A Systematic Study on the Effects of Solvating Solvents and Additives in Localized High‐Concentration Electrolytes over Electrochemical Performance of Lithium‐Ion Batteries
Localized high‐concentration electrolytes (LHCEs) based on five different types of solvents were systematically studied and compared in lithium (Li)‐ion batteries (LIBs). The unique solvation structure of LHCEs promotes the participation of Li salt in forming solid electrolyte interphase (SEI) on gr...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 62; no. 17; pp. e202218005 - n/a |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
17.04.2023
Wiley |
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Localized high‐concentration electrolytes (LHCEs) based on five different types of solvents were systematically studied and compared in lithium (Li)‐ion batteries (LIBs). The unique solvation structure of LHCEs promotes the participation of Li salt in forming solid electrolyte interphase (SEI) on graphite (Gr) anode, which enables solvents previously considered incompatible with Gr to achieve reversible lithiation/delithiation. However, the long cyclability of LIBs is still subject to the intrinsic properties of the solvent species in LHCEs. Such issue can be readily resolved by introducing a small amount of additive into LHCEs. The synergetic decompositions of Li salt, solvating solvent and additive yield effective SEIs and cathode electrolyte interphases (CEIs) in most of the studied LHCEs. This study reveals that both the structure and the composition of solvation sheaths in LHCEs have significant effect on SEI and CEI, and consequently, the cycle life of energetically dense LIBs.
The effects of microscopic solvation structure, solvating solvent and additive of localized high‐concentration electrolytes (LHCEs) over the electrolyte properties, the electrode/electrolyte interphases and the cycling stability of lithium‐ion batteries (LIBs) were systematically studied. The synergetic decomposition of anion, proper solvent and additive in LHCEs is the key to forming effective interphases and achieving long cycle life of LIBs. |
---|---|
AbstractList | Localized high‐concentration electrolytes (LHCEs) based on five different types of solvents were systematically studied and compared in lithium (Li)‐ion batteries (LIBs). The unique solvation structure of LHCEs promotes the participation of Li salt in forming solid electrolyte interphase (SEI) on graphite (Gr) anode, which enables solvents previously considered incompatible with Gr to achieve reversible lithiation/delithiation. However, the long cyclability of LIBs is still subject to the intrinsic properties of the solvent species in LHCEs. Such issue can be readily resolved by introducing a small amount of additive into LHCEs. The synergetic decompositions of Li salt, solvating solvent and additive yield effective SEIs and cathode electrolyte interphases (CEIs) in most of the studied LHCEs. This study reveals that both the structure and the composition of solvation sheaths in LHCEs have significant effect on SEI and CEI, and consequently, the cycle life of energetically dense LIBs. In this work, localized high-concentration electrolytes (LHCEs) based on five different solvents: 1,2-dimethoxyethane, dimethyl carbonate, trimethyl phosphate, tetramethylene sulfone and acetonitrile, were systematically studied and compared in lithium-ion batteries (LIBs). It is revealed that in all these LHCEs, the unique solvation structure of LHCEs promotes the participation of lithium salt in the solid electrolyte interphase (SEI) formation, which enables solvents that were previously considered incompatible with graphite (Gr) electrode to achieve reversible lithiation/delithiation with Gr electrode. However, the long-term cycling performance of LIBs is still subject to the intrinsic properties of the solvent species in LHCEs. Such issue can be readily resolved by introducing a small amount of electrolyte additive into LHCEs. The synergetic decompositions among lithium salt, solvating solvent and additive yield highly effective SEIs and cathode electrolyte interphases (CEIs) in most of the studied LHCEs. This study reveals that both the structure and the composition of solvation sheaths in LHCEs have significant influence over SEI and CEI formation and consequently cycle life of LIBs, and LHCEs can be readily tuned to achieve superior cycling performance of energetically dense LIBs. Localized high-concentration electrolytes (LHCEs) based on five different types of solvents were systematically studied and compared in lithium (Li)-ion batteries (LIBs). The unique solvation structure of LHCEs promotes the participation of Li salt in forming solid electrolyte interphase (SEI) on graphite (Gr) anode, which enables solvents previously considered incompatible with Gr to achieve reversible lithiation/delithiation. However, the long cyclability of LIBs is still subject to the intrinsic properties of the solvent species in LHCEs. Such issue can be readily resolved by introducing a small amount of additive into LHCEs. The synergetic decompositions of Li salt, solvating solvent and additive yield effective SEIs and cathode electrolyte interphases (CEIs) in most of the studied LHCEs. This study reveals that both the structure and the composition of solvation sheaths in LHCEs have significant effect on SEI and CEI, and consequently, the cycle life of energetically dense LIBs.Localized high-concentration electrolytes (LHCEs) based on five different types of solvents were systematically studied and compared in lithium (Li)-ion batteries (LIBs). The unique solvation structure of LHCEs promotes the participation of Li salt in forming solid electrolyte interphase (SEI) on graphite (Gr) anode, which enables solvents previously considered incompatible with Gr to achieve reversible lithiation/delithiation. However, the long cyclability of LIBs is still subject to the intrinsic properties of the solvent species in LHCEs. Such issue can be readily resolved by introducing a small amount of additive into LHCEs. The synergetic decompositions of Li salt, solvating solvent and additive yield effective SEIs and cathode electrolyte interphases (CEIs) in most of the studied LHCEs. This study reveals that both the structure and the composition of solvation sheaths in LHCEs have significant effect on SEI and CEI, and consequently, the cycle life of energetically dense LIBs. Localized high‐concentration electrolytes (LHCEs) based on five different types of solvents were systematically studied and compared in lithium (Li)‐ion batteries (LIBs). The unique solvation structure of LHCEs promotes the participation of Li salt in forming solid electrolyte interphase (SEI) on graphite (Gr) anode, which enables solvents previously considered incompatible with Gr to achieve reversible lithiation/delithiation. However, the long cyclability of LIBs is still subject to the intrinsic properties of the solvent species in LHCEs. Such issue can be readily resolved by introducing a small amount of additive into LHCEs. The synergetic decompositions of Li salt, solvating solvent and additive yield effective SEIs and cathode electrolyte interphases (CEIs) in most of the studied LHCEs. This study reveals that both the structure and the composition of solvation sheaths in LHCEs have significant effect on SEI and CEI, and consequently, the cycle life of energetically dense LIBs. The effects of microscopic solvation structure, solvating solvent and additive of localized high‐concentration electrolytes (LHCEs) over the electrolyte properties, the electrode/electrolyte interphases and the cycling stability of lithium‐ion batteries (LIBs) were systematically studied. The synergetic decomposition of anion, proper solvent and additive in LHCEs is the key to forming effective interphases and achieving long cycle life of LIBs. |
Author | Xu, Wu Kim, Ju‐Myung Matthews, Bethany E. Jia, Hao Xu, Yaobin Engelhard, Mark H. Wang, Chongmin Gao, Peiyuan |
Author_xml | – sequence: 1 givenname: Hao orcidid: 0000-0003-2814-5589 surname: Jia fullname: Jia, Hao organization: Pacific Northwest National Laboratory – sequence: 2 givenname: Ju‐Myung orcidid: 0000-0003-0851-1959 surname: Kim fullname: Kim, Ju‐Myung organization: Pacific Northwest National Laboratory – sequence: 3 givenname: Peiyuan orcidid: 0000-0002-2906-6551 surname: Gao fullname: Gao, Peiyuan organization: Pacific Northwest National Laboratory – sequence: 4 givenname: Yaobin orcidid: 0000-0002-9945-3514 surname: Xu fullname: Xu, Yaobin organization: Pacific Northwest National Laboratory – sequence: 5 givenname: Mark H. orcidid: 0000-0002-5543-0812 surname: Engelhard fullname: Engelhard, Mark H. organization: Pacific Northwest National Laboratory – sequence: 6 givenname: Bethany E. surname: Matthews fullname: Matthews, Bethany E. organization: Pacific Northwest National Laboratory – sequence: 7 givenname: Chongmin orcidid: 0000-0003-3327-0958 surname: Wang fullname: Wang, Chongmin organization: Pacific Northwest National Laboratory – sequence: 8 givenname: Wu orcidid: 0000-0002-2685-8684 surname: Xu fullname: Xu, Wu email: wu.xu@pnnl.gov organization: Pacific Northwest National Laboratory |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36859655$$D View this record in MEDLINE/PubMed https://www.osti.gov/biblio/1962711$$D View this record in Osti.gov |
BookMark | eNqFkstuEzEUhkeoiF5gyxJZsGGT4OtcliFKaaQIkALrkcdzpnE1YxfbExRWfQQehWfiSThp2iJVQqxsHX3ff2ydc5odOe8gy14yOmWU8nfaWZhyyjkrKVVPshOmOJuIohBHeJdCTIpSsePsNMYr5MuS5s-yY5GXqsqVOsl-zch6FxMMOllD1mlsd8Q7kjZAFl0HJkXiO7L2_RYBd3l7A4dV7Voya1ub7BYisY6svNG9_QEtubCXm983P-feGUQDipi46DEs-H6XEPdbCPcVs4HBoko-Q-h8GDRa-54rmzZ2HDBoifp7nRIEC_F59rTTfYQXd-dZ9vV88WV-MVl9-rCcz1YTIyVVE10yUbJOGNpyaKWiTAHTjAstOdMN5VWjRFdUZcNbxQvZVYWSuWiM0rKhbSHOsteHXB-TraOxCczGeOfw0TWrcl4whtDbA3Qd_LcRYqoHGw30vXbgx1jzomQ5F0JIRN88Qq_8GBx-AalKVTSX1T7w1R01NgO09XWwgw67-n5gCEwPgAk-xgDdA8Jovd-Ier8R9cNGoCAfCfiV25HgZGz_b606aN9tD7v_NKlnH5eLv-4feHfN9A |
CitedBy_id | crossref_primary_10_1016_j_nanoen_2023_109088 crossref_primary_10_1002_adfm_202414550 crossref_primary_10_1002_aenm_202401961 crossref_primary_10_1002_batt_202400487 crossref_primary_10_1002_batt_202400641 crossref_primary_10_1039_D4EE06096B crossref_primary_10_1039_D4EE00119B crossref_primary_10_34133_energymatadv_0113 crossref_primary_10_1021_acsmaterialslett_3c01478 crossref_primary_10_1016_j_jpowsour_2024_235006 crossref_primary_10_1039_D4CC04026K crossref_primary_10_1021_jacs_4c09027 crossref_primary_10_1039_D4EE03280B crossref_primary_10_1002_aenm_202404009 crossref_primary_10_1002_cey2_697 crossref_primary_10_1039_D4CS00826J crossref_primary_10_1002_adfm_202308619 crossref_primary_10_1002_adfm_202406770 crossref_primary_10_1016_j_nanoen_2024_109389 crossref_primary_10_1039_D4YA00245H crossref_primary_10_1002_smll_202403429 crossref_primary_10_1063_5_0187154 crossref_primary_10_1016_j_ensm_2024_103326 crossref_primary_10_1002_anie_202412239 crossref_primary_10_1007_s12274_023_6133_9 crossref_primary_10_1021_acs_energyfuels_4c01525 crossref_primary_10_1016_j_joule_2025_101821 crossref_primary_10_1039_D4TA02103G crossref_primary_10_1002_adfm_202416714 crossref_primary_10_1002_adfm_202417923 crossref_primary_10_1039_D4TA05906A crossref_primary_10_1021_acs_jpcc_4c04668 crossref_primary_10_1002_ange_202412239 crossref_primary_10_1016_j_ensm_2024_103537 crossref_primary_10_1002_aenm_202301670 crossref_primary_10_1039_D3TA07347E crossref_primary_10_1093_nsr_nwae359 |
Cites_doi | 10.1016/j.mattod.2018.02.005 10.1038/s41560-018-0295-9 10.1021/acs.jpcc.6b10896 10.1002/celc.202100330 10.1016/j.trechm.2022.04.010 10.1021/acs.accounts.7b00486 10.1038/s41560-020-00759-5 10.1021/acs.jpcc.7b11060 10.1038/s41586-022-05115-z 10.1016/j.jpowsour.2019.227363 10.1149/1.1415030 10.1149/2.0191701jes 10.1016/j.jelechem.2022.116847 10.1002/aenm.201902654 10.1021/acs.chemrev.9b00531 10.1002/ange.202107252 10.1002/aenm.202001310 10.1002/adma.201706102 10.1021/ja412807w 10.1149/1945-7111/abd60e 10.1021/acs.macromol.7b00423 10.1002/aenm.202102647 10.1016/j.chempr.2018.05.002 10.1002/anie.202102403 10.1016/j.mattod.2020.12.017 10.1002/adma.201804822 10.1524/zpch.2009.6086 10.1002/aenm.202000368 10.1002/anie.202107252 10.1002/adfm.202001285 10.1021/acs.jpcb.8b08610 10.1021/cr500003w 10.1002/aenm.201903864 10.1016/j.jpowsour.2022.231171 10.1002/aenm.202003092 10.1021/acsami.0c18177 10.1021/acsami.1c12072 10.1016/j.joule.2019.05.006 10.1002/tcr.201900054 10.1039/C8TA10513H 10.1002/ange.202102403 10.1038/s41467-020-15355-0 10.1073/pnas.2010852117 10.1016/j.ensm.2020.11.028 10.1002/aenm.202002027 |
ContentType | Journal Article |
Copyright | 2023 The Authors. Published by Wiley-VCH GmbH 2023 The Authors. Published by Wiley-VCH GmbH. 2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2023 The Authors. Published by Wiley-VCH GmbH – notice: 2023 The Authors. Published by Wiley-VCH GmbH. – notice: 2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
CorporateAuthor | Pacific Northwest National Laboratory (PNNL), Richland, WA (United States) |
CorporateAuthor_xml | – name: Pacific Northwest National Laboratory (PNNL), Richland, WA (United States) |
DBID | 24P AAYXX CITATION NPM 7TM K9. 7X8 OTOTI |
DOI | 10.1002/anie.202218005 |
DatabaseName | Wiley Online Library Open Access CrossRef PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic OSTI.GOV |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | n/a |
ExternalDocumentID | 1962711 36859655 10_1002_anie_202218005 ANIE202218005 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Vehicle Technologies Office funderid: DE-EE0008444; DE-AC05-76RL01830; DE-LC-000L053 – fundername: Vehicle Technologies Office grantid: DE-AC05-76RL01830 – fundername: Vehicle Technologies Office grantid: DE-EE0008444 – fundername: Vehicle Technologies Office grantid: DE-LC-000L053 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 24P 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABIJN ABJNI ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUYR AEYWJ AFBPY AFFNX AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGYGG AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX CITATION NPM 7TM K9. 7X8 AEUQT AFPWT OTOTI RWI VQA WRC |
ID | FETCH-LOGICAL-c4405-a81381f3c0d2ed45015e1a123a421ab029b53f798b2d5274f975463bc5a4b0d73 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Mon Feb 03 04:56:54 EST 2025 Thu Jul 10 23:10:31 EDT 2025 Thu Jul 10 05:45:55 EDT 2025 Thu Apr 03 07:03:26 EDT 2025 Tue Jul 01 01:47:06 EDT 2025 Thu Apr 24 22:58:03 EDT 2025 Wed Jun 11 08:26:14 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 17 |
Keywords | Electrode/Electrolyte Interphase Localized High-Concentration Electrolyte Solvation Sheath Lithium-Ion Battery Physicochemical Properties |
Language | English |
License | Attribution 2023 The Authors. Published by Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4405-a81381f3c0d2ed45015e1a123a421ab029b53f798b2d5274f975463bc5a4b0d73 |
Notes | These authors contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 USDOE USDOE Office of Energy Efficiency and Renewable Energy (EERE), Office of Sustainable Transportation. Vehicle Technologies Office (VTO) AC05-76RL01830; LC-000L053; EE0008444 PNNL-SA-180345 |
ORCID | 0000-0003-0851-1959 0000-0003-3327-0958 0000-0002-5543-0812 0000-0002-2906-6551 0000-0002-2685-8684 0000-0002-9945-3514 0000-0003-2814-5589 0000000255430812 0000000333270958 0000000226858684 0000000229066551 0000000299453514 0000000328145589 0000000308511959 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202218005 |
PMID | 36859655 |
PQID | 2795906491 |
PQPubID | 946352 |
PageCount | 12 |
ParticipantIDs | osti_scitechconnect_1962711 proquest_miscellaneous_2781623334 proquest_journals_2795906491 pubmed_primary_36859655 crossref_primary_10_1002_anie_202218005 crossref_citationtrail_10_1002_anie_202218005 wiley_primary_10_1002_anie_202218005_ANIE202218005 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 17, 2023 |
PublicationDateYYYYMMDD | 2023-04-17 |
PublicationDate_xml | – month: 04 year: 2023 text: April 17, 2023 day: 17 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim – name: United States |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc Wiley |
Publisher_xml | – name: Wiley Subscription Services, Inc – name: Wiley |
References | 2019; 7 2021; 46 2021; 8 2018; 122 2021; 6 2019; 4 2019; 3 2020; 20 2019; 31 2021; 168 2020; 120 2020; 447 2020; 12 2020; 11 2020; 10 2018; 21 2022; 610 2001; 148 2014; 114 2014; 136 2021; 35 2017; 50 2021; 13 2021; 11 2018; 4 2022; 4 2020; 30 2021 2021; 60 133 2020; 117 2009; 223 2018; 30 2022; 924 2017; 164 2017; 121 2022; 527 e_1_2_8_28_2 e_1_2_8_49_2 e_1_2_8_24_2 e_1_2_8_45_2 e_1_2_8_26_1 e_1_2_8_47_2 e_1_2_8_3_2 e_1_2_8_5_2 e_1_2_8_9_1 e_1_2_8_7_2 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_41_2 e_1_2_8_22_1 e_1_2_8_1_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_38_1 e_1_2_8_15_2 e_1_2_8_36_2 e_1_2_8_30_3 e_1_2_8_30_2 e_1_2_8_34_1 e_1_2_8_51_3 e_1_2_8_53_1 e_1_2_8_11_2 e_1_2_8_32_2 e_1_2_8_51_2 e_1_2_8_27_2 e_1_2_8_29_2 e_1_2_8_46_1 e_1_2_8_25_2 e_1_2_8_48_2 e_1_2_8_2_2 e_1_2_8_4_1 e_1_2_8_6_2 e_1_2_8_8_2 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_44_2 e_1_2_8_23_1 e_1_2_8_40_2 e_1_2_8_39_2 e_1_2_8_18_1 e_1_2_8_12_2 e_1_2_8_35_1 e_1_2_8_14_2 e_1_2_8_37_2 e_1_2_8_16_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_33_2 e_1_2_8_52_2 e_1_2_8_54_1 e_1_2_8_50_2 |
References_xml | – volume: 148 start-page: A1352 year: 2001 publication-title: J. Electrochem. Soc. – volume: 10 year: 2020 publication-title: Adv. Energy Mater. – volume: 121 start-page: 1025 year: 2017 end-page: 1031 publication-title: J. Phys. Chem. C – volume: 223 start-page: 1395 year: 2009 end-page: 1406 publication-title: Z. Phys. Chem. – volume: 136 start-page: 5039 year: 2014 end-page: 5046 publication-title: J. Am. Chem. Soc. – volume: 164 start-page: A5008 year: 2017 publication-title: J. Electrochem. Soc. – volume: 3 start-page: 1662 year: 2019 end-page: 1676 publication-title: Joule – volume: 60 133 start-page: 22812 22994 year: 2021 2021 end-page: 22817 22999 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 4 start-page: 16 year: 2019 end-page: 25 publication-title: Nat. Energy – volume: 11 start-page: 1550 year: 2020 publication-title: Nat. Commun. – volume: 21 start-page: 341 year: 2018 end-page: 353 publication-title: Mater. Today – volume: 50 start-page: 2886 year: 2017 end-page: 2894 publication-title: Acc. Chem. Res. – volume: 447 year: 2020 publication-title: J. Power Sources – volume: 4 start-page: 1877 year: 2018 end-page: 1892 publication-title: Chem – volume: 20 start-page: 570 year: 2020 end-page: 595 publication-title: Chem. Rec. – volume: 4 start-page: 627 year: 2022 end-page: 642 publication-title: Trends Chem. – volume: 168 year: 2021 publication-title: J. Electrochem. Soc. – volume: 122 start-page: 1990 year: 2018 end-page: 1994 publication-title: J. Phys. Chem. C – volume: 114 start-page: 11503 year: 2014 end-page: 11618 publication-title: Chem. Rev. – volume: 610 start-page: 67 year: 2022 end-page: 73 publication-title: Nature – volume: 120 start-page: 6783 year: 2020 end-page: 6819 publication-title: Chem. Rev. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 6 start-page: 227 year: 2021 end-page: 239 publication-title: Nat. Energy – volume: 122 start-page: 10964 year: 2018 end-page: 10967 publication-title: J. Phys. Chem. B – volume: 527 year: 2022 publication-title: J. Power Sources – volume: 117 start-page: 28603 year: 2020 end-page: 28613 publication-title: Proc. Natl. Acad. Sci. USA – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 12 start-page: 54893 year: 2020 end-page: 54903 publication-title: ACS Appl. Mater. Interfaces – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 60 133 start-page: 12999 13109 year: 2021 2021 end-page: 13006 13116 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 11 year: 2021 publication-title: Adv. Energy Mater. – volume: 50 start-page: 3831 year: 2017 end-page: 3840 publication-title: Macromolecules – volume: 35 start-page: 550 year: 2021 end-page: 576 publication-title: Energy Storage Mater. – volume: 8 start-page: 1807 year: 2021 end-page: 1816 publication-title: ChemElectroChem – volume: 7 start-page: 2942 year: 2019 end-page: 2964 publication-title: J. Mater. Chem. A – volume: 13 start-page: 44339 year: 2021 end-page: 44347 publication-title: ACS Appl. Mater. Interfaces – volume: 46 start-page: 155 year: 2021 end-page: 182 publication-title: Mater. Today – volume: 924 year: 2022 publication-title: J. Electroanal. Chem. – ident: e_1_2_8_39_2 doi: 10.1016/j.mattod.2018.02.005 – ident: e_1_2_8_15_2 doi: 10.1038/s41560-018-0295-9 – ident: e_1_2_8_31_1 – ident: e_1_2_8_37_2 doi: 10.1021/acs.jpcc.6b10896 – ident: e_1_2_8_41_2 doi: 10.1002/celc.202100330 – ident: e_1_2_8_18_1 doi: 10.1016/j.trechm.2022.04.010 – ident: e_1_2_8_50_2 doi: 10.1021/acs.accounts.7b00486 – ident: e_1_2_8_12_2 doi: 10.1038/s41560-020-00759-5 – ident: e_1_2_8_36_2 doi: 10.1021/acs.jpcc.7b11060 – ident: e_1_2_8_7_2 doi: 10.1038/s41586-022-05115-z – ident: e_1_2_8_20_1 doi: 10.1016/j.jpowsour.2019.227363 – ident: e_1_2_8_4_1 – ident: e_1_2_8_13_1 – ident: e_1_2_8_10_1 – ident: e_1_2_8_33_2 doi: 10.1149/1.1415030 – ident: e_1_2_8_40_2 doi: 10.1149/2.0191701jes – ident: e_1_2_8_9_1 doi: 10.1016/j.jelechem.2022.116847 – ident: e_1_2_8_52_2 doi: 10.1002/aenm.201902654 – ident: e_1_2_8_11_2 doi: 10.1021/acs.chemrev.9b00531 – ident: e_1_2_8_51_3 doi: 10.1002/ange.202107252 – ident: e_1_2_8_2_2 doi: 10.1002/aenm.202001310 – ident: e_1_2_8_48_2 doi: 10.1002/adma.201706102 – ident: e_1_2_8_49_2 doi: 10.1021/ja412807w – ident: e_1_2_8_22_1 doi: 10.1149/1945-7111/abd60e – ident: e_1_2_8_32_2 doi: 10.1021/acs.macromol.7b00423 – ident: e_1_2_8_16_1 doi: 10.1002/aenm.202102647 – ident: e_1_2_8_23_1 – ident: e_1_2_8_25_2 doi: 10.1016/j.chempr.2018.05.002 – ident: e_1_2_8_26_1 – ident: e_1_2_8_30_2 doi: 10.1002/anie.202102403 – ident: e_1_2_8_17_1 doi: 10.1016/j.mattod.2020.12.017 – ident: e_1_2_8_19_1 doi: 10.1002/adma.201804822 – ident: e_1_2_8_45_2 doi: 10.1524/zpch.2009.6086 – ident: e_1_2_8_29_2 doi: 10.1002/aenm.202000368 – ident: e_1_2_8_51_2 doi: 10.1002/anie.202107252 – ident: e_1_2_8_54_1 doi: 10.1002/adfm.202001285 – ident: e_1_2_8_34_1 doi: 10.1021/acs.jpcb.8b08610 – ident: e_1_2_8_44_2 doi: 10.1021/cr500003w – ident: e_1_2_8_6_2 doi: 10.1002/aenm.201903864 – ident: e_1_2_8_28_2 doi: 10.1016/j.jpowsour.2022.231171 – ident: e_1_2_8_24_2 doi: 10.1002/aenm.202003092 – ident: e_1_2_8_27_2 doi: 10.1021/acsami.0c18177 – ident: e_1_2_8_43_1 – ident: e_1_2_8_42_1 doi: 10.1021/acsami.1c12072 – ident: e_1_2_8_1_1 – ident: e_1_2_8_47_2 doi: 10.1016/j.joule.2019.05.006 – ident: e_1_2_8_14_2 doi: 10.1002/tcr.201900054 – ident: e_1_2_8_3_2 doi: 10.1039/C8TA10513H – ident: e_1_2_8_30_3 doi: 10.1002/ange.202102403 – ident: e_1_2_8_35_1 – ident: e_1_2_8_46_1 – ident: e_1_2_8_38_1 – ident: e_1_2_8_5_2 doi: 10.1038/s41467-020-15355-0 – ident: e_1_2_8_53_1 doi: 10.1073/pnas.2010852117 – ident: e_1_2_8_8_2 doi: 10.1016/j.ensm.2020.11.028 – ident: e_1_2_8_21_1 doi: 10.1002/aenm.202002027 |
SSID | ssj0028806 |
Score | 2.586223 |
Snippet | Localized high‐concentration electrolytes (LHCEs) based on five different types of solvents were systematically studied and compared in lithium (Li)‐ion... Localized high-concentration electrolytes (LHCEs) based on five different types of solvents were systematically studied and compared in lithium (Li)-ion... In this work, localized high-concentration electrolytes (LHCEs) based on five different solvents: 1,2-dimethoxyethane, dimethyl carbonate, trimethyl phosphate,... |
SourceID | osti proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e202218005 |
SubjectTerms | Additives Electrochemical analysis Electrochemistry Electrode/Electrolyte Interphase Electrolytes INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY Lithium Lithium-ion batteries lithium-ion batteries, localized high-concentration electrolyte, physicochemical properties, solvation sheath, solid electrolyte interphase, cathode electrolyte interphas Lithium-Ion Battery Localized High-Concentration Electrolyte Physicochemical Properties Sheaths Solid electrolytes Solvation Solvation Sheath Solvents |
Title | A Systematic Study on the Effects of Solvating Solvents and Additives in Localized High‐Concentration Electrolytes over Electrochemical Performance of Lithium‐Ion Batteries |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202218005 https://www.ncbi.nlm.nih.gov/pubmed/36859655 https://www.proquest.com/docview/2795906491 https://www.proquest.com/docview/2781623334 https://www.osti.gov/biblio/1962711 |
Volume | 62 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELZgL3Dh_2dpqYyExMlt4jib5LhabdWiUlWUSr1F_qURi4NI9tCeeAQehWfiSZiJk5RFICS4ObEdO_LY89me-YaQl1HkLOh1w0zhUiZmNmWSO8cscoUryHMKzyHfHM8OzsTr8_T8Jy_-wA8xHrjhzOjWa5zgUjV716Sh6IEN-zsOOiqQmKLBFqKityN_FAfhDO5FScIwCv3A2hjxvc3qG1ppUsPs-h3i3ASwnQbav0vk0PdgePJhd92qXX31C63j__zcPXKnh6d0HuTpPrlh_QNyazFEhXtIvs3p6Uj-TNEK8ZLWngKMpIEIuaG1o6f1Co96_fsuhbYaVHpD58Z0pkoNrTw9Qi1aXVlD0dbk-5evC_Sg9D2NL12G-DyrS8DCFO1Mhze6pzigJ9c-D9jmUdVeVOuP8KFDqB54QyvbPCJn-8t3iwPWR31gWgB6ZDKPAUW4REeGWyNSwCs2lqBgpeCxVBEvVJq4rMgVNynsqV2RIaW_0qkUKjJZ8phMfO3tU0KT3MCCLoyJXCwyEYHs6ZybXGcK6uVmStgw6qXuKdExMseqDGTOvMRxKMdxmJJXY_lPgQzkjyW3UIhKgDHIxavRaEm3ZYyhjuJ4SrYH2Sr7JaMpOUZ9B4BYQPaLMRtGF29wpLf1GsvkMeDVJBFT8iTI5NgRjCRQzFJomneS9ZcelvPjw-X49OxfKm2R25BO8G4tzrbJpP28ts8BorVqh9zk4mSnm4w_AAHBNzU |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELbQcigXoPwubcFISJzSxo6zSY6rZatd2K4QbSVuVvxXIpYEsdlDe-IReBSeiSdhJk5SLQIhwS2J7cSRx54vzsz3EfIiDJ0Fv24Ck7k4ECMbBzl3LrDIFa6gzCnchzxZjmbn4vX7uIsmxFwYzw_Rb7jhzGjWa5zguCF9dM0aiinY8IHHwUk1LKY3UdYb6fNfvesZpDiYp08wiqIAdeg73saQH2233_JLgwrm1-8w5zaEbXzQ8R2iut770JOPh5taHeqrX4gd_-v17pLbLUKlY29Su-SGLe-RnUknDHeffB_T057_mWIg4iWtSgpIknou5DWtHD2tVrjbW140RxiuQfPS0LExTbTSmhYlXaAjLa6soRhu8uPrtwkmUZYtky-deome1SXAYYqhpt0V3bIc0LfXaQ_4zEVRfyg2n-BGc2juqUMLu35Azo-nZ5NZ0Ao_BFoAgAzylAGQcJEODbdGxABZLMvBx-aCs1yFPFNx5JIsVdzE8FntsgRZ_ZWOc6FCk0QPyaCsSvuY0Cg1sKYLY0LHRCJCMD-dcpPqREG71AxJ0A271C0rOopzrKTnc-YSx0H24zAkL_v6nz0fyB9r7qEVSUAySMerMW5J15Kh2hFjQ7LfGZdsV4215Cj8Dhgxg-LnfTGMLv7EyUtbbbBOygCyRpEYkkfeKPuOoJhANorh0bwxrb_0UI6X82l_9uRfGj0jO7Ozk4VczJdv9sgtuB7hrzaW7JNB_WVjDwCx1eppMyd_AgFJOno |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9MwELdQJwEviPG32wAjIfFkLbGdJnmsSqsVSlVpTNqbFcf2qFScaW0fxhMfgY-yz8Qn4S5OslUCIfGWxHZs6Xy-n-273xHyLoqcBbtumMldwuTAJqzgzjGLXOEaypzGc8jP88HJmfx4npzfieIP_BDdgRtqRr1eo4JfGnd8SxqKEdiwv-Ngo2oS0z288UOnLi4X3ZYLZmeILxKCYRr6lrYx4se77XfMUq8C9foT5NxFsLUJmjwmjxrsSIdB2PvknvVPyINRm7LtKbkZ0tOOmZmii-A1rTwFjEcDS_GaVo6eVis8h_UX9RM6UtDCGzo0pvYjWtOlpzM0ccvv1lB0BPn14-cIwxt9w7FLxyF5zuoagCpFJ9D2S9nwD9DFbUAC9jlbbr4ut9_gR1NoHkg9YY_-jJxNxl9GJ6xJycBKCdCOFVkMJt6JMjLcGpkAmLBxAdavkDwudMRznQiX5pnmJoENr8tT5NvXZVJIHZlUPCc9X3n7klCRGVhtpTGRi2UqI5gYZcZNVqYa2mWmT1grEVU2fOWYNmOlAtMyVyhB1UmwT9539S8DU8dfax6igBVgDCTKLdGjqNyoGPMQxXGfHLVyV40-rxXHlOyA3nIoftsVg3TxeqXwttpinSwGMCmE7JMXYb50A0Ga_3yQQNe8nkD_GKEazqfj7u3gfxq9IfcXHyZqNp1_OiQP4bPAO7A4PSK9zdXWvgIotdGva235DfbQF9I |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Systematic+Study+on+the+Effects+of+Solvating+Solvents+and+Additives+in+Localized+High%E2%80%90Concentration+Electrolytes+over+Electrochemical+Performance+of+Lithium%E2%80%90Ion+Batteries&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Jia%2C+Hao&rft.au=Ju%E2%80%90Myung+Kim&rft.au=Gao%2C+Peiyuan&rft.au=Xu%2C+Yaobin&rft.date=2023-04-17&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=62&rft.issue=17&rft_id=info:doi/10.1002%2Fanie.202218005&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |