Estimating the age of healthy subjects from T1-weighted MRI scans using kernel methods: Exploring the influence of various parameters

The early identification of brain anatomy deviating from the normal pattern of growth and atrophy, such as in Alzheimer's disease (AD), has the potential to improve clinical outcomes through early intervention. Recently, Davatzikos et al. (2009) supported the hypothesis that pathologic atrophy...

Full description

Saved in:
Bibliographic Details
Published inNeuroImage (Orlando, Fla.) Vol. 50; no. 3; pp. 883 - 892
Main Authors Franke, Katja, Ziegler, Gabriel, Klöppel, Stefan, Gaser, Christian
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 15.04.2010
Elsevier Limited
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The early identification of brain anatomy deviating from the normal pattern of growth and atrophy, such as in Alzheimer's disease (AD), has the potential to improve clinical outcomes through early intervention. Recently, Davatzikos et al. (2009) supported the hypothesis that pathologic atrophy in AD is an accelerated aging process, implying accelerated brain atrophy. In order to recognize faster brain atrophy, a model of healthy brain aging is needed first. Here, we introduce a framework for automatically and efficiently estimating the age of healthy subjects from their T1-weighted MRI scans using a kernel method for regression. This method was tested on over 650 healthy subjects, aged 19–86 years, and collected from four different scanners. Furthermore, the influence of various parameters on estimation accuracy was analyzed. Our age estimation framework included automatic preprocessing of the T1-weighted images, dimension reduction via principal component analysis, training of a relevance vector machine (RVM; Tipping, 2000) for regression, and finally estimating the age of the subjects from the test samples. The framework proved to be a reliable, scanner-independent, and efficient method for age estimation in healthy subjects, yielding a correlation of r=0.92 between the estimated and the real age in the test samples and a mean absolute error of 5 years. The results indicated favorable performance of the RVM and identified the number of training samples as the critical factor for prediction accuracy. Applying the framework to people with mild AD resulted in a mean brain age gap estimate (BrainAGE) score of +10 years.
AbstractList The early identification of brain anatomy deviating from the normal pattern of growth and atrophy, such as in Alzheimer's disease (AD), has the potential to improve clinical outcomes through early intervention. Recently,Davatzikos et al. (2009)supported the hypothesis that pathologic atrophy in AD is an accelerated aging process, implying accelerated brain atrophy. In order to recognize faster brain atrophy, a model of healthy brain aging is needed first. Here, we introduce a framework for automatically and efficiently estimating the age of healthy subjects from their T1-weighted MRI scans using a kernel method for regression. This method was tested on over 650 healthy subjects, aged 19-86 years, and collected from four different scanners. Furthermore, the influence of various parameters on estimation accuracy was analyzed. Our age estimation framework included automatic preprocessing of the T1-weighted images, dimension reduction via principal component analysis, training of a relevance vector machine (RVM; Tipping, 2000) for regression, and finally estimating the age of the subjects from the test samples. The framework proved to be a reliable, scanner-independent, and efficient method for age estimation in healthy subjects, yielding a correlation ofr=0.92 between the estimated and the real age in the test samples and a mean absolute error of 5 years. The results indicated favorable performance of the RVM and identified the number of training samples as the critical factor for prediction accuracy. Applying the framework to people with mild AD resulted in a meanbrain age gap estimate(BrainAGE) score of +10 years.
The early identification of brain anatomy deviating from the normal pattern of growth and atrophy, such as in Alzheimer's disease (AD), has the potential to improve clinical outcomes through early intervention. Recently, Davatzikos et al. (2009) supported the hypothesis that pathologic atrophy in AD is an accelerated aging process, implying accelerated brain atrophy. In order to recognize faster brain atrophy, a model of healthy brain aging is needed first. Here, we introduce a framework for automatically and efficiently estimating the age of healthy subjects from their T(1)-weighted MRI scans using a kernel method for regression. This method was tested on over 650 healthy subjects, aged 19-86 years, and collected from four different scanners. Furthermore, the influence of various parameters on estimation accuracy was analyzed. Our age estimation framework included automatic preprocessing of the T(1)-weighted images, dimension reduction via principal component analysis, training of a relevance vector machine (RVM; Tipping, 2000) for regression, and finally estimating the age of the subjects from the test samples. The framework proved to be a reliable, scanner-independent, and efficient method for age estimation in healthy subjects, yielding a correlation of r=0.92 between the estimated and the real age in the test samples and a mean absolute error of 5 years. The results indicated favorable performance of the RVM and identified the number of training samples as the critical factor for prediction accuracy. Applying the framework to people with mild AD resulted in a mean brain age gap estimate (BrainAGE) score of +10 years.
The early identification of brain anatomy deviating from the normal pattern of growth and atrophy, such as in Alzheimer's disease (AD), has the potential to improve clinical outcomes through early intervention. Recently, Davatzikos et al. (2009) supported the hypothesis that pathologic atrophy in AD is an accelerated aging process, implying accelerated brain atrophy. In order to recognize faster brain atrophy, a model of healthy brain aging is needed first. Here, we introduce a framework for automatically and efficiently estimating the age of healthy subjects from their T(1)-weighted MRI scans using a kernel method for regression. This method was tested on over 650 healthy subjects, aged 19-86 years, and collected from four different scanners. Furthermore, the influence of various parameters on estimation accuracy was analyzed. Our age estimation framework included automatic preprocessing of the T(1)-weighted images, dimension reduction via principal component analysis, training of a relevance vector machine (RVM; Tipping, 2000) for regression, and finally estimating the age of the subjects from the test samples. The framework proved to be a reliable, scanner-independent, and efficient method for age estimation in healthy subjects, yielding a correlation of r=0.92 between the estimated and the real age in the test samples and a mean absolute error of 5 years. The results indicated favorable performance of the RVM and identified the number of training samples as the critical factor for prediction accuracy. Applying the framework to people with mild AD resulted in a mean brain age gap estimate (BrainAGE) score of +10 years.The early identification of brain anatomy deviating from the normal pattern of growth and atrophy, such as in Alzheimer's disease (AD), has the potential to improve clinical outcomes through early intervention. Recently, Davatzikos et al. (2009) supported the hypothesis that pathologic atrophy in AD is an accelerated aging process, implying accelerated brain atrophy. In order to recognize faster brain atrophy, a model of healthy brain aging is needed first. Here, we introduce a framework for automatically and efficiently estimating the age of healthy subjects from their T(1)-weighted MRI scans using a kernel method for regression. This method was tested on over 650 healthy subjects, aged 19-86 years, and collected from four different scanners. Furthermore, the influence of various parameters on estimation accuracy was analyzed. Our age estimation framework included automatic preprocessing of the T(1)-weighted images, dimension reduction via principal component analysis, training of a relevance vector machine (RVM; Tipping, 2000) for regression, and finally estimating the age of the subjects from the test samples. The framework proved to be a reliable, scanner-independent, and efficient method for age estimation in healthy subjects, yielding a correlation of r=0.92 between the estimated and the real age in the test samples and a mean absolute error of 5 years. The results indicated favorable performance of the RVM and identified the number of training samples as the critical factor for prediction accuracy. Applying the framework to people with mild AD resulted in a mean brain age gap estimate (BrainAGE) score of +10 years.
The early identification of brain anatomy deviating from the normal pattern of growth and atrophy, such as in Alzheimer's disease (AD), has the potential to improve clinical outcomes through early intervention. Recently, Davatzikos et al. (2009) supported the hypothesis that pathologic atrophy in AD is an accelerated aging process, implying accelerated brain atrophy. In order to recognize faster brain atrophy, a model of healthy brain aging is needed first. Here, we introduce a framework for automatically and efficiently estimating the age of healthy subjects from their T1-weighted MRI scans using a kernel method for regression. This method was tested on over 650 healthy subjects, aged 19–86 years, and collected from four different scanners. Furthermore, the influence of various parameters on estimation accuracy was analyzed. Our age estimation framework included automatic preprocessing of the T1-weighted images, dimension reduction via principal component analysis, training of a relevance vector machine (RVM; Tipping, 2000) for regression, and finally estimating the age of the subjects from the test samples. The framework proved to be a reliable, scanner-independent, and efficient method for age estimation in healthy subjects, yielding a correlation of r=0.92 between the estimated and the real age in the test samples and a mean absolute error of 5 years. The results indicated favorable performance of the RVM and identified the number of training samples as the critical factor for prediction accuracy. Applying the framework to people with mild AD resulted in a mean brain age gap estimate (BrainAGE) score of +10 years.
Author Klöppel, Stefan
Ziegler, Gabriel
Gaser, Christian
Franke, Katja
Author_xml – sequence: 1
  givenname: Katja
  surname: Franke
  fullname: Franke, Katja
  email: katja.franke@uni-jena.de
  organization: Structural Brain Mapping Group, Department of Psychiatry, University of Jena, Jena, Germany
– sequence: 2
  givenname: Gabriel
  surname: Ziegler
  fullname: Ziegler, Gabriel
  organization: Structural Brain Mapping Group, Department of Psychiatry, University of Jena, Jena, Germany
– sequence: 3
  givenname: Stefan
  surname: Klöppel
  fullname: Klöppel, Stefan
  organization: Department of Psychiatry and Psychotherapy, Section of Gerontopsychiatry and Neuropsychology, Freiburg Brain Imaging, University Hospital Freiburg, Freiburg, Germany
– sequence: 4
  givenname: Christian
  surname: Gaser
  fullname: Gaser, Christian
  organization: Structural Brain Mapping Group, Department of Psychiatry, University of Jena, Jena, Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/20070949$$D View this record in MEDLINE/PubMed
BookMark eNqNkctu1DAUhiNURC_wCsgSC1YZ7CROYhaIUg1QqQgJlbXlOMcTp4492E5hHoD3xmFakGY1K1_0nU9H_3-enVhnIcsQwSuCSf1mXFmYvdOT2MCqwOkbkxXG9El2RjCjOaNNcbLcaZm3hLDT7DyEEWPMSNU-y04LjBvMKnaW_V6HmDRR2w2KA6AkRE6hAYSJww6FuRtBxoCUdxO6JflP0JshQo--fLtGQQob0ByW4TvwFgyaIA6uD2_R-tfWOP-o1VaZGaz8K78XXrs5oK3wIvHgw_PsqRImwIuH8yL7_nF9e_U5v_n66frq8iaXVclirgpREIqVrFVTd1RBepSdgIq2WPZUSCCVYJT0BZUda6q-B0XbHgQpVYsLXF5kr_ferXc_ZgiRTzpIMEZYSBvxpixJW9YNS-SrA3J0s7dpOU5qUpVNSesmUS8fqLmboOdbn7L0O_6YbwLaPSC9C8GD-ocQzJcq-cj_V8mXKjkmPFWZRt8djEodU1HORi-0OUbwYS-AlOi9Bs-D1EsHvfapU947fYzk_YFEGm21FOYOdscp_gDiBNj5
CitedBy_id crossref_primary_10_1109_TMI_2022_3161947
crossref_primary_10_1007_s00521_021_06518_1
crossref_primary_10_1016_j_bspc_2022_104151
crossref_primary_10_3390_jcm10194431
crossref_primary_10_1016_j_neuroimage_2014_05_078
crossref_primary_10_1111_add_16088
crossref_primary_10_1080_19585969_2024_2373075
crossref_primary_10_1177_0004867419857814
crossref_primary_10_1002_ana_25746
crossref_primary_10_3389_fnagi_2018_00028
crossref_primary_10_1002_hbm_25660
crossref_primary_10_1016_j_neuroimage_2014_04_018
crossref_primary_10_1007_s43657_022_00079_6
crossref_primary_10_1002_brb3_1020
crossref_primary_10_1002_hbm_26632
crossref_primary_10_1038_s41467_020_20655_6
crossref_primary_10_1371_journal_pone_0270682
crossref_primary_10_1007_s00429_023_02686_z
crossref_primary_10_1111_psyp_13523
crossref_primary_10_1177_11795735241266556
crossref_primary_10_1016_j_neuroimage_2020_117458
crossref_primary_10_1186_s12888_018_1678_y
crossref_primary_10_1109_JBHI_2021_3124733
crossref_primary_10_1007_s10548_017_0581_z
crossref_primary_10_1016_j_neuroimage_2011_06_029
crossref_primary_10_1371_journal_pone_0232296
crossref_primary_10_1371_journal_pone_0157514
crossref_primary_10_3389_fnagi_2018_00252
crossref_primary_10_1159_000507083
crossref_primary_10_1002_hbm_26502
crossref_primary_10_1093_cercor_bhab530
crossref_primary_10_1002_bies_201700221
crossref_primary_10_1038_s41598_020_63014_7
crossref_primary_10_1016_j_neuroimage_2018_03_007
crossref_primary_10_46471_gigabyte_113
crossref_primary_10_1016_j_nicl_2021_102767
crossref_primary_10_1016_j_brainres_2021_147431
crossref_primary_10_1038_s41514_024_00150_8
crossref_primary_10_1016_j_neuroimage_2016_02_079
crossref_primary_10_1016_j_neuroimage_2020_117689
crossref_primary_10_1038_s41598_024_63998_6
crossref_primary_10_1002_mds_30109
crossref_primary_10_1093_cercor_bht425
crossref_primary_10_3389_fpsyt_2021_598518
crossref_primary_10_1016_j_neuroimage_2020_117441
crossref_primary_10_1016_j_nicl_2015_07_002
crossref_primary_10_3389_fnagi_2018_00168
crossref_primary_10_3389_fneur_2019_00450
crossref_primary_10_1016_j_arr_2020_101184
crossref_primary_10_1038_s41598_019_46145_4
crossref_primary_10_1016_j_media_2014_12_006
crossref_primary_10_1002_hbm_25680
crossref_primary_10_1016_j_tins_2017_10_001
crossref_primary_10_1016_j_neuroimage_2018_05_065
crossref_primary_10_1016_j_jpsychires_2022_11_011
crossref_primary_10_1016_j_neurobiolaging_2024_05_001
crossref_primary_10_1016_j_neuroimage_2018_04_035
crossref_primary_10_1016_j_neuroimage_2020_117316
crossref_primary_10_1038_mp_2017_62
crossref_primary_10_1002_hbm_24588
crossref_primary_10_1038_s41398_020_01013_y
crossref_primary_10_3389_fnagi_2018_00074
crossref_primary_10_7554_eLife_87297_4
crossref_primary_10_18632_aging_203847
crossref_primary_10_1002_acn3_51782
crossref_primary_10_1007_s00429_022_02602_x
crossref_primary_10_1016_j_neurobiolaging_2020_06_019
crossref_primary_10_1016_j_neuroimage_2021_117822
crossref_primary_10_1136_bjo_2023_323176
crossref_primary_10_1002_hbm_24899
crossref_primary_10_1016_j_neurobiolaging_2021_08_020
crossref_primary_10_1007_s11357_023_00900_8
crossref_primary_10_1093_sleep_zsaa204
crossref_primary_10_1038_s41380_019_0446_9
crossref_primary_10_1002_hbm_25983
crossref_primary_10_1016_j_neuroimage_2019_05_025
crossref_primary_10_3389_fnagi_2018_00184
crossref_primary_10_3389_fmed_2019_00146
crossref_primary_10_1016_j_neuroimage_2017_12_050
crossref_primary_10_1016_j_neurobiolaging_2014_07_046
crossref_primary_10_3389_fneur_2019_00789
crossref_primary_10_1080_09297049_2024_2314956
crossref_primary_10_1002_hbm_23434
crossref_primary_10_1016_j_pscychresns_2017_05_006
crossref_primary_10_1016_j_cmpb_2020_105348
crossref_primary_10_1016_j_media_2023_102913
crossref_primary_10_1111_ejn_13835
crossref_primary_10_1016_j_nicl_2019_101664
crossref_primary_10_1016_j_pscychresns_2021_111270
crossref_primary_10_1016_j_pnpbp_2024_111062
crossref_primary_10_1038_s41398_022_01793_5
crossref_primary_10_1007_s12021_015_9292_3
crossref_primary_10_1111_head_14429
crossref_primary_10_1016_j_neurobiolaging_2021_08_007
crossref_primary_10_1016_j_neuroimage_2020_117401
crossref_primary_10_1093_brain_aww008
crossref_primary_10_1016_j_bpsc_2021_02_005
crossref_primary_10_1002_hbm_24312
crossref_primary_10_1080_0952813X_2020_1764633
crossref_primary_10_1016_j_neuroimage_2024_120881
crossref_primary_10_1016_j_biopsych_2022_06_018
crossref_primary_10_1016_j_neuroimage_2019_05_040
crossref_primary_10_1109_TMI_2021_3066857
crossref_primary_10_1109_TNSRE_2022_3190467
crossref_primary_10_1016_j_neuroimage_2012_03_079
crossref_primary_10_3390_jpm11121250
crossref_primary_10_34133_research_0500
crossref_primary_10_1016_j_neubiorev_2020_01_031
crossref_primary_10_1016_j_inffus_2020_08_023
crossref_primary_10_1002_hbm_24428
crossref_primary_10_1093_ijnp_pyac080
crossref_primary_10_1093_schbul_sbx172
crossref_primary_10_1016_j_jneumeth_2011_04_022
crossref_primary_10_3390_s22208077
crossref_primary_10_1016_j_neuroimage_2015_05_071
crossref_primary_10_1111_add_15710
crossref_primary_10_1016_j_bbr_2016_05_061
crossref_primary_10_1093_biomethods_bpae086
crossref_primary_10_1093_braincomms_fcab191
crossref_primary_10_1109_TNSRE_2023_3247590
crossref_primary_10_1016_j_semcdb_2021_01_003
crossref_primary_10_1111_imr_13309
crossref_primary_10_1016_j_bpsc_2020_07_014
crossref_primary_10_1016_j_inffus_2021_07_001
crossref_primary_10_3389_fnagi_2022_808022
crossref_primary_10_1016_j_neurobiolaging_2018_10_016
crossref_primary_10_1093_cercor_bhac217
crossref_primary_10_1162_neco_a_01180
crossref_primary_10_1002_hbm_22318
crossref_primary_10_1093_cercor_bhaa161
crossref_primary_10_1371_journal_pone_0022193
crossref_primary_10_1002_hbm_22671
crossref_primary_10_1007_s11042_020_10377_8
crossref_primary_10_1016_j_media_2021_102304
crossref_primary_10_1093_scan_nsaf013
crossref_primary_10_1016_j_neurobiolaging_2019_12_015
crossref_primary_10_1016_j_bpsc_2018_05_002
crossref_primary_10_1186_s13293_024_00615_1
crossref_primary_10_1186_s10194_023_01670_6
crossref_primary_10_1371_journal_pcbi_1002987
crossref_primary_10_1016_j_archger_2025_105830
crossref_primary_10_3390_sci5020023
crossref_primary_10_1016_j_neuroimage_2014_11_045
crossref_primary_10_1186_s13229_023_00558_1
crossref_primary_10_3389_fneur_2022_1040087
crossref_primary_10_3389_fnagi_2021_682109
crossref_primary_10_1016_j_neuroimage_2015_04_036
crossref_primary_10_1016_j_neuroimage_2014_10_002
crossref_primary_10_1016_j_neuroimage_2017_12_014
crossref_primary_10_1093_cercor_bhab019
crossref_primary_10_1016_j_neuroimage_2020_117292
crossref_primary_10_1016_j_radonc_2022_08_002
crossref_primary_10_1371_journal_pone_0054475
crossref_primary_10_1093_cercor_bhaa288
crossref_primary_10_1007_s00415_019_09442_6
crossref_primary_10_1016_j_neuroimage_2011_09_069
crossref_primary_10_1017_S0033291718002763
crossref_primary_10_1093_cercor_bhaa296
crossref_primary_10_1016_j_neurobiolaging_2019_12_008
crossref_primary_10_1038_s41598_019_56089_4
crossref_primary_10_1016_j_media_2013_04_013
crossref_primary_10_1093_cercor_bhz131
crossref_primary_10_1038_s41597_022_01695_7
crossref_primary_10_1016_j_biopsych_2020_01_016
crossref_primary_10_1016_j_compmedimag_2021_101967
crossref_primary_10_3389_fpsyt_2023_1266770
crossref_primary_10_14778_3554821_3554835
crossref_primary_10_1093_cercor_bhx061
crossref_primary_10_3390_brainsci12111517
crossref_primary_10_1001_jamanetworkopen_2020_17357
crossref_primary_10_1016_j_bpsc_2021_01_001
crossref_primary_10_2174_1573400515666190719155906
crossref_primary_10_1016_j_neuroimage_2019_05_082
crossref_primary_10_1007_s12021_017_9346_9
crossref_primary_10_1212_WNL_0000000000012499
crossref_primary_10_1016_j_neuroimage_2018_03_075
crossref_primary_10_1111_ejn_14850
crossref_primary_10_1016_j_neuroimage_2011_11_002
crossref_primary_10_3389_fnagi_2018_00317
crossref_primary_10_3389_fpsyg_2017_00156
crossref_primary_10_1016_j_neuroimage_2016_05_029
crossref_primary_10_1002_hbm_24503
crossref_primary_10_1007_s11357_024_01128_w
crossref_primary_10_1002_hbm_25837
crossref_primary_10_1016_j_pnpbp_2020_110192
crossref_primary_10_3390_brainsci14010077
crossref_primary_10_1016_j_jns_2024_123113
crossref_primary_10_1007_s40747_023_01141_0
crossref_primary_10_1177_0962280218823036
crossref_primary_10_1016_j_dcn_2025_101543
crossref_primary_10_2478_acss_2021_0014
crossref_primary_10_1186_s42492_020_00062_w
crossref_primary_10_1016_j_neucom_2015_09_119
crossref_primary_10_1007_s12021_013_9204_3
crossref_primary_10_1016_j_neuroimage_2020_117021
crossref_primary_10_3389_fnagi_2022_823502
crossref_primary_10_1002_hbm_22511
crossref_primary_10_1016_j_neuroimage_2013_02_055
crossref_primary_10_3233_JAD_160327
crossref_primary_10_1016_j_neuroimage_2012_08_001
crossref_primary_10_1017_S0033291725000285
crossref_primary_10_1371_journal_pone_0067346
crossref_primary_10_1016_j_nicl_2016_12_011
crossref_primary_10_3390_jcm11061582
crossref_primary_10_1016_j_neuroimage_2014_04_057
crossref_primary_10_1515_revneuro_2024_0025
crossref_primary_10_1038_s41593_019_0471_7
crossref_primary_10_3233_ADR_220011
crossref_primary_10_1038_s42003_022_03027_2
crossref_primary_10_1001_jamapsychiatry_2018_1543
crossref_primary_10_1016_j_neuroimage_2022_118930
crossref_primary_10_3389_fpsyt_2022_1019546
crossref_primary_10_1109_RBME_2021_3107372
crossref_primary_10_1109_TMI_2012_2216543
crossref_primary_10_1016_j_neuroimage_2023_120292
crossref_primary_10_3389_fnimg_2024_1390409
crossref_primary_10_7554_eLife_81869
crossref_primary_10_1016_j_neuroimage_2021_117889
crossref_primary_10_1007_s10522_022_09997_4
crossref_primary_10_1016_j_ynirp_2022_100146
crossref_primary_10_1093_cercor_bhad407
crossref_primary_10_1016_j_cortex_2015_10_010
crossref_primary_10_1038_s41398_017_0037_y
crossref_primary_10_1016_j_neurobiolaging_2018_06_013
crossref_primary_10_1016_j_neurobiolaging_2013_06_015
crossref_primary_10_3390_s23073622
crossref_primary_10_1016_j_schres_2021_02_003
crossref_primary_10_1016_j_neurobiolaging_2017_04_006
crossref_primary_10_1093_cercor_bhaa014
crossref_primary_10_3390_app12020749
crossref_primary_10_1016_j_nicl_2023_103508
crossref_primary_10_1146_annurev_devpsych_010923_102441
crossref_primary_10_1016_j_neulet_2021_136398
crossref_primary_10_1093_cercor_bhy197
crossref_primary_10_7554_eLife_53060
crossref_primary_10_7554_eLife_87297
crossref_primary_10_1002_mef2_50
crossref_primary_10_1016_j_dcn_2024_101493
crossref_primary_10_3389_fnagi_2019_00348
crossref_primary_10_1016_j_biopsych_2024_07_019
crossref_primary_10_1007_s11357_024_01148_6
crossref_primary_10_1016_j_neuroimage_2019_116065
crossref_primary_10_3390_e17127868
crossref_primary_10_1016_j_neuroimage_2013_06_033
crossref_primary_10_1371_journal_pone_0114227
crossref_primary_10_3389_fnagi_2022_791222
crossref_primary_10_1016_j_neuroimage_2016_04_029
crossref_primary_10_1097_j_pain_0000000000001756
crossref_primary_10_3390_tomography10080093
crossref_primary_10_1016_j_neuroimage_2022_119646
crossref_primary_10_1038_s41598_023_49514_2
crossref_primary_10_1016_j_nicl_2022_103239
crossref_primary_10_1016_j_neucom_2024_127974
crossref_primary_10_3389_fnagi_2022_1063721
crossref_primary_10_1371_journal_pcbi_1008347
crossref_primary_10_1088_0031_9155_61_19_7162
crossref_primary_10_1016_j_neuroimage_2018_08_042
crossref_primary_10_1016_j_neuroimage_2021_118036
crossref_primary_10_1093_gigascience_giac014
crossref_primary_10_3389_fnagi_2019_00115
crossref_primary_10_1016_j_neubiorev_2022_105019
crossref_primary_10_3390_jpm12111850
crossref_primary_10_1093_cercor_bhac060
crossref_primary_10_1016_j_neurobiolaging_2021_11_008
crossref_primary_10_1002_nbm_4564
crossref_primary_10_1016_j_mri_2018_03_003
crossref_primary_10_1186_s12883_021_02331_4
crossref_primary_10_1001_jamanetworkopen_2022_54581
crossref_primary_10_1016_j_bpsc_2023_11_009
crossref_primary_10_1016_j_expneurol_2023_114481
crossref_primary_10_1016_j_neurobiolaging_2021_03_014
crossref_primary_10_1371_journal_pone_0229444
crossref_primary_10_3389_fnins_2021_733316
crossref_primary_10_1007_s11517_013_1131_9
crossref_primary_10_1016_j_neuroscience_2018_07_006
crossref_primary_10_1186_s12938_017_0342_y
crossref_primary_10_1093_braincomms_fcac211
crossref_primary_10_1093_brain_awaa160
crossref_primary_10_2147_NSS_S463495
crossref_primary_10_1111_nyas_14864
crossref_primary_10_1016_j_neuroimage_2016_04_007
crossref_primary_10_1016_j_nicl_2019_102033
crossref_primary_10_1186_s40708_024_00230_1
crossref_primary_10_1016_j_nicl_2019_102159
crossref_primary_10_3389_fnagi_2022_895535
crossref_primary_10_1007_s11682_020_00260_3
crossref_primary_10_1016_j_neuroimage_2023_119947
crossref_primary_10_1016_j_jalz_2014_11_001
crossref_primary_10_1016_j_neuroimage_2016_11_005
crossref_primary_10_1016_j_eswa_2022_116622
crossref_primary_10_1016_j_neuroimage_2013_07_050
crossref_primary_10_1016_j_mri_2021_03_004
crossref_primary_10_1016_j_nicl_2022_103142
crossref_primary_10_1093_brain_awab007
crossref_primary_10_1038_s41467_019_13163_9
crossref_primary_10_1016_j_jalz_2010_03_007
crossref_primary_10_1016_j_compbiomed_2022_105285
crossref_primary_10_1016_j_neuroimage_2019_116149
crossref_primary_10_3233_JAD_150334
crossref_primary_10_1007_s00521_018_3397_1
crossref_primary_10_1016_j_neuroimage_2022_119415
crossref_primary_10_1016_j_neucom_2015_09_126
crossref_primary_10_1109_ACCESS_2024_3454709
crossref_primary_10_1016_j_compbiomed_2023_107873
crossref_primary_10_1097_j_pain_0000000000002613
crossref_primary_10_1038_s41598_021_83927_1
crossref_primary_10_1146_annurev_genom_021623_083207
crossref_primary_10_1162_imag_a_00079
crossref_primary_10_1016_j_neuroimage_2021_118381
crossref_primary_10_1038_s43588_024_00659_8
crossref_primary_10_3389_fnagi_2021_694982
crossref_primary_10_1016_j_neurobiolaging_2016_01_014
crossref_primary_10_1016_j_neuroimage_2022_118871
crossref_primary_10_7554_eLife_56640
crossref_primary_10_1016_j_yfrne_2020_100859
crossref_primary_10_1016_j_nicl_2023_103319
crossref_primary_10_3389_fnins_2021_673120
crossref_primary_10_3389_fpsyt_2021_627996
crossref_primary_10_1093_schbul_sbt142
crossref_primary_10_1007_s11357_025_01515_x
crossref_primary_10_1016_j_jpsychires_2024_12_032
crossref_primary_10_1016_j_neurobiolaging_2023_06_017
crossref_primary_10_2174_1570159X19666211108141446
crossref_primary_10_3390_brainsci12050579
crossref_primary_10_1016_j_nicl_2018_02_007
crossref_primary_10_1002_hbm_26277
crossref_primary_10_1016_j_neurobiolaging_2021_10_004
crossref_primary_10_1016_j_nicl_2019_102063
crossref_primary_10_1007_s00330_022_08798_0
crossref_primary_10_1186_s13244_024_01791_9
crossref_primary_10_1016_j_neurobiolaging_2021_04_015
crossref_primary_10_1002_dad2_70094
crossref_primary_10_1016_j_media_2020_101879
crossref_primary_10_1016_j_neurobiolaging_2020_02_009
crossref_primary_10_1016_j_neurobiolaging_2021_10_002
crossref_primary_10_1002_hbm_25180
crossref_primary_10_1093_gerona_glac209
crossref_primary_10_1002_hbm_26030
crossref_primary_10_1016_j_cortex_2023_11_015
crossref_primary_10_3233_JAD_215244
crossref_primary_10_1016_j_neuroimage_2017_07_059
crossref_primary_10_3389_fpsyt_2021_626677
crossref_primary_10_3390_brainsci14060575
crossref_primary_10_1007_s00415_023_11931_8
crossref_primary_10_1016_j_cmpb_2015_11_012
crossref_primary_10_1016_j_neuroimage_2018_06_001
crossref_primary_10_1016_j_media_2020_101871
crossref_primary_10_1016_j_neurobiolaging_2021_10_007
crossref_primary_10_3389_fnagi_2014_00300
crossref_primary_10_1080_13607863_2023_2228255
crossref_primary_10_1002_hbm_26066
crossref_primary_10_1109_TMI_2019_2950092
crossref_primary_10_1016_j_neuroimage_2022_119621
crossref_primary_10_1016_j_neurobiolaging_2018_03_004
crossref_primary_10_1109_MSP_2021_3126573
crossref_primary_10_1109_ACCESS_2019_2941912
crossref_primary_10_1016_j_nicl_2013_07_005
crossref_primary_10_1109_JSEN_2018_2885582
crossref_primary_10_1016_j_neuroimage_2019_116450
crossref_primary_10_1162_imag_a_00021
crossref_primary_10_1016_j_media_2020_101852
crossref_primary_10_1016_j_mri_2019_06_018
crossref_primary_10_1192_bjp_2021_169
crossref_primary_10_1038_s41598_023_27903_x
crossref_primary_10_1007_s10916_019_1401_7
crossref_primary_10_3389_fnagi_2017_00092
crossref_primary_10_3389_fnagi_2022_872867
crossref_primary_10_1016_j_neubiorev_2017_11_002
crossref_primary_10_1002_hbm_26050
crossref_primary_10_1038_s41598_023_29296_3
crossref_primary_10_1186_s13195_024_01491_y
crossref_primary_10_1038_s41380_018_0098_1
crossref_primary_10_3389_fnagi_2023_1249415
crossref_primary_10_1080_13554794_2020_1731553
crossref_primary_10_1038_s41380_019_0626_7
crossref_primary_10_1109_JBHI_2016_2559938
crossref_primary_10_1162_imag_a_00037
crossref_primary_10_1016_j_compmedimag_2021_101939
crossref_primary_10_1093_braincomms_fcaa057
crossref_primary_10_1016_j_jksuci_2019_09_008
crossref_primary_10_1016_j_ymeth_2014_10_016
crossref_primary_10_1080_17588928_2020_1800617
crossref_primary_10_1016_j_biopsych_2024_04_017
crossref_primary_10_3389_fnagi_2021_729635
crossref_primary_10_1016_j_pscychresns_2019_06_001
crossref_primary_10_1016_j_neubiorev_2012_01_004
crossref_primary_10_1111_ejn_15473
crossref_primary_10_3390_app9153063
crossref_primary_10_1016_j_media_2019_03_001
crossref_primary_10_1016_j_neuroimage_2012_06_038
crossref_primary_10_1016_j_neucom_2015_07_145
crossref_primary_10_1002_hbm_25028
crossref_primary_10_1162_imag_a_00245
crossref_primary_10_1371_journal_pone_0168011
crossref_primary_10_1016_j_eswa_2024_124893
crossref_primary_10_1186_s13024_023_00688_3
crossref_primary_10_3389_fnagi_2023_1242158
crossref_primary_10_1111_cns_13048
crossref_primary_10_3389_fnimg_2022_934514
crossref_primary_10_1016_j_neuroimage_2010_03_051
crossref_primary_10_1016_j_cmpb_2021_106585
crossref_primary_10_1016_j_neuroimage_2018_10_003
crossref_primary_10_1007_s00429_020_02184_6
crossref_primary_10_3390_brainsci13030520
crossref_primary_10_1371_journal_pone_0036147
