Estimating the age of healthy subjects from T1-weighted MRI scans using kernel methods: Exploring the influence of various parameters
The early identification of brain anatomy deviating from the normal pattern of growth and atrophy, such as in Alzheimer's disease (AD), has the potential to improve clinical outcomes through early intervention. Recently, Davatzikos et al. (2009) supported the hypothesis that pathologic atrophy...
Saved in:
Published in | NeuroImage (Orlando, Fla.) Vol. 50; no. 3; pp. 883 - 892 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
15.04.2010
Elsevier Limited |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The early identification of brain anatomy deviating from the normal pattern of growth and atrophy, such as in Alzheimer's disease (AD), has the potential to improve clinical outcomes through early intervention. Recently, Davatzikos et al. (2009) supported the hypothesis that pathologic atrophy in AD is an accelerated aging process, implying accelerated brain atrophy. In order to recognize faster brain atrophy, a model of healthy brain aging is needed first. Here, we introduce a framework for automatically and efficiently estimating the age of healthy subjects from their T1-weighted MRI scans using a kernel method for regression. This method was tested on over 650 healthy subjects, aged 19–86 years, and collected from four different scanners. Furthermore, the influence of various parameters on estimation accuracy was analyzed. Our age estimation framework included automatic preprocessing of the T1-weighted images, dimension reduction via principal component analysis, training of a relevance vector machine (RVM; Tipping, 2000) for regression, and finally estimating the age of the subjects from the test samples. The framework proved to be a reliable, scanner-independent, and efficient method for age estimation in healthy subjects, yielding a correlation of r=0.92 between the estimated and the real age in the test samples and a mean absolute error of 5 years. The results indicated favorable performance of the RVM and identified the number of training samples as the critical factor for prediction accuracy. Applying the framework to people with mild AD resulted in a mean brain age gap estimate (BrainAGE) score of +10 years. |
---|---|
AbstractList | The early identification of brain anatomy deviating from the normal pattern of growth and atrophy, such as in Alzheimer's disease (AD), has the potential to improve clinical outcomes through early intervention. Recently,Davatzikos et al. (2009)supported the hypothesis that pathologic atrophy in AD is an accelerated aging process, implying accelerated brain atrophy. In order to recognize faster brain atrophy, a model of healthy brain aging is needed first. Here, we introduce a framework for automatically and efficiently estimating the age of healthy subjects from their T1-weighted MRI scans using a kernel method for regression. This method was tested on over 650 healthy subjects, aged 19-86 years, and collected from four different scanners. Furthermore, the influence of various parameters on estimation accuracy was analyzed. Our age estimation framework included automatic preprocessing of the T1-weighted images, dimension reduction via principal component analysis, training of a relevance vector machine (RVM; Tipping, 2000) for regression, and finally estimating the age of the subjects from the test samples. The framework proved to be a reliable, scanner-independent, and efficient method for age estimation in healthy subjects, yielding a correlation ofr=0.92 between the estimated and the real age in the test samples and a mean absolute error of 5 years. The results indicated favorable performance of the RVM and identified the number of training samples as the critical factor for prediction accuracy. Applying the framework to people with mild AD resulted in a meanbrain age gap estimate(BrainAGE) score of +10 years. The early identification of brain anatomy deviating from the normal pattern of growth and atrophy, such as in Alzheimer's disease (AD), has the potential to improve clinical outcomes through early intervention. Recently, Davatzikos et al. (2009) supported the hypothesis that pathologic atrophy in AD is an accelerated aging process, implying accelerated brain atrophy. In order to recognize faster brain atrophy, a model of healthy brain aging is needed first. Here, we introduce a framework for automatically and efficiently estimating the age of healthy subjects from their T(1)-weighted MRI scans using a kernel method for regression. This method was tested on over 650 healthy subjects, aged 19-86 years, and collected from four different scanners. Furthermore, the influence of various parameters on estimation accuracy was analyzed. Our age estimation framework included automatic preprocessing of the T(1)-weighted images, dimension reduction via principal component analysis, training of a relevance vector machine (RVM; Tipping, 2000) for regression, and finally estimating the age of the subjects from the test samples. The framework proved to be a reliable, scanner-independent, and efficient method for age estimation in healthy subjects, yielding a correlation of r=0.92 between the estimated and the real age in the test samples and a mean absolute error of 5 years. The results indicated favorable performance of the RVM and identified the number of training samples as the critical factor for prediction accuracy. Applying the framework to people with mild AD resulted in a mean brain age gap estimate (BrainAGE) score of +10 years. The early identification of brain anatomy deviating from the normal pattern of growth and atrophy, such as in Alzheimer's disease (AD), has the potential to improve clinical outcomes through early intervention. Recently, Davatzikos et al. (2009) supported the hypothesis that pathologic atrophy in AD is an accelerated aging process, implying accelerated brain atrophy. In order to recognize faster brain atrophy, a model of healthy brain aging is needed first. Here, we introduce a framework for automatically and efficiently estimating the age of healthy subjects from their T(1)-weighted MRI scans using a kernel method for regression. This method was tested on over 650 healthy subjects, aged 19-86 years, and collected from four different scanners. Furthermore, the influence of various parameters on estimation accuracy was analyzed. Our age estimation framework included automatic preprocessing of the T(1)-weighted images, dimension reduction via principal component analysis, training of a relevance vector machine (RVM; Tipping, 2000) for regression, and finally estimating the age of the subjects from the test samples. The framework proved to be a reliable, scanner-independent, and efficient method for age estimation in healthy subjects, yielding a correlation of r=0.92 between the estimated and the real age in the test samples and a mean absolute error of 5 years. The results indicated favorable performance of the RVM and identified the number of training samples as the critical factor for prediction accuracy. Applying the framework to people with mild AD resulted in a mean brain age gap estimate (BrainAGE) score of +10 years.The early identification of brain anatomy deviating from the normal pattern of growth and atrophy, such as in Alzheimer's disease (AD), has the potential to improve clinical outcomes through early intervention. Recently, Davatzikos et al. (2009) supported the hypothesis that pathologic atrophy in AD is an accelerated aging process, implying accelerated brain atrophy. In order to recognize faster brain atrophy, a model of healthy brain aging is needed first. Here, we introduce a framework for automatically and efficiently estimating the age of healthy subjects from their T(1)-weighted MRI scans using a kernel method for regression. This method was tested on over 650 healthy subjects, aged 19-86 years, and collected from four different scanners. Furthermore, the influence of various parameters on estimation accuracy was analyzed. Our age estimation framework included automatic preprocessing of the T(1)-weighted images, dimension reduction via principal component analysis, training of a relevance vector machine (RVM; Tipping, 2000) for regression, and finally estimating the age of the subjects from the test samples. The framework proved to be a reliable, scanner-independent, and efficient method for age estimation in healthy subjects, yielding a correlation of r=0.92 between the estimated and the real age in the test samples and a mean absolute error of 5 years. The results indicated favorable performance of the RVM and identified the number of training samples as the critical factor for prediction accuracy. Applying the framework to people with mild AD resulted in a mean brain age gap estimate (BrainAGE) score of +10 years. The early identification of brain anatomy deviating from the normal pattern of growth and atrophy, such as in Alzheimer's disease (AD), has the potential to improve clinical outcomes through early intervention. Recently, Davatzikos et al. (2009) supported the hypothesis that pathologic atrophy in AD is an accelerated aging process, implying accelerated brain atrophy. In order to recognize faster brain atrophy, a model of healthy brain aging is needed first. Here, we introduce a framework for automatically and efficiently estimating the age of healthy subjects from their T1-weighted MRI scans using a kernel method for regression. This method was tested on over 650 healthy subjects, aged 19–86 years, and collected from four different scanners. Furthermore, the influence of various parameters on estimation accuracy was analyzed. Our age estimation framework included automatic preprocessing of the T1-weighted images, dimension reduction via principal component analysis, training of a relevance vector machine (RVM; Tipping, 2000) for regression, and finally estimating the age of the subjects from the test samples. The framework proved to be a reliable, scanner-independent, and efficient method for age estimation in healthy subjects, yielding a correlation of r=0.92 between the estimated and the real age in the test samples and a mean absolute error of 5 years. The results indicated favorable performance of the RVM and identified the number of training samples as the critical factor for prediction accuracy. Applying the framework to people with mild AD resulted in a mean brain age gap estimate (BrainAGE) score of +10 years. |
Author | Klöppel, Stefan Ziegler, Gabriel Gaser, Christian Franke, Katja |
Author_xml | – sequence: 1 givenname: Katja surname: Franke fullname: Franke, Katja email: katja.franke@uni-jena.de organization: Structural Brain Mapping Group, Department of Psychiatry, University of Jena, Jena, Germany – sequence: 2 givenname: Gabriel surname: Ziegler fullname: Ziegler, Gabriel organization: Structural Brain Mapping Group, Department of Psychiatry, University of Jena, Jena, Germany – sequence: 3 givenname: Stefan surname: Klöppel fullname: Klöppel, Stefan organization: Department of Psychiatry and Psychotherapy, Section of Gerontopsychiatry and Neuropsychology, Freiburg Brain Imaging, University Hospital Freiburg, Freiburg, Germany – sequence: 4 givenname: Christian surname: Gaser fullname: Gaser, Christian organization: Structural Brain Mapping Group, Department of Psychiatry, University of Jena, Jena, Germany |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/20070949$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkctu1DAUhiNURC_wCsgSC1YZ7CROYhaIUg1QqQgJlbXlOMcTp4492E5hHoD3xmFakGY1K1_0nU9H_3-enVhnIcsQwSuCSf1mXFmYvdOT2MCqwOkbkxXG9El2RjCjOaNNcbLcaZm3hLDT7DyEEWPMSNU-y04LjBvMKnaW_V6HmDRR2w2KA6AkRE6hAYSJww6FuRtBxoCUdxO6JflP0JshQo--fLtGQQob0ByW4TvwFgyaIA6uD2_R-tfWOP-o1VaZGaz8K78XXrs5oK3wIvHgw_PsqRImwIuH8yL7_nF9e_U5v_n66frq8iaXVclirgpREIqVrFVTd1RBepSdgIq2WPZUSCCVYJT0BZUda6q-B0XbHgQpVYsLXF5kr_ferXc_ZgiRTzpIMEZYSBvxpixJW9YNS-SrA3J0s7dpOU5qUpVNSesmUS8fqLmboOdbn7L0O_6YbwLaPSC9C8GD-ocQzJcq-cj_V8mXKjkmPFWZRt8djEodU1HORi-0OUbwYS-AlOi9Bs-D1EsHvfapU947fYzk_YFEGm21FOYOdscp_gDiBNj5 |
CitedBy_id | crossref_primary_10_1109_TMI_2022_3161947 crossref_primary_10_1007_s00521_021_06518_1 crossref_primary_10_1016_j_bspc_2022_104151 crossref_primary_10_3390_jcm10194431 crossref_primary_10_1016_j_neuroimage_2014_05_078 crossref_primary_10_1111_add_16088 crossref_primary_10_1080_19585969_2024_2373075 crossref_primary_10_1177_0004867419857814 crossref_primary_10_1002_ana_25746 crossref_primary_10_3389_fnagi_2018_00028 crossref_primary_10_1002_hbm_25660 crossref_primary_10_1016_j_neuroimage_2014_04_018 crossref_primary_10_1007_s43657_022_00079_6 crossref_primary_10_1002_brb3_1020 crossref_primary_10_1002_hbm_26632 crossref_primary_10_1038_s41467_020_20655_6 crossref_primary_10_1371_journal_pone_0270682 crossref_primary_10_1007_s00429_023_02686_z crossref_primary_10_1111_psyp_13523 crossref_primary_10_1177_11795735241266556 crossref_primary_10_1016_j_neuroimage_2020_117458 crossref_primary_10_1186_s12888_018_1678_y crossref_primary_10_1109_JBHI_2021_3124733 crossref_primary_10_1007_s10548_017_0581_z crossref_primary_10_1016_j_neuroimage_2011_06_029 crossref_primary_10_1371_journal_pone_0232296 crossref_primary_10_1371_journal_pone_0157514 crossref_primary_10_3389_fnagi_2018_00252 crossref_primary_10_1159_000507083 crossref_primary_10_1002_hbm_26502 crossref_primary_10_1093_cercor_bhab530 crossref_primary_10_1002_bies_201700221 crossref_primary_10_1038_s41598_020_63014_7 crossref_primary_10_1016_j_neuroimage_2018_03_007 crossref_primary_10_46471_gigabyte_113 crossref_primary_10_1016_j_nicl_2021_102767 crossref_primary_10_1016_j_brainres_2021_147431 crossref_primary_10_1038_s41514_024_00150_8 crossref_primary_10_1016_j_neuroimage_2016_02_079 crossref_primary_10_1016_j_neuroimage_2020_117689 crossref_primary_10_1038_s41598_024_63998_6 crossref_primary_10_1002_mds_30109 crossref_primary_10_1093_cercor_bht425 crossref_primary_10_3389_fpsyt_2021_598518 crossref_primary_10_1016_j_neuroimage_2020_117441 crossref_primary_10_1016_j_nicl_2015_07_002 crossref_primary_10_3389_fnagi_2018_00168 crossref_primary_10_3389_fneur_2019_00450 crossref_primary_10_1016_j_arr_2020_101184 crossref_primary_10_1038_s41598_019_46145_4 crossref_primary_10_1016_j_media_2014_12_006 crossref_primary_10_1002_hbm_25680 crossref_primary_10_1016_j_tins_2017_10_001 crossref_primary_10_1016_j_neuroimage_2018_05_065 crossref_primary_10_1016_j_jpsychires_2022_11_011 crossref_primary_10_1016_j_neurobiolaging_2024_05_001 crossref_primary_10_1016_j_neuroimage_2018_04_035 crossref_primary_10_1016_j_neuroimage_2020_117316 crossref_primary_10_1038_mp_2017_62 crossref_primary_10_1002_hbm_24588 crossref_primary_10_1038_s41398_020_01013_y crossref_primary_10_3389_fnagi_2018_00074 crossref_primary_10_7554_eLife_87297_4 crossref_primary_10_18632_aging_203847 crossref_primary_10_1002_acn3_51782 crossref_primary_10_1007_s00429_022_02602_x crossref_primary_10_1016_j_neurobiolaging_2020_06_019 crossref_primary_10_1016_j_neuroimage_2021_117822 crossref_primary_10_1136_bjo_2023_323176 crossref_primary_10_1002_hbm_24899 crossref_primary_10_1016_j_neurobiolaging_2021_08_020 crossref_primary_10_1007_s11357_023_00900_8 crossref_primary_10_1093_sleep_zsaa204 crossref_primary_10_1038_s41380_019_0446_9 crossref_primary_10_1002_hbm_25983 crossref_primary_10_1016_j_neuroimage_2019_05_025 crossref_primary_10_3389_fnagi_2018_00184 crossref_primary_10_3389_fmed_2019_00146 crossref_primary_10_1016_j_neuroimage_2017_12_050 crossref_primary_10_1016_j_neurobiolaging_2014_07_046 crossref_primary_10_3389_fneur_2019_00789 crossref_primary_10_1080_09297049_2024_2314956 crossref_primary_10_1002_hbm_23434 crossref_primary_10_1016_j_pscychresns_2017_05_006 crossref_primary_10_1016_j_cmpb_2020_105348 crossref_primary_10_1016_j_media_2023_102913 crossref_primary_10_1111_ejn_13835 crossref_primary_10_1016_j_nicl_2019_101664 crossref_primary_10_1016_j_pscychresns_2021_111270 crossref_primary_10_1016_j_pnpbp_2024_111062 crossref_primary_10_1038_s41398_022_01793_5 crossref_primary_10_1007_s12021_015_9292_3 crossref_primary_10_1111_head_14429 crossref_primary_10_1016_j_neurobiolaging_2021_08_007 crossref_primary_10_1016_j_neuroimage_2020_117401 crossref_primary_10_1093_brain_aww008 crossref_primary_10_1016_j_bpsc_2021_02_005 crossref_primary_10_1002_hbm_24312 crossref_primary_10_1080_0952813X_2020_1764633 crossref_primary_10_1016_j_neuroimage_2024_120881 crossref_primary_10_1016_j_biopsych_2022_06_018 crossref_primary_10_1016_j_neuroimage_2019_05_040 crossref_primary_10_1109_TMI_2021_3066857 crossref_primary_10_1109_TNSRE_2022_3190467 crossref_primary_10_1016_j_neuroimage_2012_03_079 crossref_primary_10_3390_jpm11121250 crossref_primary_10_34133_research_0500 crossref_primary_10_1016_j_neubiorev_2020_01_031 crossref_primary_10_1016_j_inffus_2020_08_023 crossref_primary_10_1002_hbm_24428 crossref_primary_10_1093_ijnp_pyac080 crossref_primary_10_1093_schbul_sbx172 crossref_primary_10_1016_j_jneumeth_2011_04_022 crossref_primary_10_3390_s22208077 crossref_primary_10_1016_j_neuroimage_2015_05_071 crossref_primary_10_1111_add_15710 crossref_primary_10_1016_j_bbr_2016_05_061 crossref_primary_10_1093_biomethods_bpae086 crossref_primary_10_1093_braincomms_fcab191 crossref_primary_10_1109_TNSRE_2023_3247590 crossref_primary_10_1016_j_semcdb_2021_01_003 crossref_primary_10_1111_imr_13309 crossref_primary_10_1016_j_bpsc_2020_07_014 crossref_primary_10_1016_j_inffus_2021_07_001 crossref_primary_10_3389_fnagi_2022_808022 crossref_primary_10_1016_j_neurobiolaging_2018_10_016 crossref_primary_10_1093_cercor_bhac217 crossref_primary_10_1162_neco_a_01180 crossref_primary_10_1002_hbm_22318 crossref_primary_10_1093_cercor_bhaa161 crossref_primary_10_1371_journal_pone_0022193 crossref_primary_10_1002_hbm_22671 crossref_primary_10_1007_s11042_020_10377_8 crossref_primary_10_1016_j_media_2021_102304 crossref_primary_10_1093_scan_nsaf013 crossref_primary_10_1016_j_neurobiolaging_2019_12_015 crossref_primary_10_1016_j_bpsc_2018_05_002 crossref_primary_10_1186_s13293_024_00615_1 crossref_primary_10_1186_s10194_023_01670_6 crossref_primary_10_1371_journal_pcbi_1002987 crossref_primary_10_1016_j_archger_2025_105830 crossref_primary_10_3390_sci5020023 crossref_primary_10_1016_j_neuroimage_2014_11_045 crossref_primary_10_1186_s13229_023_00558_1 crossref_primary_10_3389_fneur_2022_1040087 crossref_primary_10_3389_fnagi_2021_682109 crossref_primary_10_1016_j_neuroimage_2015_04_036 crossref_primary_10_1016_j_neuroimage_2014_10_002 crossref_primary_10_1016_j_neuroimage_2017_12_014 crossref_primary_10_1093_cercor_bhab019 crossref_primary_10_1016_j_neuroimage_2020_117292 crossref_primary_10_1016_j_radonc_2022_08_002 crossref_primary_10_1371_journal_pone_0054475 crossref_primary_10_1093_cercor_bhaa288 crossref_primary_10_1007_s00415_019_09442_6 crossref_primary_10_1016_j_neuroimage_2011_09_069 crossref_primary_10_1017_S0033291718002763 crossref_primary_10_1093_cercor_bhaa296 crossref_primary_10_1016_j_neurobiolaging_2019_12_008 crossref_primary_10_1038_s41598_019_56089_4 crossref_primary_10_1016_j_media_2013_04_013 crossref_primary_10_1093_cercor_bhz131 crossref_primary_10_1038_s41597_022_01695_7 crossref_primary_10_1016_j_biopsych_2020_01_016 crossref_primary_10_1016_j_compmedimag_2021_101967 crossref_primary_10_3389_fpsyt_2023_1266770 crossref_primary_10_14778_3554821_3554835 crossref_primary_10_1093_cercor_bhx061 crossref_primary_10_3390_brainsci12111517 crossref_primary_10_1001_jamanetworkopen_2020_17357 crossref_primary_10_1016_j_bpsc_2021_01_001 crossref_primary_10_2174_1573400515666190719155906 crossref_primary_10_1016_j_neuroimage_2019_05_082 crossref_primary_10_1007_s12021_017_9346_9 crossref_primary_10_1212_WNL_0000000000012499 crossref_primary_10_1016_j_neuroimage_2018_03_075 crossref_primary_10_1111_ejn_14850 crossref_primary_10_1016_j_neuroimage_2011_11_002 crossref_primary_10_3389_fnagi_2018_00317 crossref_primary_10_3389_fpsyg_2017_00156 crossref_primary_10_1016_j_neuroimage_2016_05_029 crossref_primary_10_1002_hbm_24503 crossref_primary_10_1007_s11357_024_01128_w crossref_primary_10_1002_hbm_25837 crossref_primary_10_1016_j_pnpbp_2020_110192 crossref_primary_10_3390_brainsci14010077 crossref_primary_10_1016_j_jns_2024_123113 crossref_primary_10_1007_s40747_023_01141_0 crossref_primary_10_1177_0962280218823036 crossref_primary_10_1016_j_dcn_2025_101543 crossref_primary_10_2478_acss_2021_0014 crossref_primary_10_1186_s42492_020_00062_w crossref_primary_10_1016_j_neucom_2015_09_119 crossref_primary_10_1007_s12021_013_9204_3 crossref_primary_10_1016_j_neuroimage_2020_117021 crossref_primary_10_3389_fnagi_2022_823502 crossref_primary_10_1002_hbm_22511 crossref_primary_10_1016_j_neuroimage_2013_02_055 crossref_primary_10_3233_JAD_160327 crossref_primary_10_1016_j_neuroimage_2012_08_001 crossref_primary_10_1017_S0033291725000285 crossref_primary_10_1371_journal_pone_0067346 crossref_primary_10_1016_j_nicl_2016_12_011 crossref_primary_10_3390_jcm11061582 crossref_primary_10_1016_j_neuroimage_2014_04_057 crossref_primary_10_1515_revneuro_2024_0025 crossref_primary_10_1038_s41593_019_0471_7 crossref_primary_10_3233_ADR_220011 crossref_primary_10_1038_s42003_022_03027_2 crossref_primary_10_1001_jamapsychiatry_2018_1543 crossref_primary_10_1016_j_neuroimage_2022_118930 crossref_primary_10_3389_fpsyt_2022_1019546 crossref_primary_10_1109_RBME_2021_3107372 crossref_primary_10_1109_TMI_2012_2216543 crossref_primary_10_1016_j_neuroimage_2023_120292 crossref_primary_10_3389_fnimg_2024_1390409 crossref_primary_10_7554_eLife_81869 crossref_primary_10_1016_j_neuroimage_2021_117889 crossref_primary_10_1007_s10522_022_09997_4 crossref_primary_10_1016_j_ynirp_2022_100146 crossref_primary_10_1093_cercor_bhad407 crossref_primary_10_1016_j_cortex_2015_10_010 crossref_primary_10_1038_s41398_017_0037_y crossref_primary_10_1016_j_neurobiolaging_2018_06_013 crossref_primary_10_1016_j_neurobiolaging_2013_06_015 crossref_primary_10_3390_s23073622 crossref_primary_10_1016_j_schres_2021_02_003 crossref_primary_10_1016_j_neurobiolaging_2017_04_006 crossref_primary_10_1093_cercor_bhaa014 crossref_primary_10_3390_app12020749 crossref_primary_10_1016_j_nicl_2023_103508 crossref_primary_10_1146_annurev_devpsych_010923_102441 crossref_primary_10_1016_j_neulet_2021_136398 crossref_primary_10_1093_cercor_bhy197 crossref_primary_10_7554_eLife_53060 crossref_primary_10_7554_eLife_87297 crossref_primary_10_1002_mef2_50 crossref_primary_10_1016_j_dcn_2024_101493 crossref_primary_10_3389_fnagi_2019_00348 crossref_primary_10_1016_j_biopsych_2024_07_019 crossref_primary_10_1007_s11357_024_01148_6 crossref_primary_10_1016_j_neuroimage_2019_116065 crossref_primary_10_3390_e17127868 crossref_primary_10_1016_j_neuroimage_2013_06_033 crossref_primary_10_1371_journal_pone_0114227 crossref_primary_10_3389_fnagi_2022_791222 crossref_primary_10_1016_j_neuroimage_2016_04_029 crossref_primary_10_1097_j_pain_0000000000001756 crossref_primary_10_3390_tomography10080093 crossref_primary_10_1016_j_neuroimage_2022_119646 crossref_primary_10_1038_s41598_023_49514_2 crossref_primary_10_1016_j_nicl_2022_103239 crossref_primary_10_1016_j_neucom_2024_127974 crossref_primary_10_3389_fnagi_2022_1063721 crossref_primary_10_1371_journal_pcbi_1008347 crossref_primary_10_1088_0031_9155_61_19_7162 crossref_primary_10_1016_j_neuroimage_2018_08_042 crossref_primary_10_1016_j_neuroimage_2021_118036 crossref_primary_10_1093_gigascience_giac014 crossref_primary_10_3389_fnagi_2019_00115 crossref_primary_10_1016_j_neubiorev_2022_105019 crossref_primary_10_3390_jpm12111850 crossref_primary_10_1093_cercor_bhac060 crossref_primary_10_1016_j_neurobiolaging_2021_11_008 crossref_primary_10_1002_nbm_4564 crossref_primary_10_1016_j_mri_2018_03_003 crossref_primary_10_1186_s12883_021_02331_4 crossref_primary_10_1001_jamanetworkopen_2022_54581 crossref_primary_10_1016_j_bpsc_2023_11_009 crossref_primary_10_1016_j_expneurol_2023_114481 crossref_primary_10_1016_j_neurobiolaging_2021_03_014 crossref_primary_10_1371_journal_pone_0229444 crossref_primary_10_3389_fnins_2021_733316 crossref_primary_10_1007_s11517_013_1131_9 crossref_primary_10_1016_j_neuroscience_2018_07_006 crossref_primary_10_1186_s12938_017_0342_y crossref_primary_10_1093_braincomms_fcac211 crossref_primary_10_1093_brain_awaa160 crossref_primary_10_2147_NSS_S463495 crossref_primary_10_1111_nyas_14864 crossref_primary_10_1016_j_neuroimage_2016_04_007 crossref_primary_10_1016_j_nicl_2019_102033 crossref_primary_10_1186_s40708_024_00230_1 crossref_primary_10_1016_j_nicl_2019_102159 crossref_primary_10_3389_fnagi_2022_895535 crossref_primary_10_1007_s11682_020_00260_3 crossref_primary_10_1016_j_neuroimage_2023_119947 crossref_primary_10_1016_j_jalz_2014_11_001 crossref_primary_10_1016_j_neuroimage_2016_11_005 crossref_primary_10_1016_j_eswa_2022_116622 crossref_primary_10_1016_j_neuroimage_2013_07_050 crossref_primary_10_1016_j_mri_2021_03_004 crossref_primary_10_1016_j_nicl_2022_103142 crossref_primary_10_1093_brain_awab007 crossref_primary_10_1038_s41467_019_13163_9 crossref_primary_10_1016_j_jalz_2010_03_007 crossref_primary_10_1016_j_compbiomed_2022_105285 crossref_primary_10_1016_j_neuroimage_2019_116149 crossref_primary_10_3233_JAD_150334 crossref_primary_10_1007_s00521_018_3397_1 crossref_primary_10_1016_j_neuroimage_2022_119415 crossref_primary_10_1016_j_neucom_2015_09_126 crossref_primary_10_1109_ACCESS_2024_3454709 crossref_primary_10_1016_j_compbiomed_2023_107873 crossref_primary_10_1097_j_pain_0000000000002613 crossref_primary_10_1038_s41598_021_83927_1 crossref_primary_10_1146_annurev_genom_021623_083207 crossref_primary_10_1162_imag_a_00079 crossref_primary_10_1016_j_neuroimage_2021_118381 crossref_primary_10_1038_s43588_024_00659_8 crossref_primary_10_3389_fnagi_2021_694982 crossref_primary_10_1016_j_neurobiolaging_2016_01_014 crossref_primary_10_1016_j_neuroimage_2022_118871 crossref_primary_10_7554_eLife_56640 crossref_primary_10_1016_j_yfrne_2020_100859 crossref_primary_10_1016_j_nicl_2023_103319 crossref_primary_10_3389_fnins_2021_673120 crossref_primary_10_3389_fpsyt_2021_627996 crossref_primary_10_1093_schbul_sbt142 crossref_primary_10_1007_s11357_025_01515_x crossref_primary_10_1016_j_jpsychires_2024_12_032 crossref_primary_10_1016_j_neurobiolaging_2023_06_017 crossref_primary_10_2174_1570159X19666211108141446 crossref_primary_10_3390_brainsci12050579 crossref_primary_10_1016_j_nicl_2018_02_007 crossref_primary_10_1002_hbm_26277 crossref_primary_10_1016_j_neurobiolaging_2021_10_004 crossref_primary_10_1016_j_nicl_2019_102063 crossref_primary_10_1007_s00330_022_08798_0 crossref_primary_10_1186_s13244_024_01791_9 crossref_primary_10_1016_j_neurobiolaging_2021_04_015 crossref_primary_10_1002_dad2_70094 crossref_primary_10_1016_j_media_2020_101879 crossref_primary_10_1016_j_neurobiolaging_2020_02_009 crossref_primary_10_1016_j_neurobiolaging_2021_10_002 crossref_primary_10_1002_hbm_25180 crossref_primary_10_1093_gerona_glac209 crossref_primary_10_1002_hbm_26030 crossref_primary_10_1016_j_cortex_2023_11_015 crossref_primary_10_3233_JAD_215244 crossref_primary_10_1016_j_neuroimage_2017_07_059 crossref_primary_10_3389_fpsyt_2021_626677 crossref_primary_10_3390_brainsci14060575 crossref_primary_10_1007_s00415_023_11931_8 crossref_primary_10_1016_j_cmpb_2015_11_012 crossref_primary_10_1016_j_neuroimage_2018_06_001 crossref_primary_10_1016_j_media_2020_101871 crossref_primary_10_1016_j_neurobiolaging_2021_10_007 crossref_primary_10_3389_fnagi_2014_00300 crossref_primary_10_1080_13607863_2023_2228255 crossref_primary_10_1002_hbm_26066 crossref_primary_10_1109_TMI_2019_2950092 crossref_primary_10_1016_j_neuroimage_2022_119621 crossref_primary_10_1016_j_neurobiolaging_2018_03_004 crossref_primary_10_1109_MSP_2021_3126573 crossref_primary_10_1109_ACCESS_2019_2941912 crossref_primary_10_1016_j_nicl_2013_07_005 crossref_primary_10_1109_JSEN_2018_2885582 crossref_primary_10_1016_j_neuroimage_2019_116450 crossref_primary_10_1162_imag_a_00021 crossref_primary_10_1016_j_media_2020_101852 crossref_primary_10_1016_j_mri_2019_06_018 crossref_primary_10_1192_bjp_2021_169 crossref_primary_10_1038_s41598_023_27903_x crossref_primary_10_1007_s10916_019_1401_7 crossref_primary_10_3389_fnagi_2017_00092 crossref_primary_10_3389_fnagi_2022_872867 crossref_primary_10_1016_j_neubiorev_2017_11_002 crossref_primary_10_1002_hbm_26050 crossref_primary_10_1038_s41598_023_29296_3 crossref_primary_10_1186_s13195_024_01491_y crossref_primary_10_1038_s41380_018_0098_1 crossref_primary_10_3389_fnagi_2023_1249415 crossref_primary_10_1080_13554794_2020_1731553 crossref_primary_10_1038_s41380_019_0626_7 crossref_primary_10_1109_JBHI_2016_2559938 crossref_primary_10_1162_imag_a_00037 crossref_primary_10_1016_j_compmedimag_2021_101939 crossref_primary_10_1093_braincomms_fcaa057 crossref_primary_10_1016_j_jksuci_2019_09_008 crossref_primary_10_1016_j_ymeth_2014_10_016 crossref_primary_10_1080_17588928_2020_1800617 crossref_primary_10_1016_j_biopsych_2024_04_017 crossref_primary_10_3389_fnagi_2021_729635 crossref_primary_10_1016_j_pscychresns_2019_06_001 crossref_primary_10_1016_j_neubiorev_2012_01_004 crossref_primary_10_1111_ejn_15473 crossref_primary_10_3390_app9153063 crossref_primary_10_1016_j_media_2019_03_001 crossref_primary_10_1016_j_neuroimage_2012_06_038 crossref_primary_10_1016_j_neucom_2015_07_145 crossref_primary_10_1002_hbm_25028 crossref_primary_10_1162_imag_a_00245 crossref_primary_10_1371_journal_pone_0168011 crossref_primary_10_1016_j_eswa_2024_124893 crossref_primary_10_1186_s13024_023_00688_3 crossref_primary_10_3389_fnagi_2023_1242158 crossref_primary_10_1111_cns_13048 crossref_primary_10_3389_fnimg_2022_934514 crossref_primary_10_1016_j_neuroimage_2010_03_051 crossref_primary_10_1016_j_cmpb_2021_106585 crossref_primary_10_1016_j_neuroimage_2018_10_003 crossref_primary_10_1007_s00429_020_02184_6 crossref_primary_10_3390_brainsci13030520 crossref_primary_10_1371_journal_pone_0036147 crossref_primary_10_1016_j_neuroimage_2013_08_053 crossref_primary_10_1523_JNEUROSCI_0790_22_2023 crossref_primary_10_1016_j_nicl_2021_102921 crossref_primary_10_15302_J_QB_021_0266 crossref_primary_10_1002_dad2_12493 crossref_primary_10_3389_fnagi_2021_761954 crossref_primary_10_1016_j_jpsychires_2020_04_011 crossref_primary_10_1016_j_cccb_2022_100125 crossref_primary_10_1109_TMI_2021_3085948 crossref_primary_10_3390_math11051229 crossref_primary_10_1097_j_pain_0000000000001491 crossref_primary_10_1016_j_ejmp_2017_04_027 crossref_primary_10_1002_hbm_26010 crossref_primary_10_1109_TNSRE_2020_3007324 crossref_primary_10_1016_j_neurobiolaging_2020_03_014 crossref_primary_10_1093_schbul_sbae150 crossref_primary_10_1186_s12883_023_03511_0 crossref_primary_10_1109_JBHI_2021_3083187 crossref_primary_10_1016_j_neubiorev_2024_105581 crossref_primary_10_3389_fnimg_2024_1455436 crossref_primary_10_1038_s41598_019_47922_x crossref_primary_10_3390_brainsci14121252 crossref_primary_10_1038_s41598_017_18253_6 crossref_primary_10_1523_JNEUROSCI_2092_19_2019 crossref_primary_10_1016_j_ebiom_2021_103600 crossref_primary_10_1002_hbm_26685 crossref_primary_10_1007_s11682_021_00574_w crossref_primary_10_3389_fpsyt_2024_1352250 crossref_primary_10_1016_j_pnpbp_2018_08_005 crossref_primary_10_1007_s12021_013_9178_1 crossref_primary_10_1371_journal_pone_0085460 crossref_primary_10_1016_j_neuroimage_2013_11_011 crossref_primary_10_3389_fnagi_2022_799260 crossref_primary_10_1016_j_brainres_2023_148668 crossref_primary_10_1017_S0954579418000342 crossref_primary_10_1002_hbm_26558 crossref_primary_10_3389_fnagi_2023_1303036 crossref_primary_10_1007_s00429_021_02433_2 crossref_primary_10_1002_hbm_25460 crossref_primary_10_1007_s00429_017_1491_2 crossref_primary_10_3390_e21040411 crossref_primary_10_1111_cen_14898 crossref_primary_10_1002_jnr_25357 crossref_primary_10_12688_wellcomeopenres_15617_3 crossref_primary_10_1038_s41598_022_05468_5 crossref_primary_10_3389_fpsyt_2022_913470 crossref_primary_10_1016_j_arr_2020_101075 crossref_primary_10_1097_YCO_0000000000000574 crossref_primary_10_3758_s13428_019_01296_0 crossref_primary_10_12688_wellcomeopenres_15617_2 crossref_primary_10_1016_j_ebr_2022_100530 crossref_primary_10_12688_wellcomeopenres_15617_1 crossref_primary_10_14336_AD_2019_0617 crossref_primary_10_3389_fnins_2022_1036102 crossref_primary_10_1002_jmri_22806 crossref_primary_10_1093_schbul_sbab064 crossref_primary_10_1016_j_procs_2019_09_265 crossref_primary_10_3389_fneur_2022_960760 crossref_primary_10_7554_eLife_52677 crossref_primary_10_1162_imag_a_00210 crossref_primary_10_1038_s41467_021_25492_9 crossref_primary_10_1002_hbm_25133 crossref_primary_10_1002_hbm_25253 crossref_primary_10_1088_1741_2552_abbff2 crossref_primary_10_1016_j_neubiorev_2023_105365 crossref_primary_10_1002_hbm_25013 crossref_primary_10_1016_j_neuroimage_2019_06_017 crossref_primary_10_1016_j_nicl_2018_05_036 crossref_primary_10_1016_j_media_2015_10_008 crossref_primary_10_1002_acn3_51043 crossref_primary_10_1016_j_cmpb_2021_106434 crossref_primary_10_1016_j_neuroimage_2022_119228 crossref_primary_10_1016_j_heliyon_2019_e02216 crossref_primary_10_3390_ijms25115970 crossref_primary_10_1016_j_neuroimage_2020_116831 crossref_primary_10_1017_S0033291716000878 crossref_primary_10_3389_fnagi_2021_653365 crossref_primary_10_3389_fneur_2019_01346 crossref_primary_10_1016_j_mri_2024_02_011 crossref_primary_10_7554_eLife_81067 crossref_primary_10_1109_JBHI_2023_3341629 crossref_primary_10_1007_s11042_020_09121_z crossref_primary_10_1016_j_biopsych_2015_12_023 crossref_primary_10_1016_j_neuroimage_2016_03_075 crossref_primary_10_1186_s13229_019_0301_5 crossref_primary_10_1016_j_jalz_2013_05_1764 crossref_primary_10_1016_j_neuroimage_2022_119210 crossref_primary_10_1002_hbm_25368 crossref_primary_10_1016_j_jalz_2013_05_1769 crossref_primary_10_1038_s41514_024_00169_x crossref_primary_10_1002_hbm_26333 crossref_primary_10_1016_j_jpsychires_2018_02_012 crossref_primary_10_1016_j_neurad_2023_09_002 crossref_primary_10_3390_biomedicines11102802 crossref_primary_10_3390_bioengineering11020124 crossref_primary_10_1016_j_jad_2023_08_139 crossref_primary_10_1016_j_jalz_2011_09_172 crossref_primary_10_1093_cercor_bhw208 crossref_primary_10_1007_s12204_023_2590_2 crossref_primary_10_1176_appi_ajp_2015_15070922 crossref_primary_10_1148_ryai_2021200171 crossref_primary_10_1016_j_media_2021_102169 crossref_primary_10_1016_j_arr_2020_101094 crossref_primary_10_3390_s22218112 crossref_primary_10_1016_j_neuroimage_2017_10_047 crossref_primary_10_1002_ana_24367 |
Cites_doi | 10.1006/nimg.1999.0458 10.1109/TMI.2005.857652 10.1016/j.schres.2008.02.007 10.1523/JNEUROSCI.23-08-03295.2003 10.1001/archneur.1994.00540210046012 10.1016/j.neuroimage.2008.03.050 10.1212/WNL.0b013e3181af79fb 10.1016/j.neuroimage.2007.09.073 10.1007/BF02294740 10.1093/schbul/sbm140 10.1212/01.wnl.0000341768.28646.b6 10.1016/j.neuroimage.2004.05.007 10.1109/TMI.2007.892501 10.1145/1386352.1386378 10.1007/s00330-009-1512-5 10.1016/j.mri.2009.01.006 10.1016/j.advwatres.2007.07.005 10.1016/S0893-6080(03)00209-0 10.1016/j.tins.2006.01.007 10.1145/380995.380999 10.1001/archpsyc.62.11.1218 10.1212/WNL.0b013e3181af79e5 10.1001/archneurol.2007.27 10.1093/brain/awn239 10.1023/A:1012487302797 10.1093/brain/awm319 10.1093/brain/awp091 10.1016/j.pscychresns.2008.05.002 10.1016/S0893-6080(03)00169-2 10.1016/j.neuroimage.2005.02.018 10.1016/j.neuroimage.2007.07.008 10.1212/WNL.43.11.2412-a 10.1109/42.563663 10.1016/j.neuroimage.2003.09.027 10.1006/nimg.2001.0786 10.1016/S1474-4422(03)00304-1 10.1016/j.neuroimage.2008.02.043 10.1212/WNL.0b013e3181a82634 10.1016/j.neuroimage.2007.10.031 10.1016/j.neuroimage.2005.08.062 10.1016/j.neuroimage.2007.07.007 10.1016/S1053-8119(09)71151-6 10.1016/j.neurobiolaging.2006.11.010 |
ContentType | Journal Article |
Copyright | 2010 Elsevier Inc. Copyright 2010 Elsevier Inc. All rights reserved. Copyright Elsevier Limited Apr 15, 2010 |
Copyright_xml | – notice: 2010 Elsevier Inc. – notice: Copyright 2010 Elsevier Inc. All rights reserved. – notice: Copyright Elsevier Limited Apr 15, 2010 |
CorporateAuthor | the Alzheimer's Disease Neuroimaging Initiative Alzheimer's Disease Neuroimaging Initiative |
CorporateAuthor_xml | – name: the Alzheimer's Disease Neuroimaging Initiative – name: Alzheimer's Disease Neuroimaging Initiative |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7TK 7X7 7XB 88E 88G 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2M M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U RC3 7X8 |
DOI | 10.1016/j.neuroimage.2010.01.005 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Neurosciences Abstracts ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection (ProQuest) ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection Medical Database Psychology Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | ProQuest One Psychology MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1095-9572 |
EndPage | 892 |
ExternalDocumentID | 3466484831 20070949 10_1016_j_neuroimage_2010_01_005 S1053811910000108 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5RE 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8P~ 9JM AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABIVO ABJNI ABMAC ABUWG ABXDB ACDAQ ACGFO ACGFS ACIEU ACPRK ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADFRT ADMUD ADNMO AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFKRA AFPUW AFTJW AFXIZ AGCQF AGUBO AGWIK AGYEJ AHHHB AHMBA AIEXJ AIIUN AIKHN AITUG AJRQY AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AXJTR AZQEC BBNVY BENPR BHPHI BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DM4 DU5 DWQXO EBS EFBJH EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN FYUFA G-Q GNUQQ GROUPED_DOAJ HCIFZ HMCUK HZ~ IHE J1W KOM LG5 LK8 LX8 M1P M29 M2M M2V M41 M7P MO0 MOBAO N9A O-L O9- OAUVE OVD OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PSYQQ PUEGO Q38 ROL RPZ SAE SCC SDF SDG SDP SES SSH SSN SSZ T5K TEORI UKHRP UV1 YK3 ZU3 ~G- 3V. AACTN AADPK AAIAV ABLVK ABYKQ AFKWA AJBFU AJOXV AMFUW C45 EFLBG HMQ LCYCR RIG SNS ZA5 .1- .FO 29N 53G AAFWJ AAQXK AAYXX ABMZM ADFGL ADVLN ADXHL AFPKN AFRHN AGHFR AGQPQ AGRNS AIGII AJUYK AKRLJ ALIPV APXCP ASPBG AVWKF AZFZN CAG CITATION COF FEDTE FGOYB G-2 GBLVA HDW HEI HMK HMO HVGLF OK1 R2- SEW WUQ XPP Z5R ZMT CGR CUY CVF ECM EIF NPM 7TK 7XB 8FD 8FK FR3 K9. P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 |
ID | FETCH-LOGICAL-c439t-f2a2150fc6f76b5fe1503bae4580cd5ace14a951d25cb974ddef58dea13f80203 |
IEDL.DBID | .~1 |
ISSN | 1053-8119 1095-9572 |
IngestDate | Fri Jul 11 00:32:47 EDT 2025 Wed Aug 13 11:22:11 EDT 2025 Thu Apr 03 06:53:38 EDT 2025 Thu Apr 24 23:08:42 EDT 2025 Tue Jul 01 02:14:35 EDT 2025 Fri Feb 23 02:20:28 EST 2024 Tue Aug 26 16:36:49 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Regression Aging Relevance vector machines (RVM) MRI Brain disease Support vector machines (SVM) |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 Copyright 2010 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c439t-f2a2150fc6f76b5fe1503bae4580cd5ace14a951d25cb974ddef58dea13f80203 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 20070949 |
PQID | 1614373567 |
PQPubID | 2031077 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_733183679 proquest_journals_1614373567 pubmed_primary_20070949 crossref_primary_10_1016_j_neuroimage_2010_01_005 crossref_citationtrail_10_1016_j_neuroimage_2010_01_005 elsevier_sciencedirect_doi_10_1016_j_neuroimage_2010_01_005 elsevier_clinicalkey_doi_10_1016_j_neuroimage_2010_01_005 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2010-04-15 |
PublicationDateYYYYMMDD | 2010-04-15 |
PublicationDate_xml | – month: 04 year: 2010 text: 2010-04-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Amsterdam |
PublicationTitle | NeuroImage (Orlando, Fla.) |
PublicationTitleAlternate | Neuroimage |
PublicationYear | 2010 |
Publisher | Elsevier Inc Elsevier Limited |
Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited |
References | Klöppel, Chu, Tan, Draganski, Johnson, Paulsen, Kienzle, Tabrizi, Ashburner, Frackowiak (bib31) 2009; 72 Teipel, Born, Ewers, Bokde, Reiser, Möller, Hampel (bib45) 2007; 38 Driscoll, Davatzikos, An, Wu, Shen, Kraut, Resnick (bib15) 2009; 72 Zheng, Neo, Chua, Tian (bib60) 2008 Bennett, Campbell (bib5) 2003; 2 Tipping, Faul (bib49) 2003 Resnick, Pham, Kraut, Zonderman, Davatzikos (bib40) 2003; 23 Davatzikos, Xu, An, Fan, Resnick (bib14) 2009; 132 Fotenos, Mintun, Snyder, Morris, Buckner (bib20) 2008; 65 Tohka, Zijdenbos, Evans (bib51) 2004; 23 Cuadra, Cammoun, Butz, Cuisenaire, Thiran (bib10) 2005; 24 Ashburner, Csernansky, Davatzikos, Fox, Frisoni, Thompson (bib4) 2003; 2 Ashburner, Friston (bib3) 2005; 26 Terribilli, Schaufelberger, Duran, Zanetti, Curiati, Menezes, Scazufca, Amaro, Leite, Busatto (bib46) 2009 Guyon, Weston, Barnhill, Vapnik (bib26) 2002; 46 Spulber, Niskanen, Macdonald, Smilovici, Chen, Reiman, Jauhiainen, Hallikainen, Tervo, Wahlund, Vanninen, Kivipelto, Soininen (bib44) 2008 Gaser, Volz, Kiebel, Riehemann, Sauer (bib22) 1999; 10 Liu, Teverovskiy, Carmichael, Kikinis, Shenton, Carter, Stenger, Davis, Aizenstein, Becker, Lopez, Meltzer (bib33) 2004; 3216 Guyon, Elisseeff (bib25) 2003; 3 Tipping (bib48) 2001; 1 Lao, Shen, Xue, Karacali, Resnick, Davatzikos (bib32) 2004; 21 Sluimer, Van Der Flier, Karas, Van Schijndel, Barnes, Boyes, Cover, Olabarriaga, Fox, Scheltens, Vrenken, Barkhof (bib42) 2009 Kirkpatrick, Messias, Harvey, Fernandez-Egea, Bowie (bib28) 2008; 34 Rajapakse, Giedd, Rapoport (bib39) 1997; 16 . Vemuri, Wiste, Weigand, Shaw, Trojanowski, Weiner, Knopman, Petersen, Jack, Initiative (bib56) 2009; 73 Ghosh, Mujumdar (bib23) 2008; 31 Ohnishi, Matsuda, Tabira, Asada, Uno (bib37) 2001; 22 Davatzikos, Fan, Wu, Shen, Resnick (bib12) 2008; 29 Pfefferbaum, Mathalon, Sullivan, Rawles, Zipursky, Lim (bib38) 1994; 51 Bishop (bib6) 2006 Morris (bib35) 1993; 43 van der Maaten, L.J.P., 2007. An Introduction to Dimensionality Reduction Using Matlab. Technical Report MICC 07-07. Maastricht University, Maastricht, The Netherlands. Ashburner (bib2) 2009; 27 Cockrell, Folstein (bib9) 1988; 24 Tipping (bib47) 2000 Vemuri, Wiste, Weigand, Shaw, Trojanowski, Weiner, Knopman, Petersen, Jack, Initiative (bib57) 2009; 73 Fan, Batmanghelich, Clark, Davatzikos (bib17) 2008; 39 Klöppel, Stonnington, Chu, Draganski, Scahill, Rohrer, Fox, Jack, Ashburner, Frackowiak (bib30) 2008; 131 Davatzikos, Shen, Gur, Wu, Liu, Fan, Hughett, Turetsky, Gur (bib11) 2005; 62 Good, Johnsrude, Ashburner, Henson, Friston, Frackowiak (bib24) 2001; 14 Cherkassky, Ma (bib8) 2004; 17 van der Maaten, L.J.P., Postma, E.O., van den Herik, H.J., 2007. Dimensionality reduction: a comparative review. Ashburner (bib1) 2007; 38 Holmes (bib27) 1990; 55 Gaser (bib21) 2009; 47 Toga, Thompson, Sowell (bib50) 2006; 29 Fan, Resnick, Wu, Davatzikos (bib18) 2008; 41 Vemuri, Gunter, Senjem, Whitwell, Kantarci, Knopman, Boeve, Petersen, Jack (bib55) 2008; 39 Wang, Liu, Lirng, Lin, Wu (bib58) 2009; 171 Meda, Giuliani, Calhoun, Jagannathan, Schretlen, Pulver, Cascella, Keshavan, Kates, Buchanan, Sharma, Pearlson (bib34) 2008; 101 Weston, J., Elisseeff, A., BakIr, G., Sinz, F., 2006. The Spider. van der Maaten, L.J.P., 2008. Matlab Toolbox for Dimensionality Reduction. Faul, Tipping (bib19) 2002; 1 Schölkopf, Smola (bib41) 2002 Klöppel, Stonnington, Barnes, Chen, Chu, Good, Mader, Mitchell, Patel, Roberts, Fox, Jack, Ashburner, Frackowiak (bib29) 2008; 131 Neeb, Zilles, Shah (bib36) 2006; 29 Davatzikos, Resnick, Wu, Parmpi, Clark (bib13) 2008; 41 Duchesnay, Cachia, Roche, Rivière, Cointepas, Papadopoulos-Orfanos, Zilbovicius, Martinot, Régis, Mangin (bib16) 2007; 26 (bib43) 2009 Chalimourda, Schölkopf, Smola (bib7) 2004; 17 Gaser (10.1016/j.neuroimage.2010.01.005_bib21) 2009; 47 Klöppel (10.1016/j.neuroimage.2010.01.005_bib31) 2009; 72 Ashburner (10.1016/j.neuroimage.2010.01.005_bib4) 2003; 2 Guyon (10.1016/j.neuroimage.2010.01.005_bib26) 2002; 46 Ashburner (10.1016/j.neuroimage.2010.01.005_bib1) 2007; 38 Cockrell (10.1016/j.neuroimage.2010.01.005_bib9) 1988; 24 Tipping (10.1016/j.neuroimage.2010.01.005_bib49) 2003 Wang (10.1016/j.neuroimage.2010.01.005_bib58) 2009; 171 Zheng (10.1016/j.neuroimage.2010.01.005_bib60) 2008 Meda (10.1016/j.neuroimage.2010.01.005_bib34) 2008; 101 Tipping (10.1016/j.neuroimage.2010.01.005_bib48) 2001; 1 Vemuri (10.1016/j.neuroimage.2010.01.005_bib55) 2008; 39 Vemuri (10.1016/j.neuroimage.2010.01.005_bib57) 2009; 73 Spulber (10.1016/j.neuroimage.2010.01.005_bib44) 2008 Cherkassky (10.1016/j.neuroimage.2010.01.005_bib8) 2004; 17 Ohnishi (10.1016/j.neuroimage.2010.01.005_bib37) 2001; 22 Klöppel (10.1016/j.neuroimage.2010.01.005_bib29) 2008; 131 Driscoll (10.1016/j.neuroimage.2010.01.005_bib15) 2009; 72 Fotenos (10.1016/j.neuroimage.2010.01.005_bib20) 2008; 65 Terribilli (10.1016/j.neuroimage.2010.01.005_bib46) 2009 Rajapakse (10.1016/j.neuroimage.2010.01.005_bib39) 1997; 16 Klöppel (10.1016/j.neuroimage.2010.01.005_bib30) 2008; 131 10.1016/j.neuroimage.2010.01.005_bib54 10.1016/j.neuroimage.2010.01.005_bib52 Liu (10.1016/j.neuroimage.2010.01.005_bib33) 2004; 3216 Pfefferbaum (10.1016/j.neuroimage.2010.01.005_bib38) 1994; 51 10.1016/j.neuroimage.2010.01.005_bib53 Sluimer (10.1016/j.neuroimage.2010.01.005_bib42) 2009 Fan (10.1016/j.neuroimage.2010.01.005_bib17) 2008; 39 Davatzikos (10.1016/j.neuroimage.2010.01.005_bib11) 2005; 62 10.1016/j.neuroimage.2010.01.005_bib59 Faul (10.1016/j.neuroimage.2010.01.005_bib19) 2002; 1 Neeb (10.1016/j.neuroimage.2010.01.005_bib36) 2006; 29 Ashburner (10.1016/j.neuroimage.2010.01.005_bib3) 2005; 26 Cuadra (10.1016/j.neuroimage.2010.01.005_bib10) 2005; 24 Tohka (10.1016/j.neuroimage.2010.01.005_bib51) 2004; 23 Tipping (10.1016/j.neuroimage.2010.01.005_bib47) 2000 Guyon (10.1016/j.neuroimage.2010.01.005_bib25) 2003; 3 Kirkpatrick (10.1016/j.neuroimage.2010.01.005_bib28) 2008; 34 Davatzikos (10.1016/j.neuroimage.2010.01.005_bib12) 2008; 29 Morris (10.1016/j.neuroimage.2010.01.005_bib35) 1993; 43 Lao (10.1016/j.neuroimage.2010.01.005_bib32) 2004; 21 Fan (10.1016/j.neuroimage.2010.01.005_bib18) 2008; 41 Ghosh (10.1016/j.neuroimage.2010.01.005_bib23) 2008; 31 Teipel (10.1016/j.neuroimage.2010.01.005_bib45) 2007; 38 Bishop (10.1016/j.neuroimage.2010.01.005_bib6) 2006 Toga (10.1016/j.neuroimage.2010.01.005_bib50) 2006; 29 Ashburner (10.1016/j.neuroimage.2010.01.005_bib2) 2009; 27 Duchesnay (10.1016/j.neuroimage.2010.01.005_bib16) 2007; 26 Gaser (10.1016/j.neuroimage.2010.01.005_bib22) 1999; 10 (10.1016/j.neuroimage.2010.01.005_bib43) 2009 Chalimourda (10.1016/j.neuroimage.2010.01.005_bib7) 2004; 17 Davatzikos (10.1016/j.neuroimage.2010.01.005_bib14) 2009; 132 Bennett (10.1016/j.neuroimage.2010.01.005_bib5) 2003; 2 Resnick (10.1016/j.neuroimage.2010.01.005_bib40) 2003; 23 Good (10.1016/j.neuroimage.2010.01.005_bib24) 2001; 14 Schölkopf (10.1016/j.neuroimage.2010.01.005_bib41) 2002 Vemuri (10.1016/j.neuroimage.2010.01.005_bib56) 2009; 73 Holmes (10.1016/j.neuroimage.2010.01.005_bib27) 1990; 55 Davatzikos (10.1016/j.neuroimage.2010.01.005_bib13) 2008; 41 |
References_xml | – volume: 39 start-page: 1731 year: 2008 end-page: 1743 ident: bib17 article-title: Spatial patterns of brain atrophy in MCI patients, identified via high-dimensional pattern classification, predict subsequent cognitive decline publication-title: NeuroImage – volume: 16 start-page: 176 year: 1997 end-page: 186 ident: bib39 article-title: Statistical approach to segmentation of single-channel cerebral MR images publication-title: IEEE Trans. Med. Imaging – volume: 46 start-page: 389 year: 2002 end-page: 422 ident: bib26 article-title: Gene selection for cancer classification using support vector machines publication-title: Mach. Learn. – volume: 72 start-page: 426 year: 2009 end-page: 431 ident: bib31 article-title: Automatic detection of preclinical neurodegeneration: presymptomatic Huntington disease publication-title: Neurology – volume: 24 start-page: 1548 year: 2005 end-page: 1565 ident: bib10 article-title: Comparison and validation of tissue modelization and statistical classification methods in T1-weighted MR brain images publication-title: IEEE Trans. Med. Imaging – volume: 10 start-page: 107 year: 1999 end-page: 113 ident: bib22 article-title: Detecting structural changes in whole brain based on nonlinear deformations-application to schizophrenia research publication-title: NeuroImage – volume: 131 start-page: 681 year: 2008 end-page: 689 ident: bib30 article-title: Automatic classification of MR scans in Alzheimer's disease publication-title: Brain – volume: 51 start-page: 874 year: 1994 end-page: 887 ident: bib38 article-title: A quantitative magnetic resonance imaging study of changes in brain morphology from infancy to late adulthood publication-title: Arch. Neurol. – volume: 101 start-page: 95 year: 2008 end-page: 105 ident: bib34 article-title: A large scale ( publication-title: Schizophr. Res. – volume: 2 start-page: 1 year: 2003 end-page: 13 ident: bib5 article-title: Support vector machines: hype or hallelujah? publication-title: SIGKDD Explorations – volume: 72 start-page: 1906 year: 2009 end-page: 1913 ident: bib15 article-title: Longitudinal pattern of regional brain volume change differentiates normal aging from MCI publication-title: Neurology – start-page: 161 year: 2008 end-page: 168 ident: bib60 article-title: Probabilistic optimized ranking for multimedia semantic concept detection via RVM publication-title: Proc. 2008 Int. Conference Content-based Image Video Retrieval – volume: 24 start-page: 689 year: 1988 end-page: 692 ident: bib9 article-title: Mini-Mental State Examination (MMSE) publication-title: Psychopharmacol. Bull. – volume: 55 start-page: 19 year: 1990 end-page: 32 ident: bib27 article-title: The robustness of the usual correction for restriction in range due to explicit selection publication-title: Psychometrika – volume: 23 start-page: 84 year: 2004 end-page: 97 ident: bib51 article-title: Fast and robust parameter estimation for statistical partial volume models in brain MRI publication-title: NeuroImage – volume: 17 start-page: 113 year: 2004 end-page: 126 ident: bib8 article-title: Practical selection of SVM parameters and noise estimation for SVM regression publication-title: Neural Netw. – year: 2008 ident: bib44 article-title: Whole brain atrophy rate predicts progression from MCI to Alzheimer's disease publication-title: Neurobiol. Aging – volume: 73 start-page: 294 year: 2009 end-page: 301 ident: bib56 article-title: MRI and CSF biomarkers in normal, MCI, and AD subjects: predicting future clinical change publication-title: Neurology – year: 2009 ident: bib42 article-title: Accelerating regional atrophy rates in the progression from normal aging to Alzheimer's disease publication-title: Eur. Radiol. – year: 2009 ident: bib43 publication-title: Wellcome Trust Centre for Neuroimaging – volume: 27 start-page: 1163 year: 2009 end-page: 1174 ident: bib2 article-title: Computational anatomy with the SPM software publication-title: Magn. Reson. Imaging – volume: 38 start-page: 13 year: 2007 end-page: 24 ident: bib45 article-title: Multivariate deformation-based analysis of brain atrophy to predict Alzheimer's disease in mild cognitive impairment publication-title: NeuroImage – volume: 22 start-page: 1680 year: 2001 end-page: 1685 ident: bib37 article-title: Changes in brain morphology in Alzheimer disease and normal aging: is Alzheimer disease an exaggerated aging process? publication-title: AJNR Am. J. Neuroradiol. – reference: van der Maaten, L.J.P., 2008. Matlab Toolbox for Dimensionality Reduction. – reference: van der Maaten, L.J.P., 2007. An Introduction to Dimensionality Reduction Using Matlab. Technical Report MICC 07-07. Maastricht University, Maastricht, The Netherlands. – volume: 2 start-page: 79 year: 2003 end-page: 88 ident: bib4 article-title: Computer-assisted imaging to assess brain structure in healthy and diseased brains publication-title: Lancet Neurol. – volume: 26 start-page: 553 year: 2007 end-page: 565 ident: bib16 article-title: Classification based on cortical folding patterns publication-title: IEEE Trans. Med. Imaging – volume: 31 start-page: 132 year: 2008 end-page: 146 ident: bib23 article-title: Statistical downscaling of GCM simulations to streamflow using relevance vector machine publication-title: Adv. Water Resour. – start-page: 652 year: 2000 end-page: 658 ident: bib47 article-title: The relevance vector machine publication-title: Advances in Neural Information Processing Systems 12. MIT Press – volume: 3216 start-page: 393 year: 2004 end-page: 401 ident: bib33 article-title: Discriminative MR image feature analysis for automatic schizophrenia and Alzheimer's disease classification publication-title: Learn. Theory: Proceed. – reference: van der Maaten, L.J.P., Postma, E.O., van den Herik, H.J., 2007. Dimensionality reduction: a comparative review. – year: 2002 ident: bib41 publication-title: Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond – volume: 1 start-page: 211 year: 2001 end-page: 244 ident: bib48 article-title: Sparse Bayesian learning and the relevance vector machine publication-title: J. Mach. Learn. Res. – volume: 41 start-page: 277 year: 2008 end-page: 285 ident: bib18 article-title: Structural and functional biomarkers of prodromal Alzheimer's disease: a high-dimensional pattern classification study publication-title: NeuroImage – volume: 21 start-page: 46 year: 2004 end-page: 57 ident: bib32 article-title: Morphological classification of brains via high-dimensional shape transformations and machine learning methods publication-title: NeuroImage – volume: 29 start-page: 514 year: 2008 end-page: 523 ident: bib12 article-title: Detection of prodromal Alzheimer's disease via pattern classification of magnetic resonance imaging publication-title: Neurobiol. Aging – volume: 43 start-page: 2412 year: 1993 end-page: 2414 ident: bib35 article-title: The Clinical Dementia Rating (CDR): current version and scoring rules publication-title: Neurology – volume: 29 start-page: 148 year: 2006 end-page: 159 ident: bib50 article-title: Mapping brain maturation publication-title: Trends Neurosci. – volume: 1 start-page: 383 year: 2002 end-page: 390 ident: bib19 article-title: Analysis of sparse Bayesian learning publication-title: Adv. Neural Inf. Process. Syst. (NIPS) – volume: 65 start-page: 113 year: 2008 end-page: 120 ident: bib20 article-title: Brain volume decline in aging: evidence for a relation between socioeconomic status, preclinical Alzheimer disease, and reserve publication-title: Arch. Neurol. – year: 2009 ident: bib46 article-title: Age-related gray matter volume changes in the brain during non-elderly adulthood publication-title: Neurobiol. Aging – volume: 3 start-page: 1157 year: 2003 end-page: 1182 ident: bib25 article-title: An introduction to variable and feature selection publication-title: J. Mach. Learn. Res. – reference: Weston, J., Elisseeff, A., BakIr, G., Sinz, F., 2006. The Spider. – volume: 17 start-page: 127 year: 2004 end-page: 141 ident: bib7 article-title: Experimentally optimal nu in support vector regression for different noise models and parameter settings publication-title: Neural Netw. – volume: 34 start-page: 1024 year: 2008 end-page: 1032 ident: bib28 article-title: Is schizophrenia a syndrome of accelerated aging? publication-title: Schizophr. Bull. – volume: 23 start-page: 3295 year: 2003 end-page: 3301 ident: bib40 article-title: Longitudinal magnetic resonance imaging studies of older adults: a shrinking brain publication-title: J. Neurosci. – volume: 171 start-page: 221 year: 2009 end-page: 231 ident: bib58 article-title: Accelerated hippocampal atrophy rates in stable and progressive amnestic mild cognitive impairment publication-title: Psychiatry Res. – year: 2006 ident: bib6 publication-title: Pattern Recognition and Machine Learning – volume: 26 start-page: 839 year: 2005 end-page: 851 ident: bib3 article-title: Unified segmentation publication-title: NeuroImage – volume: 41 start-page: 1220 year: 2008 end-page: 1227 ident: bib13 article-title: Individual patient diagnosis of AD and FTD via high-dimensional pattern classification of MRI publication-title: NeuroImage – volume: 47 start-page: S121 year: 2009 ident: bib21 article-title: Partial volume segmentation with adaptive maximum a posteriori (MAP) approach publication-title: NeuroImage – volume: 14 start-page: 21 year: 2001 end-page: 36 ident: bib24 article-title: A voxel-based morphometric study of ageing in 465 normal adult human brains publication-title: NeuroImage – volume: 29 start-page: 910 year: 2006 end-page: 922 ident: bib36 article-title: Fully-automated detection of cerebral water content changes: study of age-and gender-related H2O patterns with quantitative MRI publication-title: NeuroImage – volume: 131 start-page: 2969 year: 2008 end-page: 2974 ident: bib29 article-title: Accuracy of dementia diagnosis—a direct comparison between radiologists and a computerized method publication-title: Brain – reference: . – volume: 39 start-page: 1186 year: 2008 end-page: 1197 ident: bib55 article-title: Alzheimer's disease diagnosis in individual subjects using structural MR images: validation studies publication-title: NeuroImage – start-page: 3 year: 2003 end-page: 6 ident: bib49 article-title: Fast marginal likelihood maximization for sparse Bayesian models publication-title: Proc. Ninth Int. Workshop Artificial Intell. Stat. – volume: 38 start-page: 95 year: 2007 end-page: 113 ident: bib1 article-title: A fast diffeomorphic image registration algorithm publication-title: NeuroImage – volume: 62 start-page: 1218 year: 2005 end-page: 1227 ident: bib11 article-title: Whole-brain morphometric study of schizophrenia revealing a spatially complex set of focal abnormalities publication-title: Arch. Gen. Psychiatry – volume: 73 start-page: 287 year: 2009 end-page: 293 ident: bib57 article-title: MRI and CSF biomarkers in normal, MCI, and AD subjects: diagnostic discrimination and cognitive correlations publication-title: Neurology – volume: 132 start-page: 2026 year: 2009 end-page: 2035 ident: bib14 article-title: Longitudinal progression of Alzheimer's-like patterns of atrophy in normal older adults: the SPARE-AD index publication-title: Brain – volume: 10 start-page: 107 year: 1999 ident: 10.1016/j.neuroimage.2010.01.005_bib22 article-title: Detecting structural changes in whole brain based on nonlinear deformations-application to schizophrenia research publication-title: NeuroImage doi: 10.1006/nimg.1999.0458 – year: 2002 ident: 10.1016/j.neuroimage.2010.01.005_bib41 – year: 2008 ident: 10.1016/j.neuroimage.2010.01.005_bib44 article-title: Whole brain atrophy rate predicts progression from MCI to Alzheimer's disease publication-title: Neurobiol. Aging – volume: 24 start-page: 1548 year: 2005 ident: 10.1016/j.neuroimage.2010.01.005_bib10 article-title: Comparison and validation of tissue modelization and statistical classification methods in T1-weighted MR brain images publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2005.857652 – volume: 101 start-page: 95 year: 2008 ident: 10.1016/j.neuroimage.2010.01.005_bib34 article-title: A large scale (N=400) investigation of gray matter differences in schizophrenia using optimized voxel-based morphometry publication-title: Schizophr. Res. doi: 10.1016/j.schres.2008.02.007 – start-page: 3 year: 2003 ident: 10.1016/j.neuroimage.2010.01.005_bib49 article-title: Fast marginal likelihood maximization for sparse Bayesian models publication-title: Proc. Ninth Int. Workshop Artificial Intell. Stat. – volume: 23 start-page: 3295 year: 2003 ident: 10.1016/j.neuroimage.2010.01.005_bib40 article-title: Longitudinal magnetic resonance imaging studies of older adults: a shrinking brain publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.23-08-03295.2003 – volume: 51 start-page: 874 year: 1994 ident: 10.1016/j.neuroimage.2010.01.005_bib38 article-title: A quantitative magnetic resonance imaging study of changes in brain morphology from infancy to late adulthood publication-title: Arch. Neurol. doi: 10.1001/archneur.1994.00540210046012 – volume: 41 start-page: 1220 year: 2008 ident: 10.1016/j.neuroimage.2010.01.005_bib13 article-title: Individual patient diagnosis of AD and FTD via high-dimensional pattern classification of MRI publication-title: NeuroImage doi: 10.1016/j.neuroimage.2008.03.050 – volume: 73 start-page: 294 year: 2009 ident: 10.1016/j.neuroimage.2010.01.005_bib56 article-title: MRI and CSF biomarkers in normal, MCI, and AD subjects: predicting future clinical change publication-title: Neurology doi: 10.1212/WNL.0b013e3181af79fb – volume: 39 start-page: 1186 year: 2008 ident: 10.1016/j.neuroimage.2010.01.005_bib55 article-title: Alzheimer's disease diagnosis in individual subjects using structural MR images: validation studies publication-title: NeuroImage doi: 10.1016/j.neuroimage.2007.09.073 – volume: 55 start-page: 19 year: 1990 ident: 10.1016/j.neuroimage.2010.01.005_bib27 article-title: The robustness of the usual correction for restriction in range due to explicit selection publication-title: Psychometrika doi: 10.1007/BF02294740 – volume: 34 start-page: 1024 year: 2008 ident: 10.1016/j.neuroimage.2010.01.005_bib28 article-title: Is schizophrenia a syndrome of accelerated aging? publication-title: Schizophr. Bull. doi: 10.1093/schbul/sbm140 – volume: 72 start-page: 426 year: 2009 ident: 10.1016/j.neuroimage.2010.01.005_bib31 article-title: Automatic detection of preclinical neurodegeneration: presymptomatic Huntington disease publication-title: Neurology doi: 10.1212/01.wnl.0000341768.28646.b6 – ident: 10.1016/j.neuroimage.2010.01.005_bib59 – volume: 23 start-page: 84 year: 2004 ident: 10.1016/j.neuroimage.2010.01.005_bib51 article-title: Fast and robust parameter estimation for statistical partial volume models in brain MRI publication-title: NeuroImage doi: 10.1016/j.neuroimage.2004.05.007 – volume: 22 start-page: 1680 year: 2001 ident: 10.1016/j.neuroimage.2010.01.005_bib37 article-title: Changes in brain morphology in Alzheimer disease and normal aging: is Alzheimer disease an exaggerated aging process? publication-title: AJNR Am. J. Neuroradiol. – year: 2009 ident: 10.1016/j.neuroimage.2010.01.005_bib46 article-title: Age-related gray matter volume changes in the brain during non-elderly adulthood publication-title: Neurobiol. Aging – volume: 26 start-page: 553 year: 2007 ident: 10.1016/j.neuroimage.2010.01.005_bib16 article-title: Classification based on cortical folding patterns publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2007.892501 – start-page: 161 year: 2008 ident: 10.1016/j.neuroimage.2010.01.005_bib60 article-title: Probabilistic optimized ranking for multimedia semantic concept detection via RVM publication-title: Proc. 2008 Int. Conference Content-based Image Video Retrieval doi: 10.1145/1386352.1386378 – year: 2009 ident: 10.1016/j.neuroimage.2010.01.005_bib42 article-title: Accelerating regional atrophy rates in the progression from normal aging to Alzheimer's disease publication-title: Eur. Radiol. doi: 10.1007/s00330-009-1512-5 – volume: 27 start-page: 1163 year: 2009 ident: 10.1016/j.neuroimage.2010.01.005_bib2 article-title: Computational anatomy with the SPM software publication-title: Magn. Reson. Imaging doi: 10.1016/j.mri.2009.01.006 – volume: 31 start-page: 132 year: 2008 ident: 10.1016/j.neuroimage.2010.01.005_bib23 article-title: Statistical downscaling of GCM simulations to streamflow using relevance vector machine publication-title: Adv. Water Resour. doi: 10.1016/j.advwatres.2007.07.005 – year: 2006 ident: 10.1016/j.neuroimage.2010.01.005_bib6 – volume: 17 start-page: 127 year: 2004 ident: 10.1016/j.neuroimage.2010.01.005_bib7 article-title: Experimentally optimal nu in support vector regression for different noise models and parameter settings publication-title: Neural Netw. doi: 10.1016/S0893-6080(03)00209-0 – ident: 10.1016/j.neuroimage.2010.01.005_bib52 – volume: 29 start-page: 148 year: 2006 ident: 10.1016/j.neuroimage.2010.01.005_bib50 article-title: Mapping brain maturation publication-title: Trends Neurosci. doi: 10.1016/j.tins.2006.01.007 – volume: 2 start-page: 1 year: 2003 ident: 10.1016/j.neuroimage.2010.01.005_bib5 article-title: Support vector machines: hype or hallelujah? publication-title: SIGKDD Explorations doi: 10.1145/380995.380999 – volume: 62 start-page: 1218 year: 2005 ident: 10.1016/j.neuroimage.2010.01.005_bib11 article-title: Whole-brain morphometric study of schizophrenia revealing a spatially complex set of focal abnormalities publication-title: Arch. Gen. Psychiatry doi: 10.1001/archpsyc.62.11.1218 – volume: 73 start-page: 287 year: 2009 ident: 10.1016/j.neuroimage.2010.01.005_bib57 article-title: MRI and CSF biomarkers in normal, MCI, and AD subjects: diagnostic discrimination and cognitive correlations publication-title: Neurology doi: 10.1212/WNL.0b013e3181af79e5 – volume: 65 start-page: 113 year: 2008 ident: 10.1016/j.neuroimage.2010.01.005_bib20 article-title: Brain volume decline in aging: evidence for a relation between socioeconomic status, preclinical Alzheimer disease, and reserve publication-title: Arch. Neurol. doi: 10.1001/archneurol.2007.27 – volume: 131 start-page: 2969 year: 2008 ident: 10.1016/j.neuroimage.2010.01.005_bib29 article-title: Accuracy of dementia diagnosis—a direct comparison between radiologists and a computerized method publication-title: Brain doi: 10.1093/brain/awn239 – year: 2009 ident: 10.1016/j.neuroimage.2010.01.005_bib43 – volume: 24 start-page: 689 year: 1988 ident: 10.1016/j.neuroimage.2010.01.005_bib9 article-title: Mini-Mental State Examination (MMSE) publication-title: Psychopharmacol. Bull. – volume: 46 start-page: 389 year: 2002 ident: 10.1016/j.neuroimage.2010.01.005_bib26 article-title: Gene selection for cancer classification using support vector machines publication-title: Mach. Learn. doi: 10.1023/A:1012487302797 – volume: 131 start-page: 681 year: 2008 ident: 10.1016/j.neuroimage.2010.01.005_bib30 article-title: Automatic classification of MR scans in Alzheimer's disease publication-title: Brain doi: 10.1093/brain/awm319 – volume: 1 start-page: 211 year: 2001 ident: 10.1016/j.neuroimage.2010.01.005_bib48 article-title: Sparse Bayesian learning and the relevance vector machine publication-title: J. Mach. Learn. Res. – volume: 132 start-page: 2026 year: 2009 ident: 10.1016/j.neuroimage.2010.01.005_bib14 article-title: Longitudinal progression of Alzheimer's-like patterns of atrophy in normal older adults: the SPARE-AD index publication-title: Brain doi: 10.1093/brain/awp091 – volume: 171 start-page: 221 year: 2009 ident: 10.1016/j.neuroimage.2010.01.005_bib58 article-title: Accelerated hippocampal atrophy rates in stable and progressive amnestic mild cognitive impairment publication-title: Psychiatry Res. doi: 10.1016/j.pscychresns.2008.05.002 – volume: 17 start-page: 113 year: 2004 ident: 10.1016/j.neuroimage.2010.01.005_bib8 article-title: Practical selection of SVM parameters and noise estimation for SVM regression publication-title: Neural Netw. doi: 10.1016/S0893-6080(03)00169-2 – volume: 26 start-page: 839 year: 2005 ident: 10.1016/j.neuroimage.2010.01.005_bib3 article-title: Unified segmentation publication-title: NeuroImage doi: 10.1016/j.neuroimage.2005.02.018 – volume: 38 start-page: 13 year: 2007 ident: 10.1016/j.neuroimage.2010.01.005_bib45 article-title: Multivariate deformation-based analysis of brain atrophy to predict Alzheimer's disease in mild cognitive impairment publication-title: NeuroImage doi: 10.1016/j.neuroimage.2007.07.008 – ident: 10.1016/j.neuroimage.2010.01.005_bib53 – volume: 43 start-page: 2412 year: 1993 ident: 10.1016/j.neuroimage.2010.01.005_bib35 article-title: The Clinical Dementia Rating (CDR): current version and scoring rules publication-title: Neurology doi: 10.1212/WNL.43.11.2412-a – volume: 16 start-page: 176 year: 1997 ident: 10.1016/j.neuroimage.2010.01.005_bib39 article-title: Statistical approach to segmentation of single-channel cerebral MR images publication-title: IEEE Trans. Med. Imaging doi: 10.1109/42.563663 – volume: 21 start-page: 46 year: 2004 ident: 10.1016/j.neuroimage.2010.01.005_bib32 article-title: Morphological classification of brains via high-dimensional shape transformations and machine learning methods publication-title: NeuroImage doi: 10.1016/j.neuroimage.2003.09.027 – start-page: 652 year: 2000 ident: 10.1016/j.neuroimage.2010.01.005_bib47 article-title: The relevance vector machine – volume: 14 start-page: 21 year: 2001 ident: 10.1016/j.neuroimage.2010.01.005_bib24 article-title: A voxel-based morphometric study of ageing in 465 normal adult human brains publication-title: NeuroImage doi: 10.1006/nimg.2001.0786 – volume: 2 start-page: 79 year: 2003 ident: 10.1016/j.neuroimage.2010.01.005_bib4 article-title: Computer-assisted imaging to assess brain structure in healthy and diseased brains publication-title: Lancet Neurol. doi: 10.1016/S1474-4422(03)00304-1 – volume: 41 start-page: 277 year: 2008 ident: 10.1016/j.neuroimage.2010.01.005_bib18 article-title: Structural and functional biomarkers of prodromal Alzheimer's disease: a high-dimensional pattern classification study publication-title: NeuroImage doi: 10.1016/j.neuroimage.2008.02.043 – volume: 3 start-page: 1157 year: 2003 ident: 10.1016/j.neuroimage.2010.01.005_bib25 article-title: An introduction to variable and feature selection publication-title: J. Mach. Learn. Res. – volume: 72 start-page: 1906 year: 2009 ident: 10.1016/j.neuroimage.2010.01.005_bib15 article-title: Longitudinal pattern of regional brain volume change differentiates normal aging from MCI publication-title: Neurology doi: 10.1212/WNL.0b013e3181a82634 – volume: 1 start-page: 383 year: 2002 ident: 10.1016/j.neuroimage.2010.01.005_bib19 article-title: Analysis of sparse Bayesian learning publication-title: Adv. Neural Inf. Process. Syst. (NIPS) – volume: 39 start-page: 1731 year: 2008 ident: 10.1016/j.neuroimage.2010.01.005_bib17 article-title: Spatial patterns of brain atrophy in MCI patients, identified via high-dimensional pattern classification, predict subsequent cognitive decline publication-title: NeuroImage doi: 10.1016/j.neuroimage.2007.10.031 – volume: 29 start-page: 910 year: 2006 ident: 10.1016/j.neuroimage.2010.01.005_bib36 article-title: Fully-automated detection of cerebral water content changes: study of age-and gender-related H2O patterns with quantitative MRI publication-title: NeuroImage doi: 10.1016/j.neuroimage.2005.08.062 – volume: 38 start-page: 95 year: 2007 ident: 10.1016/j.neuroimage.2010.01.005_bib1 article-title: A fast diffeomorphic image registration algorithm publication-title: NeuroImage doi: 10.1016/j.neuroimage.2007.07.007 – ident: 10.1016/j.neuroimage.2010.01.005_bib54 – volume: 47 start-page: S121 year: 2009 ident: 10.1016/j.neuroimage.2010.01.005_bib21 article-title: Partial volume segmentation with adaptive maximum a posteriori (MAP) approach publication-title: NeuroImage doi: 10.1016/S1053-8119(09)71151-6 – volume: 3216 start-page: 393 year: 2004 ident: 10.1016/j.neuroimage.2010.01.005_bib33 article-title: Discriminative MR image feature analysis for automatic schizophrenia and Alzheimer's disease classification publication-title: Learn. Theory: Proceed. – volume: 29 start-page: 514 year: 2008 ident: 10.1016/j.neuroimage.2010.01.005_bib12 article-title: Detection of prodromal Alzheimer's disease via pattern classification of magnetic resonance imaging publication-title: Neurobiol. Aging doi: 10.1016/j.neurobiolaging.2006.11.010 |
SSID | ssj0009148 |
Score | 2.5409522 |
Snippet | The early identification of brain anatomy deviating from the normal pattern of growth and atrophy, such as in Alzheimer's disease (AD), has the potential to... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 883 |
SubjectTerms | Accuracy Adult Age Aged Aged, 80 and over Aging Aging - pathology Alzheimer Disease - pathology Automation Brain - pathology Brain disease Classification Confidence intervals Databases, Factual Female Health Status Humans Hypotheses Image Processing, Computer-Assisted - methods Magnetic Resonance Imaging - methods Male Methods Middle Aged Models, Neurological MRI Principal Component Analysis Principal components analysis Registration Regression Regression Analysis Relevance vector machines (RVM) Scanners Schizophrenia Studies Support vector machines (SVM) Young Adult |
SummonAdditionalLinks | – databaseName: ProQuest Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELZaKlW9oL5ZSisfenUbb-zYaQ9VVYFoJXqoQNqbFT-CKJAFvAvqD-B_MxM72UtBe4zicRSPPfN5_HmGkI-V7b1ewabBKyaELZn1omJly1VQutTa99k-f1f7R-LXTM5ywC1mWuVgE3tD7ecOY-SfAZlgFh5ZqW8XlwyrRuHpai6h8Zg8wdRlOKvVTK2S7nKRrsLJkmlokJk8id_V54s8OYdVmwle_FOBRez-757ug5-9G9p7TjYzfqTfk8JfkEehe0meHuQT8lfkdhfWLKLQ7pgCtqPwYTpvabru-I_GpcXAS6R4rYQecnbTh0aDpwd_ftII4xwpUuGP6Wm46sIZTRWm4xc6kvX6bk-G2ibY-TXst-fLSDGN-DnSa-JrcrS3e_hjn-VSC8wBIlmwdtqA7y9aV7WqsrIN8FDaJgipC-dl4wIXDYAxP5XOwhYEjGIrtQ8NL1uNh5lvyEY378IWoRZ2pFPHdQ1IUQhXNRIaFtLXTVBSWjshahhh43IeciyHcWYGwtlfs9KNQd2YghvQzYTwUfIi5eJYQ6YelGiGu6ZgHQ04jDVkv46yGY8knLGm9M4wZ0y2C9GsZvGE0PE1rGg8pmm6AMoyWEVTl5WqJ-Rtmmrj32JgGfbj9fbDfb8jzxLJQTAud8jG4moZ3gN2WtgP_QK5A_XeGhQ priority: 102 providerName: ProQuest |
Title | Estimating the age of healthy subjects from T1-weighted MRI scans using kernel methods: Exploring the influence of various parameters |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1053811910000108 https://dx.doi.org/10.1016/j.neuroimage.2010.01.005 https://www.ncbi.nlm.nih.gov/pubmed/20070949 https://www.proquest.com/docview/1614373567 https://www.proquest.com/docview/733183679 |
Volume | 50 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fT9swELYQSGgv09jG1vFDftiradzYcTKeABWVISrEQOqbFScOKoMUkRa0l73t_96d7QRNGlIlXhq1iZPUZ999Z393R8jXxDirF7GBLRUTwsTMlCJhccWVVWmcpqXL9jlORlfi-0ROVshRGwuDtMqg-71Od9o6_NIPvdm_n077PwAZgLkBf8OtULuAXyEUjvK93880j4wLHw4nY4ZXBzaP53i5nJHTO5i5geTF9yIsZPd_E_USBHWm6PgdeRswJD3wr7lBVmz9nqyfhV3yD-TPEOYtItH6mgK-o_BgOquoD3n8RZuFwcWXhmJoCb3k7Mktj9qSnl2c0Ab6uqFIh7-mP-1DbW-przLdfKMdYc_ddtrWN8GbP4LPPVs0FFOJ3yHFpvlIro6Hl0cjFsotsAJQyZxVgxzsf1QVSaUSIysLX2KTWyHTqChlXlgucgBk5UAWBtwQUIyVTEub87hKcUNzk6zWs9p-JtSAVzooeJoBWhSiSHIJF0ayzHKrpDSmR1Tbw7oIucixJMatbklnN_pZNhployOuQTY9wruW9z4fxxJtslaIuo03BQ2pwWgs0Xa_a_vPuFyy9XY7ZnTQDY0GjI35pGSieoR2p2FW41ZNXlsQlsZKmmmcqKxHPvmh1v1bXFwGnzz78qo32yJvPA9CMC63yer8YWF3AF7Nza6bP_CpJmqXrB2cnI7GcDwcjs8v_gKrTylj |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VIgGXit-yUMAHOBrixI4TKoQQtNql3R7QVtqbiROnKrTZ0uy26gP0dXhGZuIkewG0lx6jZBwlY898Y38zA_A6to3XC3joCs2ltBG3hYx5VArtdBIlSdFU-zyIh4fy61RN1-B3lwtDtMrOJjaGupjltEf-DpEJVeFRsf549otT1yg6Xe1aaPhpseeuLjFkqz-MvqB-34Th7s7k85C3XQV4js53zsswQzcXlHlc6tiq0uFFZDMnVRLkhcpyJ2SGuKMIVW4RbeP6L1VSuExEZULndjjuLbiNjjegYE9P9bLIr5A-9U5FPBEibZlDnk_W1Kc8PkUr0RLKxNuAmub93R3-C-42bm_3Pmy0eJV98hPsAay56iHcGbcn8o_gegdtBKHe6oghlmT4YjYrmU-vvGL1wtJGT80ojYVNBL9stmJdwcbfRqxGvdaMqPdH7Kc7r9wJ8x2t6_esJwc2wx53vVRo8AuM72eLmlHZ8lOi89SP4fBGlPAE1qtZ5Z4CsxgBh7lIUkSmUuZxpvDBQBVp5rRS1g5Ad3_Y5G3dc2q_cWI6gtsPs9SNId2YQBjUzQBEL3nma3-sIJN2SjRdbitaY4MOagXZ7V62xT8e16wovdXNGdPaodosV80AWH8bLQgdC2WVQ2UZ6tqZRLFOB7Dpp1r_tbSRjfF_-uz_Y7-Cu8PJeN_sjw72nsM9T7CQXKgtWJ-fL9wLxG1z-7JZLAy-3_Tq_ANJT1gX |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VrVRxQZS_LhTwAY6mcWLnB4QQ0F11KV1VVSv1ZuLEqQpttjS7VH0AXqpPx0zs7F4A7aXHKBlHydgzn8ffzAC8ik3r9QIe2jLhUpqIm1LGPKpEYpM0StOyrfY5jneO5JdjdbwCN10uDNEqO5vYGupyUlCMfAuRCVXhUXGyVXlaxP728MPFT04dpOiktWun4abIrr2-wu1b8360jbp-HYbDweHnHe47DPACHfGUV2GOLi-oirhKYqMqixeRya1UaVCUKi-skDlikDJUhUHkjbagUmlpcxFVKZ3h4bh3YDWhXVEPVj8NxvsHi5K_QrpEPBXxVIjM84gcu6ytVnl6jjbD08vEm4Ba6P3dOf4L_LZOcHgf7nn0yj666bYOK7Z-AGt7_nz-IfweoMUgDFyfMESWDF_MJhVzyZbXrJkZCvs0jJJa2KHgV21g1pZs72DEGtRyw4iIf8J-2MvanjHX37p5y-ZUwXbY066zCg3-C3f7k1nDqIj5OZF7mkdwdCtqeAy9elLbDWAG98NhIdIMcaqURZwrfDBQZZbbRClj-pB0f1gXvgo6NeM40x3d7bte6EaTbnQgNOqmD2IueeEqgSwhk3VK1F2mK9pmje5qCdl3c1mPhhzKWVJ6s5sz2lulRi_WUB_Y_DbaEzokymuLytLUwzON4iTrwxM31eZfS2HtIJPZ0_-P_RLWcGXqr6Px7jO469gWkgu1Cb3p5cw-RxA3NS_8amHw7bYX6B_82l2y |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimating+the+age+of+healthy+subjects+from+T1-weighted+MRI+scans+using+kernel+methods%3A+Exploring+the+influence+of+various+parameters&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Franke%2C+Katja&rft.au=Ziegler%2C+Gabriel&rft.au=Kl%C3%B6ppel%2C+Stefan&rft.au=Gaser%2C+Christian&rft.date=2010-04-15&rft.issn=1053-8119&rft.volume=50&rft.issue=3&rft.spage=883&rft.epage=892&rft_id=info:doi/10.1016%2Fj.neuroimage.2010.01.005&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_neuroimage_2010_01_005 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon |