. The synergetic decomposition of anion, proper solvent and additive in LHCEs is the key to forming effective interphases and achieving long cycle life of LIBs.
AbstractList Localized high‐concentration electrolytes (LHCEs) based on five different types of solvents were systematically studied and compared in lithium (Li)‐ion batteries (LIBs). The unique solvation structure of LHCEs promotes the participation of Li salt in forming solid electrolyte interphase (SEI) on graphite (Gr) anode, which enables solvents previously considered incompatible with Gr to achieve reversible lithiation/delithiation. However, the long cyclability of LIBs is still subject to the intrinsic properties of the solvent species in LHCEs. Such issue can be readily resolved by introducing a small amount of additive into LHCEs. The synergetic decompositions of Li salt, solvating solvent and additive yield effective SEIs and cathode electrolyte interphases (CEIs) in most of the studied LHCEs. This study reveals that both the structure and the composition of solvation sheaths in LHCEs have significant effect on SEI and CEI, and consequently, the cycle life of energetically dense LIBs.
In this work, localized high-concentration electrolytes (LHCEs) based on five different solvents: 1,2-dimethoxyethane, dimethyl carbonate, trimethyl phosphate, tetramethylene sulfone and acetonitrile, were systematically studied and compared in lithium-ion batteries (LIBs). It is revealed that in all these LHCEs, the unique solvation structure of LHCEs promotes the participation of lithium salt in the solid electrolyte interphase (SEI) formation, which enables solvents that were previously considered incompatible with graphite (Gr) electrode to achieve reversible lithiation/delithiation with Gr electrode. However, the long-term cycling performance of LIBs is still subject to the intrinsic properties of the solvent species in LHCEs. Such issue can be readily resolved by introducing a small amount of electrolyte additive into LHCEs. The synergetic decompositions among lithium salt, solvating solvent and additive yield highly effective SEIs and cathode electrolyte interphases (CEIs) in most of the studied LHCEs. This study reveals that both the structure and the composition of solvation sheaths in LHCEs have significant influence over SEI and CEI formation and consequently cycle life of LIBs, and LHCEs can be readily tuned to achieve superior cycling performance of energetically dense LIBs.
Localized high-concentration electrolytes (LHCEs) based on five different types of solvents were systematically studied and compared in lithium (Li)-ion batteries (LIBs). The unique solvation structure of LHCEs promotes the participation of Li salt in forming solid electrolyte interphase (SEI) on graphite (Gr) anode, which enables solvents previously considered incompatible with Gr to achieve reversible lithiation/delithiation. However, the long cyclability of LIBs is still subject to the intrinsic properties of the solvent species in LHCEs. Such issue can be readily resolved by introducing a small amount of additive into LHCEs. The synergetic decompositions of Li salt, solvating solvent and additive yield effective SEIs and cathode electrolyte interphases (CEIs) in most of the studied LHCEs. This study reveals that both the structure and the composition of solvation sheaths in LHCEs have significant effect on SEI and CEI, and consequently, the cycle life of energetically dense LIBs.Localized high-concentration electrolytes (LHCEs) based on five different types of solvents were systematically studied and compared in lithium (Li)-ion batteries (LIBs). The unique solvation structure of LHCEs promotes the participation of Li salt in forming solid electrolyte interphase (SEI) on graphite (Gr) anode, which enables solvents previously considered incompatible with Gr to achieve reversible lithiation/delithiation. However, the long cyclability of LIBs is still subject to the intrinsic properties of the solvent species in LHCEs. Such issue can be readily resolved by introducing a small amount of additive into LHCEs. The synergetic decompositions of Li salt, solvating solvent and additive yield effective SEIs and cathode electrolyte interphases (CEIs) in most of the studied LHCEs. This study reveals that both the structure and the composition of solvation sheaths in LHCEs have significant effect on SEI and CEI, and consequently, the cycle life of energetically dense LIBs.
Localized high‐concentration electrolytes (LHCEs) based on five different types of solvents were systematically studied and compared in lithium (Li)‐ion batteries (LIBs). The unique solvation structure of LHCEs promotes the participation of Li salt in forming solid electrolyte interphase (SEI) on graphite (Gr) anode, which enables solvents previously considered incompatible with Gr to achieve reversible lithiation/delithiation. However, the long cyclability of LIBs is still subject to the intrinsic properties of the solvent species in LHCEs. Such issue can be readily resolved by introducing a small amount of additive into LHCEs. The synergetic decompositions of Li salt, solvating solvent and additive yield effective SEIs and cathode electrolyte interphases (CEIs) in most of the studied LHCEs. This study reveals that both the structure and the composition of solvation sheaths in LHCEs have significant effect on SEI and CEI, and consequently, the cycle life of energetically dense LIBs. The effects of microscopic solvation structure, solvating solvent and additive of localized high‐concentration electrolytes (LHCEs) over the electrolyte properties, the electrode/electrolyte interphases and the cycling stability of lithium‐ion batteries (LIBs) were systematically studied. The synergetic decomposition of anion, proper solvent and additive in LHCEs is the key to forming effective interphases and achieving long cycle life of LIBs.
Author Xu, Wu
Kim, Ju‐Myung
Matthews, Bethany E.
Jia, Hao
Xu, Yaobin
Engelhard, Mark H.
Wang, Chongmin
Gao, Peiyuan
Author_xml – sequence: 1
  givenname: Hao
  orcidid: 0000-0003-2814-5589
  surname: Jia
  fullname: Jia, Hao
  organization: Pacific Northwest National Laboratory
– sequence: 2
  givenname: Ju‐Myung
  orcidid: 0000-0003-0851-1959
  surname: Kim
  fullname: Kim, Ju‐Myung
  organization: Pacific Northwest National Laboratory
– sequence: 3
  givenname: Peiyuan
  orcidid: 0000-0002-2906-6551
  surname: Gao
  fullname: Gao, Peiyuan
  organization: Pacific Northwest National Laboratory
– sequence: 4
  givenname: Yaobin
  orcidid: 0000-0002-9945-3514
  surname: Xu
  fullname: Xu, Yaobin
  organization: Pacific Northwest National Laboratory
– sequence: 5
  givenname: Mark H.
  orcidid: 0000-0002-5543-0812
  surname: Engelhard
  fullname: Engelhard, Mark H.
  organization: Pacific Northwest National Laboratory
– sequence: 6
  givenname: Bethany E.
  surname: Matthews
  fullname: Matthews, Bethany E.
  organization: Pacific Northwest National Laboratory
– sequence: 7
  givenname: Chongmin
  orcidid: 0000-0003-3327-0958
  surname: Wang
  fullname: Wang, Chongmin
  organization: Pacific Northwest National Laboratory
– sequence: 8
  givenname: Wu
  orcidid: 0000-0002-2685-8684
  surname: Xu
  fullname: Xu, Wu
  email: wu.xu@pnnl.gov
  organization: Pacific Northwest National Laboratory
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36859655$$D View this record in MEDLINE/PubMed
https://www.osti.gov/biblio/1962711$$D View this record in Osti.gov
BookMark eNqFkstuEzEUhkeoiF5gyxJZsGGT4OtcliFKaaQIkALrkcdzpnE1YxfbExRWfQQehWfiSThp2iJVQqxsHX3ff2ydc5odOe8gy14yOmWU8nfaWZhyyjkrKVVPshOmOJuIohBHeJdCTIpSsePsNMYr5MuS5s-yY5GXqsqVOsl-zch6FxMMOllD1mlsd8Q7kjZAFl0HJkXiO7L2_RYBd3l7A4dV7Voya1ub7BYisY6svNG9_QEtubCXm983P-feGUQDipi46DEs-H6XEPdbCPcVs4HBoko-Q-h8GDRa-54rmzZ2HDBoifp7nRIEC_F59rTTfYQXd-dZ9vV88WV-MVl9-rCcz1YTIyVVE10yUbJOGNpyaKWiTAHTjAstOdMN5VWjRFdUZcNbxQvZVYWSuWiM0rKhbSHOsteHXB-TraOxCczGeOfw0TWrcl4whtDbA3Qd_LcRYqoHGw30vXbgx1jzomQ5F0JIRN88Qq_8GBx-AalKVTSX1T7w1R01NgO09XWwgw67-n5gCEwPgAk-xgDdA8Jovd-Ier8R9cNGoCAfCfiV25HgZGz_b606aN9tD7v_NKlnH5eLv-4feHfN9A
CitedBy_id crossref_primary_10_1016_j_nanoen_2023_109088
crossref_primary_10_1002_adfm_202414550
crossref_primary_10_1002_aenm_202401961
crossref_primary_10_1002_batt_202400487
crossref_primary_10_1002_batt_202400641
crossref_primary_10_1039_D4EE06096B
crossref_primary_10_1039_D4EE00119B
crossref_primary_10_34133_energymatadv_0113
crossref_primary_10_1021_acsmaterialslett_3c01478
crossref_primary_10_1016_j_jpowsour_2024_235006
crossref_primary_10_1039_D4CC04026K
crossref_primary_10_1021_jacs_4c09027
crossref_primary_10_1039_D4EE03280B
crossref_primary_10_1002_aenm_202404009
crossref_primary_10_1002_cey2_697
crossref_primary_10_1039_D4CS00826J
crossref_primary_10_1002_adfm_202308619
crossref_primary_10_1002_adfm_202406770
crossref_primary_10_1016_j_nanoen_2024_109389
crossref_primary_10_1039_D4YA00245H
crossref_primary_10_1002_smll_202403429
crossref_primary_10_1063_5_0187154
crossref_primary_10_1016_j_ensm_2024_103326
crossref_primary_10_1002_anie_202412239
crossref_primary_10_1007_s12274_023_6133_9
crossref_primary_10_1021_acs_energyfuels_4c01525
crossref_primary_10_1016_j_joule_2025_101821
crossref_primary_10_1039_D4TA02103G
crossref_primary_10_1002_adfm_202416714
crossref_primary_10_1002_adfm_202417923
crossref_primary_10_1039_D4TA05906A
crossref_primary_10_1021_acs_jpcc_4c04668
crossref_primary_10_1002_ange_202412239
crossref_primary_10_1016_j_ensm_2024_103537
crossref_primary_10_1002_aenm_202301670
crossref_primary_10_1039_D3TA07347E
crossref_primary_10_1093_nsr_nwae359
Cites_doi 10.1016/j.mattod.2018.02.005
10.1038/s41560-018-0295-9
10.1021/acs.jpcc.6b10896
10.1002/celc.202100330
10.1016/j.trechm.2022.04.010
10.1021/acs.accounts.7b00486
10.1038/s41560-020-00759-5
10.1021/acs.jpcc.7b11060
10.1038/s41586-022-05115-z
10.1016/j.jpowsour.2019.227363
10.1149/1.1415030
10.1149/2.0191701jes
10.1016/j.jelechem.2022.116847
10.1002/aenm.201902654
10.1021/acs.chemrev.9b00531
10.1002/ange.202107252
10.1002/aenm.202001310
10.1002/adma.201706102
10.1021/ja412807w
10.1149/1945-7111/abd60e
10.1021/acs.macromol.7b00423
10.1002/aenm.202102647
10.1016/j.chempr.2018.05.002
10.1002/anie.202102403
10.1016/j.mattod.2020.12.017
10.1002/adma.201804822
10.1524/zpch.2009.6086
10.1002/aenm.202000368
10.1002/anie.202107252
10.1002/adfm.202001285
10.1021/acs.jpcb.8b08610
10.1021/cr500003w
10.1002/aenm.201903864
10.1016/j.jpowsour.2022.231171
10.1002/aenm.202003092
10.1021/acsami.0c18177
10.1021/acsami.1c12072
10.1016/j.joule.2019.05.006
10.1002/tcr.201900054
10.1039/C8TA10513H
10.1002/ange.202102403
10.1038/s41467-020-15355-0
10.1073/pnas.2010852117
10.1016/j.ensm.2020.11.028
10.1002/aenm.202002027
ContentType Journal Article
Copyright 2023 The Authors. Published by Wiley-VCH GmbH
2023 The Authors. Published by Wiley-VCH GmbH.
2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023 The Authors. Published by Wiley-VCH GmbH
– notice: 2023 The Authors. Published by Wiley-VCH GmbH.
– notice: 2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
CorporateAuthor Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)
CorporateAuthor_xml – name: Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)
DBID 24P
AAYXX
CITATION
NPM
7TM
K9.
7X8
OTOTI
DOI 10.1002/anie.202218005
DatabaseName Wiley Online Library Open Access
CrossRef
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
OSTI.GOV
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList CrossRef
ProQuest Health & Medical Complete (Alumni)

MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage n/a
ExternalDocumentID 1962711
36859655
10_1002_anie_202218005
ANIE202218005
Genre article
Journal Article
GrantInformation_xml – fundername: Vehicle Technologies Office
  funderid: DE-EE0008444; DE-AC05-76RL01830; DE-LC-000L053
– fundername: Vehicle Technologies Office
  grantid: DE-AC05-76RL01830
– fundername: Vehicle Technologies Office
  grantid: DE-EE0008444
– fundername: Vehicle Technologies Office
  grantid: DE-LC-000L053
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
24P
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ABJNI
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUYR
AEYWJ
AFBPY
AFFNX
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGYGG
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
CITATION
NPM
7TM
K9.
7X8
AEUQT
AFPWT
OTOTI
RWI
VQA
WRC
ID FETCH-LOGICAL-c4405-a81381f3c0d2ed45015e1a123a421ab029b53f798b2d5274f975463bc5a4b0d73
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Mon Feb 03 04:56:54 EST 2025
Thu Jul 10 23:10:31 EDT 2025
Thu Jul 10 05:45:55 EDT 2025
Thu Apr 03 07:03:26 EDT 2025
Tue Jul 01 01:47:06 EDT 2025
Thu Apr 24 22:58:03 EDT 2025
Wed Jun 11 08:26:14 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 17
Keywords Electrode/Electrolyte Interphase
Localized High-Concentration Electrolyte
Solvation Sheath
Lithium-Ion Battery
Physicochemical Properties
Language English
License Attribution
2023 The Authors. Published by Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4405-a81381f3c0d2ed45015e1a123a421ab029b53f798b2d5274f975463bc5a4b0d73
Notes These authors contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
USDOE
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Office of Sustainable Transportation. Vehicle Technologies Office (VTO)
AC05-76RL01830; LC-000L053; EE0008444
PNNL-SA-180345
ORCID 0000-0003-0851-1959
0000-0003-3327-0958
0000-0002-5543-0812
0000-0002-2906-6551
0000-0002-2685-8684
0000-0002-9945-3514
0000-0003-2814-5589
0000000255430812
0000000333270958
0000000226858684
0000000229066551
0000000299453514
0000000328145589
0000000308511959
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202218005
PMID 36859655
PQID 2795906491
PQPubID 946352
PageCount 12
ParticipantIDs osti_scitechconnect_1962711
proquest_miscellaneous_2781623334
proquest_journals_2795906491
pubmed_primary_36859655
crossref_primary_10_1002_anie_202218005
crossref_citationtrail_10_1002_anie_202218005
wiley_primary_10_1002_anie_202218005_ANIE202218005
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 17, 2023
PublicationDateYYYYMMDD 2023-04-17
PublicationDate_xml – month: 04
  year: 2023
  text: April 17, 2023
  day: 17
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
– name: United States
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Wiley
Publisher_xml – name: Wiley Subscription Services, Inc
– name: Wiley
References 2019; 7
2021; 46
2021; 8
2018; 122
2021; 6
2019; 4
2019; 3
2020; 20
2019; 31
2021; 168
2020; 120
2020; 447
2020; 12
2020; 11
2020; 10
2018; 21
2022; 610
2001; 148
2014; 114
2014; 136
2021; 35
2017; 50
2021; 13
2021; 11
2018; 4
2022; 4
2020; 30
2021 2021; 60 133
2020; 117
2009; 223
2018; 30
2022; 924
2017; 164
2017; 121
2022; 527
e_1_2_8_28_2
e_1_2_8_49_2
e_1_2_8_24_2
e_1_2_8_45_2
e_1_2_8_26_1
e_1_2_8_47_2
e_1_2_8_3_2
e_1_2_8_5_2
e_1_2_8_9_1
e_1_2_8_7_2
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_41_2
e_1_2_8_22_1
e_1_2_8_1_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_38_1
e_1_2_8_15_2
e_1_2_8_36_2
e_1_2_8_30_3
e_1_2_8_30_2
e_1_2_8_34_1
e_1_2_8_51_3
e_1_2_8_53_1
e_1_2_8_11_2
e_1_2_8_32_2
e_1_2_8_51_2
e_1_2_8_27_2
e_1_2_8_29_2
e_1_2_8_46_1
e_1_2_8_25_2
e_1_2_8_48_2
e_1_2_8_2_2
e_1_2_8_4_1
e_1_2_8_6_2
e_1_2_8_8_2
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_44_2
e_1_2_8_23_1
e_1_2_8_40_2
e_1_2_8_39_2
e_1_2_8_18_1
e_1_2_8_12_2
e_1_2_8_35_1
e_1_2_8_14_2
e_1_2_8_37_2
e_1_2_8_16_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_33_2
e_1_2_8_52_2
e_1_2_8_54_1
e_1_2_8_50_2
References_xml – volume: 148
  start-page: A1352
  year: 2001
  publication-title: J. Electrochem. Soc.
– volume: 10
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 121
  start-page: 1025
  year: 2017
  end-page: 1031
  publication-title: J. Phys. Chem. C
– volume: 223
  start-page: 1395
  year: 2009
  end-page: 1406
  publication-title: Z. Phys. Chem.
– volume: 136
  start-page: 5039
  year: 2014
  end-page: 5046
  publication-title: J. Am. Chem. Soc.
– volume: 164
  start-page: A5008
  year: 2017
  publication-title: J. Electrochem. Soc.
– volume: 3
  start-page: 1662
  year: 2019
  end-page: 1676
  publication-title: Joule
– volume: 60 133
  start-page: 22812 22994
  year: 2021 2021
  end-page: 22817 22999
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 4
  start-page: 16
  year: 2019
  end-page: 25
  publication-title: Nat. Energy
– volume: 11
  start-page: 1550
  year: 2020
  publication-title: Nat. Commun.
– volume: 21
  start-page: 341
  year: 2018
  end-page: 353
  publication-title: Mater. Today
– volume: 50
  start-page: 2886
  year: 2017
  end-page: 2894
  publication-title: Acc. Chem. Res.
– volume: 447
  year: 2020
  publication-title: J. Power Sources
– volume: 4
  start-page: 1877
  year: 2018
  end-page: 1892
  publication-title: Chem
– volume: 20
  start-page: 570
  year: 2020
  end-page: 595
  publication-title: Chem. Rec.
– volume: 4
  start-page: 627
  year: 2022
  end-page: 642
  publication-title: Trends Chem.
– volume: 168
  year: 2021
  publication-title: J. Electrochem. Soc.
– volume: 122
  start-page: 1990
  year: 2018
  end-page: 1994
  publication-title: J. Phys. Chem. C
– volume: 114
  start-page: 11503
  year: 2014
  end-page: 11618
  publication-title: Chem. Rev.
– volume: 610
  start-page: 67
  year: 2022
  end-page: 73
  publication-title: Nature
– volume: 120
  start-page: 6783
  year: 2020
  end-page: 6819
  publication-title: Chem. Rev.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 6
  start-page: 227
  year: 2021
  end-page: 239
  publication-title: Nat. Energy
– volume: 122
  start-page: 10964
  year: 2018
  end-page: 10967
  publication-title: J. Phys. Chem. B
– volume: 527
  year: 2022
  publication-title: J. Power Sources
– volume: 117
  start-page: 28603
  year: 2020
  end-page: 28613
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 12
  start-page: 54893
  year: 2020
  end-page: 54903
  publication-title: ACS Appl. Mater. Interfaces
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 60 133
  start-page: 12999 13109
  year: 2021 2021
  end-page: 13006 13116
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 11
  year: 2021
  publication-title: Adv. Energy Mater.
– volume: 50
  start-page: 3831
  year: 2017
  end-page: 3840
  publication-title: Macromolecules
– volume: 35
  start-page: 550
  year: 2021
  end-page: 576
  publication-title: Energy Storage Mater.
– volume: 8
  start-page: 1807
  year: 2021
  end-page: 1816
  publication-title: ChemElectroChem
– volume: 7
  start-page: 2942
  year: 2019
  end-page: 2964
  publication-title: J. Mater. Chem. A
– volume: 13
  start-page: 44339
  year: 2021
  end-page: 44347
  publication-title: ACS Appl. Mater. Interfaces
– volume: 46
  start-page: 155
  year: 2021
  end-page: 182
  publication-title: Mater. Today
– volume: 924
  year: 2022
  publication-title: J. Electroanal. Chem.
– ident: e_1_2_8_39_2
  doi: 10.1016/j.mattod.2018.02.005
– ident: e_1_2_8_15_2
  doi: 10.1038/s41560-018-0295-9
– ident: e_1_2_8_31_1
– ident: e_1_2_8_37_2
  doi: 10.1021/acs.jpcc.6b10896
– ident: e_1_2_8_41_2
  doi: 10.1002/celc.202100330
– ident: e_1_2_8_18_1
  doi: 10.1016/j.trechm.2022.04.010
– ident: e_1_2_8_50_2
  doi: 10.1021/acs.accounts.7b00486
– ident: e_1_2_8_12_2
  doi: 10.1038/s41560-020-00759-5
– ident: e_1_2_8_36_2
  doi: 10.1021/acs.jpcc.7b11060
– ident: e_1_2_8_7_2
  doi: 10.1038/s41586-022-05115-z
– ident: e_1_2_8_20_1
  doi: 10.1016/j.jpowsour.2019.227363
– ident: e_1_2_8_4_1
– ident: e_1_2_8_13_1
– ident: e_1_2_8_10_1
– ident: e_1_2_8_33_2
  doi: 10.1149/1.1415030
– ident: e_1_2_8_40_2
  doi: 10.1149/2.0191701jes
– ident: e_1_2_8_9_1
  doi: 10.1016/j.jelechem.2022.116847
– ident: e_1_2_8_52_2
  doi: 10.1002/aenm.201902654
– ident: e_1_2_8_11_2
  doi: 10.1021/acs.chemrev.9b00531
– ident: e_1_2_8_51_3
  doi: 10.1002/ange.202107252
– ident: e_1_2_8_2_2
  doi: 10.1002/aenm.202001310
– ident: e_1_2_8_48_2
  doi: 10.1002/adma.201706102
– ident: e_1_2_8_49_2
  doi: 10.1021/ja412807w
– ident: e_1_2_8_22_1
  doi: 10.1149/1945-7111/abd60e
– ident: e_1_2_8_32_2
  doi: 10.1021/acs.macromol.7b00423
– ident: e_1_2_8_16_1
  doi: 10.1002/aenm.202102647
– ident: e_1_2_8_23_1
– ident: e_1_2_8_25_2
  doi: 10.1016/j.chempr.2018.05.002
– ident: e_1_2_8_26_1
– ident: e_1_2_8_30_2
  doi: 10.1002/anie.202102403
– ident: e_1_2_8_17_1
  doi: 10.1016/j.mattod.2020.12.017
– ident: e_1_2_8_19_1
  doi: 10.1002/adma.201804822
– ident: e_1_2_8_45_2
  doi: 10.1524/zpch.2009.6086
– ident: e_1_2_8_29_2
  doi: 10.1002/aenm.202000368
– ident: e_1_2_8_51_2
  doi: 10.1002/anie.202107252
– ident: e_1_2_8_54_1
  doi: 10.1002/adfm.202001285
– ident: e_1_2_8_34_1
  doi: 10.1021/acs.jpcb.8b08610
– ident: e_1_2_8_44_2
  doi: 10.1021/cr500003w
– ident: e_1_2_8_6_2
  doi: 10.1002/aenm.201903864
– ident: e_1_2_8_28_2
  doi: 10.1016/j.jpowsour.2022.231171
– ident: e_1_2_8_24_2
  doi: 10.1002/aenm.202003092
– ident: e_1_2_8_27_2
  doi: 10.1021/acsami.0c18177
– ident: e_1_2_8_43_1
– ident: e_1_2_8_42_1
  doi: 10.1021/acsami.1c12072
– ident: e_1_2_8_1_1
– ident: e_1_2_8_47_2
  doi: 10.1016/j.joule.2019.05.006
– ident: e_1_2_8_14_2
  doi: 10.1002/tcr.201900054
– ident: e_1_2_8_3_2
  doi: 10.1039/C8TA10513H
– ident: e_1_2_8_30_3
  doi: 10.1002/ange.202102403
– ident: e_1_2_8_35_1
– ident: e_1_2_8_46_1
– ident: e_1_2_8_38_1
– ident: e_1_2_8_5_2
  doi: 10.1038/s41467-020-15355-0
– ident: e_1_2_8_53_1
  doi: 10.1073/pnas.2010852117
– ident: e_1_2_8_8_2
  doi: 10.1016/j.ensm.2020.11.028
– ident: e_1_2_8_21_1
  doi: 10.1002/aenm.202002027
SSID ssj0028806
Score 2.586223
Snippet Localized high‐concentration electrolytes (LHCEs) based on five different types of solvents were systematically studied and compared in lithium (Li)‐ion...
Localized high-concentration electrolytes (LHCEs) based on five different types of solvents were systematically studied and compared in lithium (Li)-ion...
In this work, localized high-concentration electrolytes (LHCEs) based on five different solvents: 1,2-dimethoxyethane, dimethyl carbonate, trimethyl phosphate,...
SourceID osti
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e202218005
SubjectTerms Additives
Electrochemical analysis
Electrochemistry
Electrode/Electrolyte Interphase
Electrolytes
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
Lithium
Lithium-ion batteries
lithium-ion batteries, localized high-concentration electrolyte, physicochemical properties, solvation sheath, solid electrolyte interphase, cathode electrolyte interphas
Lithium-Ion Battery
Localized High-Concentration Electrolyte
Physicochemical Properties
Sheaths
Solid electrolytes
Solvation
Solvation Sheath
Solvents
Title A Systematic Study on the Effects of Solvating Solvents and Additives in Localized High‐Concentration Electrolytes over Electrochemical Performance of Lithium‐Ion Batteries
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202218005
https://www.ncbi.nlm.nih.gov/pubmed/36859655
https://www.proquest.com/docview/2795906491
https://www.proquest.com/docview/2781623334
https://www.osti.gov/biblio/1962711
Volume 62
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELZgL3Dh_2dpqYyExMlt4jib5LhabdWiUlWUSr1F_qURi4NI9tCeeAQehWfiSZiJk5RFICS4ObEdO_LY89me-YaQl1HkLOh1w0zhUiZmNmWSO8cscoUryHMKzyHfHM8OzsTr8_T8Jy_-wA8xHrjhzOjWa5zgUjV716Sh6IEN-zsOOiqQmKLBFqKityN_FAfhDO5FScIwCv3A2hjxvc3qG1ppUsPs-h3i3ASwnQbav0vk0PdgePJhd92qXX31C63j__zcPXKnh6d0HuTpPrlh_QNyazFEhXtIvs3p6Uj-TNEK8ZLWngKMpIEIuaG1o6f1Co96_fsuhbYaVHpD58Z0pkoNrTw9Qi1aXVlD0dbk-5evC_Sg9D2NL12G-DyrS8DCFO1Mhze6pzigJ9c-D9jmUdVeVOuP8KFDqB54QyvbPCJn-8t3iwPWR31gWgB6ZDKPAUW4REeGWyNSwCs2lqBgpeCxVBEvVJq4rMgVNynsqV2RIaW_0qkUKjJZ8phMfO3tU0KT3MCCLoyJXCwyEYHs6ZybXGcK6uVmStgw6qXuKdExMseqDGTOvMRxKMdxmJJXY_lPgQzkjyW3UIhKgDHIxavRaEm3ZYyhjuJ4SrYH2Sr7JaMpOUZ9B4BYQPaLMRtGF29wpLf1GsvkMeDVJBFT8iTI5NgRjCRQzFJomneS9ZcelvPjw-X49OxfKm2R25BO8G4tzrbJpP28ts8BorVqh9zk4mSnm4w_AAHBNzU
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELbQcigXoPwubcFISJzSxo6zSY6rZatd2K4QbSVuVvxXIpYEsdlDe-IReBSeiSdhJk5SLQIhwS2J7cSRx54vzsz3EfIiDJ0Fv24Ck7k4ECMbBzl3LrDIFa6gzCnchzxZjmbn4vX7uIsmxFwYzw_Rb7jhzGjWa5zguCF9dM0aiinY8IHHwUk1LKY3UdYb6fNfvesZpDiYp08wiqIAdeg73saQH2233_JLgwrm1-8w5zaEbXzQ8R2iut770JOPh5taHeqrX4gd_-v17pLbLUKlY29Su-SGLe-RnUknDHeffB_T057_mWIg4iWtSgpIknou5DWtHD2tVrjbW140RxiuQfPS0LExTbTSmhYlXaAjLa6soRhu8uPrtwkmUZYtky-deome1SXAYYqhpt0V3bIc0LfXaQ_4zEVRfyg2n-BGc2juqUMLu35Azo-nZ5NZ0Ao_BFoAgAzylAGQcJEODbdGxABZLMvBx-aCs1yFPFNx5JIsVdzE8FntsgRZ_ZWOc6FCk0QPyaCsSvuY0Cg1sKYLY0LHRCJCMD-dcpPqREG71AxJ0A271C0rOopzrKTnc-YSx0H24zAkL_v6nz0fyB9r7qEVSUAySMerMW5J15Kh2hFjQ7LfGZdsV4215Cj8Dhgxg-LnfTGMLv7EyUtbbbBOygCyRpEYkkfeKPuOoJhANorh0bwxrb_0UI6X82l_9uRfGj0jO7Ozk4VczJdv9sgtuB7hrzaW7JNB_WVjDwCx1eppMyd_AgFJOno
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9MwELdQJwEviPG32wAjIfFkLbGdJnmsSqsVSlVpTNqbFcf2qFScaW0fxhMfgY-yz8Qn4S5OslUCIfGWxHZs6Xy-n-273xHyLoqcBbtumMldwuTAJqzgzjGLXOEaypzGc8jP88HJmfx4npzfieIP_BDdgRtqRr1eo4JfGnd8SxqKEdiwv-Ngo2oS0z288UOnLi4X3ZYLZmeILxKCYRr6lrYx4se77XfMUq8C9foT5NxFsLUJmjwmjxrsSIdB2PvknvVPyINRm7LtKbkZ0tOOmZmii-A1rTwFjEcDS_GaVo6eVis8h_UX9RM6UtDCGzo0pvYjWtOlpzM0ccvv1lB0BPn14-cIwxt9w7FLxyF5zuoagCpFJ9D2S9nwD9DFbUAC9jlbbr4ut9_gR1NoHkg9YY_-jJxNxl9GJ6xJycBKCdCOFVkMJt6JMjLcGpkAmLBxAdavkDwudMRznQiX5pnmJoENr8tT5NvXZVJIHZlUPCc9X3n7klCRGVhtpTGRi2UqI5gYZcZNVqYa2mWmT1grEVU2fOWYNmOlAtMyVyhB1UmwT9539S8DU8dfax6igBVgDCTKLdGjqNyoGPMQxXGfHLVyV40-rxXHlOyA3nIoftsVg3TxeqXwttpinSwGMCmE7JMXYb50A0Ga_3yQQNe8nkD_GKEazqfj7u3gfxq9IfcXHyZqNp1_OiQP4bPAO7A4PSK9zdXWvgIotdGva235DfbQF9I
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Systematic+Study+on+the+Effects+of+Solvating+Solvents+and+Additives+in+Localized+High%E2%80%90Concentration+Electrolytes+over+Electrochemical+Performance+of+Lithium%E2%80%90Ion+Batteries&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Jia%2C+Hao&rft.au=Ju%E2%80%90Myung+Kim&rft.au=Gao%2C+Peiyuan&rft.au=Xu%2C+Yaobin&rft.date=2023-04-17&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=62&rft.issue=17&rft_id=info:doi/10.1002%2Fanie.202218005&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon