Multiple imputation methods for inference on cumulative incidence with missing cause of failure
Analysis of cumulative incidence (sometimes called absolute risk or crude risk) can be difficult if the cause of failure is missing for some subjects. Assuming missingness is random conditional on the observed data, we develop asymptotic theory for multiple imputation methods to estimate cumulative...
Saved in:
Published in | Biometrical journal Vol. 53; no. 6; pp. 974 - 993 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
WILEY-VCH Verlag
01.11.2011
WILEY‐VCH Verlag Wiley-VCH Wiley - VCH Verlag GmbH & Co. KGaA |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Analysis of cumulative incidence (sometimes called absolute risk or crude risk) can be difficult if the cause of failure is missing for some subjects. Assuming missingness is random conditional on the observed data, we develop asymptotic theory for multiple imputation methods to estimate cumulative incidence. Covariates affect cause‐specific hazards in our model, and we assume that separate proportional hazards models hold for each cause‐specific hazard. Simulation studies show that procedures based on asymptotic theory have near nominal operating characteristics in cohorts of 200 and 400 subjects, both for cumulative incidence and for prediction error. The methods are illustrated with data on survival after breast cancer, obtained from the National Surgical Adjuvant Breast and Bowel Project (NSABP). |
---|---|
AbstractList | Analysis of cumulative incidence (sometimes called absolute risk or crude risk) can be difficult if the cause of failure is missing for some subjects. Assuming missingness is random conditional on the observed data, we develop asymptotic theory for multiple imputation methods to estimate cumulative incidence. Covariates affect cause‐specific hazards in our model, and we assume that separate proportional hazards models hold for each cause‐specific hazard. Simulation studies show that procedures based on asymptotic theory have near nominal operating characteristics in cohorts of 200 and 400 subjects, both for cumulative incidence and for prediction error. The methods are illustrated with data on survival after breast cancer, obtained from the National Surgical Adjuvant Breast and Bowel Project (NSABP). Analysis of cumulative incidence (sometimes called absolute risk or crude risk) can be difficult if the cause of failure is missing for some subjects. Assuming missingness is random conditional on the observed data, we develop asymptotic theory for multiple imputation methods to estimate cumulative incidence. Covariates affect cause-specific hazards in our model, and we assume that separate proportional hazards models hold for each cause-specific hazard. Simulation studies show that procedures based on asymptotic theory have near nominal operating characteristics in cohorts of 200 and 400 subjects, both for cumulative incidence and for prediction error. The methods are illustrated with data on survival after breast cancer, obtained from the National Surgical Adjuvant Breast and Bowel Project (NSABP).Analysis of cumulative incidence (sometimes called absolute risk or crude risk) can be difficult if the cause of failure is missing for some subjects. Assuming missingness is random conditional on the observed data, we develop asymptotic theory for multiple imputation methods to estimate cumulative incidence. Covariates affect cause-specific hazards in our model, and we assume that separate proportional hazards models hold for each cause-specific hazard. Simulation studies show that procedures based on asymptotic theory have near nominal operating characteristics in cohorts of 200 and 400 subjects, both for cumulative incidence and for prediction error. The methods are illustrated with data on survival after breast cancer, obtained from the National Surgical Adjuvant Breast and Bowel Project (NSABP). |
Author | Lee, Minjung Gail, Mitchell H. Feuer, Eric J. Cronin, Kathleen A. Dignam, James J. |
Author_xml | – sequence: 1 givenname: Minjung surname: Lee fullname: Lee, Minjung email: leem5@mail.nih.gov organization: Data Analysis and Interpretation Branch, Division of Cancer Control and Population Studies, National Cancer Institute, Bethesda, MD 20852, USA – sequence: 2 givenname: Kathleen A. surname: Cronin fullname: Cronin, Kathleen A. organization: Data Analysis and Interpretation Branch, Division of Cancer Control and Population Studies, National Cancer Institute, Bethesda, MD 20852, USA – sequence: 3 givenname: Mitchell H. surname: Gail fullname: Gail, Mitchell H. organization: Biostatistics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892, USA – sequence: 4 givenname: James J. surname: Dignam fullname: Dignam, James J. organization: Department of Health Studies, University of Chicago, Chicago, IL 60637, USA – sequence: 5 givenname: Eric J. surname: Feuer fullname: Feuer, Eric J. organization: Statistical Methodology and Applications Branch, Division of Cancer Control and Population Studies, National Cancer Institute, Bethesda, MD 20852, USA |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24790484$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/22028204$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0dFv1CAcB3BiZtxt-uqjaWKMTz2BQmkfvalzZtNoZvZIKP3hOCm9QXHuv5ezt2mWGF9KA58vId_fAdrzoweEnhK8JBjTV50d1kuK8z8mgj9AC8IpKRmu6j20wBWtyqphYh8dxLjOpsWMPkL7lGLaUMwWSJ4lN9mNg8IOmzSpyY6-GGC6HPtYmDEU1hsI4DUU-UCnIblsfmTute1_71_b6bIYbIzWfyu0SjFTUxhlXQrwGD00ykV4slsP0dd3b8-P3penn45Pjl6flpoxzEvODO8E0VrwphGmF7Tjvag7pgnHtBMtwS03lWqgph3QDhvRc0IZ1Dh_uK4O0cv53k0YrxLESeYXaXBOeRhTlC2uCGtaRrJ8fk-uxxR8fpykTIhacN5u1bOdSt0AvdwEO6hwI2-by-DFDqiolTNB5ULiH8dE7rrZOjY7HcYYAxip7VzzFHJFkmC5HaTcDlLeDTLHlvditzf_M9DOgWvr4OY_Wq5Ozj78nS3nrI0T_LzLqvBd1qLK_OLjseSri_rz6vyN_FL9Atpqvoo |
CODEN | BIJODN |
CitedBy_id | crossref_primary_10_1080_10485252_2023_2219787 crossref_primary_10_1111_biom_12295 crossref_primary_10_1002_sim_4454 crossref_primary_10_1002_sim_6258 crossref_primary_10_1186_s12874_019_0856_z crossref_primary_10_1002_sim_5755 crossref_primary_10_1186_s12874_015_0048_4 crossref_primary_10_1214_14_EJS876 crossref_primary_10_1002_sim_10084 crossref_primary_10_1177_09622802211037075 |
Cites_doi | 10.1002/(SICI)1097-0258(19961030)15:20<2191::AID-SIM358>3.0.CO;2-D 10.1093/biomet/92.4.875 10.1002/sim.4133 10.1080/01621459.1998.10474113 10.1111/j.2517-6161.1972.tb00899.x 10.1093/biomet/82.4.821 10.2307/2529620 10.1002/9780470316696 10.1093/biomet/89.1.238 10.1093/biomet/85.4.935 10.2307/2530374 10.1002/sim.3516 10.1200/JCO.1997.15.5.1858 10.2307/2337051 10.1111/j.0006-341X.2001.01191.x 10.1093/biomet/63.3.581 10.1002/bimj.201000073 10.2307/2534009 10.1200/JCO.1999.17.11.3374 10.1080/01621459.1999.10474144 10.1002/cncr.24617 10.1214/aos/1176345976 10.1002/sim.3894 |
ContentType | Journal Article |
Copyright | Copyright © 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2015 INIST-CNRS 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Copyright Wiley - VCH Verlag GmbH & Co. KGaA Nov 2011 |
Copyright_xml | – notice: Copyright © 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2015 INIST-CNRS – notice: 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. – notice: Copyright Wiley - VCH Verlag GmbH & Co. KGaA Nov 2011 |
DBID | BSCLL AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7QO 8FD FR3 K9. P64 7X8 |
DOI | 10.1002/bimj.201000175 |
DatabaseName | Istex CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) CrossRef MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Statistics Mathematics |
EISSN | 1521-4036 |
EndPage | 993 |
ExternalDocumentID | 22028204 24790484 10_1002_bimj_201000175 BIMJ201000175 ark_67375_WNG_5BW6QBTD_R |
Genre | article Journal Article |
GrantInformation_xml | – fundername: National Institute of Health funderid: U10‐CA12027; U10‐CA37377; U10‐CA69651; U10‐CA69974 |
GroupedDBID | --- -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23N 3-9 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHMBA AI. AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 DUUFO EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M67 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO ROL RWI RX1 RYL SAMSI SUPJJ SV3 TN5 UB1 V2E VH1 W8V W99 WBKPD WIB WIH WIK WJL WOHZO WQJ WRC WUP WWH WXSBR WYISQ XBAML XG1 XPP XV2 Y6R YHZ ZZTAW ~IA ~WT AAHQN AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX AEYWJ AGHNM AGQPQ AGYGG AMVHM CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY IQODW CGR CUY CVF ECM EIF NPM 7QO 8FD FR3 K9. P64 7X8 |
ID | FETCH-LOGICAL-c4405-54f5b71cc75887fd72b5d76b4c1502b791095f3a8e62be2b0f7d5124e6024e5c3 |
IEDL.DBID | DR2 |
ISSN | 0323-3847 1521-4036 |
IngestDate | Fri Jul 11 07:03:06 EDT 2025 Fri Jul 25 10:45:50 EDT 2025 Thu Apr 03 07:05:46 EDT 2025 Mon Jul 21 09:12:44 EDT 2025 Thu Apr 24 23:00:09 EDT 2025 Tue Jul 01 05:20:58 EDT 2025 Wed Jan 22 16:32:01 EST 2025 Wed Oct 30 09:57:51 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Biometrics Conditional distribution Breast disease Error estimation Missing at random Prediction theory Competing risks Covariate Stochastic process Statistical simulation Survival data Proportional hazards model Hazard function Competing risk Life science Prediction Statistical estimation Breast cancer Statistical method Cause-specific hazard function Counting process Observation data Filtering theory Asymptotic approximation Multiple imputation |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4405-54f5b71cc75887fd72b5d76b4c1502b791095f3a8e62be2b0f7d5124e6024e5c3 |
Notes | istex:CB9551C8C0727A5FD35D132A73A07B466F522605 National Institute of Health - No. U10-CA12027; No. U10-CA37377; No. U10-CA69651; No. U10-CA69974 ark:/67375/WNG-5BW6QBTD-R ArticleID:BIMJ201000175 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 22028204 |
PQID | 2477675591 |
PQPubID | 105592 |
PageCount | 20 |
ParticipantIDs | proquest_miscellaneous_903148941 proquest_journals_2477675591 pubmed_primary_22028204 pascalfrancis_primary_24790484 crossref_citationtrail_10_1002_bimj_201000175 crossref_primary_10_1002_bimj_201000175 wiley_primary_10_1002_bimj_201000175_BIMJ201000175 istex_primary_ark_67375_WNG_5BW6QBTD_R |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 2011 |
PublicationDateYYYYMMDD | 2011-11-01 |
PublicationDate_xml | – month: 11 year: 2011 text: November 2011 |
PublicationDecade | 2010 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim – name: Germany |
PublicationTitle | Biometrical journal |
PublicationTitleAlternate | Biom. J |
PublicationYear | 2011 |
Publisher | WILEY-VCH Verlag WILEY‐VCH Verlag Wiley-VCH Wiley - VCH Verlag GmbH & Co. KGaA |
Publisher_xml | – name: WILEY-VCH Verlag – name: WILEY‐VCH Verlag – name: Wiley-VCH – name: Wiley - VCH Verlag GmbH & Co. KGaA |
References | Andersen, J., Goetghebeur, E. and Ryan, L. ( 1996). Missing cause of death information in the analysis of survival data. Statistics in Medicine 15, 2191-2201. Cox, D. R. ( 1972). Regression models and life-tables (with discussion). Journal of the Royal Statistical Society, Series A 34, 187-220. Fisher, B., Anderson, S., Wickerham, D. L., DeCillis, A., Dimitrov, N., Mamounas, E., Wolmark, N., Pugh, R., Atkins, J. N., Meyers, F. J., Abramson, N., Wolter, J., Bornstein, R. S., Levy, L., Romond, E. H., Caggiano, V., Grimaldi, M., Jochimsen, P. and Deckers, P. ( 1997). Increased intensification and total dose of cyclophosphamide in a doxorubicin-cyclophosphamide regimen for the treatment of primary breast cancer: findings from National Surgical Adjuvant Breast and Bowel Project B-22. Journal of Clinical Oncology 15, 1858-1869. Aalen, O. and Johansen, S. ( 1978). An empirical transition matrix for non-homogeneous Markov chains based on censored observations. Scandinavian Journal of Statistics 5, 141-150. Cheng, S. C., Fine, J. P. and Wei, L. J. ( 1998). Prediction of cumulative incidence function under the proportional hazards model. Biometrics 54, 219-228. Goetghebeur, E. and Ryan, L. ( 1995). Analysis of competing risks survival data when some failure types are missing. Biometrika 82, 821-834. Beyersmann, J., Latouche, A., Buchholz, A. and Schumacher, M. ( 2009). Simulating competing risks data in survival analysis. Statistics in Medicine 8, 956-971. Rubin, D. B. ( 1987). Multiple Imputation for Nonresponse in Surveys. Wiley, New York. van der Vaart, A. W. ( 2000). Asymptotic Statistics. Cambridge University Press, Cambridge. Fine, J. P. and Gray, R. J. ( 1999). A proportional hazards model for the subdistribution of a competing risk. Journal of the American Statistical Association 94, 496-509. Sen, A., Banerjee, M., Li, Y. and Noone, A.-M. ( 2010). A Bayesian approach to competing risks analysis with masked cause of death. Statistics in Medicine 29, 1681-1695. Breslow, N. E. ( 1974). Covariance analysis of censored survival data. Biometrics 30, 89-99. Bakoyannis, G., Siannis, F. and Touloumi, G. ( 2010). Modelling competing risks data with missing cause of failure. Statistics in Medicine 29, 3172-3185. Lu, K. and Tsiatis, A. A. ( 2001). Multiple imputation methods for estimating regression coefficients in the competing risks model with missing cause of failure. Biometrics 57, 1191-1197. Tsiatis, A. A., Davidian, M. and Mcneney, B. ( 2002). Multiple imputation methods for testing treatment differences in survival distributions with missing cause of failure. Biometrika 89, 238-244. Fisher, B., Anderson, S., DeCillis, A., Dimitrov, N., Atkins, J. N., Fehrenbacher, L., Henry, P. H., Romond, E. H., Lanier, K. S., Davila, E., Kardinal, C. G., Laufman, L., Pierce, H. I., Abramson, N., Keller, A. M., Hamm, J. T., Wickerham, D. L., Begovic, M., Tan-Chiu, E., Tian, W. and Wolmark, N. ( 1999). Further evaluation of intensified and increased total dose of cyclophosphamide for the treatment of primary breast cancer: findings from National Surgical Adjuvant Breast and Bowel Project B-25. Journal of Clinical Oncology 17, 13374-3388. Prentice, R. L., Kalbfleisch, J. D., Peterson, A. V., Flournoy, N., Farewell, V. T. and Breslow, N. E. ( 1978). The analysis of failure times in the presence of competing risks. Biometrics 34, 541-554. Andersen, P. K. and Gill, R. D. ( 1982). Cox's regression model for counting processes: a large sample study. Annals of Statistics 10, 1100-1120. Satten, G. A., Datta, S. and Williamson, J. M. ( 1998). Inference based on imputed failure times for the proportional hazards model with interval-censored data. Journal of the American Statistical Association 93, 318-327. Schoop, R., Beyersmann, J., Schumacher, M. and Binder, H. ( 2011). Quantifying the predictive accuracy of time-to-event models in the presence of competing risks. Biometrical Journal 53, 88-112. Dignam, J. J., Huang, L., Ries, L., Reichman, M., Mariotto, A. and Feuer, E. ( 2009). Estimating breast cancer-specific and other-cause mortality in clinical trial and population-based cancer registry cohorts. Cancer 115, 5272-5283. Rubin, D. B. ( 1976). Inference and missing data. Biometrika 63, 581-592. Gao, G. and Tsiatis, A. A. ( 2005). Semiparametric estimators for the regression coefficients in the linear transformation competing risks model with missing cause of failure. Biometrika 92, 875-891. Lin, D. Y., Fleming, T. R. and Wei, L. J. ( 1994). Confidence bands for survival curves under the proportional hazards model. Biometrika 81, 73-81. Wang, N. and Robins, J. M. ( 1998). Large sample inference in parametric multiple imputation. Biometrika 85, 935-948. Lu, W. and Liang, Y. ( 2008). Analysis of competing risks data with missing cause of failure under additive hazards model. Statistica Sinica 18, 219-234. 1976; 63 1974; 30 1978; 34 2008; 18 1982; 10 2011; 53 1978; 5 1994; 81 1998; 85 1996; 15 2009; 115 1995; 82 2000 2010; 29 1997; 15 1999; 17 2002; 89 1987 2009; 8 2005; 92 1999; 94 1998; 93 1998; 54 1972; 34 2001; 57 e_1_2_10_23_1 e_1_2_10_24_1 e_1_2_10_21_1 e_1_2_10_22_1 e_1_2_10_20_1 van der Vaart A. W. (e_1_2_10_26_1) 2000 Aalen O. (e_1_2_10_2_1) 1978; 5 Lu W. (e_1_2_10_18_1) 2008; 18 e_1_2_10_4_1 e_1_2_10_3_1 Cox D. R. (e_1_2_10_9_1) 1972; 34 e_1_2_10_19_1 e_1_2_10_6_1 e_1_2_10_16_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_8_1 e_1_2_10_14_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_12_1 e_1_2_10_13_1 e_1_2_10_10_1 e_1_2_10_11_1 e_1_2_10_27_1 e_1_2_10_25_1 |
References_xml | – reference: Prentice, R. L., Kalbfleisch, J. D., Peterson, A. V., Flournoy, N., Farewell, V. T. and Breslow, N. E. ( 1978). The analysis of failure times in the presence of competing risks. Biometrics 34, 541-554. – reference: Aalen, O. and Johansen, S. ( 1978). An empirical transition matrix for non-homogeneous Markov chains based on censored observations. Scandinavian Journal of Statistics 5, 141-150. – reference: Sen, A., Banerjee, M., Li, Y. and Noone, A.-M. ( 2010). A Bayesian approach to competing risks analysis with masked cause of death. Statistics in Medicine 29, 1681-1695. – reference: Rubin, D. B. ( 1976). Inference and missing data. Biometrika 63, 581-592. – reference: Tsiatis, A. A., Davidian, M. and Mcneney, B. ( 2002). Multiple imputation methods for testing treatment differences in survival distributions with missing cause of failure. Biometrika 89, 238-244. – reference: Dignam, J. J., Huang, L., Ries, L., Reichman, M., Mariotto, A. and Feuer, E. ( 2009). Estimating breast cancer-specific and other-cause mortality in clinical trial and population-based cancer registry cohorts. Cancer 115, 5272-5283. – reference: Satten, G. A., Datta, S. and Williamson, J. M. ( 1998). Inference based on imputed failure times for the proportional hazards model with interval-censored data. Journal of the American Statistical Association 93, 318-327. – reference: van der Vaart, A. W. ( 2000). Asymptotic Statistics. Cambridge University Press, Cambridge. – reference: Breslow, N. E. ( 1974). Covariance analysis of censored survival data. Biometrics 30, 89-99. – reference: Gao, G. and Tsiatis, A. A. ( 2005). Semiparametric estimators for the regression coefficients in the linear transformation competing risks model with missing cause of failure. Biometrika 92, 875-891. – reference: Goetghebeur, E. and Ryan, L. ( 1995). Analysis of competing risks survival data when some failure types are missing. Biometrika 82, 821-834. – reference: Lu, W. and Liang, Y. ( 2008). Analysis of competing risks data with missing cause of failure under additive hazards model. Statistica Sinica 18, 219-234. – reference: Cox, D. R. ( 1972). Regression models and life-tables (with discussion). Journal of the Royal Statistical Society, Series A 34, 187-220. – reference: Wang, N. and Robins, J. M. ( 1998). Large sample inference in parametric multiple imputation. Biometrika 85, 935-948. – reference: Andersen, J., Goetghebeur, E. and Ryan, L. ( 1996). Missing cause of death information in the analysis of survival data. Statistics in Medicine 15, 2191-2201. – reference: Cheng, S. C., Fine, J. P. and Wei, L. J. ( 1998). Prediction of cumulative incidence function under the proportional hazards model. Biometrics 54, 219-228. – reference: Rubin, D. B. ( 1987). Multiple Imputation for Nonresponse in Surveys. Wiley, New York. – reference: Fisher, B., Anderson, S., DeCillis, A., Dimitrov, N., Atkins, J. N., Fehrenbacher, L., Henry, P. H., Romond, E. H., Lanier, K. S., Davila, E., Kardinal, C. G., Laufman, L., Pierce, H. I., Abramson, N., Keller, A. M., Hamm, J. T., Wickerham, D. L., Begovic, M., Tan-Chiu, E., Tian, W. and Wolmark, N. ( 1999). Further evaluation of intensified and increased total dose of cyclophosphamide for the treatment of primary breast cancer: findings from National Surgical Adjuvant Breast and Bowel Project B-25. Journal of Clinical Oncology 17, 13374-3388. – reference: Lin, D. Y., Fleming, T. R. and Wei, L. J. ( 1994). Confidence bands for survival curves under the proportional hazards model. Biometrika 81, 73-81. – reference: Andersen, P. K. and Gill, R. D. ( 1982). Cox's regression model for counting processes: a large sample study. Annals of Statistics 10, 1100-1120. – reference: Fisher, B., Anderson, S., Wickerham, D. L., DeCillis, A., Dimitrov, N., Mamounas, E., Wolmark, N., Pugh, R., Atkins, J. N., Meyers, F. J., Abramson, N., Wolter, J., Bornstein, R. S., Levy, L., Romond, E. H., Caggiano, V., Grimaldi, M., Jochimsen, P. and Deckers, P. ( 1997). Increased intensification and total dose of cyclophosphamide in a doxorubicin-cyclophosphamide regimen for the treatment of primary breast cancer: findings from National Surgical Adjuvant Breast and Bowel Project B-22. Journal of Clinical Oncology 15, 1858-1869. – reference: Lu, K. and Tsiatis, A. A. ( 2001). Multiple imputation methods for estimating regression coefficients in the competing risks model with missing cause of failure. Biometrics 57, 1191-1197. – reference: Beyersmann, J., Latouche, A., Buchholz, A. and Schumacher, M. ( 2009). Simulating competing risks data in survival analysis. Statistics in Medicine 8, 956-971. – reference: Fine, J. P. and Gray, R. J. ( 1999). A proportional hazards model for the subdistribution of a competing risk. Journal of the American Statistical Association 94, 496-509. – reference: Schoop, R., Beyersmann, J., Schumacher, M. and Binder, H. ( 2011). Quantifying the predictive accuracy of time-to-event models in the presence of competing risks. Biometrical Journal 53, 88-112. – reference: Bakoyannis, G., Siannis, F. and Touloumi, G. ( 2010). Modelling competing risks data with missing cause of failure. Statistics in Medicine 29, 3172-3185. – volume: 94 start-page: 496 year: 1999 end-page: 509 article-title: A proportional hazards model for the subdistribution of a competing risk publication-title: Journal of the American Statistical Association – volume: 15 start-page: 1858 year: 1997 end-page: 1869 article-title: Increased intensification and total dose of cyclophosphamide in a doxorubicin‐cyclophosphamide regimen for the treatment of primary breast cancer: findings from National Surgical Adjuvant Breast and Bowel Project B‐22 publication-title: Journal of Clinical Oncology – volume: 18 start-page: 219 year: 2008 end-page: 234 article-title: Analysis of competing risks data with missing cause of failure under additive hazards model publication-title: Statistica Sinica – volume: 81 start-page: 73 year: 1994 end-page: 81 article-title: Confidence bands for survival curves under the proportional hazards model publication-title: Biometrika – volume: 54 start-page: 219 year: 1998 end-page: 228 article-title: Prediction of cumulative incidence function under the proportional hazards model publication-title: Biometrics – volume: 8 start-page: 956 year: 2009 end-page: 971 article-title: Simulating competing risks data in survival analysis publication-title: Statistics in Medicine – year: 1987 – volume: 34 start-page: 541 year: 1978 end-page: 554 article-title: The analysis of failure times in the presence of competing risks publication-title: Biometrics – volume: 29 start-page: 1681 year: 2010 end-page: 1695 article-title: A Bayesian approach to competing risks analysis with masked cause of death publication-title: Statistics in Medicine – year: 2000 – volume: 89 start-page: 238 year: 2002 end-page: 244 article-title: Multiple imputation methods for testing treatment differences in survival distributions with missing cause of failure publication-title: Biometrika – volume: 115 start-page: 5272 year: 2009 end-page: 5283 article-title: Estimating breast cancer‐specific and other‐cause mortality in clinical trial and population‐based cancer registry cohorts publication-title: Cancer – volume: 63 start-page: 581 year: 1976 end-page: 592 article-title: Inference and missing data publication-title: Biometrika – volume: 53 start-page: 88 year: 2011 end-page: 112 article-title: Quantifying the predictive accuracy of time‐to‐event models in the presence of competing risks publication-title: Biometrical Journal – volume: 57 start-page: 1191 year: 2001 end-page: 1197 article-title: Multiple imputation methods for estimating regression coefficients in the competing risks model with missing cause of failure publication-title: Biometrics – volume: 34 start-page: 187 year: 1972 end-page: 220 article-title: Regression models and life‐tables (with discussion) publication-title: Journal of the Royal Statistical Society, Series A – volume: 29 start-page: 3172 year: 2010 end-page: 3185 article-title: Modelling competing risks data with missing cause of failure publication-title: Statistics in Medicine – volume: 10 start-page: 1100 year: 1982 end-page: 1120 article-title: Cox's regression model for counting processes: a large sample study publication-title: Annals of Statistics – volume: 85 start-page: 935 year: 1998 end-page: 948 article-title: Large sample inference in parametric multiple imputation publication-title: Biometrika – volume: 30 start-page: 89 year: 1974 end-page: 99 article-title: Covariance analysis of censored survival data publication-title: Biometrics – volume: 17 year: 1999 article-title: Further evaluation of intensified and increased total dose of cyclophosphamide for the treatment of primary breast cancer: findings from National Surgical Adjuvant Breast and Bowel Project B‐25 publication-title: Journal of Clinical Oncology – volume: 15 start-page: 2191 year: 1996 end-page: 2201 article-title: Missing cause of death information in the analysis of survival data publication-title: Statistics in Medicine – volume: 5 start-page: 141 year: 1978 end-page: 150 article-title: An empirical transition matrix for non‐homogeneous Markov chains based on censored observations publication-title: Scandinavian Journal of Statistics – volume: 82 start-page: 821 year: 1995 end-page: 834 article-title: Analysis of competing risks survival data when some failure types are missing publication-title: Biometrika – volume: 93 start-page: 318 year: 1998 end-page: 327 article-title: Inference based on imputed failure times for the proportional hazards model with interval‐censored data publication-title: Journal of the American Statistical Association – volume: 92 start-page: 875 year: 2005 end-page: 891 article-title: Semiparametric estimators for the regression coefficients in the linear transformation competing risks model with missing cause of failure publication-title: Biometrika – volume-title: Asymptotic Statistics year: 2000 ident: e_1_2_10_26_1 – ident: e_1_2_10_4_1 doi: 10.1002/(SICI)1097-0258(19961030)15:20<2191::AID-SIM358>3.0.CO;2-D – ident: e_1_2_10_14_1 doi: 10.1093/biomet/92.4.875 – ident: e_1_2_10_5_1 doi: 10.1002/sim.4133 – ident: e_1_2_10_22_1 doi: 10.1080/01621459.1998.10474113 – volume: 34 start-page: 187 year: 1972 ident: e_1_2_10_9_1 article-title: Regression models and life‐tables (with discussion) publication-title: Journal of the Royal Statistical Society, Series A doi: 10.1111/j.2517-6161.1972.tb00899.x – ident: e_1_2_10_15_1 doi: 10.1093/biomet/82.4.821 – ident: e_1_2_10_7_1 doi: 10.2307/2529620 – ident: e_1_2_10_21_1 doi: 10.1002/9780470316696 – ident: e_1_2_10_25_1 doi: 10.1093/biomet/89.1.238 – ident: e_1_2_10_27_1 doi: 10.1093/biomet/85.4.935 – ident: e_1_2_10_19_1 doi: 10.2307/2530374 – ident: e_1_2_10_6_1 doi: 10.1002/sim.3516 – ident: e_1_2_10_12_1 doi: 10.1200/JCO.1997.15.5.1858 – ident: e_1_2_10_16_1 doi: 10.2307/2337051 – ident: e_1_2_10_17_1 doi: 10.1111/j.0006-341X.2001.01191.x – ident: e_1_2_10_20_1 doi: 10.1093/biomet/63.3.581 – ident: e_1_2_10_23_1 doi: 10.1002/bimj.201000073 – ident: e_1_2_10_8_1 doi: 10.2307/2534009 – ident: e_1_2_10_13_1 doi: 10.1200/JCO.1999.17.11.3374 – ident: e_1_2_10_11_1 doi: 10.1080/01621459.1999.10474144 – volume: 5 start-page: 141 year: 1978 ident: e_1_2_10_2_1 article-title: An empirical transition matrix for non‐homogeneous Markov chains based on censored observations publication-title: Scandinavian Journal of Statistics – ident: e_1_2_10_10_1 doi: 10.1002/cncr.24617 – ident: e_1_2_10_3_1 doi: 10.1214/aos/1176345976 – ident: e_1_2_10_24_1 doi: 10.1002/sim.3894 – volume: 18 start-page: 219 year: 2008 ident: e_1_2_10_18_1 article-title: Analysis of competing risks data with missing cause of failure under additive hazards model publication-title: Statistica Sinica |
SSID | ssj0009042 |
Score | 1.977669 |
Snippet | Analysis of cumulative incidence (sometimes called absolute risk or crude risk) can be difficult if the cause of failure is missing for some subjects. Assuming... |
SourceID | proquest pubmed pascalfrancis crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 974 |
SubjectTerms | Applications Asymptotic methods Asymptotic properties Biology, psychology, social sciences Biometry - methods Breast cancer Breast Neoplasms - drug therapy Breast Neoplasms - epidemiology Cause-specific hazard function Clinical Trials as Topic Competing risks Counting process Exact sciences and technology Failure analysis Female General topics Hazards Humans Inference from stochastic processes; time series analysis Intestine Mathematics Middle Aged Missing at random Probability and statistics Probability theory and stochastic processes Proportional hazards model Risk Sciences and techniques of general use Statistical models Statistics Stochastic processes Survival Analysis |
Title | Multiple imputation methods for inference on cumulative incidence with missing cause of failure |
URI | https://api.istex.fr/ark:/67375/WNG-5BW6QBTD-R/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fbimj.201000175 https://www.ncbi.nlm.nih.gov/pubmed/22028204 https://www.proquest.com/docview/2477675591 https://www.proquest.com/docview/903148941 |
Volume | 53 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9RAEN8YjIkvfqIeItkHI0-F3nY_2kdPRSSBRAKBt81-NTmRg9ArQf96Z3bbnmckJPrY7GyTmc5Of93O_n6EvJU192ZcOah-pcm4Yi4zYyUzUUofhOR54WOD7IHcPeZ7p-L0t1P8iR9i2HDDlRHrNS5wY5vtBWmonZ5_i61ZWGjxlDk2bCEqOlzwR1U5T78RWJEVUId71sacbS9PX3or3ccA32CXpGkgUHVSuPgbBF1GtPGVtPOYmN6Z1IlyttXO7Zb7-QfP4_94-4Q86vAqfZ8S7Cm5F2bPyIOkYPnjOdH7XUMinaI6RHzMNKlSNxTwMJ32BwopDLj2PKqFXYM5OBvlTCnuBFPINty0oM60DZjWtDZTbJhfJcc7n44-7GadZkPmOGC_TPBaWDV2Dr5DSlV7xazwSlruAHkyqwCdVKIuTBkks4HZvFYeMAcPEsBCEK54QVZmF7PwitBQINefM855gBmlMbzgUJq9F65CfbQRyfpnpl1HaI66Gt91omJmGoOmh6CNyOZgf5moPG61fBdTYDAzV2fYAKeEPjn4rMXkRH6dHH3UhyOysZQjwwTGFeReyUdkvU8a3RWHBgeRQkdU4AIdhiHQ-K_GzMJF2-gKZQXKioPJy5Rri3sz_E7O4d4sZswdzujJl_294WrtXya9Jg_jVno8grlOVuZXbXgDWGxuN-J6-wVCBSjl |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELdgE4IXvmGFMfyA4Clb6vgjeaTA6MZaianTeLNsx5HKtg4tDQL-eu7sJFURCAkeI58j3eV8-fl8vh8hL2TFSzMsHES_3CRcMZeYoZKJyGXpheRpVoYC2akcn_DDT6KrJsS7MLE_RJ9ww5UR4jUucExI7626htr5xedQm4WRVlwnm0jrHXZVx6sOUkXK40ECy5IMInHXtzFle-vz1_5Lm2jib1gnaWowVRU5Ln4HQtcxbfgp7d8htlMn1qKc7TZLu-t-_NLp8b_0vUtut5CVvo4-do9c84v75EYksfz-gOhJW5NI50gQEb40jcTUNQVITOfdnUIKA665CIRhX0EctA2MphSTwRQcDvMW1JmmBtGKVmaONfMPycn-u9mbcdLSNiSOA_xLBK-EVUPnYCuSq6pUzIpSScsdgE9mFQCUQlSZyb1k1jObVqoE2MG9BLzghcsekY3F5cJvEeozbPfnjHMlII3cGJ5xiM5lKVyBFGkDknQfTbu2pzlSa5zr2I2ZaTSa7o02IK96-S-xm8cfJV8GH-jFzNUZ1sApoU-n77UYncqPo9lbfTwgO2tO0k9gXIHz5XxAtjuv0W18qHEQu-iIAlSg_TAYGo9rzMJfNrUukFkgLziIPI7Otno3w61yCu9mwWX-ooweHUwO-6cn_zLpObk5nk2O9NHB9MNTcitk1sONzG2ysbxq_DOAZku7ExbfT8QILQA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagFYgL78dCKT4gOKXNOn4kR5ZlaQtdQdWqvVmO7UhL6bZqNgj49czYSZZFICQ4Rh5Hmsl48sUZfx8hz2XFnRkWFqpfbhKumE3MUMlE5NJ5IXmaudAgO5U7R3zvRJz8dIo_8kP0G264MkK9xgV-4artJWloOTv7FFqzsNCKq2SdyzTHvB4fLAmkipTH_wgsSzIoxB1tY8q2V-evvJbWMcJfsU3S1BCpKkpc_A6DrkLa8E6a3CKm8ya2opxuNYtyy37_hejxf9y9TW62gJW-ihl2h1zx87vkWpSw_HaP6P22I5HOUB4iPGcaZalrCoCYzroThRQGbHMW5MK-gDk4G_RMKW4FU0g33LWg1jQ1mFa0MjPsmL9PjiZvDl_vJK1oQ2I5gL9E8EqUamgtfIjkqnKKlcIpWXIL0JOVCuBJIarM5F6y0rMyrZQD0MG9BLTghc0ekLX5-dw_ItRnSPZnjbUOcEZuDM841GbnhC1QIG1Aku6ZadsymqOwxmcduZiZxqDpPmgD8rK3v4hcHn-0fBFSoDczl6fYAaeEPp6-1WJ0LD-ODsf6YEA2V3Kkn8C4gtzL-YBsdEmj2-pQ4yBy6IgCXKD9MAQaf9aYuT9val2grkBecDB5GHNteW-GH8op3JuFjPmLM3q0u7_XXz3-l0nPyPUP44l-vzt994TcCNvq4TjmBllbXDb-KeCyRbkZlt4PLx4ruA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiple+imputation+methods+for+inference+on+cumulative+incidence+with+missing+cause+of+failure&rft.jtitle=Biometrical+journal&rft.au=LEE%2C+Minjung&rft.au=CRONIN%2C+Kathleen+A&rft.au=GAIL%2C+Mitchell+H&rft.au=DIGNAM%2C+James+J&rft.date=2011-11-01&rft.pub=Wiley-VCH&rft.issn=0323-3847&rft.volume=53&rft.issue=6&rft.spage=974&rft.epage=993&rft_id=info:doi/10.1002%2Fbimj.201000175&rft.externalDBID=n%2Fa&rft.externalDocID=24790484 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0323-3847&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0323-3847&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0323-3847&client=summon |