Colorimetric determination of ascorbic acid and the activity of alkaline phosphatase based on the inhibition of the peroxidase-like activity of citric acid-capped Prussian Blue nanocubes
Colorimetric methods are described for the determination of ascorbic acid (AA) and alkaline phosphatase (ALP). Both assays are based on the inhibition of the peroxidase (POx)-like activity of Prussian Blue nanocubes (PB NCs) capped with citric acid. They catalyze the oxidation of 3,3,5,5-tetramethyl...
Saved in:
Published in | Mikrochimica acta (1966) Vol. 186; no. 2; pp. 123 - 7 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Vienna
Springer Vienna
01.02.2019
Springer Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Colorimetric methods are described for the determination of ascorbic acid (AA) and alkaline phosphatase (ALP). Both assays are based on the inhibition of the peroxidase (POx)-like activity of Prussian Blue nanocubes (PB NCs) capped with citric acid. They catalyze the oxidation of 3,3,5,5-tetramethylbenzidine (TMB) by H
2
O
2
to produce a blue color with an absorption maximum at 652 nm. On addition of AA, the PB NCs are reduced to Prussian White (PW) which does not act as a POx mimic. This results in a decreased rate of the formation of the blue coloration whose intensity decreases with increasing concentration of AA. The assay allows AA to be quantified with a 35 nM detection limit (at 3σ/m). The hydrolysis of AA phosphate by ALP leads to the formation of AA which can be quantified by the above method. Based on this, the activity of ALP can be determined by measurement of the intensity of the blue coloration thus formed. The method can be used to determine the activity of ALP with a detection limit as low as 0.23 U·L
−1
.
Graphical abstract
Schematic presentation of a method for colorimetric determination of ALP activity. AA obtained by ALP-catalyzed hydrolysis of ascorbic acid phosphate (AAP) inhibits the intrinsic peroxidase-like activity of PB NCs by reducing Prussian Blue nanocrystals (PB NCs) to form inactive Prussian White (PW). |
---|---|
AbstractList | Colorimetric methods are described for the determination of ascorbic acid (AA) and alkaline phosphatase (ALP). Both assays are based on the inhibition of the peroxidase (POx)-like activity of Prussian Blue nanocubes (PB NCs) capped with citric acid. They catalyze the oxidation of 3,3,5,5-tetramethylbenzidine (TMB) by H
O
to produce a blue color with an absorption maximum at 652 nm. On addition of AA, the PB NCs are reduced to Prussian White (PW) which does not act as a POx mimic. This results in a decreased rate of the formation of the blue coloration whose intensity decreases with increasing concentration of AA. The assay allows AA to be quantified with a 35 nM detection limit (at 3σ/m). The hydrolysis of AA phosphate by ALP leads to the formation of AA which can be quantified by the above method. Based on this, the activity of ALP can be determined by measurement of the intensity of the blue coloration thus formed. The method can be used to determine the activity of ALP with a detection limit as low as 0.23 U·L
. Graphical abstract Schematic presentation of a method for colorimetric determination of ALP activity. AA obtained by ALP-catalyzed hydrolysis of ascorbic acid phosphate (AAP) inhibits the intrinsic peroxidase-like activity of PB NCs by reducing Prussian Blue nanocrystals (PB NCs) to form inactive Prussian White (PW). Colorimetric methods are described for the determination of ascorbic acid (AA) and alkaline phosphatase (ALP). Both assays are based on the inhibition of the peroxidase (POx)-like activity of Prussian Blue nanocubes (PB NCs) capped with citric acid. They catalyze the oxidation of 3,3,5,5-tetramethylbenzidine (TMB) by H.sub.2O.sub.2 to produce a blue color with an absorption maximum at 652 nm. On addition of AA, the PB NCs are reduced to Prussian White (PW) which does not act as a POx mimic. This results in a decreased rate of the formation of the blue coloration whose intensity decreases with increasing concentration of AA. The assay allows AA to be quantified with a 35 nM detection limit (at 3[sigma]/m). The hydrolysis of AA phosphate by ALP leads to the formation of AA which can be quantified by the above method. Based on this, the activity of ALP can be determined by measurement of the intensity of the blue coloration thus formed. The method can be used to determine the activity of ALP with a detection limit as low as 0.23 U·L.sup.-1. Colorimetric methods are described for the determination of ascorbic acid (AA) and alkaline phosphatase (ALP). Both assays are based on the inhibition of the peroxidase (POx)-like activity of Prussian Blue nanocubes (PB NCs) capped with citric acid. They catalyze the oxidation of 3,3,5,5-tetramethylbenzidine (TMB) by H2O2 to produce a blue color with an absorption maximum at 652 nm. On addition of AA, the PB NCs are reduced to Prussian White (PW) which does not act as a POx mimic. This results in a decreased rate of the formation of the blue coloration whose intensity decreases with increasing concentration of AA. The assay allows AA to be quantified with a 35 nM detection limit (at 3σ/m). The hydrolysis of AA phosphate by ALP leads to the formation of AA which can be quantified by the above method. Based on this, the activity of ALP can be determined by measurement of the intensity of the blue coloration thus formed. The method can be used to determine the activity of ALP with a detection limit as low as 0.23 U·L-1. Graphical abstract Schematic presentation of a method for colorimetric determination of ALP activity. AA obtained by ALP-catalyzed hydrolysis of ascorbic acid phosphate (AAP) inhibits the intrinsic peroxidase-like activity of PB NCs by reducing Prussian Blue nanocrystals (PB NCs) to form inactive Prussian White (PW).Colorimetric methods are described for the determination of ascorbic acid (AA) and alkaline phosphatase (ALP). Both assays are based on the inhibition of the peroxidase (POx)-like activity of Prussian Blue nanocubes (PB NCs) capped with citric acid. They catalyze the oxidation of 3,3,5,5-tetramethylbenzidine (TMB) by H2O2 to produce a blue color with an absorption maximum at 652 nm. On addition of AA, the PB NCs are reduced to Prussian White (PW) which does not act as a POx mimic. This results in a decreased rate of the formation of the blue coloration whose intensity decreases with increasing concentration of AA. The assay allows AA to be quantified with a 35 nM detection limit (at 3σ/m). The hydrolysis of AA phosphate by ALP leads to the formation of AA which can be quantified by the above method. Based on this, the activity of ALP can be determined by measurement of the intensity of the blue coloration thus formed. The method can be used to determine the activity of ALP with a detection limit as low as 0.23 U·L-1. Graphical abstract Schematic presentation of a method for colorimetric determination of ALP activity. AA obtained by ALP-catalyzed hydrolysis of ascorbic acid phosphate (AAP) inhibits the intrinsic peroxidase-like activity of PB NCs by reducing Prussian Blue nanocrystals (PB NCs) to form inactive Prussian White (PW). Colorimetric methods are described for the determination of ascorbic acid (AA) and alkaline phosphatase (ALP). Both assays are based on the inhibition of the peroxidase (POx)-like activity of Prussian Blue nanocubes (PB NCs) capped with citric acid. They catalyze the oxidation of 3,3,5,5-tetramethylbenzidine (TMB) by H 2 O 2 to produce a blue color with an absorption maximum at 652 nm. On addition of AA, the PB NCs are reduced to Prussian White (PW) which does not act as a POx mimic. This results in a decreased rate of the formation of the blue coloration whose intensity decreases with increasing concentration of AA. The assay allows AA to be quantified with a 35 nM detection limit (at 3σ/m). The hydrolysis of AA phosphate by ALP leads to the formation of AA which can be quantified by the above method. Based on this, the activity of ALP can be determined by measurement of the intensity of the blue coloration thus formed. The method can be used to determine the activity of ALP with a detection limit as low as 0.23 U·L −1 . Graphical abstract Schematic presentation of a method for colorimetric determination of ALP activity. AA obtained by ALP-catalyzed hydrolysis of ascorbic acid phosphate (AAP) inhibits the intrinsic peroxidase-like activity of PB NCs by reducing Prussian Blue nanocrystals (PB NCs) to form inactive Prussian White (PW). Colorimetric methods are described for the determination of ascorbic acid (AA) and alkaline phosphatase (ALP). Both assays are based on the inhibition of the peroxidase (POx)-like activity of Prussian Blue nanocubes (PB NCs) capped with citric acid. They catalyze the oxidation of 3,3,5,5-tetramethylbenzidine (TMB) by H2O2 to produce a blue color with an absorption maximum at 652 nm. On addition of AA, the PB NCs are reduced to Prussian White (PW) which does not act as a POx mimic. This results in a decreased rate of the formation of the blue coloration whose intensity decreases with increasing concentration of AA. The assay allows AA to be quantified with a 35 nM detection limit (at 3σ/m). The hydrolysis of AA phosphate by ALP leads to the formation of AA which can be quantified by the above method. Based on this, the activity of ALP can be determined by measurement of the intensity of the blue coloration thus formed. The method can be used to determine the activity of ALP with a detection limit as low as 0.23 U·L−1. |
ArticleNumber | 123 |
Audience | Academic |
Author | Liu, Xiaoying Zhang, Youyu Wu, Tengteng Ma, Zhangyan Liu, Meiling Hou, Wenli Yao, Shouzhuo |
Author_xml | – sequence: 1 givenname: Tengteng surname: Wu fullname: Wu, Tengteng organization: Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University – sequence: 2 givenname: Wenli surname: Hou fullname: Hou, Wenli organization: Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University – sequence: 3 givenname: Zhangyan surname: Ma fullname: Ma, Zhangyan organization: Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University – sequence: 4 givenname: Meiling orcidid: 0000-0001-7829-1475 surname: Liu fullname: Liu, Meiling email: liumeilingww@126.com, liuml@hunnu.edu.cn organization: Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University – sequence: 5 givenname: Xiaoying surname: Liu fullname: Liu, Xiaoying email: xiaoyingliu@126.com organization: College of Science, Hunan Agricultural University – sequence: 6 givenname: Youyu surname: Zhang fullname: Zhang, Youyu organization: Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University – sequence: 7 givenname: Shouzhuo surname: Yao fullname: Yao, Shouzhuo organization: Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30666555$$D View this record in MEDLINE/PubMed |
BookMark | eNp9ks1u1DAUhS1URKcDD8AGRWLDJsWO_zLLMuJPqgQLWFuOfd1xm9jBTir6ajwdzkxL1QpQJEe2v3Pule85QUchBkDoJcGnBGP5NmMsMKsxaWvaNKzmT9CKMCpqjiU9QiuMG1FTIZtjdJLzJcZEioY9Q8cUCyE45yv0axv7mPwAU_KmsjBBGnzQk4-hiq7S2cTUlRttvK10sNW0g7KZ_LWfbvZEf6V7H6AadzGPOz3pDFVXFlsVi4X2Yec7f-e4nIyQ4k9vC1T3_uqhn_H7TpZ6tdHjWHy-pjlnr0P1rp-hCjpEM3eQn6OnTvcZXtz-1-j7h_fftp_q8y8fP2_PzmvD6GaqnWhkS60jjoPgzLSdlkBbAUxugInybpo7yTfaOmsY8LaljmtjOQFg1gi6Rm8OvmOKP2bIkxp8NtD3OkCcs2qI3DBMF-EavX6EXsY5hdJdocSmoZgSck9d6B6UDy5OSZvFVJ1JwnFxamWhTv9Clc_C4E0JgvPl_IHg1W3xuRvAqrGMVacbdTfsApADYFLMOYH7gxCslkCpQ6BUCZRaAqUWjXykKQPax6N04_v_KpuDMpcq4QLS_Vv8W_QbPq_g5A |
CitedBy_id | crossref_primary_10_1002_aenm_202000943 crossref_primary_10_3390_bios9030102 crossref_primary_10_1007_s00604_019_3940_5 crossref_primary_10_1021_acsanm_4c04671 crossref_primary_10_1007_s41664_024_00304_3 crossref_primary_10_1016_j_microc_2021_107085 crossref_primary_10_1021_acsami_0c15900 crossref_primary_10_1039_D1MA01214B crossref_primary_10_1007_s00604_019_4070_9 crossref_primary_10_1016_j_dyepig_2021_109616 crossref_primary_10_1039_C9AY00643E crossref_primary_10_1016_j_inoche_2025_114237 crossref_primary_10_1007_s00604_020_04399_0 crossref_primary_10_1016_j_microc_2023_109517 crossref_primary_10_1039_D1RA06838E crossref_primary_10_1007_s00604_022_05175_y crossref_primary_10_1007_s00604_020_04376_7 crossref_primary_10_1039_D0RA02031A crossref_primary_10_1007_s00604_019_3897_4 crossref_primary_10_1016_j_aca_2024_343468 crossref_primary_10_1039_D0AN01918F crossref_primary_10_1016_j_ccr_2022_214567 crossref_primary_10_1002_adhm_202400746 crossref_primary_10_1002_smll_202203713 crossref_primary_10_2217_nnm_2020_0191 crossref_primary_10_1039_D2EN00990K crossref_primary_10_1016_j_aca_2019_07_068 crossref_primary_10_1039_C9TB01515A crossref_primary_10_1007_s10895_023_03539_y crossref_primary_10_1039_D0AN01846E crossref_primary_10_1007_s00604_021_04803_3 crossref_primary_10_1016_j_ijbiomac_2022_08_033 crossref_primary_10_1039_D0AN01830A crossref_primary_10_1039_D2NJ02066A crossref_primary_10_1016_j_snb_2020_127873 crossref_primary_10_1039_D0AN01224F crossref_primary_10_1016_j_ccr_2024_215761 crossref_primary_10_1016_j_saa_2021_119886 crossref_primary_10_1007_s00604_019_3826_6 crossref_primary_10_1016_j_snb_2021_129549 crossref_primary_10_1039_D1CC04787F crossref_primary_10_1007_s00604_019_3519_1 crossref_primary_10_1016_j_snb_2020_129170 crossref_primary_10_1016_j_jcis_2023_03_091 crossref_primary_10_1021_acs_analchem_1c04420 crossref_primary_10_1002_slct_202402650 crossref_primary_10_1016_j_talanta_2019_05_034 crossref_primary_10_1016_j_talanta_2024_125703 crossref_primary_10_1016_j_cej_2023_143612 crossref_primary_10_1016_j_ccr_2023_215370 crossref_primary_10_1039_C9AY01772K crossref_primary_10_1016_j_crfs_2023_100548 crossref_primary_10_1039_D1RA07849F crossref_primary_10_1039_D3CC01548C crossref_primary_10_1016_j_microc_2024_112510 crossref_primary_10_1007_s00604_019_3399_4 |
Cites_doi | 10.1039/C4TB01702A 10.1246/bcsj.79.1211 10.1039/c2cc36456e 10.1016/j.snb.2016.01.048 10.1007/s00604-018-2976-2 10.1021/ac801144t 10.1021/acs.analchem.5b02167 10.1016/j.bios.2018.09.061 10.1016/j.electacta.2018.09.036 10.1016/j.bios.2015.10.003 10.1039/c2an35072f 10.1016/j.talanta.2016.10.097 10.1016/S0925-4005(99)00154-9 10.1016/j.bmcl.2009.02.030 10.1007/s00604-018-2792-8 10.1007/s00604-017-2328-7 10.1016/j.talanta.2017.07.095 10.1039/c0cc05533f 10.1016/j.aca.2016.11.012 10.1039/c3cc46163g 10.1021/ac504773n 10.1016/j.snb.2016.09.048 10.1016/j.snb.2018.08.029 10.1016/j.bios.2013.05.038 10.1021/acsami.6b11920 10.1007/s00604-018-2957-5 10.1021/acs.analchem.7b00246 10.1021/ac301429n 10.1016/j.talanta.2013.12.028 10.1016/j.bios.2017.03.017 10.1016/j.biomaterials.2009.01.002 10.1007/s10853-018-2733-2 10.1016/j.bios.2013.02.020 10.1016/j.aca.2018.09.045 10.1016/j.bios.2014.09.071 |
ContentType | Journal Article |
Copyright | Springer-Verlag GmbH Austria, part of Springer Nature 2019 COPYRIGHT 2019 Springer Microchimica Acta is a copyright of Springer, (2019). All Rights Reserved. |
Copyright_xml | – notice: Springer-Verlag GmbH Austria, part of Springer Nature 2019 – notice: COPYRIGHT 2019 Springer – notice: Microchimica Acta is a copyright of Springer, (2019). All Rights Reserved. |
DBID | AAYXX CITATION NPM K9. 7X8 |
DOI | 10.1007/s00604-018-3224-5 |
DatabaseName | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic ProQuest Health & Medical Complete (Alumni) |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1436-5073 |
EndPage | 7 |
ExternalDocumentID | A715058887 30666555 10_1007_s00604_018_3224_5 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 21645008, 21305042; 21375037 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: Scientific Research Fund of Hunan Provincial Education Department grantid: 14B116 – fundername: Science and Technology Department of Hunan Province grantid: 14JJ4030 – fundername: National Natural Science Foundation of China grantid: 21645008, 21305042 – fundername: National Natural Science Foundation of China grantid: 21375037 |
GroupedDBID | -4Y -58 -5G -BR -EM -Y2 -~C -~X .86 .VR 06C 06D 0R~ 0VY 1N0 1SB 2.D 203 28- 29M 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 53G 5QI 5VS 67Z 6NX 78A 7X7 88E 8FE 8FG 8FI 8FJ 8TC 8UJ 95- 95. 95~ 96X A8Z AAAVM AABHQ AACDK AAHNG AAIAL AAIKT AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADBBV ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BPHCQ BSONS BVXVI CAG CCPQU COF CS3 CSCUP D1I DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD EPL ESBYG ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IAO IHE IJ- IKXTQ ITC ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KB. KDC KOV KOW LAS LLZTM M1P M4Y MA- ML- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P9N PDBOC PF0 PQQKQ PROAC PSQYO PT4 PT5 QOK QOR QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCG SCLPG SCM SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TUS U2A UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 W4F WH7 WJK WK8 Y6R YLTOR Z45 Z5O Z7S Z7U Z7V Z7W Z7X Z7Y Z83 Z85 Z86 Z87 Z8N Z8O Z8P Z8Q Z8S Z8W Z8Z Z91 Z92 ZMTXR ~02 ~8M ~EX ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT NPM AEIIB ABRTQ K9. 7X8 |
ID | FETCH-LOGICAL-c439t-f62783df1f5e654c8ba7e386e479e46224a5f759adfdc4e5883f5acd51ee4dc63 |
IEDL.DBID | U2A |
ISSN | 0026-3672 1436-5073 |
IngestDate | Fri Jul 11 03:44:42 EDT 2025 Fri Jul 25 10:58:49 EDT 2025 Tue Jun 17 21:35:09 EDT 2025 Tue Jun 10 20:11:53 EDT 2025 Wed Feb 19 02:36:01 EST 2025 Thu Apr 24 23:03:13 EDT 2025 Tue Jul 01 04:06:51 EDT 2025 Fri Feb 21 02:32:51 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | 3,3,5,5-Tetramethylbenzidine Colorimetric assay Prussian White Nanocubes Peroxidase mimetic Enzyme mimic Inhibition |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c439t-f62783df1f5e654c8ba7e386e479e46224a5f759adfdc4e5883f5acd51ee4dc63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-7829-1475 |
PMID | 30666555 |
PQID | 2169230311 |
PQPubID | 2043622 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_2179403588 proquest_journals_2169230311 gale_infotracmisc_A715058887 gale_infotracacademiconefile_A715058887 pubmed_primary_30666555 crossref_primary_10_1007_s00604_018_3224_5 crossref_citationtrail_10_1007_s00604_018_3224_5 springer_journals_10_1007_s00604_018_3224_5 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-02-01 |
PublicationDateYYYYMMDD | 2019-02-01 |
PublicationDate_xml | – month: 02 year: 2019 text: 2019-02-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Vienna |
PublicationPlace_xml | – name: Vienna – name: Austria – name: Heidelberg |
PublicationSubtitle | Analytical Sciences Based on Micro- and Nanomaterials |
PublicationTitle | Mikrochimica acta (1966) |
PublicationTitleAbbrev | Microchim Acta |
PublicationTitleAlternate | Mikrochim Acta |
PublicationYear | 2019 |
Publisher | Springer Vienna Springer Springer Nature B.V |
Publisher_xml | – name: Springer Vienna – name: Springer – name: Springer Nature B.V |
References | Yang, Zheng, Wang, Li, Zhang, Gu, Fu (CR32) 2016; 77 Karyakin, Karyakina (CR27) 1999; 57 Jia, Zang, Li, Tian, Zhou, Cai, Tian, Wang (CR19) 2018; 289 Takuya, Masaru, Kohei, Hirotaka, Tomonari, Hiroki (CR3) 2006; 79 Mei, Hu, Zhou, Zhang, He, Xu, Li, Kong (CR35) 2017; 176 Song, Chen, Feng, Ren, Qu (CR9) 2011; 47 Ingram, Moore, Graham (CR6) 2009; 19 Zhu, Zhao, Nie, Liu, Yao (CR7) 2015; 87 Wei, Chen, Han, Wang (CR5) 2008; 80 Chang, Zhang, Hao, Yang, Tang (CR11) 2016; 228 Wang, Duan, Shi, Zhai, Guan, Yang, Hou (CR15) 2018; 185 Zhang, Ma, Du (CR25) 2014; 120 Liu, Tang, Chen, Yan, Zhong, Kang, Yao (CR34) 2017; 94 Muthusamy, Charles, Renganathan, Sastikumar (CR21) 2018; 53 Deng, Yu, Wang, Mao (CR1) 2015; 87 Liu, Wang, Li, Zeng, Tang, Gao, Cai, Cai (CR16) 2018; 185 Fu, Liu, Feng, Yue (CR29) 2012; 48 Chen, Chen, Feng, Hong, Chen, Wu (CR14) 2012; 137 Hu, He, Mei, Feng, Jing, Kong, Zhang (CR30) 2017; 163 Qian, Yang, Yang, Zhu, Mao, Wang (CR8) 2015; 3 Liu, Li, Xia, Ren (CR33) 2016; 9 Zhang, Han, Hu, Wang, Dong (CR17) 2013; 49 Cui, Hu, Li, Wang, Zhang (CR24) 2018; 122 Xing, Zhang, Zhai, Li, Wang (CR26) 2017; 89 Wang, Jin, Dong, Wu, Li (CR13) 2015; 64 Zhao, Huang, Dou, Bu, Chen, Yang, Yan, Wang, Zhang (CR20) 2018; 275 Ino, Kanno, Arai, Inoue, Takahashi, Shiku, Matsue (CR4) 2012; 84 Dehghani, Hosseini, Mohammadnejad, Bakhshi, Rezayan (CR12) 2018; 185 Ni, Sun, Dai, Lu, Jiang, Wang, Li, Li (CR18) 2017; 240 Han, Zhuo, Chai, Yuan, Xiang, Zhu, Liao (CR22) 2013; 46 Huang, Liang, Deng, Cai, He (CR28) 2017; 184 Song, Wang, Li, Peng, Pan, Niu (CR2) 2018; 31 Zheng, Cong, Wang, Li, Yang, Chen (CR10) 2013; 49 Hu, Zhou, Dang, Li, Kong, Zhang (CR31) 2017; 950 Zhuo, Yuan, Yuan, Chai, Hong (CR23) 2009; 30 Q Hu (3224_CR30) 2017; 163 A Ingram (3224_CR6) 2009; 19 Y Zhuo (3224_CR23) 2009; 30 L Cui (3224_CR24) 2018; 122 YQ Mei (3224_CR35) 2017; 176 H Takuya (3224_CR3) 2006; 79 XH Zhu (3224_CR7) 2015; 87 JJ Deng (3224_CR1) 2015; 87 HJ Liu (3224_CR33) 2016; 9 PJ Ni (3224_CR18) 2017; 240 HM Liu (3224_CR16) 2018; 185 HW Song (3224_CR2) 2018; 31 YQ Chang (3224_CR11) 2016; 228 J Qian (3224_CR8) 2015; 3 LL Zhang (3224_CR17) 2013; 49 AX Zheng (3224_CR10) 2013; 49 GL Fu (3224_CR29) 2012; 48 S Muthusamy (3224_CR21) 2018; 53 W Huang (3224_CR28) 2017; 184 K Ino (3224_CR4) 2012; 84 Z Dehghani (3224_CR12) 2018; 185 WM Zhang (3224_CR25) 2014; 120 Q Hu (3224_CR31) 2017; 950 GL Wang (3224_CR13) 2015; 64 JJ Yang (3224_CR32) 2016; 77 JJ Liu (3224_CR34) 2017; 94 YJ Song (3224_CR9) 2011; 47 HH Xing (3224_CR26) 2017; 89 BX Zhao (3224_CR20) 2018; 275 J Han (3224_CR22) 2013; 46 N Wang (3224_CR15) 2018; 185 H Wei (3224_CR5) 2008; 80 W Chen (3224_CR14) 2012; 137 SP Jia (3224_CR19) 2018; 289 AA Karyakin (3224_CR27) 1999; 57 |
References_xml | – volume: 3 start-page: 1624 year: 2015 end-page: 1632 ident: CR8 article-title: Multiwalled carbon nanotube@reduced graphene oxide nanoribbon heterostructure: synthesis, intrinsic peroxidase-like catalytic activity, and its application in colorimetric biosensing publication-title: J Mater Chem B doi: 10.1039/C4TB01702A – volume: 79 start-page: 1211 year: 2006 end-page: 1214 ident: CR3 article-title: Assay of alkaline phosphatase in salmon egg cell cytoplasm with fluorescence detection of enzymatic activity and zinc detection by ICP-MS in relation to metallomics research publication-title: B Chem Soc Jpn doi: 10.1246/bcsj.79.1211 – volume: 48 start-page: 11567 year: 2012 end-page: 11569 ident: CR29 article-title: Prussian blue nanoparticles operate as a new generation of photothermal ablation agents for cancer therapy publication-title: Chem Commun doi: 10.1039/c2cc36456e – volume: 228 start-page: 410 year: 2016 end-page: 415 ident: CR11 article-title: A simple label free colorimetric method for glyphosate detection based on the inhibition of peroxidase-like activity of Cu(II) publication-title: Sensors Actuators B Chem doi: 10.1016/j.snb.2016.01.048 – volume: 185 start-page: 448 year: 2018 ident: CR12 article-title: Colorimetric aptasensor for Campylobacter jejuni cells by exploiting the peroxidase like activity of Au@Pd nanoparticles publication-title: Microchim Acta doi: 10.1007/s00604-018-2976-2 – volume: 80 start-page: 7051 year: 2008 end-page: 7055 ident: CR5 article-title: Enzyme colorimetric assay using unmodified silver nanoparticles publication-title: Anal Chem doi: 10.1021/ac801144t – volume: 87 start-page: 8524 year: 2015 end-page: 8530 ident: CR7 article-title: Non-redox modulated fluorescence strategy for sensitive and selective ascorbic acid detection with highly Photoluminescent nitrogen-doped carbon nanoparticles via solid-state synthesis publication-title: Anal Chem doi: 10.1021/acs.analchem.5b02167 – volume: 122 start-page: 168 year: 2018 end-page: 174 ident: CR24 article-title: An electrochemical biosensor based on the enhanced quasi-reversible redox signal of Prussian blue generated by self-sacrificial label of Iron metal-organic framework publication-title: Biosens Bioelectron doi: 10.1016/j.bios.2018.09.061 – volume: 289 start-page: 56 year: 2018 end-page: 64 ident: CR19 article-title: A novel synthesis of Prussian blue nanocubes/biomass-derived nitrogen-doped porous carbon composite as a high-efficiency oxygen reduction reaction catalyst publication-title: Electrochim Acta doi: 10.1016/j.electacta.2018.09.036 – volume: 77 start-page: 549 year: 2016 end-page: 556 ident: CR32 article-title: Guanine-rich DNA-based peroxidase mimetics for colorimetric assays of alkaline phosphatase publication-title: Biosens Bioelectron doi: 10.1016/j.bios.2015.10.003 – volume: 137 start-page: 1706 year: 2012 end-page: 1712 ident: CR14 article-title: Peroxidase-like activity of water-soluble cupric oxide nanoparticles and its analytical application for detection of hydrogen peroxide and glucose publication-title: Analyst doi: 10.1039/c2an35072f – volume: 163 start-page: 146 year: 2017 end-page: 152 ident: CR30 article-title: Sensitive and selective colorimetric assay of alkaline phosphatase activity with Cu(II)-phenanthroline complex publication-title: Talanta doi: 10.1016/j.talanta.2016.10.097 – volume: 57 start-page: 268 year: 1999 end-page: 273 ident: CR27 article-title: Prussian blue-based 'artificial peroxidase'as a transducer for hydrogen peroxide detection. Application to biosensors publication-title: Sensors Actuators B Chem doi: 10.1016/S0925-4005(99)00154-9 – volume: 19 start-page: 1569 year: 2009 end-page: 1571 ident: CR6 article-title: Simultaneous detection of alkaline phosphatase and beta-galactosidase activity using SERRS publication-title: Bioorg Med Chem Lett doi: 10.1016/j.bmcl.2009.02.030 – volume: 185 start-page: 287 year: 2018 ident: CR16 article-title: MoS nanosheets with peroxidase mimicking activity as viable dual-mode optical probes for determination and imaging of intracellular hydrogen peroxide publication-title: Microchim Acta doi: 10.1007/s00604-018-2792-8 – volume: 184 start-page: 2959 year: 2017 end-page: 2964 ident: CR28 article-title: Prussian blue nanoparticles as optical probes for visual and spectrophotometric determination of silver ions publication-title: Microchim Acta doi: 10.1007/s00604-017-2328-7 – volume: 176 start-page: 52 year: 2017 end-page: 58 ident: CR35 article-title: Fluorescence quenching based alkaline phosphatase activity detection publication-title: Talanta doi: 10.1016/j.talanta.2017.07.095 – volume: 47 start-page: 4436 year: 2011 end-page: 4438 ident: CR9 article-title: Selective and quantitative cancer cell detection using target-directed functionalized graphene and its synergetic peroxidase-like activity publication-title: Chem Commun doi: 10.1039/c0cc05533f – volume: 950 start-page: 170 year: 2017 end-page: 177 ident: CR31 article-title: Facile colorimetric assay of alkaline phosphatase activity using Fe(II)-phenanthroline reporter publication-title: Anal Chim Acta doi: 10.1016/j.aca.2016.11.012 – volume: 49 start-page: 10480 year: 2013 end-page: 10482 ident: CR17 article-title: TiO nanotube arrays: intrinsic peroxidase mimetics publication-title: Chem Commun doi: 10.1039/c3cc46163g – volume: 87 start-page: 3080 year: 2015 end-page: 3086 ident: CR1 article-title: Real-time ratiometric fluorescent assay for alkaline phosphatase activity with stimulus responsive infinite coordination polymer nanoparticles publication-title: Anal Chem doi: 10.1021/ac504773n – volume: 240 start-page: 1314 year: 2017 end-page: 1320 ident: CR18 article-title: Prussian blue nanocubes peroxidase mimetic-based colorimetric assay for screening acetylcholinesterase activity and its inhibitor publication-title: Sensors Actuators B Chem doi: 10.1016/j.snb.2016.09.048 – volume: 275 start-page: 223 year: 2018 end-page: 229 ident: CR20 article-title: Prussian blue nanoparticles based lateral flow assay for high sensitive determination of clenbuterol publication-title: Sensors Actuators B Chem doi: 10.1016/j.snb.2018.08.029 – volume: 49 start-page: 519 year: 2013 end-page: 524 ident: CR10 article-title: Highly-efficient peroxidase-like catalytic activity of graphene dots for biosensing publication-title: Biosens Bioelectron doi: 10.1016/j.bios.2013.05.038 – volume: 9 start-page: 120 year: 2016 end-page: 126 ident: CR33 article-title: A turn-on fluorescent sensor for selective and sensitive detection of alkaline phosphatase activity with gold nanoclusters based on inner filter effect publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.6b11920 – volume: 185 start-page: 417 year: 2018 ident: CR15 article-title: A 3-dimensional C/CeO hollow nanostructure framework as a peroxidase mimetic, and its application to the colorimetric determination of hydrogen peroxide publication-title: Microchim Acta doi: 10.1007/s00604-018-2957-5 – volume: 89 start-page: 3867 year: 2017 end-page: 3872 ident: CR26 article-title: Bipolar electrode-based reversible fluorescence switch using Prussian blue/Au nanoclusters nanocomposite film publication-title: Anal Chem doi: 10.1021/acs.analchem.7b00246 – volume: 84 start-page: 7593 year: 2012 end-page: 7598 ident: CR4 article-title: Novel electrochemical methodology for activity estimation of alkaline phosphatase based on solubility difference publication-title: Anal Chem doi: 10.1021/ac301429n – volume: 120 start-page: 362 year: 2014 end-page: 367 ident: CR25 article-title: Prussian blue nanoparticles as peroxidase mimetics for sensitive colorimetric detection of hydrogen peroxide and glucose publication-title: Talanta doi: 10.1016/j.talanta.2013.12.028 – volume: 94 start-page: 271 year: 2017 end-page: 277 ident: CR34 article-title: Chemical redox modulated fluorescence of nitrogen-doped graphene quantum dots for probing the activity of alkaline phosphatase publication-title: Biosens Bioelectron doi: 10.1016/j.bios.2017.03.017 – volume: 30 start-page: 2284 year: 2009 end-page: 2290 ident: CR23 article-title: Bienzyme functionalized three-layer composite magnetic nanoparticles for electrochemical immunosensors publication-title: Biomaterials doi: 10.1016/j.biomaterials.2009.01.002 – volume: 53 start-page: 15401 year: 2018 end-page: 15417 ident: CR21 article-title: In situ growth of Prussian blue nanocubes on polypyrrole nanoparticles: facile synthesis, characterization and their application as fiber optic gas sensor publication-title: J Mater Sci doi: 10.1007/s10853-018-2733-2 – volume: 46 start-page: 74 year: 2013 end-page: 79 ident: CR22 article-title: Multi-labeled functionalized C60 nanohybrid as tracing tag for ultrasensitive electrochemical aptasensing publication-title: Biosens Bioelectron doi: 10.1016/j.bios.2013.02.020 – volume: 31 start-page: 154 year: 2018 end-page: 161 ident: CR2 article-title: Sensitive and selective colorimetric detection of alkaline phosphatase activity based on phosphate anion-quenched oxidase-mimicking activity of Ce(IV) ions publication-title: Anal Chim Acta doi: 10.1016/j.aca.2018.09.045 – volume: 64 start-page: 523 year: 2015 end-page: 529 ident: CR13 article-title: Intrinsic enzyme mimicking activity of gold nanoclusters upon visible light triggering and its application for colorimetric trypsin detection publication-title: Biosens Bioelectron doi: 10.1016/j.bios.2014.09.071 – volume: 84 start-page: 7593 year: 2012 ident: 3224_CR4 publication-title: Anal Chem doi: 10.1021/ac301429n – volume: 49 start-page: 10480 year: 2013 ident: 3224_CR17 publication-title: Chem Commun doi: 10.1039/c3cc46163g – volume: 185 start-page: 417 year: 2018 ident: 3224_CR15 publication-title: Microchim Acta doi: 10.1007/s00604-018-2957-5 – volume: 275 start-page: 223 year: 2018 ident: 3224_CR20 publication-title: Sensors Actuators B Chem doi: 10.1016/j.snb.2018.08.029 – volume: 163 start-page: 146 year: 2017 ident: 3224_CR30 publication-title: Talanta doi: 10.1016/j.talanta.2016.10.097 – volume: 47 start-page: 4436 year: 2011 ident: 3224_CR9 publication-title: Chem Commun doi: 10.1039/c0cc05533f – volume: 57 start-page: 268 year: 1999 ident: 3224_CR27 publication-title: Sensors Actuators B Chem doi: 10.1016/S0925-4005(99)00154-9 – volume: 31 start-page: 154 year: 2018 ident: 3224_CR2 publication-title: Anal Chim Acta doi: 10.1016/j.aca.2018.09.045 – volume: 79 start-page: 1211 year: 2006 ident: 3224_CR3 publication-title: B Chem Soc Jpn doi: 10.1246/bcsj.79.1211 – volume: 3 start-page: 1624 year: 2015 ident: 3224_CR8 publication-title: J Mater Chem B doi: 10.1039/C4TB01702A – volume: 185 start-page: 287 year: 2018 ident: 3224_CR16 publication-title: Microchim Acta doi: 10.1007/s00604-018-2792-8 – volume: 89 start-page: 3867 year: 2017 ident: 3224_CR26 publication-title: Anal Chem doi: 10.1021/acs.analchem.7b00246 – volume: 184 start-page: 2959 year: 2017 ident: 3224_CR28 publication-title: Microchim Acta doi: 10.1007/s00604-017-2328-7 – volume: 77 start-page: 549 year: 2016 ident: 3224_CR32 publication-title: Biosens Bioelectron doi: 10.1016/j.bios.2015.10.003 – volume: 30 start-page: 2284 year: 2009 ident: 3224_CR23 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2009.01.002 – volume: 19 start-page: 1569 year: 2009 ident: 3224_CR6 publication-title: Bioorg Med Chem Lett doi: 10.1016/j.bmcl.2009.02.030 – volume: 122 start-page: 168 year: 2018 ident: 3224_CR24 publication-title: Biosens Bioelectron doi: 10.1016/j.bios.2018.09.061 – volume: 950 start-page: 170 year: 2017 ident: 3224_CR31 publication-title: Anal Chim Acta doi: 10.1016/j.aca.2016.11.012 – volume: 228 start-page: 410 year: 2016 ident: 3224_CR11 publication-title: Sensors Actuators B Chem doi: 10.1016/j.snb.2016.01.048 – volume: 137 start-page: 1706 year: 2012 ident: 3224_CR14 publication-title: Analyst doi: 10.1039/c2an35072f – volume: 53 start-page: 15401 year: 2018 ident: 3224_CR21 publication-title: J Mater Sci doi: 10.1007/s10853-018-2733-2 – volume: 240 start-page: 1314 year: 2017 ident: 3224_CR18 publication-title: Sensors Actuators B Chem doi: 10.1016/j.snb.2016.09.048 – volume: 120 start-page: 362 year: 2014 ident: 3224_CR25 publication-title: Talanta doi: 10.1016/j.talanta.2013.12.028 – volume: 49 start-page: 519 year: 2013 ident: 3224_CR10 publication-title: Biosens Bioelectron doi: 10.1016/j.bios.2013.05.038 – volume: 185 start-page: 448 year: 2018 ident: 3224_CR12 publication-title: Microchim Acta doi: 10.1007/s00604-018-2976-2 – volume: 46 start-page: 74 year: 2013 ident: 3224_CR22 publication-title: Biosens Bioelectron doi: 10.1016/j.bios.2013.02.020 – volume: 48 start-page: 11567 year: 2012 ident: 3224_CR29 publication-title: Chem Commun doi: 10.1039/c2cc36456e – volume: 176 start-page: 52 year: 2017 ident: 3224_CR35 publication-title: Talanta doi: 10.1016/j.talanta.2017.07.095 – volume: 9 start-page: 120 year: 2016 ident: 3224_CR33 publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.6b11920 – volume: 87 start-page: 3080 year: 2015 ident: 3224_CR1 publication-title: Anal Chem doi: 10.1021/ac504773n – volume: 94 start-page: 271 year: 2017 ident: 3224_CR34 publication-title: Biosens Bioelectron doi: 10.1016/j.bios.2017.03.017 – volume: 64 start-page: 523 year: 2015 ident: 3224_CR13 publication-title: Biosens Bioelectron doi: 10.1016/j.bios.2014.09.071 – volume: 289 start-page: 56 year: 2018 ident: 3224_CR19 publication-title: Electrochim Acta doi: 10.1016/j.electacta.2018.09.036 – volume: 80 start-page: 7051 year: 2008 ident: 3224_CR5 publication-title: Anal Chem doi: 10.1021/ac801144t – volume: 87 start-page: 8524 year: 2015 ident: 3224_CR7 publication-title: Anal Chem doi: 10.1021/acs.analchem.5b02167 |
SSID | ssj0017624 |
Score | 2.461333 |
Snippet | Colorimetric methods are described for the determination of ascorbic acid (AA) and alkaline phosphatase (ALP). Both assays are based on the inhibition of the... |
SourceID | proquest gale pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 123 |
SubjectTerms | Acids Alkaline phosphatase Analytical Chemistry Ascorbic acid Characterization and Evaluation of Materials Chemistry Chemistry and Materials Science Citric acid Colorimetry Hydrogen peroxide Hydrolysis Iron compounds Microengineering Nanochemistry Nanotechnology Original Paper Oxidation Peroxidase Phosphatase Phosphatases Pigments Vitamin C |
Title | Colorimetric determination of ascorbic acid and the activity of alkaline phosphatase based on the inhibition of the peroxidase-like activity of citric acid-capped Prussian Blue nanocubes |
URI | https://link.springer.com/article/10.1007/s00604-018-3224-5 https://www.ncbi.nlm.nih.gov/pubmed/30666555 https://www.proquest.com/docview/2169230311 https://www.proquest.com/docview/2179403588 |
Volume | 186 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9RAEF9s-6Av4nej9VhBEJSFJvuR5PGu9loUxQcP6lPY7AcXeiShuYB_m3-dM7ls9IoKPgVuJ5NNZnc-bmd-Q8hrzTUM5YYhejgDi2dgz6WeScGN1olNy6EW5tNndbkSH67k1VjH3YVs93AkOWjqqdgNoUMwYyJjsAgFkwfkSELojnlcq2Q-HR3A7h6hlxXjKk3CUeafWOwZo9sq-TebdOuQdLA9ywfk_ug00vlOyg_JHVc_InfPQq-2x-QHxP8NAvUj3j61IcUFPzptPNUdxJgljGhTWaprS8Hto1jSgJ0jBorNtUaHk7brpmvXegvGjaKFsxRYIHVVr6uyChzxF4QY_15ZIGKb6nqfn6mGmeDzmNFtC3y-3PQdVmzSxaZ3tNZ1Y_rSdU_Iann-9eySjV0ZmAFRbplX2JzD-thLp6QwWalTxzPlRJo7oeC7aulTmWvrrRFOZhn3UhsrY-eENYo_JYd1U7tjQgWsBaFBz_HSitz73OU69xBDaZVnPE4ichrEU5gRshw7Z2yKCWx5kGgBEi1QooWMyNvplnaH1_Ev4jco8wL3MvA1eixJgNkhKlYxT8FdhhfI0oic7FGCeM3-cFg1xagDuiKJFXjPoDTjiLyahvFOzGurXdMjDejDUw5MIvJst9qmaXMMLaWEWb4Ly-8X87--0_P_on5B7iX4B8KQnXhCDrc3vXsJXta2nJGDbHkxI0fzxfvFEq8X3z6ez4a99hN7sSOl |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9RAEF-0PtQX8dvUWlcQBGWhyX4keTyL5dS2-NCDvi2b_eBCjyQ0F-jf1r-uM7kkekWFvmYnk93M7MwsO_MbQj4abmAotwzRwxl4PAt7Lg1MCm6NSVxa9LUwp2dqvhA_LuTFUMfdjtnu45Vkb6mnYjeEDsGMiYyBEgomH5JHEAtkqMqLZDZdHcDuHqCXFeMqTcarzL-x2HJGd03yHz7pziVp73uOn5InQ9BIZxspPyMPfPWc7B6NvdpekBs4_9cI1I94-9SNKS7402kdqGnhjFnAiLGlo6ZyFMI-iiUN2Dmip1hdGgw4abOs22Zp1uDcKHo4R4EFUpfVsizKkSM-QYjx69IBEVuVl9v8bNnPBL_HrGka4PPrqmuxYpN-XXWeVqaqbVf49iVZHH87P5qzoSsDsyDKNQsKm3O4EAfplRQ2K0zqeaa8SHMvFPxXI0Mqc-OCs8LLLONBGutk7L1wVvFXZKeqK_-GUAG6IAzYOV44kYeQ-9zkAc5QRuUZj5OIHI7i0XaALMfOGSs9gS33EtUgUY0S1TIin6dXmg1ex_-IP6HMNe5l4GvNUJIAs0NULD1LIVyGBWRpRPa3KEG8dnt41Bo92IBWJ7GC6BmMZhyRD9Mwvol5bZWvO6QBe3jIgUlEXm-0bZo2x6OllDDLL6P6_Wb-zzXt3Yv6Pdmdn5-e6JPvZz_fkscQDeablPR9srO-6vw7iLjWxUG_w24BVk0itQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ba9VAEF60gvoi3k2tuoIgKEub7CXJ4_Hood5KHzzQt7DZCyf0mIQmgf42f50zuekpKvianUx2M7Mzs-zMN4S80lzDUGoYoocz8HgG9lzsmRTcaB3ZOO9rYb6eqOO1-HQmz8Y-p82U7T5dSQ41DYjSVLaHtfWHc-Ebwohg9kTCQCEFk9fJDYHFwKDQ62gxXyPATh9hmBXjKo6ma80_sdhxTFfN82_-6cqFae-HVnfJnTGApItB4vfINVfeJ7eWU9-2B-THssKsuu_YKstQO6W7oABo5alu4LyZw4g2haW6tBRCQIrlDdhFoqfYnmsMPmm9qZp6o1twdBS9naXAAqmLclPkxcQRnyDc-GVhgYhti_NdfqboZ4LfY0bXNfA5vegarN6k77ado6UuK9PlrnlI1qsP35bHbOzQwAyItWVeYaMO60MvnZLCJLmOHU-UE3HqhIL_qqWPZaqtt0Y4mSTcS22sDJ0T1ij-iOyVVemeECpAL4QGm8dzK1LvU5fq1MN5Sqs04WEUkKNJPJkZ4cuxi8Y2m4GXe4lmINEMJZrJgLyZX6kH7I5_Eb9GmWe4r4Gv0WN5AswOEbKyRQyhMywgiQNysEMJ4jW7w5PWZKM9aLIoVBBJgwENA_JyHsY3McetdFWHNGAbjzgwCcjjQdvmaXM8ZkoJs3w7qd8v5n9d0_5_Ub8gN0_fr7IvH08-PyW3ITBMh-z0A7LXXnTuGQRfbf6832A_AXmzJug |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Colorimetric+determination+of+ascorbic+acid+and+the+activity+of+alkaline+phosphatase+based+on+the+inhibition+of+the+peroxidase-like+activity+of+citric+acid-capped+Prussian+Blue+nanocubes&rft.jtitle=Mikrochimica+acta+%281966%29&rft.au=Wu%2C+Tengteng&rft.au=Hou%2C+Wenli&rft.au=Ma%2C+Zhangyan&rft.au=Liu%2C+Meiling&rft.date=2019-02-01&rft.pub=Springer+Nature+B.V&rft.issn=0026-3672&rft.eissn=1436-5073&rft.volume=186&rft.issue=2&rft.spage=1&rft.epage=7&rft_id=info:doi/10.1007%2Fs00604-018-3224-5&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0026-3672&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0026-3672&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0026-3672&client=summon |