Modeling and simulation of the discharge process of isothermal chamber to determine the isothermal characteristic

Isothermal chamber is filled with a certain density of high thermal conductivity porous material, which has a wide range of applications in the flow measurement of pneumatic field, and its isothermal characteristic is critical to its application results. In this paper, in order to improve the numeri...

Full description

Saved in:
Bibliographic Details
Published inJournal of Thermal Science and Technology Vol. 17; no. 1; p. 21-00353
Main Authors YANG, Lihong, MENG, Guoxiang, SHEN, Hangming
Format Journal Article
LanguageEnglish
Published Tokyo The Japan Society of Mechanical Engineers and The Heat Transfer Society of Japan 2022
Japan Science and Technology Agency
The Japan Society of Mechanical Engineers
Subjects
Online AccessGet full text
ISSN1880-5566
1880-5566
DOI10.1299/jtst.21-00353

Cover

Abstract Isothermal chamber is filled with a certain density of high thermal conductivity porous material, which has a wide range of applications in the flow measurement of pneumatic field, and its isothermal characteristic is critical to its application results. In this paper, in order to improve the numerical calculation accuracy of the isothermal characteristics during discharge process, a discharge model of isothermal chamber with fractal effective thermal conductivity (ETC) for determining the isothermal characteristic is reported. Firstly, the stuffer in isothermal chamber is considered as porous random fiber bundle, and an ETC prediction model of anisotropic porous random fiber bundle in both vertical and horizontal directions is established by fractal theory. This model with two directions is in good agreement with the experimental results, and the relative root mean square errors (RRMSE) are 3.94% and 9.85%, respectively. Secondly, the discharge model with fractal ETCs is built, and the isothermal characteristics of isothermal chambers with three different porosities are determined by numerical simulation. Finally, experiments to determine the isothermal characteristic are carried out. The numerical simulation results are in good agreement with the experimental results, and the relative errors are less than 3%. It could be concluded that accurately determining the ETC of the stuffer in isothermal chamber can improve the numerical calculation accuracy of the isothermal characteristic. Moreover, compared with the experimental method, numerical method is energy-saving and timesaving.
AbstractList Isothermal chamber is filled with a certain density of high thermal conductivity porous material, which has a wide range of applications in the flow measurement of pneumatic field, and its isothermal characteristic is critical to its application results. In this paper, in order to improve the numerical calculation accuracy of the isothermal characteristics during discharge process, a discharge model of isothermal chamber with fractal effective thermal conductivity (ETC) for determining the isothermal characteristic is reported. Firstly, the stuffer in isothermal chamber is considered as porous random fiber bundle, and an ETC prediction model of anisotropic porous random fiber bundle in both vertical and horizontal directions is established by fractal theory. This model with two directions is in good agreement with the experimental results, and the relative root mean square errors (RRMSE) are 3.94% and 9.85%, respectively. Secondly, the discharge model with fractal ETCs is built, and the isothermal characteristics of isothermal chambers with three different porosities are determined by numerical simulation. Finally, experiments to determine the isothermal characteristic are carried out. The numerical simulation results are in good agreement with the experimental results, and the relative errors are less than 3%. It could be concluded that accurately determining the ETC of the stuffer in isothermal chamber can improve the numerical calculation accuracy of the isothermal characteristic. Moreover, compared with the experimental method, numerical method is energy-saving and timesaving.
ArticleNumber 21-00353
Author YANG, Lihong
MENG, Guoxiang
SHEN, Hangming
Author_xml – sequence: 1
  fullname: YANG, Lihong
  organization: School of Mechanical Engineering, University of Shanghai for Science and Technology
– sequence: 1
  fullname: MENG, Guoxiang
  organization: School of Mechanical Engineering, Shanghai Jiao Tong University
– sequence: 1
  fullname: SHEN, Hangming
  organization: School of Mechanical Engineering, University of Shanghai for Science and Technology
BookMark eNp1kc1v3CAQxVGUSvloj70j5ewEDHjtY7RK2pUS5dKe0QDjDZbXJMAe8t8He7tRWqkXQPN7bxh4F-R0ChMS8p2za1533c2QU76uecWYUOKEnPO2ZZVSTXP66XxGLlIaGGualerOyetjcDj6aUthcjT53X6E7MNEQ0_zM1Lnk32GuEX6EoPFlGbgUygs7mCkBe4MRpoDdZhLzU-4GP_WRLAF-pS9_Uq-9DAm_PZnvyS_7-9-rX9WD08_Nuvbh8pKyUTFLUew0ignVSdMB4JJK9tWGZDcCUB0AMKuTOFGguGGWQ59YeBUp0Bcks2hrwsw6JfodxDfdACvl0KIWw2xzDOiblEBc9hIZXm5URineutM16DrwIi29Lo69Cqf8LrHlPUQ9nEq4-u64WqlZM1EUYmDysaQUsReW5-X38wR_Kg503NOes5J11wvORVX9Y_rOOv_9OuDfkgZtvihPj5mUfOV5vNydH3QOQuNk3gHWPizRw
CitedBy_id crossref_primary_10_3390_en16217306
crossref_primary_10_2298_TSCI230725237S
crossref_primary_10_1299_jtst_22_00397
Cites_doi 10.1155/2017/7905218
10.1016/j.applthermaleng.2004.03.010
10.1016/j.physleta.2017.08.003
10.1115/1.4006623
10.1016/j.precisioneng.2009.01.008
10.1016/S0263-2241(03)00003-4
10.1016/j.expthermflusci.2014.10.020
10.1016/j.msea.2015.02.017
10.1142/S0218348X01000804
10.2514/3.299
10.1016/S0017-9310(02)00014-5
10.5545/sv-jme.2015.3339
10.1016/j.applthermaleng.2015.04.035
10.4236/jfcmv.2015.34016
10.1007/s10765-011-1066-z
10.1016/j.expthermflusci.2012.11.019
10.1088/0957-0233/18/3/036
10.5739/jfps.50.25
10.1115/1.482439
10.1016/j.ijheatmasstransfer.2007.11.062
ContentType Journal Article
Copyright 2022 by The Japan Society of Mechanical Engineers and The Heat Transfer Society of Japan
2022. This work is published under https://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 by The Japan Society of Mechanical Engineers and The Heat Transfer Society of Japan
– notice: 2022. This work is published under https://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7TB
8FD
FR3
DOA
DOI 10.1299/jtst.21-00353
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Engineering Research Database
DatabaseTitleList
Technology Research Database

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
EISSN 1880-5566
EndPage 21-00353
ExternalDocumentID oai_doaj_org_article_8e5a0de645c14b53bd5fcdb96ed9ab38
10_1299_jtst_21_00353
article_jtst_17_1_17_21_00353_article_char_en
GroupedDBID 2WC
AENEX
ALMA_UNASSIGNED_HOLDINGS
CS3
DU5
GROUPED_DOAJ
HH5
JSF
JSH
KQ8
OK1
RJT
RZJ
TKC
AAYXX
CITATION
7TB
8FD
FR3
ID FETCH-LOGICAL-c4403-1c1eac4b5d4593b9a304c4885ba41d3aeedaa3c7bd45b4ab1b0c1af41dad595a3
IEDL.DBID DOA
ISSN 1880-5566
IngestDate Wed Aug 27 01:27:11 EDT 2025
Mon Jun 30 10:05:11 EDT 2025
Tue Jul 01 04:09:42 EDT 2025
Thu Apr 24 22:55:28 EDT 2025
Wed Sep 03 06:30:54 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4403-1c1eac4b5d4593b9a304c4885ba41d3aeedaa3c7bd45b4ab1b0c1af41dad595a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://doaj.org/article/8e5a0de645c14b53bd5fcdb96ed9ab38
PQID 2615754203
PQPubID 2006338
ParticipantIDs doaj_primary_oai_doaj_org_article_8e5a0de645c14b53bd5fcdb96ed9ab38
proquest_journals_2615754203
crossref_citationtrail_10_1299_jtst_21_00353
crossref_primary_10_1299_jtst_21_00353
jstage_primary_article_jtst_17_1_17_21_00353_article_char_en
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022
2022-00-00
20220101
2022-01-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 2022
PublicationDecade 2020
PublicationPlace Tokyo
PublicationPlace_xml – name: Tokyo
PublicationTitle Journal of Thermal Science and Technology
PublicationTitleAlternate JTST
PublicationYear 2022
Publisher The Japan Society of Mechanical Engineers and The Heat Transfer Society of Japan
Japan Science and Technology Agency
The Japan Society of Mechanical Engineers
Publisher_xml – name: The Japan Society of Mechanical Engineers and The Heat Transfer Society of Japan
– name: Japan Science and Technology Agency
– name: The Japan Society of Mechanical Engineers
References Haruki, N., Horibe, A. and Nakashima, K., Anisotropic effective thermal conductivity measurement of various kinds of metal fiber materials, International Journal of Thermophysics, Vol.34, No.12 (2013), pp. 2385-2399.
Kawashima, K., Kagawa, T. and Fujita, T., Instantaneous flow rate measurement of ideal gases, Journal of Dynamic Systems, Measurement, and Control, Vol.122, No.1 (2000), pp. 174-178.
Kawashima, K. and Kagawa, T., Unsteady flow generator for gases using an isothermal chamber, Measurement, Vol.33, No.4 (2003), pp. 333-340.
Yang, L. and Shen, H., Effects of the porous media distribution on the performance improvement for isothermal chamber, Applied Thermal Engineering, Vol.86, No.1 (2015), pp. 301-308.
Yu, B. and Cheng, P., A fractal permeability model for bi-dispersed porous media, International Journal of Heat and Mass Transfer, Vol.45, No.14 (2002), pp. 2983-2993.
Peng, J., Youn, C., Takeuchi, T. and Kagawa, T., Improvement of characteristics of gas pressure control system using porous materials, Journal of Flow Control Measurement & Visualization, Vol.3, No.4 (2015), pp. 161-171.
Yang, L., Shen, H., Song, Y., Wang, J. and Bo, Z., Experimental study of the convection heat transfer model of porous media for isothermal chamber during discharging, Experimental Thermal and Fluid Science, No.61 (2015), pp. 87-95.
Kato, T., Kawashima, K., Funaki, T., Tadano, K. and Kagawa, T., A new, high precision, quick response pressure regulator for active control of pneumatic vibration isolation tables, Precision Engineering, Vol.34, No.1 (2009), pp. 43-48.
Iida, K., Kobayashi, T., Tadano, K., Cai, M., Fujita, T., Xiao, F. and Kagawa, T., Consideration of the effects of atmospheric pressure change in determination of flow-rate characteristics of components using compressible fluids by isothermal discharge method, Transactions of The Japan Fluid Power System Society, Vol.50, No.1 (2019), pp. 25-30 (in Japanese).
Solorzano, E., Reglero, J.A., Rodriguez-Perez, M.A., Lehmhus, D., Wichmann, M. and Saja, J., An experimental study on the thermal conductivity of aluminium foams by using the transient plane source method, International Journal of Heat & Mass Transfer, Vol.51, No.25 (2008), pp. 6259-6267.
Kamali, M., Jazayeri, S.A., Najafi, F., Kawashima, K. and Kagawa, T., Study on the performance and control of a piezo-actuated nozzle-flapper valve with an isothermal chamber, Strojniski vestnik-Journal of Mechanical Engineering, Vol.62, No.5 (2016), pp. 318-328.
Jagjiwanram and Singh, R., Effective thermal conductivity of highly porous two-phase systems, Applied Thermal Engineering, Vol.24, No.17 (2004), pp. 2727-2735.
Liu, J., Wu, M., Zhu, Z. and Shao, Z., A Study on the mechanical properties of the representative volume element in fractal porous media, Geofluids, Vol.2017, No.7905218 (2017), pp. 1-10.
Mantle, W.J. and Chang, W.S., Effective thermal conductivity of sintered metal fibers, Journal of Thermophysics & Heat Transfer, Vol.5, No.4 (1991), pp. 545-549.
Shen, H., Ye, Q. and Meng, G., Anisotropic fractal model for the effective thermal conductivity of random metal fiber porous media with high porosity, Physics Letters A, Vol.381, No.37 (2017), pp. 3193-3196.
Yang, L., Gan, Y. and Liu, P., Study on heat transfer of porous media for isothermal chamber, Experimental Thermal and Fluid Science, Vol.46, No.4 (2013), pp. 46-53.
Yu, B. and Li, J., Some fractal characters of porous media, Fractals, Vol.9, No.3 (2001), pp. 365-372.
Zhou, J., Gokhale, A.M., Gurumurthy, A. and Bhat, S.P., Realistic microstructural RVE-based simulations of stress-strain behavior of a dual-phase steel having high martensite volume fraction, Materials Science and Engineering A, Vol.630, No.4 (2015), pp. 107-115.
Funaki, T., Kawashima, K., Yamazaki, S. and Kagawa, T., Generator of variable gas flows using an isothermal chamber, Measurement Science and Technology, Vol.18, No.3 (2007), pp. 835-842.
ISO 6358-2, Pneumatic fluid power-Determination of flow-rate characteristics of components using compressible fluids — Part2: Alternative Test Methods, (2013).
Wang, T., Zhao, L., Fan, Z.W. and Kagawa, T., Determination of flow rate characteristics for pneumatic components during isothermal discharge by integral algorithm, Journal of Dynamic Systems Measurement & Control, Vol.134, No.6 (2012), pp. 8122-8130.
11
12
13
14
15
16
17
18
19
1
2
3
4
5
6
7
8
9
20
10
21
References_xml – reference: Mantle, W.J. and Chang, W.S., Effective thermal conductivity of sintered metal fibers, Journal of Thermophysics & Heat Transfer, Vol.5, No.4 (1991), pp. 545-549.
– reference: Yang, L., Shen, H., Song, Y., Wang, J. and Bo, Z., Experimental study of the convection heat transfer model of porous media for isothermal chamber during discharging, Experimental Thermal and Fluid Science, No.61 (2015), pp. 87-95.
– reference: Yu, B. and Cheng, P., A fractal permeability model for bi-dispersed porous media, International Journal of Heat and Mass Transfer, Vol.45, No.14 (2002), pp. 2983-2993.
– reference: Yu, B. and Li, J., Some fractal characters of porous media, Fractals, Vol.9, No.3 (2001), pp. 365-372.
– reference: Solorzano, E., Reglero, J.A., Rodriguez-Perez, M.A., Lehmhus, D., Wichmann, M. and Saja, J., An experimental study on the thermal conductivity of aluminium foams by using the transient plane source method, International Journal of Heat & Mass Transfer, Vol.51, No.25 (2008), pp. 6259-6267.
– reference: Wang, T., Zhao, L., Fan, Z.W. and Kagawa, T., Determination of flow rate characteristics for pneumatic components during isothermal discharge by integral algorithm, Journal of Dynamic Systems Measurement & Control, Vol.134, No.6 (2012), pp. 8122-8130.
– reference: Funaki, T., Kawashima, K., Yamazaki, S. and Kagawa, T., Generator of variable gas flows using an isothermal chamber, Measurement Science and Technology, Vol.18, No.3 (2007), pp. 835-842.
– reference: Zhou, J., Gokhale, A.M., Gurumurthy, A. and Bhat, S.P., Realistic microstructural RVE-based simulations of stress-strain behavior of a dual-phase steel having high martensite volume fraction, Materials Science and Engineering A, Vol.630, No.4 (2015), pp. 107-115.
– reference: ISO 6358-2, Pneumatic fluid power-Determination of flow-rate characteristics of components using compressible fluids — Part2: Alternative Test Methods, (2013).
– reference: Shen, H., Ye, Q. and Meng, G., Anisotropic fractal model for the effective thermal conductivity of random metal fiber porous media with high porosity, Physics Letters A, Vol.381, No.37 (2017), pp. 3193-3196.
– reference: Yang, L. and Shen, H., Effects of the porous media distribution on the performance improvement for isothermal chamber, Applied Thermal Engineering, Vol.86, No.1 (2015), pp. 301-308.
– reference: Haruki, N., Horibe, A. and Nakashima, K., Anisotropic effective thermal conductivity measurement of various kinds of metal fiber materials, International Journal of Thermophysics, Vol.34, No.12 (2013), pp. 2385-2399.
– reference: Yang, L., Gan, Y. and Liu, P., Study on heat transfer of porous media for isothermal chamber, Experimental Thermal and Fluid Science, Vol.46, No.4 (2013), pp. 46-53.
– reference: Peng, J., Youn, C., Takeuchi, T. and Kagawa, T., Improvement of characteristics of gas pressure control system using porous materials, Journal of Flow Control Measurement & Visualization, Vol.3, No.4 (2015), pp. 161-171.
– reference: Kamali, M., Jazayeri, S.A., Najafi, F., Kawashima, K. and Kagawa, T., Study on the performance and control of a piezo-actuated nozzle-flapper valve with an isothermal chamber, Strojniski vestnik-Journal of Mechanical Engineering, Vol.62, No.5 (2016), pp. 318-328.
– reference: Kawashima, K., Kagawa, T. and Fujita, T., Instantaneous flow rate measurement of ideal gases, Journal of Dynamic Systems, Measurement, and Control, Vol.122, No.1 (2000), pp. 174-178.
– reference: Iida, K., Kobayashi, T., Tadano, K., Cai, M., Fujita, T., Xiao, F. and Kagawa, T., Consideration of the effects of atmospheric pressure change in determination of flow-rate characteristics of components using compressible fluids by isothermal discharge method, Transactions of The Japan Fluid Power System Society, Vol.50, No.1 (2019), pp. 25-30 (in Japanese).
– reference: Liu, J., Wu, M., Zhu, Z. and Shao, Z., A Study on the mechanical properties of the representative volume element in fractal porous media, Geofluids, Vol.2017, No.7905218 (2017), pp. 1-10.
– reference: Kawashima, K. and Kagawa, T., Unsteady flow generator for gases using an isothermal chamber, Measurement, Vol.33, No.4 (2003), pp. 333-340.
– reference: Jagjiwanram and Singh, R., Effective thermal conductivity of highly porous two-phase systems, Applied Thermal Engineering, Vol.24, No.17 (2004), pp. 2727-2735.
– reference: Kato, T., Kawashima, K., Funaki, T., Tadano, K. and Kagawa, T., A new, high precision, quick response pressure regulator for active control of pneumatic vibration isolation tables, Precision Engineering, Vol.34, No.1 (2009), pp. 43-48.
– ident: 10
  doi: 10.1155/2017/7905218
– ident: 5
  doi: 10.1016/j.applthermaleng.2004.03.010
– ident: 13
  doi: 10.1016/j.physleta.2017.08.003
– ident: 15
  doi: 10.1115/1.4006623
– ident: 4
– ident: 7
  doi: 10.1016/j.precisioneng.2009.01.008
– ident: 8
  doi: 10.1016/S0263-2241(03)00003-4
– ident: 18
  doi: 10.1016/j.expthermflusci.2014.10.020
– ident: 21
  doi: 10.1016/j.msea.2015.02.017
– ident: 20
  doi: 10.1142/S0218348X01000804
– ident: 11
  doi: 10.2514/3.299
– ident: 19
  doi: 10.1016/S0017-9310(02)00014-5
– ident: 6
  doi: 10.5545/sv-jme.2015.3339
– ident: 17
  doi: 10.1016/j.applthermaleng.2015.04.035
– ident: 12
  doi: 10.4236/jfcmv.2015.34016
– ident: 2
  doi: 10.1007/s10765-011-1066-z
– ident: 16
  doi: 10.1016/j.expthermflusci.2012.11.019
– ident: 1
  doi: 10.1088/0957-0233/18/3/036
– ident: 3
  doi: 10.5739/jfps.50.25
– ident: 9
  doi: 10.1115/1.482439
– ident: 14
  doi: 10.1016/j.ijheatmasstransfer.2007.11.062
SSID ssj0066759
Score 2.1931
Snippet Isothermal chamber is filled with a certain density of high thermal conductivity porous material, which has a wide range of applications in the flow...
SourceID doaj
proquest
crossref
jstage
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 21-00353
SubjectTerms Accuracy
Chambers
Discharge
Discharge process
Effective thermal conductivity
Errors
Flow measurement
Fractal models
Fractal theory
Fractals
Heat conductivity
Heat transfer
Isothermal chamber
Isothermal characteristic
Numerical methods
Porous materials
Prediction models
Simulation
Thermal conductivity
Title Modeling and simulation of the discharge process of isothermal chamber to determine the isothermal characteristic
URI https://www.jstage.jst.go.jp/article/jtst/17/1/17_21-00353/_article/-char/en
https://www.proquest.com/docview/2615754203
https://doaj.org/article/8e5a0de645c14b53bd5fcdb96ed9ab38
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Journal of Thermal Science and Technology, 2022, Vol.17(1), pp.21-00353-21-00353
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA6yJy-iqLi6Sg7iyWrSPGzAi4oigp4UvIW8Korurm79_86k7eIi4sVLD528mEzm0Wa-IWRfpcpUXKsieR8KGUMoXBJloSWLykWvqwxWfXunrx_kzaN6_FbqC--EtfDALeOOq6Qci0lLFbj0Svio6hC90Ska50VO82WG9cFUq4M1uMGmQ9QEfXv80syaoxLiZiaUWLBAGagfrM8L-GJPPxVytjJXq2Slcw_pWbusNbKUxuvkHQuWYdo4hbCfzp7fupJbdFJT8N8oZtYi4FGi0_baPxKeZzm36g1GAyKW_aDNhMbu9kvKHRfbfANu3iAPV5f3F9dFVyqhCFLi7bLAQYMCf6JURnjjBJMBzqbyTvIoHFhC50Q48UD30nnuWeCuBpqLyignNslgPBmnLUJrk7SJtdIC6KIuPfMyVNrg_zQTSjYkhz37bOhwxLGcxavFeAK4bZHbtuQ2c3tIDubNpy2Axm8Nz3Ev5o0Q9zq_AGmwnTTYv6RhSE7bnZwP0_fMc_ETy_HRzzmnIpNBTwzJqN9_253lmYUYU2GdYCa2_2OJO2S5xBSK_BlnRAbNx2faBcem8XtZhr8AARj91Q
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modeling+and+simulation+of+the+discharge+process+of+isothermal+chamber+to+determine+the+isothermal+characteristic&rft.jtitle=Journal+of+Thermal+Science+and+Technology&rft.au=YANG%2C+Lihong&rft.au=MENG%2C+Guoxiang&rft.au=SHEN%2C+Hangming&rft.date=2022&rft.pub=The+Japan+Society+of+Mechanical+Engineers+and+The+Heat+Transfer+Society+of+Japan&rft.eissn=1880-5566&rft.volume=17&rft.issue=1&rft.spage=21-00353&rft.epage=21-00353&rft_id=info:doi/10.1299%2Fjtst.21-00353&rft.externalDocID=article_jtst_17_1_17_21_00353_article_char_en
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1880-5566&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1880-5566&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1880-5566&client=summon