Squaramide‐Based 5’‐Phosphate Replacements Bind to the DNA Repair Exonuclease SNM1A

Phosphate groups are often crucial to biological activity and interactions of oligonucleotides, but confer poor membrane permeability. In addition, the group's lability to enzymatic hydrolysis is an obstacle to its use in therapeutics and in biological tools. We present the synthesis of N‐oxyam...

Full description

Saved in:
Bibliographic Details
Published inChemistrySelect (Weinheim) Vol. 3; no. 45; pp. 12824 - 12829
Main Authors Dürr, Eva‐Maria, Doherty, William, Lee, Sook Y., El‐Sagheer, Afaf H., Shivalingam, Arun, McHugh, Peter J., Brown, Tom, McGouran, Joanna F.
Format Journal Article
LanguageEnglish
Published Germany 06.12.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Phosphate groups are often crucial to biological activity and interactions of oligonucleotides, but confer poor membrane permeability. In addition, the group's lability to enzymatic hydrolysis is an obstacle to its use in therapeutics and in biological tools. We present the synthesis of N‐oxyamide and squaramide modifications at the 5’‐end of oligonucleotides as phosphate replacements and their biological evaluation using the 5’‐exonuclease SNM1A. The squaryl diamide modification showed minimal recognition as a 5’‐phosphate mimic; however, modest inhibition of SNM1A, postulated to occur through metal coordination at the active site, was observed. Their facile incorporation after solid‐phase synthesis and recognition by the exonuclease makes squaryl diamides attractive neutral 5’‐phosphate replacements for oligonucleotides. This work is the first example of squaryl diamide modifications at the 5’‐terminal position of oligonucleotides and of the potential use of modified oligonucleotides to bind to the metal center of SNM1A. 5’‐Modified oligonucleotides were examined as potential substrates and inhibitors for the exonuclease SNM1A. Squaramide modifications were introduced using a novel post‐solid phase methodology and showed a modest enhancement of inhibition. This work is the first example of squaryl diamide modifications at the 5’‐terminal position of oligonucleotides and the use of modified oligonucleotides with the potential to bind to the metal center of SNM1A.
AbstractList Phosphate groups are often crucial to biological activity and interactions of oligonucleotides, but confer poor membrane permeability. In addition, the group's lability to enzymatic hydrolysis is an obstacle to its use in therapeutics and in biological tools. We present the synthesis of -oxyamide and squaramide modifications at the 5'-end of oligonucleotides as phosphate replacements and their biological evaluation using the 5'-exonuclease SNM1A. The squaryl diamide modification showed minimal recognition as a 5'-phosphate mimic; however, modest inhibition of SNM1A, postulated to occur through metal coordination at the active site, was observed. Their facile incorporation after solid-phase synthesis and recognition by the exonuclease makes squaryl diamides attractive neutral 5'-phosphate replacements for oligonucleotides. This work is the first example of squaryl diamide modifications at the 5'-terminal position of oligonucleotides and of the potential use of modified oligonucleotides to bind to the metal center of SNM1A.
Phosphate groups are often crucial to biological activity and interactions of oligonucleotides, but confer poor membrane permeability. In addition, the group's lability to enzymatic hydrolysis is an obstacle to its use in therapeutics and in biological tools. We present the synthesis of N‐oxyamide and squaramide modifications at the 5’‐end of oligonucleotides as phosphate replacements and their biological evaluation using the 5’‐exonuclease SNM1A. The squaryl diamide modification showed minimal recognition as a 5’‐phosphate mimic; however, modest inhibition of SNM1A, postulated to occur through metal coordination at the active site, was observed. Their facile incorporation after solid‐phase synthesis and recognition by the exonuclease makes squaryl diamides attractive neutral 5’‐phosphate replacements for oligonucleotides. This work is the first example of squaryl diamide modifications at the 5’‐terminal position of oligonucleotides and of the potential use of modified oligonucleotides to bind to the metal center of SNM1A. 5’‐Modified oligonucleotides were examined as potential substrates and inhibitors for the exonuclease SNM1A. Squaramide modifications were introduced using a novel post‐solid phase methodology and showed a modest enhancement of inhibition. This work is the first example of squaryl diamide modifications at the 5’‐terminal position of oligonucleotides and the use of modified oligonucleotides with the potential to bind to the metal center of SNM1A.
Author Shivalingam, Arun
McHugh, Peter J.
Doherty, William
McGouran, Joanna F.
Brown, Tom
Dürr, Eva‐Maria
Lee, Sook Y.
El‐Sagheer, Afaf H.
Author_xml – sequence: 1
  givenname: Eva‐Maria
  surname: Dürr
  fullname: Dürr, Eva‐Maria
  organization: Trinity College Dublin
– sequence: 2
  givenname: William
  surname: Doherty
  fullname: Doherty, William
  organization: Trinity College Dublin
– sequence: 3
  givenname: Sook Y.
  surname: Lee
  fullname: Lee, Sook Y.
  organization: University of Oxford
– sequence: 4
  givenname: Afaf H.
  surname: El‐Sagheer
  fullname: El‐Sagheer, Afaf H.
  organization: Faculty of Petroleum and Mining Engineering, Suez University
– sequence: 5
  givenname: Arun
  surname: Shivalingam
  fullname: Shivalingam, Arun
  organization: University of Oxford
– sequence: 6
  givenname: Peter J.
  surname: McHugh
  fullname: McHugh, Peter J.
  organization: University of Oxford, John Radcliffe Hospital
– sequence: 7
  givenname: Tom
  surname: Brown
  fullname: Brown, Tom
  organization: University of Oxford
– sequence: 8
  givenname: Joanna F.
  orcidid: 0000-0002-9349-2141
  surname: McGouran
  fullname: McGouran, Joanna F.
  email: jmcgoura@tcd.ie
  organization: Trinity College Dublin
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31414040$$D View this record in MEDLINE/PubMed
BookMark eNpNUMtOwkAUnRiMILJ1aeYHivfOo7RLQHwkiEZw4aqZzkxDTV-2JciOT3Dr7_EllqDE1b3nkZOcc05aWZ5ZQi4R-gjArqtE130G6AHnA3lCOoy70nGl8Fv__jbpVdU7AKDruUwOzkibo0ABAjrkbf6xUqVKY2N326-Rqqyhcrf9bsDzMq-KpaotfbFForRNbVZXdBRnhtY5rZeW3syGe1HFJZ185tlKJ7ZJoPPZIw4vyGmkksr2fm-XvN5OFuN7Z_p09zAeTh0tBEhHGBsNhAIw6GFo_JAJn2kEX6CyLNJaKfS01A3HleSom7JKRwhRqA2PXN4lV4fcYhWm1gRFGaeq3AR_HRuDfzCs48RujjpCsB8x2I8YHEcM5tPx4oj4D8gNaaQ
CitedBy_id crossref_primary_10_1016_j_bmc_2021_116369
crossref_primary_10_1039_D4SC00367E
crossref_primary_10_1039_D3OB00836C
crossref_primary_10_1021_acsomega_0c03528
crossref_primary_10_1002_cmdc_202100603
crossref_primary_10_3390_molecules26020320
crossref_primary_10_1039_D1RA00205H
crossref_primary_10_1002_cbic_202200756
crossref_primary_10_1002_ange_201906737
crossref_primary_10_2174_0929867330666230313141452
crossref_primary_10_1002_anie_201906737
crossref_primary_10_1021_acs_chemrev_0c00416
crossref_primary_10_1021_acs_bioconjchem_4c00160
crossref_primary_10_1016_j_rechem_2023_100939
crossref_primary_10_1039_C9OB01133A
crossref_primary_10_1016_j_ejmech_2020_112872
crossref_primary_10_1016_j_chempr_2019_02_027
ContentType Journal Article
Copyright 2018 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
Copyright_xml – notice: 2018 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
DBID 24P
WIN
NPM
DOI 10.1002/slct.201803375
DatabaseName Open Access: Wiley-Blackwell Open Access Journals
Wiley Online Library Free Content
PubMed
DatabaseTitle PubMed
DatabaseTitleList PubMed

Database_xml – sequence: 1
  dbid: 24P
  name: Open Access: Wiley-Blackwell Open Access Journals
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2365-6549
EndPage 12829
ExternalDocumentID 31414040
SLCT201803375
Genre article
Journal Article
GrantInformation_xml – fundername: Wellcome Trust ISSF (JM & WD), Trinity College Dublin
  funderid: Grant (EMD) and UK BBSRC grants BB/J001694/2
– fundername: Cancer Research UK
  grantid: 24759
GroupedDBID 0R~
1OC
24P
33P
AAHHS
AANLZ
AAZKR
ABCUV
ABDBF
ACCFJ
ACCZN
ACGFS
ACPOU
ACXQS
ADBBV
ADKYN
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEQDE
AEUYR
AFBPY
AFFPM
AHBTC
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
BFHJK
BMXJE
DCZOG
EBS
EJD
HGLYW
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
O9-
ROL
SUPJJ
WIN
WOHZO
WXSBR
ZZTAW
NPM
ID FETCH-LOGICAL-c4405-4def74a00d181bd9b2492c10941ae2fccaa18c5c2c13a531c803acf10fbcd3f63
IEDL.DBID 24P
ISSN 2365-6549
IngestDate Sat Nov 02 12:28:43 EDT 2024
Sat Aug 24 00:51:26 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 45
Keywords Exonuclease
metalloenzyme
squaramide
5’-modification
oligonucleotide
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4405-4def74a00d181bd9b2492c10941ae2fccaa18c5c2c13a531c803acf10fbcd3f63
ORCID 0000-0002-9349-2141
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fslct.201803375
PMID 31414040
PageCount 6
ParticipantIDs pubmed_primary_31414040
wiley_primary_10_1002_slct_201803375_SLCT201803375
PublicationCentury 2000
PublicationDate December 6, 2018
PublicationDateYYYYMMDD 2018-12-06
PublicationDate_xml – month: 12
  year: 2018
  text: December 6, 2018
  day: 06
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
PublicationTitle ChemistrySelect (Weinheim)
PublicationTitleAlternate ChemistrySelect
PublicationYear 2018
References 2007; 107
2012; 287
2014; 538
2002; 9
2013; 42
2016; 124
2016; 52
1994
2011; 6
2011; 8
2017; , 45
2007; 35
2005; 2005
2018; 26
2016; 11
2012; 150
2017; 53
2018; 154
2014; 5
2012; 3
2002; 124
2015; 43
2017
2011; 25
2012; 44
2005; 12
References_xml – volume: 6
  start-page: 1094
  year: 2011
  end-page: 1106
  publication-title: ChemMedChem
– volume: 44
  start-page: 1718
  year: 2012
  end-page: 1724
  publication-title: Synthesis
– volume: 107
  start-page: 4746
  year: 2007
  end-page: 4796
  publication-title: Chem. Rev.
– volume: 43
  start-page: 2993
  year: 2015
  end-page: 3011
  publication-title: Nucleic Acids Res.
– volume: 26
  start-page: 1588
  year: 2018
  end-page: 1597
  publication-title: Bioorg. Med. Chem.
– volume: 2005
  start-page: 5163
  year: 2005
  end-page: 5170
  publication-title: Eur. J. Org. Chem.
– volume: 35
  start-page: 6115
  year: 2007
  end-page: 6123
  publication-title: Nucleic Acids Res.
– volume: 150
  start-page: 883
  year: 2012
  end-page: 894
  publication-title: Cell
– volume: 124
  start-page: 12715
  year: 2002
  end-page: 12724
  publication-title: J. Am. Chem. Soc.
– volume: 9
  start-page: 1631
  year: 2002
  end-page: 1653
  publication-title: Curr. Med. Chem.
– volume: 287
  start-page: 26254
  year: 2012
  end-page: 26267
  publication-title: J. Biol. Chem.
– volume: 124
  start-page: 200
  year: 2016
  end-page: 217
  publication-title: Eur. J. Med. Chem.
– volume: 52
  start-page: 9438
  year: 2016
  end-page: 9441
  publication-title: Chem. Commun.
– volume: 12
  start-page: 3127
  year: 2005
  end-page: 141
  publication-title: Curr. Med. Chem.
– volume: 5
  start-page: 603
  year: 2014
  end-page: 608
  publication-title: MedChemComm
– volume: 53
  start-page: 713
  year: 2017
  end-page: 715
  publication-title: Chem. Commun.
– volume: 43
  start-page: 11047
  year: 2015
  end-page: 11060
  publication-title: Nucleic Acids Res.
– volume: 25
  start-page: 1859
  year: 2011
  end-page: 1870
  publication-title: Genes Dev.
– volume: 8
  start-page: 1642
  year: 2011
  end-page: 1681
  publication-title: Chem. Biodiversity
– volume: 154
  start-page: 66
  year: 2018
  end-page: 86
  publication-title: Antiviral Res.
– start-page: 915
  year: 1994
  end-page: 916
  publication-title: J. Chem. Soc., Chem. Commun.
– volume: , 45
  start-page: 3528
  year: 2017
  end-page: 3536
  publication-title: Nucleic Acids Res.
– volume: 3
  start-page: 735
  year: 2012
  end-page: 751
  publication-title: MedChemComm
– volume: 52
  start-page: 6727
  year: 2016
  end-page: 6730
  publication-title: Chem. Commun.
– year: 2017
– volume: 11
  start-page: 953
  year: 2016
  end-page: 960
  publication-title: ACS Chem. Biol.
– volume: 538
  start-page: 217
  year: 2014
  end-page: 227
  publication-title: Gene
– volume: 42
  start-page: 8220
  year: 2013
  end-page: 8236
  publication-title: Chem. Soc. Rev.
SSID ssj0001686257
Score 2.220023
Snippet Phosphate groups are often crucial to biological activity and interactions of oligonucleotides, but confer poor membrane permeability. In addition, the group's...
SourceID pubmed
wiley
SourceType Index Database
Publisher
StartPage 12824
SubjectTerms 5’-modification
Exonuclease
metalloenzyme
oligonucleotide
squaramide
Title Squaramide‐Based 5’‐Phosphate Replacements Bind to the DNA Repair Exonuclease SNM1A
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fslct.201803375
https://www.ncbi.nlm.nih.gov/pubmed/31414040
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEN4oHvRifIuv7MFrQ_dV2iMghBhpSIAET812uw0k2iJg4pGf4NW_xy9xdsvLq5em20036Uym881k5huEHokKeGCqxBWgc4dzVzmSBdox6YbYNDb62lZbhF57wJ-HYrjTxV_wQ2wSbsYy7P_aGLiMZ5UtaejsTZlaSOK7jFXFPjoAbOOZGQaUd7dZFtMAYek-qSnn8iAaWjM3urTy94gdH7SLU62jaZ2g4xVCxLVCpadoT2dn6LCxHsx2jl57H6BX-T5O9HLxXQc3lGCxXPzAojvKZ5MRwEcMwNokyG0DG65D4I3nOQawh5_CmtmU4ylufuWZoTOGE3Av7JDaBRq0mv1G21lNSHAUiFU4PNFplUvXTcBRx0kQG_4_RSBkI1LTFLQjia-EgmdMgrUp-FKpUuKmsUpY6rFLVMryTF8jTINEAf6RPPYFr6YyZj4XAWOeRynRqSijq0I60aSgwYgY4Yabxy0jasW12SiYkGlkxBttxBv1Xhr9zermPy_doiNzb6tJvDtUmk8_9T1ggnn8YNUO17Db-QUg2a_4
link.rule.ids 314,780,784,11562,27924,27925,46052,46476
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEN4oHvBifIvPPXht6D5a2iMgBBUICZDoqdlut4FEKQImHvkJXv17_BJnWl5ePe5udpPO7HS-mcx8S8g90770sUpcAzq3pLS1pYRvLEw3hNjY6Jm02qLtNvry6cVZVRNiL0zGD7FOuKFlpP9rNHBMSBc3rKHTN43FkMyzhSg5u2RPurKEl5zLzibNgh0QKd8nx3ouF8KhFXWjzYt_j9hyQttANfU09UNysISItJzp9IjsmNExyVdXL7OdkNfuByhWvQ8js5h_V8APRdRZzH9g0Bkk0_EA8CMFZI0Z8rSDjVYg8qazhALaow_tMi6q4YTWvpIR8hnDCbTbbrHyKenXa71qw1o-kWBpkKtjycjEJalsOwJPHUZ-iASAmkHMxpThMahHMU87GuaEAnPT8KVKx8yOQx2J2BVnJDdKRuaCUO5HGgCQkqHnyFKsQuFJxxfCdTlnJnYK5DyTTjDOeDACwSSS89gFwlNxrRcyKmQeoHiDtXiDbrPaW48u_7PpjuQbvVYzaD62n6_IPs6npSXuNcnNJp_mBgDCLLxNr8AvnymyYA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEN4oJurF-Bafe_Da0H20tEeeQUVCAiR4arbbbSBRioCJR36CV_8ev8SZVh5ePe5uuklnOp1vZ2e-IeSeaV_6mCWuAZ1bUtraUsI3FoYbQixs9EyabdFyGz352Hf6G1X8GT_EKuCGlpH-r9HAx1FcWJOGTl815kIyzxai6GyTHbzhwx4GXLbXURYsgEjpPjmmc7lwGloyN9q88HeLDR-0iVNTR1M_JAe_CJGWMpUekS0zOiZ7lWVjthPy0nkHvaq3YWQW868yuKGIOov5Nwzag2Q6HgB8pACsMUCeFrDRMhy86SyhAPZotVXCRTWc0NpnMkI6Y9iBdlrPrHRKevVat9KwfjskWBrE6lgyMnFRKtuOwFGHkR8i_59mcGRjyvAYtKOYpx0Nc0KBtWl4U6VjZsehjkTsijOSGyUjc0Eo9yMN-EfJ0HNkMVah8KTjC-G6nDMTO3lynkknGGc0GIFgErl57DzhqbhWCxkTMg9QvMFKvEGnWemuRpf_eeiO7Lar9aD50Hq6Ivs4nSaWuNckN5t8mBuAB7PwNv0CfgCv2LGA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Squaramide%E2%80%90Based+5%E2%80%99%E2%80%90Phosphate+Replacements+Bind+to+the+DNA+Repair+Exonuclease+SNM1A&rft.jtitle=ChemistrySelect+%28Weinheim%29&rft.au=D%C3%BCrr%2C+Eva%E2%80%90Maria&rft.au=Doherty%2C+William&rft.au=Lee%2C+Sook+Y.&rft.au=El%E2%80%90Sagheer%2C+Afaf+H.&rft.date=2018-12-06&rft.issn=2365-6549&rft.eissn=2365-6549&rft.volume=3&rft.issue=45&rft.spage=12824&rft.epage=12829&rft_id=info:doi/10.1002%2Fslct.201803375&rft.externalDBID=10.1002%252Fslct.201803375&rft.externalDocID=SLCT201803375
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2365-6549&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2365-6549&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2365-6549&client=summon