crossref_primary_10_1016_j_neuroimage_2013_08_053
crossref_primary_10_1523_JNEUROSCI_0790_22_2023
crossref_primary_10_1016_j_nicl_2021_102921
crossref_primary_10_15302_J_QB_021_0266
crossref_primary_10_1002_dad2_12493
crossref_primary_10_3389_fnagi_2021_761954
crossref_primary_10_1016_j_jpsychires_2020_04_011
crossref_primary_10_1016_j_cccb_2022_100125
crossref_primary_10_1109_TMI_2021_3085948
crossref_primary_10_3390_math11051229
crossref_primary_10_1097_j_pain_0000000000001491
crossref_primary_10_1016_j_ejmp_2017_04_027
crossref_primary_10_1002_hbm_26010
crossref_primary_10_1109_TNSRE_2020_3007324
crossref_primary_10_1016_j_neurobiolaging_2020_03_014
crossref_primary_10_1093_schbul_sbae150
crossref_primary_10_1186_s12883_023_03511_0
crossref_primary_10_1109_JBHI_2021_3083187
crossref_primary_10_1016_j_neubiorev_2024_105581
crossref_primary_10_3389_fnimg_2024_1455436
crossref_primary_10_1038_s41598_019_47922_x
crossref_primary_10_3390_brainsci14121252
crossref_primary_10_1038_s41598_017_18253_6
crossref_primary_10_1523_JNEUROSCI_2092_19_2019
crossref_primary_10_1016_j_ebiom_2021_103600
crossref_primary_10_1002_hbm_26685
crossref_primary_10_1007_s11682_021_00574_w
crossref_primary_10_3389_fpsyt_2024_1352250
crossref_primary_10_1016_j_pnpbp_2018_08_005
crossref_primary_10_1007_s12021_013_9178_1
crossref_primary_10_1371_journal_pone_0085460
crossref_primary_10_1016_j_neuroimage_2013_11_011
crossref_primary_10_3389_fnagi_2022_799260
crossref_primary_10_1016_j_brainres_2023_148668
crossref_primary_10_1017_S0954579418000342
crossref_primary_10_1002_hbm_26558
crossref_primary_10_3389_fnagi_2023_1303036
crossref_primary_10_1007_s00429_021_02433_2
crossref_primary_10_1002_hbm_25460
crossref_primary_10_1007_s00429_017_1491_2
crossref_primary_10_3390_e21040411
crossref_primary_10_1111_cen_14898
crossref_primary_10_1002_jnr_25357
crossref_primary_10_12688_wellcomeopenres_15617_3
crossref_primary_10_1038_s41598_022_05468_5
crossref_primary_10_3389_fpsyt_2022_913470
crossref_primary_10_1016_j_arr_2020_101075
crossref_primary_10_1097_YCO_0000000000000574
crossref_primary_10_3758_s13428_019_01296_0
crossref_primary_10_12688_wellcomeopenres_15617_2
crossref_primary_10_1016_j_ebr_2022_100530
crossref_primary_10_12688_wellcomeopenres_15617_1
crossref_primary_10_14336_AD_2019_0617
crossref_primary_10_3389_fnins_2022_1036102
crossref_primary_10_1002_jmri_22806
crossref_primary_10_1093_schbul_sbab064
crossref_primary_10_1016_j_procs_2019_09_265
crossref_primary_10_3389_fneur_2022_960760
crossref_primary_10_7554_eLife_52677
crossref_primary_10_1162_imag_a_00210
crossref_primary_10_1038_s41467_021_25492_9
crossref_primary_10_1002_hbm_25133
crossref_primary_10_1002_hbm_25253
crossref_primary_10_1088_1741_2552_abbff2
crossref_primary_10_1016_j_neubiorev_2023_105365
crossref_primary_10_1002_hbm_25013
crossref_primary_10_1016_j_neuroimage_2019_06_017
crossref_primary_10_1016_j_nicl_2018_05_036
crossref_primary_10_1016_j_media_2015_10_008
crossref_primary_10_1002_acn3_51043
crossref_primary_10_1016_j_cmpb_2021_106434
crossref_primary_10_1016_j_neuroimage_2022_119228
crossref_primary_10_1016_j_heliyon_2019_e02216
crossref_primary_10_3390_ijms25115970
crossref_primary_10_1016_j_neuroimage_2020_116831
crossref_primary_10_1017_S0033291716000878
crossref_primary_10_3389_fnagi_2021_653365
crossref_primary_10_3389_fneur_2019_01346
crossref_primary_10_1016_j_mri_2024_02_011
crossref_primary_10_7554_eLife_81067
crossref_primary_10_1109_JBHI_2023_3341629
crossref_primary_10_1007_s11042_020_09121_z
crossref_primary_10_1016_j_biopsych_2015_12_023
crossref_primary_10_1016_j_neuroimage_2016_03_075
crossref_primary_10_1186_s13229_019_0301_5
crossref_primary_10_1016_j_jalz_2013_05_1764
crossref_primary_10_1016_j_neuroimage_2022_119210
crossref_primary_10_1002_hbm_25368
crossref_primary_10_1016_j_jalz_2013_05_1769
crossref_primary_10_1038_s41514_024_00169_x
crossref_primary_10_1002_hbm_26333
crossref_primary_10_1016_j_jpsychires_2018_02_012
crossref_primary_10_1016_j_neurad_2023_09_002
crossref_primary_10_3390_biomedicines11102802
crossref_primary_10_3390_bioengineering11020124
crossref_primary_10_1016_j_jad_2023_08_139
crossref_primary_10_1016_j_jalz_2011_09_172
crossref_primary_10_1093_cercor_bhw208
crossref_primary_10_1007_s12204_023_2590_2
crossref_primary_10_1176_appi_ajp_2015_15070922
crossref_primary_10_1148_ryai_2021200171
crossref_primary_10_1016_j_media_2021_102169
crossref_primary_10_1016_j_arr_2020_101094
crossref_primary_10_3390_s22218112
crossref_primary_10_1016_j_neuroimage_2017_10_047
crossref_primary_10_1002_ana_24367
Cites_doi 10.1006/nimg.1999.0458
10.1109/TMI.2005.857652
10.1016/j.schres.2008.02.007
10.1523/JNEUROSCI.23-08-03295.2003
10.1001/archneur.1994.00540210046012
10.1016/j.neuroimage.2008.03.050
10.1212/WNL.0b013e3181af79fb
10.1016/j.neuroimage.2007.09.073
10.1007/BF02294740
10.1093/schbul/sbm140
10.1212/01.wnl.0000341768.28646.b6
10.1016/j.neuroimage.2004.05.007
10.1109/TMI.2007.892501
10.1145/1386352.1386378
10.1007/s00330-009-1512-5
10.1016/j.mri.2009.01.006
10.1016/j.advwatres.2007.07.005
10.1016/S0893-6080(03)00209-0
10.1016/j.tins.2006.01.007
10.1145/380995.380999
10.1001/archpsyc.62.11.1218
10.1212/WNL.0b013e3181af79e5
10.1001/archneurol.2007.27
10.1093/brain/awn239
10.1023/A:1012487302797
10.1093/brain/awm319
10.1093/brain/awp091
10.1016/j.pscychresns.2008.05.002
10.1016/S0893-6080(03)00169-2
10.1016/j.neuroimage.2005.02.018
10.1016/j.neuroimage.2007.07.008
10.1212/WNL.43.11.2412-a
10.1109/42.563663
10.1016/j.neuroimage.2003.09.027
10.1006/nimg.2001.0786
10.1016/S1474-4422(03)00304-1
10.1016/j.neuroimage.2008.02.043
10.1212/WNL.0b013e3181a82634
10.1016/j.neuroimage.2007.10.031
10.1016/j.neuroimage.2005.08.062
10.1016/j.neuroimage.2007.07.007
10.1016/S1053-8119(09)71151-6
10.1016/j.neurobiolaging.2006.11.010
ContentType Journal Article
Copyright 2010 Elsevier Inc.
Copyright 2010 Elsevier Inc. All rights reserved.
Copyright Elsevier Limited Apr 15, 2010
Copyright_xml – notice: 2010 Elsevier Inc.
– notice: Copyright 2010 Elsevier Inc. All rights reserved.
– notice: Copyright Elsevier Limited Apr 15, 2010
CorporateAuthor the Alzheimer's Disease Neuroimaging Initiative
Alzheimer's Disease Neuroimaging Initiative
CorporateAuthor_xml – name: the Alzheimer's Disease Neuroimaging Initiative
– name: Alzheimer's Disease Neuroimaging Initiative
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7X7
7XB
88E
88G
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2M
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
RC3
7X8
DOI 10.1016/j.neuroimage.2010.01.005
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection (ProQuest)
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Medical Database
Psychology Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList ProQuest One Psychology
MEDLINE
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1095-9572
EndPage 892
ExternalDocumentID 3466484831
20070949
10_1016_j_neuroimage_2010_01_005
S1053811910000108
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5RE
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8P~
9JM
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABUWG
ABXDB
ACDAQ
ACGFO
ACGFS
ACIEU
ACPRK
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADFRT
ADMUD
ADNMO
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFKRA
AFPUW
AFTJW
AFXIZ
AGCQF
AGUBO
AGWIK
AGYEJ
AHHHB
AHMBA
AIEXJ
AIIUN
AIKHN
AITUG
AJRQY
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AXJTR
AZQEC
BBNVY
BENPR
BHPHI
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DM4
DU5
DWQXO
EBS
EFBJH
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
FYUFA
G-Q
GNUQQ
GROUPED_DOAJ
HCIFZ
HMCUK
HZ~
IHE
J1W
KOM
LG5
LK8
LX8
M1P
M29
M2M
M2V
M41
M7P
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OVD
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PSYQQ
PUEGO
Q38
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SSH
SSN
SSZ
T5K
TEORI
UKHRP
UV1
YK3
ZU3
~G-
3V.
AACTN
AADPK
AAIAV
ABLVK
ABYKQ
AFKWA
AJBFU
AJOXV
AMFUW
C45
EFLBG
HMQ
LCYCR
RIG
SNS
ZA5
.1-
.FO
29N
53G
AAFWJ
AAQXK
AAYXX
ABMZM
ADFGL
ADVLN
ADXHL
AFPKN
AFRHN
AGHFR
AGQPQ
AGRNS
AIGII
AJUYK
AKRLJ
ALIPV
APXCP
ASPBG
AVWKF
AZFZN
CAG
CITATION
COF
FEDTE
FGOYB
G-2
GBLVA
HDW
HEI
HMK
HMO
HVGLF
OK1
R2-
SEW
WUQ
XPP
Z5R
ZMT
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7XB
8FD
8FK
FR3
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
ID FETCH-LOGICAL-c439t-f2a2150fc6f76b5fe1503bae4580cd5ace14a951d25cb974ddef58dea13f80203
IEDL.DBID .~1
ISSN 1053-8119
1095-9572
IngestDate Fri Jul 11 00:32:47 EDT 2025
Wed Aug 13 11:22:11 EDT 2025
Thu Apr 03 06:53:38 EDT 2025
Thu Apr 24 23:08:42 EDT 2025
Tue Jul 01 02:14:35 EDT 2025
Fri Feb 23 02:20:28 EST 2024
Tue Aug 26 16:36:49 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Regression
Aging
Relevance vector machines (RVM)
MRI
Brain disease
Support vector machines (SVM)
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
Copyright 2010 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c439t-f2a2150fc6f76b5fe1503bae4580cd5ace14a951d25cb974ddef58dea13f80203
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 20070949
PQID 1614373567
PQPubID 2031077
PageCount 10
ParticipantIDs proquest_miscellaneous_733183679
proquest_journals_1614373567
pubmed_primary_20070949
crossref_primary_10_1016_j_neuroimage_2010_01_005
crossref_citationtrail_10_1016_j_neuroimage_2010_01_005
elsevier_sciencedirect_doi_10_1016_j_neuroimage_2010_01_005
elsevier_clinicalkey_doi_10_1016_j_neuroimage_2010_01_005
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-04-15
PublicationDateYYYYMMDD 2010-04-15
PublicationDate_xml – month: 04
  year: 2010
  text: 2010-04-15
  day: 15
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Amsterdam
PublicationTitle NeuroImage (Orlando, Fla.)
PublicationTitleAlternate Neuroimage
PublicationYear 2010
Publisher Elsevier Inc
Elsevier Limited
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
References Klöppel, Chu, Tan, Draganski, Johnson, Paulsen, Kienzle, Tabrizi, Ashburner, Frackowiak (bib31) 2009; 72
Teipel, Born, Ewers, Bokde, Reiser, Möller, Hampel (bib45) 2007; 38
Driscoll, Davatzikos, An, Wu, Shen, Kraut, Resnick (bib15) 2009; 72
Zheng, Neo, Chua, Tian (bib60) 2008
Bennett, Campbell (bib5) 2003; 2
Tipping, Faul (bib49) 2003
Resnick, Pham, Kraut, Zonderman, Davatzikos (bib40) 2003; 23
Davatzikos, Xu, An, Fan, Resnick (bib14) 2009; 132
Fotenos, Mintun, Snyder, Morris, Buckner (bib20) 2008; 65
Tohka, Zijdenbos, Evans (bib51) 2004; 23
Cuadra, Cammoun, Butz, Cuisenaire, Thiran (bib10) 2005; 24
Ashburner, Csernansky, Davatzikos, Fox, Frisoni, Thompson (bib4) 2003; 2
Ashburner, Friston (bib3) 2005; 26
Terribilli, Schaufelberger, Duran, Zanetti, Curiati, Menezes, Scazufca, Amaro, Leite, Busatto (bib46) 2009
Guyon, Weston, Barnhill, Vapnik (bib26) 2002; 46
Spulber, Niskanen, Macdonald, Smilovici, Chen, Reiman, Jauhiainen, Hallikainen, Tervo, Wahlund, Vanninen, Kivipelto, Soininen (bib44) 2008
Gaser, Volz, Kiebel, Riehemann, Sauer (bib22) 1999; 10
Liu, Teverovskiy, Carmichael, Kikinis, Shenton, Carter, Stenger, Davis, Aizenstein, Becker, Lopez, Meltzer (bib33) 2004; 3216
Guyon, Elisseeff (bib25) 2003; 3
Tipping (bib48) 2001; 1
Lao, Shen, Xue, Karacali, Resnick, Davatzikos (bib32) 2004; 21
Sluimer, Van Der Flier, Karas, Van Schijndel, Barnes, Boyes, Cover, Olabarriaga, Fox, Scheltens, Vrenken, Barkhof (bib42) 2009
Kirkpatrick, Messias, Harvey, Fernandez-Egea, Bowie (bib28) 2008; 34
Rajapakse, Giedd, Rapoport (bib39) 1997; 16
.
Vemuri, Wiste, Weigand, Shaw, Trojanowski, Weiner, Knopman, Petersen, Jack, Initiative (bib56) 2009; 73
Ghosh, Mujumdar (bib23) 2008; 31
Ohnishi, Matsuda, Tabira, Asada, Uno (bib37) 2001; 22
Davatzikos, Fan, Wu, Shen, Resnick (bib12) 2008; 29
Pfefferbaum, Mathalon, Sullivan, Rawles, Zipursky, Lim (bib38) 1994; 51
Bishop (bib6) 2006
Morris (bib35) 1993; 43
van der Maaten, L.J.P., 2007. An Introduction to Dimensionality Reduction Using Matlab. Technical Report MICC 07-07. Maastricht University, Maastricht, The Netherlands.
Ashburner (bib2) 2009; 27
Cockrell, Folstein (bib9) 1988; 24
Tipping (bib47) 2000
Vemuri, Wiste, Weigand, Shaw, Trojanowski, Weiner, Knopman, Petersen, Jack, Initiative (bib57) 2009; 73
Fan, Batmanghelich, Clark, Davatzikos (bib17) 2008; 39
Klöppel, Stonnington, Chu, Draganski, Scahill, Rohrer, Fox, Jack, Ashburner, Frackowiak (bib30) 2008; 131
Davatzikos, Shen, Gur, Wu, Liu, Fan, Hughett, Turetsky, Gur (bib11) 2005; 62
Good, Johnsrude, Ashburner, Henson, Friston, Frackowiak (bib24) 2001; 14
Cherkassky, Ma (bib8) 2004; 17
van der Maaten, L.J.P., Postma, E.O., van den Herik, H.J., 2007. Dimensionality reduction: a comparative review.
Ashburner (bib1) 2007; 38
Holmes (bib27) 1990; 55
Gaser (bib21) 2009; 47
Toga, Thompson, Sowell (bib50) 2006; 29
Fan, Resnick, Wu, Davatzikos (bib18) 2008; 41
Vemuri, Gunter, Senjem, Whitwell, Kantarci, Knopman, Boeve, Petersen, Jack (bib55) 2008; 39
Wang, Liu, Lirng, Lin, Wu (bib58) 2009; 171
Meda, Giuliani, Calhoun, Jagannathan, Schretlen, Pulver, Cascella, Keshavan, Kates, Buchanan, Sharma, Pearlson (bib34) 2008; 101
Weston, J., Elisseeff, A., BakIr, G., Sinz, F., 2006. The Spider.
van der Maaten, L.J.P., 2008. Matlab Toolbox for Dimensionality Reduction.
Faul, Tipping (bib19) 2002; 1
Schölkopf, Smola (bib41) 2002
Klöppel, Stonnington, Barnes, Chen, Chu, Good, Mader, Mitchell, Patel, Roberts, Fox, Jack, Ashburner, Frackowiak (bib29) 2008; 131
Neeb, Zilles, Shah (bib36) 2006; 29
Davatzikos, Resnick, Wu, Parmpi, Clark (bib13) 2008; 41
Duchesnay, Cachia, Roche, Rivière, Cointepas, Papadopoulos-Orfanos, Zilbovicius, Martinot, Régis, Mangin (bib16) 2007; 26
(bib43) 2009
Chalimourda, Schölkopf, Smola (bib7) 2004; 17
Gaser (10.1016/j.neuroimage.2010.01.005_bib21) 2009; 47
Klöppel (10.1016/j.neuroimage.2010.01.005_bib31) 2009; 72
Ashburner (10.1016/j.neuroimage.2010.01.005_bib4) 2003; 2
Guyon (10.1016/j.neuroimage.2010.01.005_bib26) 2002; 46
Ashburner (10.1016/j.neuroimage.2010.01.005_bib1) 2007; 38
Cockrell (10.1016/j.neuroimage.2010.01.005_bib9) 1988; 24
Tipping (10.1016/j.neuroimage.2010.01.005_bib49) 2003
Wang (10.1016/j.neuroimage.2010.01.005_bib58) 2009; 171
Zheng (10.1016/j.neuroimage.2010.01.005_bib60) 2008
Meda (10.1016/j.neuroimage.2010.01.005_bib34) 2008; 101
Tipping (10.1016/j.neuroimage.2010.01.005_bib48) 2001; 1
Vemuri (10.1016/j.neuroimage.2010.01.005_bib55) 2008; 39
Vemuri (10.1016/j.neuroimage.2010.01.005_bib57) 2009; 73
Spulber (10.1016/j.neuroimage.2010.01.005_bib44) 2008
Cherkassky (10.1016/j.neuroimage.2010.01.005_bib8) 2004; 17
Ohnishi (10.1016/j.neuroimage.2010.01.005_bib37) 2001; 22
Klöppel (10.1016/j.neuroimage.2010.01.005_bib29) 2008; 131
Driscoll (10.1016/j.neuroimage.2010.01.005_bib15) 2009; 72
Fotenos (10.1016/j.neuroimage.2010.01.005_bib20) 2008; 65
Terribilli (10.1016/j.neuroimage.2010.01.005_bib46) 2009
Rajapakse (10.1016/j.neuroimage.2010.01.005_bib39) 1997; 16
Klöppel (10.1016/j.neuroimage.2010.01.005_bib30) 2008; 131
10.1016/j.neuroimage.2010.01.005_bib54
10.1016/j.neuroimage.2010.01.005_bib52
Liu (10.1016/j.neuroimage.2010.01.005_bib33) 2004; 3216
Pfefferbaum (10.1016/j.neuroimage.2010.01.005_bib38) 1994; 51
10.1016/j.neuroimage.2010.01.005_bib53
Sluimer (10.1016/j.neuroimage.2010.01.005_bib42) 2009
Fan (10.1016/j.neuroimage.2010.01.005_bib17) 2008; 39
Davatzikos (10.1016/j.neuroimage.2010.01.005_bib11) 2005; 62
10.1016/j.neuroimage.2010.01.005_bib59
Faul (10.1016/j.neuroimage.2010.01.005_bib19) 2002; 1
Neeb (10.1016/j.neuroimage.2010.01.005_bib36) 2006; 29
Ashburner (10.1016/j.neuroimage.2010.01.005_bib3) 2005; 26
Cuadra (10.1016/j.neuroimage.2010.01.005_bib10) 2005; 24
Tohka (10.1016/j.neuroimage.2010.01.005_bib51) 2004; 23
Tipping (10.1016/j.neuroimage.2010.01.005_bib47) 2000
Guyon (10.1016/j.neuroimage.2010.01.005_bib25) 2003; 3
Kirkpatrick (10.1016/j.neuroimage.2010.01.005_bib28) 2008; 34
Davatzikos (10.1016/j.neuroimage.2010.01.005_bib12) 2008; 29
Morris (10.1016/j.neuroimage.2010.01.005_bib35) 1993; 43
Lao (10.1016/j.neuroimage.2010.01.005_bib32) 2004; 21
Fan (10.1016/j.neuroimage.2010.01.005_bib18) 2008; 41
Ghosh (10.1016/j.neuroimage.2010.01.005_bib23) 2008; 31
Teipel (10.1016/j.neuroimage.2010.01.005_bib45) 2007; 38
Bishop (10.1016/j.neuroimage.2010.01.005_bib6) 2006
Toga (10.1016/j.neuroimage.2010.01.005_bib50) 2006; 29
Ashburner (10.1016/j.neuroimage.2010.01.005_bib2) 2009; 27
Duchesnay (10.1016/j.neuroimage.2010.01.005_bib16) 2007; 26
Gaser (10.1016/j.neuroimage.2010.01.005_bib22) 1999; 10
(10.1016/j.neuroimage.2010.01.005_bib43) 2009
Chalimourda (10.1016/j.neuroimage.2010.01.005_bib7) 2004; 17
Davatzikos (10.1016/j.neuroimage.2010.01.005_bib14) 2009; 132
Bennett (10.1016/j.neuroimage.2010.01.005_bib5) 2003; 2
Resnick (10.1016/j.neuroimage.2010.01.005_bib40) 2003; 23
Good (10.1016/j.neuroimage.2010.01.005_bib24) 2001; 14
Schölkopf (10.1016/j.neuroimage.2010.01.005_bib41) 2002
Vemuri (10.1016/j.neuroimage.2010.01.005_bib56) 2009; 73
Holmes (10.1016/j.neuroimage.2010.01.005_bib27) 1990; 55
Davatzikos (10.1016/j.neuroimage.2010.01.005_bib13) 2008; 41
References_xml – volume: 39
  start-page: 1731
  year: 2008
  end-page: 1743
  ident: bib17
  article-title: Spatial patterns of brain atrophy in MCI patients, identified via high-dimensional pattern classification, predict subsequent cognitive decline
  publication-title: NeuroImage
– volume: 16
  start-page: 176
  year: 1997
  end-page: 186
  ident: bib39
  article-title: Statistical approach to segmentation of single-channel cerebral MR images
  publication-title: IEEE Trans. Med. Imaging
– volume: 46
  start-page: 389
  year: 2002
  end-page: 422
  ident: bib26
  article-title: Gene selection for cancer classification using support vector machines
  publication-title: Mach. Learn.
– volume: 72
  start-page: 426
  year: 2009
  end-page: 431
  ident: bib31
  article-title: Automatic detection of preclinical neurodegeneration: presymptomatic Huntington disease
  publication-title: Neurology
– volume: 24
  start-page: 1548
  year: 2005
  end-page: 1565
  ident: bib10
  article-title: Comparison and validation of tissue modelization and statistical classification methods in T1-weighted MR brain images
  publication-title: IEEE Trans. Med. Imaging
– volume: 10
  start-page: 107
  year: 1999
  end-page: 113
  ident: bib22
  article-title: Detecting structural changes in whole brain based on nonlinear deformations-application to schizophrenia research
  publication-title: NeuroImage
– volume: 131
  start-page: 681
  year: 2008
  end-page: 689
  ident: bib30
  article-title: Automatic classification of MR scans in Alzheimer's disease
  publication-title: Brain
– volume: 51
  start-page: 874
  year: 1994
  end-page: 887
  ident: bib38
  article-title: A quantitative magnetic resonance imaging study of changes in brain morphology from infancy to late adulthood
  publication-title: Arch. Neurol.
– volume: 101
  start-page: 95
  year: 2008
  end-page: 105
  ident: bib34
  article-title: A large scale (
  publication-title: Schizophr. Res.
– volume: 2
  start-page: 1
  year: 2003
  end-page: 13
  ident: bib5
  article-title: Support vector machines: hype or hallelujah?
  publication-title: SIGKDD Explorations
– volume: 72
  start-page: 1906
  year: 2009
  end-page: 1913
  ident: bib15
  article-title: Longitudinal pattern of regional brain volume change differentiates normal aging from MCI
  publication-title: Neurology
– start-page: 161
  year: 2008
  end-page: 168
  ident: bib60
  article-title: Probabilistic optimized ranking for multimedia semantic concept detection via RVM
  publication-title: Proc. 2008 Int. Conference Content-based Image Video Retrieval
– volume: 24
  start-page: 689
  year: 1988
  end-page: 692
  ident: bib9
  article-title: Mini-Mental State Examination (MMSE)
  publication-title: Psychopharmacol. Bull.
– volume: 55
  start-page: 19
  year: 1990
  end-page: 32
  ident: bib27
  article-title: The robustness of the usual correction for restriction in range due to explicit selection
  publication-title: Psychometrika
– volume: 23
  start-page: 84
  year: 2004
  end-page: 97
  ident: bib51
  article-title: Fast and robust parameter estimation for statistical partial volume models in brain MRI
  publication-title: NeuroImage
– volume: 17
  start-page: 113
  year: 2004
  end-page: 126
  ident: bib8
  article-title: Practical selection of SVM parameters and noise estimation for SVM regression
  publication-title: Neural Netw.
– year: 2008
  ident: bib44
  article-title: Whole brain atrophy rate predicts progression from MCI to Alzheimer's disease
  publication-title: Neurobiol. Aging
– volume: 73
  start-page: 294
  year: 2009
  end-page: 301
  ident: bib56
  article-title: MRI and CSF biomarkers in normal, MCI, and AD subjects: predicting future clinical change
  publication-title: Neurology
– year: 2009
  ident: bib42
  article-title: Accelerating regional atrophy rates in the progression from normal aging to Alzheimer's disease
  publication-title: Eur. Radiol.
– year: 2009
  ident: bib43
  publication-title: Wellcome Trust Centre for Neuroimaging
– volume: 27
  start-page: 1163
  year: 2009
  end-page: 1174
  ident: bib2
  article-title: Computational anatomy with the SPM software
  publication-title: Magn. Reson. Imaging
– volume: 38
  start-page: 13
  year: 2007
  end-page: 24
  ident: bib45
  article-title: Multivariate deformation-based analysis of brain atrophy to predict Alzheimer's disease in mild cognitive impairment
  publication-title: NeuroImage
– volume: 22
  start-page: 1680
  year: 2001
  end-page: 1685
  ident: bib37
  article-title: Changes in brain morphology in Alzheimer disease and normal aging: is Alzheimer disease an exaggerated aging process?
  publication-title: AJNR Am. J. Neuroradiol.
– reference: van der Maaten, L.J.P., 2008. Matlab Toolbox for Dimensionality Reduction.
– reference: van der Maaten, L.J.P., 2007. An Introduction to Dimensionality Reduction Using Matlab. Technical Report MICC 07-07. Maastricht University, Maastricht, The Netherlands.
– volume: 2
  start-page: 79
  year: 2003
  end-page: 88
  ident: bib4
  article-title: Computer-assisted imaging to assess brain structure in healthy and diseased brains
  publication-title: Lancet Neurol.
– volume: 26
  start-page: 553
  year: 2007
  end-page: 565
  ident: bib16
  article-title: Classification based on cortical folding patterns
  publication-title: IEEE Trans. Med. Imaging
– volume: 31
  start-page: 132
  year: 2008
  end-page: 146
  ident: bib23
  article-title: Statistical downscaling of GCM simulations to streamflow using relevance vector machine
  publication-title: Adv. Water Resour.
– start-page: 652
  year: 2000
  end-page: 658
  ident: bib47
  article-title: The relevance vector machine
  publication-title: Advances in Neural Information Processing Systems 12. MIT Press
– volume: 3216
  start-page: 393
  year: 2004
  end-page: 401
  ident: bib33
  article-title: Discriminative MR image feature analysis for automatic schizophrenia and Alzheimer's disease classification
  publication-title: Learn. Theory: Proceed.
– reference: van der Maaten, L.J.P., Postma, E.O., van den Herik, H.J., 2007. Dimensionality reduction: a comparative review.
– year: 2002
  ident: bib41
  publication-title: Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond
– volume: 1
  start-page: 211
  year: 2001
  end-page: 244
  ident: bib48
  article-title: Sparse Bayesian learning and the relevance vector machine
  publication-title: J. Mach. Learn. Res.
– volume: 41
  start-page: 277
  year: 2008
  end-page: 285
  ident: bib18
  article-title: Structural and functional biomarkers of prodromal Alzheimer's disease: a high-dimensional pattern classification study
  publication-title: NeuroImage
– volume: 21
  start-page: 46
  year: 2004
  end-page: 57
  ident: bib32
  article-title: Morphological classification of brains via high-dimensional shape transformations and machine learning methods
  publication-title: NeuroImage
– volume: 29
  start-page: 514
  year: 2008
  end-page: 523
  ident: bib12
  article-title: Detection of prodromal Alzheimer's disease via pattern classification of magnetic resonance imaging
  publication-title: Neurobiol. Aging
– volume: 43
  start-page: 2412
  year: 1993
  end-page: 2414
  ident: bib35
  article-title: The Clinical Dementia Rating (CDR): current version and scoring rules
  publication-title: Neurology
– volume: 29
  start-page: 148
  year: 2006
  end-page: 159
  ident: bib50
  article-title: Mapping brain maturation
  publication-title: Trends Neurosci.
– volume: 1
  start-page: 383
  year: 2002
  end-page: 390
  ident: bib19
  article-title: Analysis of sparse Bayesian learning
  publication-title: Adv. Neural Inf. Process. Syst. (NIPS)
– volume: 65
  start-page: 113
  year: 2008
  end-page: 120
  ident: bib20
  article-title: Brain volume decline in aging: evidence for a relation between socioeconomic status, preclinical Alzheimer disease, and reserve
  publication-title: Arch. Neurol.
– year: 2009
  ident: bib46
  article-title: Age-related gray matter volume changes in the brain during non-elderly adulthood
  publication-title: Neurobiol. Aging
– volume: 3
  start-page: 1157
  year: 2003
  end-page: 1182
  ident: bib25
  article-title: An introduction to variable and feature selection
  publication-title: J. Mach. Learn. Res.
– reference: Weston, J., Elisseeff, A., BakIr, G., Sinz, F., 2006. The Spider.
– volume: 17
  start-page: 127
  year: 2004
  end-page: 141
  ident: bib7
  article-title: Experimentally optimal nu in support vector regression for different noise models and parameter settings
  publication-title: Neural Netw.
– volume: 34
  start-page: 1024
  year: 2008
  end-page: 1032
  ident: bib28
  article-title: Is schizophrenia a syndrome of accelerated aging?
  publication-title: Schizophr. Bull.
– volume: 23
  start-page: 3295
  year: 2003
  end-page: 3301
  ident: bib40
  article-title: Longitudinal magnetic resonance imaging studies of older adults: a shrinking brain
  publication-title: J. Neurosci.
– volume: 171
  start-page: 221
  year: 2009
  end-page: 231
  ident: bib58
  article-title: Accelerated hippocampal atrophy rates in stable and progressive amnestic mild cognitive impairment
  publication-title: Psychiatry Res.
– year: 2006
  ident: bib6
  publication-title: Pattern Recognition and Machine Learning
– volume: 26
  start-page: 839
  year: 2005
  end-page: 851
  ident: bib3
  article-title: Unified segmentation
  publication-title: NeuroImage
– volume: 41
  start-page: 1220
  year: 2008
  end-page: 1227
  ident: bib13
  article-title: Individual patient diagnosis of AD and FTD via high-dimensional pattern classification of MRI
  publication-title: NeuroImage
– volume: 47
  start-page: S121
  year: 2009
  ident: bib21
  article-title: Partial volume segmentation with adaptive maximum a posteriori (MAP) approach
  publication-title: NeuroImage
– volume: 14
  start-page: 21
  year: 2001
  end-page: 36
  ident: bib24
  article-title: A voxel-based morphometric study of ageing in 465 normal adult human brains
  publication-title: NeuroImage
– volume: 29
  start-page: 910
  year: 2006
  end-page: 922
  ident: bib36
  article-title: Fully-automated detection of cerebral water content changes: study of age-and gender-related H2O patterns with quantitative MRI
  publication-title: NeuroImage
– volume: 131
  start-page: 2969
  year: 2008
  end-page: 2974
  ident: bib29
  article-title: Accuracy of dementia diagnosis—a direct comparison between radiologists and a computerized method
  publication-title: Brain
– reference: .
– volume: 39
  start-page: 1186
  year: 2008
  end-page: 1197
  ident: bib55
  article-title: Alzheimer's disease diagnosis in individual subjects using structural MR images: validation studies
  publication-title: NeuroImage
– start-page: 3
  year: 2003
  end-page: 6
  ident: bib49
  article-title: Fast marginal likelihood maximization for sparse Bayesian models
  publication-title: Proc. Ninth Int. Workshop Artificial Intell. Stat.
– volume: 38
  start-page: 95
  year: 2007
  end-page: 113
  ident: bib1
  article-title: A fast diffeomorphic image registration algorithm
  publication-title: NeuroImage
– volume: 62
  start-page: 1218
  year: 2005
  end-page: 1227
  ident: bib11
  article-title: Whole-brain morphometric study of schizophrenia revealing a spatially complex set of focal abnormalities
  publication-title: Arch. Gen. Psychiatry
– volume: 73
  start-page: 287
  year: 2009
  end-page: 293
  ident: bib57
  article-title: MRI and CSF biomarkers in normal, MCI, and AD subjects: diagnostic discrimination and cognitive correlations
  publication-title: Neurology
– volume: 132
  start-page: 2026
  year: 2009
  end-page: 2035
  ident: bib14
  article-title: Longitudinal progression of Alzheimer's-like patterns of atrophy in normal older adults: the SPARE-AD index
  publication-title: Brain
– volume: 10
  start-page: 107
  year: 1999
  ident: 10.1016/j.neuroimage.2010.01.005_bib22
  article-title: Detecting structural changes in whole brain based on nonlinear deformations-application to schizophrenia research
  publication-title: NeuroImage
  doi: 10.1006/nimg.1999.0458
– year: 2002
  ident: 10.1016/j.neuroimage.2010.01.005_bib41
– year: 2008
  ident: 10.1016/j.neuroimage.2010.01.005_bib44
  article-title: Whole brain atrophy rate predicts progression from MCI to Alzheimer's disease
  publication-title: Neurobiol. Aging
– volume: 24
  start-page: 1548
  year: 2005
  ident: 10.1016/j.neuroimage.2010.01.005_bib10
  article-title: Comparison and validation of tissue modelization and statistical classification methods in T1-weighted MR brain images
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2005.857652
– volume: 101
  start-page: 95
  year: 2008
  ident: 10.1016/j.neuroimage.2010.01.005_bib34
  article-title: A large scale (N=400) investigation of gray matter differences in schizophrenia using optimized voxel-based morphometry
  publication-title: Schizophr. Res.
  doi: 10.1016/j.schres.2008.02.007
– start-page: 3
  year: 2003
  ident: 10.1016/j.neuroimage.2010.01.005_bib49
  article-title: Fast marginal likelihood maximization for sparse Bayesian models
  publication-title: Proc. Ninth Int. Workshop Artificial Intell. Stat.
– volume: 23
  start-page: 3295
  year: 2003
  ident: 10.1016/j.neuroimage.2010.01.005_bib40
  article-title: Longitudinal magnetic resonance imaging studies of older adults: a shrinking brain
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.23-08-03295.2003
– volume: 51
  start-page: 874
  year: 1994
  ident: 10.1016/j.neuroimage.2010.01.005_bib38
  article-title: A quantitative magnetic resonance imaging study of changes in brain morphology from infancy to late adulthood
  publication-title: Arch. Neurol.
  doi: 10.1001/archneur.1994.00540210046012
– volume: 41
  start-page: 1220
  year: 2008
  ident: 10.1016/j.neuroimage.2010.01.005_bib13
  article-title: Individual patient diagnosis of AD and FTD via high-dimensional pattern classification of MRI
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2008.03.050
– volume: 73
  start-page: 294
  year: 2009
  ident: 10.1016/j.neuroimage.2010.01.005_bib56
  article-title: MRI and CSF biomarkers in normal, MCI, and AD subjects: predicting future clinical change
  publication-title: Neurology
  doi: 10.1212/WNL.0b013e3181af79fb
– volume: 39
  start-page: 1186
  year: 2008
  ident: 10.1016/j.neuroimage.2010.01.005_bib55
  article-title: Alzheimer's disease diagnosis in individual subjects using structural MR images: validation studies
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2007.09.073
– volume: 55
  start-page: 19
  year: 1990
  ident: 10.1016/j.neuroimage.2010.01.005_bib27
  article-title: The robustness of the usual correction for restriction in range due to explicit selection
  publication-title: Psychometrika
  doi: 10.1007/BF02294740
– volume: 34
  start-page: 1024
  year: 2008
  ident: 10.1016/j.neuroimage.2010.01.005_bib28
  article-title: Is schizophrenia a syndrome of accelerated aging?
  publication-title: Schizophr. Bull.
  doi: 10.1093/schbul/sbm140
– volume: 72
  start-page: 426
  year: 2009
  ident: 10.1016/j.neuroimage.2010.01.005_bib31
  article-title: Automatic detection of preclinical neurodegeneration: presymptomatic Huntington disease
  publication-title: Neurology
  doi: 10.1212/01.wnl.0000341768.28646.b6
– ident: 10.1016/j.neuroimage.2010.01.005_bib59
– volume: 23
  start-page: 84
  year: 2004
  ident: 10.1016/j.neuroimage.2010.01.005_bib51
  article-title: Fast and robust parameter estimation for statistical partial volume models in brain MRI
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2004.05.007
– volume: 22
  start-page: 1680
  year: 2001
  ident: 10.1016/j.neuroimage.2010.01.005_bib37
  article-title: Changes in brain morphology in Alzheimer disease and normal aging: is Alzheimer disease an exaggerated aging process?
  publication-title: AJNR Am. J. Neuroradiol.
– year: 2009
  ident: 10.1016/j.neuroimage.2010.01.005_bib46
  article-title: Age-related gray matter volume changes in the brain during non-elderly adulthood
  publication-title: Neurobiol. Aging
– volume: 26
  start-page: 553
  year: 2007
  ident: 10.1016/j.neuroimage.2010.01.005_bib16
  article-title: Classification based on cortical folding patterns
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2007.892501
– start-page: 161
  year: 2008
  ident: 10.1016/j.neuroimage.2010.01.005_bib60
  article-title: Probabilistic optimized ranking for multimedia semantic concept detection via RVM
  publication-title: Proc. 2008 Int. Conference Content-based Image Video Retrieval
  doi: 10.1145/1386352.1386378
– year: 2009
  ident: 10.1016/j.neuroimage.2010.01.005_bib42
  article-title: Accelerating regional atrophy rates in the progression from normal aging to Alzheimer's disease
  publication-title: Eur. Radiol.
  doi: 10.1007/s00330-009-1512-5
– volume: 27
  start-page: 1163
  year: 2009
  ident: 10.1016/j.neuroimage.2010.01.005_bib2
  article-title: Computational anatomy with the SPM software
  publication-title: Magn. Reson. Imaging
  doi: 10.1016/j.mri.2009.01.006
– volume: 31
  start-page: 132
  year: 2008
  ident: 10.1016/j.neuroimage.2010.01.005_bib23
  article-title: Statistical downscaling of GCM simulations to streamflow using relevance vector machine
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2007.07.005
– year: 2006
  ident: 10.1016/j.neuroimage.2010.01.005_bib6
– volume: 17
  start-page: 127
  year: 2004
  ident: 10.1016/j.neuroimage.2010.01.005_bib7
  article-title: Experimentally optimal nu in support vector regression for different noise models and parameter settings
  publication-title: Neural Netw.
  doi: 10.1016/S0893-6080(03)00209-0
– ident: 10.1016/j.neuroimage.2010.01.005_bib52
– volume: 29
  start-page: 148
  year: 2006
  ident: 10.1016/j.neuroimage.2010.01.005_bib50
  article-title: Mapping brain maturation
  publication-title: Trends Neurosci.
  doi: 10.1016/j.tins.2006.01.007
– volume: 2
  start-page: 1
  year: 2003
  ident: 10.1016/j.neuroimage.2010.01.005_bib5
  article-title: Support vector machines: hype or hallelujah?
  publication-title: SIGKDD Explorations
  doi: 10.1145/380995.380999
– volume: 62
  start-page: 1218
  year: 2005
  ident: 10.1016/j.neuroimage.2010.01.005_bib11
  article-title: Whole-brain morphometric study of schizophrenia revealing a spatially complex set of focal abnormalities
  publication-title: Arch. Gen. Psychiatry
  doi: 10.1001/archpsyc.62.11.1218
– volume: 73
  start-page: 287
  year: 2009
  ident: 10.1016/j.neuroimage.2010.01.005_bib57
  article-title: MRI and CSF biomarkers in normal, MCI, and AD subjects: diagnostic discrimination and cognitive correlations
  publication-title: Neurology
  doi: 10.1212/WNL.0b013e3181af79e5
– volume: 65
  start-page: 113
  year: 2008
  ident: 10.1016/j.neuroimage.2010.01.005_bib20
  article-title: Brain volume decline in aging: evidence for a relation between socioeconomic status, preclinical Alzheimer disease, and reserve
  publication-title: Arch. Neurol.
  doi: 10.1001/archneurol.2007.27
– volume: 131
  start-page: 2969
  year: 2008
  ident: 10.1016/j.neuroimage.2010.01.005_bib29
  article-title: Accuracy of dementia diagnosis—a direct comparison between radiologists and a computerized method
  publication-title: Brain
  doi: 10.1093/brain/awn239
– year: 2009
  ident: 10.1016/j.neuroimage.2010.01.005_bib43
– volume: 24
  start-page: 689
  year: 1988
  ident: 10.1016/j.neuroimage.2010.01.005_bib9
  article-title: Mini-Mental State Examination (MMSE)
  publication-title: Psychopharmacol. Bull.
– volume: 46
  start-page: 389
  year: 2002
  ident: 10.1016/j.neuroimage.2010.01.005_bib26
  article-title: Gene selection for cancer classification using support vector machines
  publication-title: Mach. Learn.
  doi: 10.1023/A:1012487302797
– volume: 131
  start-page: 681
  year: 2008
  ident: 10.1016/j.neuroimage.2010.01.005_bib30
  article-title: Automatic classification of MR scans in Alzheimer's disease
  publication-title: Brain
  doi: 10.1093/brain/awm319
– volume: 1
  start-page: 211
  year: 2001
  ident: 10.1016/j.neuroimage.2010.01.005_bib48
  article-title: Sparse Bayesian learning and the relevance vector machine
  publication-title: J. Mach. Learn. Res.
– volume: 132
  start-page: 2026
  year: 2009
  ident: 10.1016/j.neuroimage.2010.01.005_bib14
  article-title: Longitudinal progression of Alzheimer's-like patterns of atrophy in normal older adults: the SPARE-AD index
  publication-title: Brain
  doi: 10.1093/brain/awp091
– volume: 171
  start-page: 221
  year: 2009
  ident: 10.1016/j.neuroimage.2010.01.005_bib58
  article-title: Accelerated hippocampal atrophy rates in stable and progressive amnestic mild cognitive impairment
  publication-title: Psychiatry Res.
  doi: 10.1016/j.pscychresns.2008.05.002
– volume: 17
  start-page: 113
  year: 2004
  ident: 10.1016/j.neuroimage.2010.01.005_bib8
  article-title: Practical selection of SVM parameters and noise estimation for SVM regression
  publication-title: Neural Netw.
  doi: 10.1016/S0893-6080(03)00169-2
– volume: 26
  start-page: 839
  year: 2005
  ident: 10.1016/j.neuroimage.2010.01.005_bib3
  article-title: Unified segmentation
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2005.02.018
– volume: 38
  start-page: 13
  year: 2007
  ident: 10.1016/j.neuroimage.2010.01.005_bib45
  article-title: Multivariate deformation-based analysis of brain atrophy to predict Alzheimer's disease in mild cognitive impairment
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2007.07.008
– ident: 10.1016/j.neuroimage.2010.01.005_bib53
– volume: 43
  start-page: 2412
  year: 1993
  ident: 10.1016/j.neuroimage.2010.01.005_bib35
  article-title: The Clinical Dementia Rating (CDR): current version and scoring rules
  publication-title: Neurology
  doi: 10.1212/WNL.43.11.2412-a
– volume: 16
  start-page: 176
  year: 1997
  ident: 10.1016/j.neuroimage.2010.01.005_bib39
  article-title: Statistical approach to segmentation of single-channel cerebral MR images
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/42.563663
– volume: 21
  start-page: 46
  year: 2004
  ident: 10.1016/j.neuroimage.2010.01.005_bib32
  article-title: Morphological classification of brains via high-dimensional shape transformations and machine learning methods
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2003.09.027
– start-page: 652
  year: 2000
  ident: 10.1016/j.neuroimage.2010.01.005_bib47
  article-title: The relevance vector machine
– volume: 14
  start-page: 21
  year: 2001
  ident: 10.1016/j.neuroimage.2010.01.005_bib24
  article-title: A voxel-based morphometric study of ageing in 465 normal adult human brains
  publication-title: NeuroImage
  doi: 10.1006/nimg.2001.0786
– volume: 2
  start-page: 79
  year: 2003
  ident: 10.1016/j.neuroimage.2010.01.005_bib4
  article-title: Computer-assisted imaging to assess brain structure in healthy and diseased brains
  publication-title: Lancet Neurol.
  doi: 10.1016/S1474-4422(03)00304-1
– volume: 41
  start-page: 277
  year: 2008
  ident: 10.1016/j.neuroimage.2010.01.005_bib18
  article-title: Structural and functional biomarkers of prodromal Alzheimer's disease: a high-dimensional pattern classification study
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2008.02.043
– volume: 3
  start-page: 1157
  year: 2003
  ident: 10.1016/j.neuroimage.2010.01.005_bib25
  article-title: An introduction to variable and feature selection
  publication-title: J. Mach. Learn. Res.
– volume: 72
  start-page: 1906
  year: 2009
  ident: 10.1016/j.neuroimage.2010.01.005_bib15
  article-title: Longitudinal pattern of regional brain volume change differentiates normal aging from MCI
  publication-title: Neurology
  doi: 10.1212/WNL.0b013e3181a82634
– volume: 1
  start-page: 383
  year: 2002
  ident: 10.1016/j.neuroimage.2010.01.005_bib19
  article-title: Analysis of sparse Bayesian learning
  publication-title: Adv. Neural Inf. Process. Syst. (NIPS)
– volume: 39
  start-page: 1731
  year: 2008
  ident: 10.1016/j.neuroimage.2010.01.005_bib17
  article-title: Spatial patterns of brain atrophy in MCI patients, identified via high-dimensional pattern classification, predict subsequent cognitive decline
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2007.10.031
– volume: 29
  start-page: 910
  year: 2006
  ident: 10.1016/j.neuroimage.2010.01.005_bib36
  article-title: Fully-automated detection of cerebral water content changes: study of age-and gender-related H2O patterns with quantitative MRI
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2005.08.062
– volume: 38
  start-page: 95
  year: 2007
  ident: 10.1016/j.neuroimage.2010.01.005_bib1
  article-title: A fast diffeomorphic image registration algorithm
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2007.07.007
– ident: 10.1016/j.neuroimage.2010.01.005_bib54
– volume: 47
  start-page: S121
  year: 2009
  ident: 10.1016/j.neuroimage.2010.01.005_bib21
  article-title: Partial volume segmentation with adaptive maximum a posteriori (MAP) approach
  publication-title: NeuroImage
  doi: 10.1016/S1053-8119(09)71151-6
– volume: 3216
  start-page: 393
  year: 2004
  ident: 10.1016/j.neuroimage.2010.01.005_bib33
  article-title: Discriminative MR image feature analysis for automatic schizophrenia and Alzheimer's disease classification
  publication-title: Learn. Theory: Proceed.
– volume: 29
  start-page: 514
  year: 2008
  ident: 10.1016/j.neuroimage.2010.01.005_bib12
  article-title: Detection of prodromal Alzheimer's disease via pattern classification of magnetic resonance imaging
  publication-title: Neurobiol. Aging
  doi: 10.1016/j.neurobiolaging.2006.11.010
SSID ssj0009148
Score 2.5409522
Snippet The early identification of brain anatomy deviating from the normal pattern of growth and atrophy, such as in Alzheimer's disease (AD), has the potential to...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 883
SubjectTerms Accuracy
Adult
Age
Aged
Aged, 80 and over
Aging
Aging - pathology
Alzheimer Disease - pathology
Automation
Brain - pathology
Brain disease
Classification
Confidence intervals
Databases, Factual
Female
Health Status
Humans
Hypotheses
Image Processing, Computer-Assisted - methods
Magnetic Resonance Imaging - methods
Male
Methods
Middle Aged
Models, Neurological
MRI
Principal Component Analysis
Principal components analysis
Registration
Regression
Regression Analysis
Relevance vector machines (RVM)
Scanners
Schizophrenia
Studies
Support vector machines (SVM)
Young Adult
SummonAdditionalLinks – databaseName: ProQuest Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELZaKlW9oL5ZSisfenUbb-zYaQ9VVYFoJXqoQNqbFT-CKJAFvAvqD-B_MxM72UtBe4zicRSPPfN5_HmGkI-V7b1ewabBKyaELZn1omJly1VQutTa99k-f1f7R-LXTM5ywC1mWuVgE3tD7ecOY-SfAZlgFh5ZqW8XlwyrRuHpai6h8Zg8wdRlOKvVTK2S7nKRrsLJkmlokJk8id_V54s8OYdVmwle_FOBRez-757ug5-9G9p7TjYzfqTfk8JfkEehe0meHuQT8lfkdhfWLKLQ7pgCtqPwYTpvabru-I_GpcXAS6R4rYQecnbTh0aDpwd_ftII4xwpUuGP6Wm46sIZTRWm4xc6kvX6bk-G2ibY-TXst-fLSDGN-DnSa-JrcrS3e_hjn-VSC8wBIlmwdtqA7y9aV7WqsrIN8FDaJgipC-dl4wIXDYAxP5XOwhYEjGIrtQ8NL1uNh5lvyEY378IWoRZ2pFPHdQ1IUQhXNRIaFtLXTVBSWjshahhh43IeciyHcWYGwtlfs9KNQd2YghvQzYTwUfIi5eJYQ6YelGiGu6ZgHQ04jDVkv46yGY8knLGm9M4wZ0y2C9GsZvGE0PE1rGg8pmm6AMoyWEVTl5WqJ-Rtmmrj32JgGfbj9fbDfb8jzxLJQTAud8jG4moZ3gN2WtgP_QK5A_XeGhQ
  priority: 102
  providerName: ProQuest
Title Estimating the age of healthy subjects from T1-weighted MRI scans using kernel methods: Exploring the influence of various parameters
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1053811910000108
https://dx.doi.org/10.1016/j.neuroimage.2010.01.005
https://www.ncbi.nlm.nih.gov/pubmed/20070949
https://www.proquest.com/docview/1614373567
https://www.proquest.com/docview/733183679
Volume 50
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fT9swELYQSGgv09jG1vFDftiradzYcTKeABWVISrEQOqbFScOKoMUkRa0l73t_96d7QRNGlIlXhq1iZPUZ999Z393R8jXxDirF7GBLRUTwsTMlCJhccWVVWmcpqXL9jlORlfi-0ROVshRGwuDtMqg-71Od9o6_NIPvdm_n077PwAZgLkBf8OtULuAXyEUjvK93880j4wLHw4nY4ZXBzaP53i5nJHTO5i5geTF9yIsZPd_E_USBHWm6PgdeRswJD3wr7lBVmz9nqyfhV3yD-TPEOYtItH6mgK-o_BgOquoD3n8RZuFwcWXhmJoCb3k7Mktj9qSnl2c0Ab6uqFIh7-mP-1DbW-przLdfKMdYc_ddtrWN8GbP4LPPVs0FFOJ3yHFpvlIro6Hl0cjFsotsAJQyZxVgxzsf1QVSaUSIysLX2KTWyHTqChlXlgucgBk5UAWBtwQUIyVTEub87hKcUNzk6zWs9p-JtSAVzooeJoBWhSiSHIJF0ayzHKrpDSmR1Tbw7oIucixJMatbklnN_pZNhployOuQTY9wruW9z4fxxJtslaIuo03BQ2pwWgs0Xa_a_vPuFyy9XY7ZnTQDY0GjI35pGSieoR2p2FW41ZNXlsQlsZKmmmcqKxHPvmh1v1bXFwGnzz78qo32yJvPA9CMC63yer8YWF3AF7Nza6bP_CpJmqXrB2cnI7GcDwcjs8v_gKrTylj
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VIgGXit-yUMAHOBrixI4TKoQQtNql3R7QVtqbiROnKrTZ0uy26gP0dXhGZuIkewG0lx6jZBwlY898Y38zA_A6to3XC3joCs2ltBG3hYx5VArtdBIlSdFU-zyIh4fy61RN1-B3lwtDtMrOJjaGupjltEf-DpEJVeFRsf549otT1yg6Xe1aaPhpseeuLjFkqz-MvqB-34Th7s7k85C3XQV4js53zsswQzcXlHlc6tiq0uFFZDMnVRLkhcpyJ2SGuKMIVW4RbeP6L1VSuExEZULndjjuLbiNjjegYE9P9bLIr5A-9U5FPBEibZlDnk_W1Kc8PkUr0RLKxNuAmub93R3-C-42bm_3Pmy0eJV98hPsAay56iHcGbcn8o_gegdtBKHe6oghlmT4YjYrmU-vvGL1wtJGT80ojYVNBL9stmJdwcbfRqxGvdaMqPdH7Kc7r9wJ8x2t6_esJwc2wx53vVRo8AuM72eLmlHZ8lOi89SP4fBGlPAE1qtZ5Z4CsxgBh7lIUkSmUuZxpvDBQBVp5rRS1g5Ad3_Y5G3dc2q_cWI6gtsPs9SNId2YQBjUzQBEL3nma3-sIJN2SjRdbitaY4MOagXZ7V62xT8e16wovdXNGdPaodosV80AWH8bLQgdC2WVQ2UZ6tqZRLFOB7Dpp1r_tbSRjfF_-uz_Y7-Cu8PJeN_sjw72nsM9T7CQXKgtWJ-fL9wLxG1z-7JZLAy-3_Tq_ANJT1gX
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VrVRxQZS_LhTwAY6mcWLnB4QQ0F11KV1VVSv1ZuLEqQpttjS7VH0AXqpPx0zs7F4A7aXHKBlHydgzn8ffzAC8ik3r9QIe2jLhUpqIm1LGPKpEYpM0StOyrfY5jneO5JdjdbwCN10uDNEqO5vYGupyUlCMfAuRCVXhUXGyVXlaxP728MPFT04dpOiktWun4abIrr2-wu1b8360jbp-HYbDweHnHe47DPACHfGUV2GOLi-oirhKYqMqixeRya1UaVCUKi-skDlikDJUhUHkjbagUmlpcxFVKZ3h4bh3YDWhXVEPVj8NxvsHi5K_QrpEPBXxVIjM84gcu6ytVnl6jjbD08vEm4Ba6P3dOf4L_LZOcHgf7nn0yj666bYOK7Z-AGt7_nz-IfweoMUgDFyfMESWDF_MJhVzyZbXrJkZCvs0jJJa2KHgV21g1pZs72DEGtRyw4iIf8J-2MvanjHX37p5y-ZUwXbY066zCg3-C3f7k1nDqIj5OZF7mkdwdCtqeAy9elLbDWAG98NhIdIMcaqURZwrfDBQZZbbRClj-pB0f1gXvgo6NeM40x3d7bte6EaTbnQgNOqmD2IueeEqgSwhk3VK1F2mK9pmje5qCdl3c1mPhhzKWVJ6s5sz2lulRi_WUB_Y_DbaEzokymuLytLUwzON4iTrwxM31eZfS2HtIJPZ0_-P_RLWcGXqr6Px7jO469gWkgu1Cb3p5cw-RxA3NS_8amHw7bYX6B_82l2y
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimating+the+age+of+healthy+subjects+from+T1-weighted+MRI+scans+using+kernel+methods%3A+Exploring+the+influence+of+various+parameters&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Franke%2C+Katja&rft.au=Ziegler%2C+Gabriel&rft.au=Kl%C3%B6ppel%2C+Stefan&rft.au=Gaser%2C+Christian&rft.date=2010-04-15&rft.issn=1053-8119&rft.volume=50&rft.issue=3&rft.spage=883&rft.epage=892&rft_id=info:doi/10.1016%2Fj.neuroimage.2010.01.005&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_neuroimage_2010_01_005
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon