A hybrid deep convolutional neural network for accurate land cover classification
•Spatial attention mechanism improves delineation of various-sized objects in CNNs.•Cascading residual dilated convolution reinforces feature multi-scale inference.•Deep supervision through intermediary loss enhances the network training process.•Different components in the hybrid network can improv...
Saved in:
Published in | International journal of applied earth observation and geoinformation Vol. 103; p. 102515 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.12.2021
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 1569-8432 1872-826X |
DOI | 10.1016/j.jag.2021.102515 |
Cover
Abstract | •Spatial attention mechanism improves delineation of various-sized objects in CNNs.•Cascading residual dilated convolution reinforces feature multi-scale inference.•Deep supervision through intermediary loss enhances the network training process.•Different components in the hybrid network can improve land cover classification.
Land cover classification provides updated information regarding the Earth's resources, which is vital for agricultural investigation, urban management, and disaster monitoring. Current advances in sensor technology on satellite and aerial remote sensing (RS) devices have improved the spatial-spectral, radiometric, and temporal resolutions of images over time. These improvements offer invaluable chances of understanding land cover information. However, land cover classification from RS images is an intricate task because of the high intra-class disparities, low inter-class similarities, and image variation types. We propose a cascaded residual dilated network (CRD-Net) for land cover classification using very high spatial resolution (VHSR) images to address these challenges. The proposed hybrid network follows the encoder-decoder concept with a spatial attention block to guide the network on learnable discriminate features coupled with an intermediary loss to enhance the training process. Moreover, a cascaded residual dilated module increases the network's receptive field to enrich multi-contextual features further, thus boosting the resultant feature descriptor. Extensive experimental results demonstrate that the proposed CRD-Net outperformed state-of-the-art methods, achieving an overall accuracy (OA) of 90.73% and 90.51% on the ISPRS Potsdam land cover dataset and ISPRS Vaihingen dataset, respectively. |
---|---|
AbstractList | Land cover classification provides updated information regarding the Earth's resources, which is vital for agricultural investigation, urban management, and disaster monitoring. Current advances in sensor technology on satellite and aerial remote sensing (RS) devices have improved the spatial-spectral, radiometric, and temporal resolutions of images over time. These improvements offer invaluable chances of understanding land cover information. However, land cover classification from RS images is an intricate task because of the high intra-class disparities, low inter-class similarities, and image variation types. We propose a cascaded residual dilated network (CRD-Net) for land cover classification using very high spatial resolution (VHSR) images to address these challenges. The proposed hybrid network follows the encoder-decoder concept with a spatial attention block to guide the network on learnable discriminate features coupled with an intermediary loss to enhance the training process. Moreover, a cascaded residual dilated module increases the network's receptive field to enrich multi-contextual features further, thus boosting the resultant feature descriptor. Extensive experimental results demonstrate that the proposed CRD-Net outperformed state-of-the-art methods, achieving an overall accuracy (OA) of 90.73% and 90.51% on the ISPRS Potsdam land cover dataset and ISPRS Vaihingen dataset, respectively. Land cover classification provides updated information regarding the Earth's resources, which is vital for agricultural investigation, urban management, and disaster monitoring. Current advances in sensor technology on satellite and aerial remote sensing (RS) devices have improved the spatial-spectral, radiometric, and temporal resolutions of images over time. These improvements offer invaluable chances of understanding land cover information. However, land cover classification from RS images is an intricate task because of the high intra-class disparities, low inter-class similarities, and image variation types. We propose a cascaded residual dilated network (CRD-Net) for land cover classification using very high spatial resolution (VHSR) images to address these challenges. The proposed hybrid network follows the encoder-decoder concept with a spatial attention block to guide the network on learnable discriminate features coupled with an intermediary loss to enhance the training process. Moreover, a cascaded residual dilated module increases the network's receptive field to enrich multi-contextual features further, thus boosting the resultant feature descriptor. Extensive experimental results demonstrate that the proposed CRD-Net outperformed state-of-the-art methods, achieving an overall accuracy (OA) of 90.73% and 90.51% on the ISPRS Potsdam land cover dataset and ISPRS Vaihingen dataset, respectively. •Spatial attention mechanism improves delineation of various-sized objects in CNNs.•Cascading residual dilated convolution reinforces feature multi-scale inference.•Deep supervision through intermediary loss enhances the network training process.•Different components in the hybrid network can improve land cover classification. Land cover classification provides updated information regarding the Earth's resources, which is vital for agricultural investigation, urban management, and disaster monitoring. Current advances in sensor technology on satellite and aerial remote sensing (RS) devices have improved the spatial-spectral, radiometric, and temporal resolutions of images over time. These improvements offer invaluable chances of understanding land cover information. However, land cover classification from RS images is an intricate task because of the high intra-class disparities, low inter-class similarities, and image variation types. We propose a cascaded residual dilated network (CRD-Net) for land cover classification using very high spatial resolution (VHSR) images to address these challenges. The proposed hybrid network follows the encoder-decoder concept with a spatial attention block to guide the network on learnable discriminate features coupled with an intermediary loss to enhance the training process. Moreover, a cascaded residual dilated module increases the network's receptive field to enrich multi-contextual features further, thus boosting the resultant feature descriptor. Extensive experimental results demonstrate that the proposed CRD-Net outperformed state-of-the-art methods, achieving an overall accuracy (OA) of 90.73% and 90.51% on the ISPRS Potsdam land cover dataset and ISPRS Vaihingen dataset, respectively. |
ArticleNumber | 102515 |
Author | Marcato Junior, José Chen, Yiping Xiao, Zhenlong Wei, Mingqiang Aminu Bello, Saifullahi Li, Jonathan Wambugu, Naftaly |
Author_xml | – sequence: 1 givenname: Naftaly surname: Wambugu fullname: Wambugu, Naftaly organization: Fujian Key Laboratory of Sensing and Computing for Smart Cities, School of Informatics, Xiamen University, Xiamen, FJ 361005, China – sequence: 2 givenname: Yiping surname: Chen fullname: Chen, Yiping email: chenyiping@xmu.edu.cn organization: Fujian Key Laboratory of Sensing and Computing for Smart Cities, School of Informatics, Xiamen University, Xiamen, FJ 361005, China – sequence: 3 givenname: Zhenlong surname: Xiao fullname: Xiao, Zhenlong organization: Fujian Key Laboratory of Sensing and Computing for Smart Cities, School of Informatics, Xiamen University, Xiamen, FJ 361005, China – sequence: 4 givenname: Mingqiang surname: Wei fullname: Wei, Mingqiang organization: School of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China – sequence: 5 givenname: Saifullahi surname: Aminu Bello fullname: Aminu Bello, Saifullahi organization: Fujian Key Laboratory of Sensing and Computing for Smart Cities, School of Informatics, Xiamen University, Xiamen, FJ 361005, China – sequence: 6 givenname: José surname: Marcato Junior fullname: Marcato Junior, José organization: Faculty of Engineering, Architecture and Urbanism and Geography, Federal University of Mato Grosso do Sul, Campo Grande 79070900, Brazil – sequence: 7 givenname: Jonathan surname: Li fullname: Li, Jonathan email: junli@uwaterloo.ca organization: Fujian Key Laboratory of Sensing and Computing for Smart Cities, School of Informatics, Xiamen University, Xiamen, FJ 361005, China |
BookMark | eNp9kU1P3DAQhq0KpPL1A3rLsZds_e1YnBBqKRISQgKJm-XYE-oQ4q3tXcS_x7tBPfTAaT40zzuaeY_RwRxnQOgbwSuCifwxrkb7tKKYklpTQcQXdEQ6RduOyseDmgup244z-hUd5zxiTJSS3RG6u2j-vPUp-MYDrBsX522cNiXE2U7NDJu0D-U1pudmiKmxztVegWays6_jW0iNm2zOYQjO7rhTdDjYKcPZRzxBD79-3l_-bm9ur64vL25ax5kuLfTES6e5llb4zpOeWIU7BloRTzQI0D3tuPCeCuGw5tIB84NUFHwFmWIn6HrR9dGOZp3Ci01vJtpg9o2YnoxNJbgJjMLCSwAFvfacWdCM98CsoINkfABftb4vWusU_24gF_MSsoOpHglxkw1VpKOMK75bS5ZRl2LOCYZ_qwk2OyvMaKoVZmeFWayojPqPcaHsn1WSDdOn5PlCQv3kNkAy2QWYHfiQwJV6aviEfgews6Xp |
CitedBy_id | crossref_primary_10_1109_JSTARS_2024_3522197 crossref_primary_10_1080_01431161_2022_2098078 crossref_primary_10_1071_WF22181 crossref_primary_10_1007_s42979_023_02434_4 crossref_primary_10_1016_j_mlwa_2023_100502 crossref_primary_10_3389_frai_2022_964279 crossref_primary_10_1080_01431161_2022_2030071 crossref_primary_10_1109_ACCESS_2024_3374208 crossref_primary_10_1007_s12524_024_01839_9 crossref_primary_10_1080_07038992_2023_2237591 crossref_primary_10_1080_01431161_2023_2274820 crossref_primary_10_1007_s11053_023_10185_5 crossref_primary_10_1007_s12205_023_2285_0 |
Cites_doi | 10.1007/s13735-017-0141-z 10.1016/j.rse.2018.04.050 10.1109/TPAMI.2017.2699184 10.1109/LGRS.2020.2988294 10.1109/TPAMI.2016.2644615 10.3390/rs11121493 10.1109/LGRS.2019.2952660 10.1109/JSTARS.2019.2911113 10.2174/1574893615666200127124145 10.1109/TGRS.2017.2755542 10.1109/LGRS.2019.2938555 10.1109/JSTARS.2014.2348411 10.1109/JPROC.2017.2675998 |
ContentType | Journal Article |
Copyright | 2021 |
Copyright_xml | – notice: 2021 |
DBID | 6I. AAFTH AAYXX CITATION 7S9 L.6 DOA |
DOI | 10.1016/j.jag.2021.102515 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Environmental Sciences |
EISSN | 1872-826X |
ExternalDocumentID | oai_doaj_org_article_705d6ee7eb9d43ae934be3a52f634fed 10_1016_j_jag_2021_102515 S0303243421002221 |
GroupedDBID | 4.4 5GY 6I. AAFTH AAXUO ABFYP ABLST ABQEM ABQYD ABYKQ ACLVX ACRLP ACSBN ADBBV AFKWA AFTJW AFXIZ AGYEJ AHEUO AIKHN AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT BKOJK BLECG EBS FDB FEDTE FIRID FYGXN GROUPED_DOAJ HVGLF IMUCA KCYFY KOM M41 O-L P-8 P-9 P2P ROL SDF SDG SES SPC SSE SSJ T5K ~02 29J AAHBH AALRI AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ADMUD ADNMO ADVLN AEIPS AFJKZ AGCQF AGQPQ AGRNS AIIUN AITUG ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EFJIC EJD R2- RIG SSH 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c439t-eb1d6c9496a5d8d1b1a7083e971d19e5e9b2845dd255c0946ce3df672ed1d6373 |
IEDL.DBID | DOA |
ISSN | 1569-8432 |
IngestDate | Wed Aug 27 01:26:31 EDT 2025 Thu Sep 04 17:49:29 EDT 2025 Tue Jul 01 02:15:18 EDT 2025 Thu Apr 24 23:08:50 EDT 2025 Fri Feb 23 02:40:00 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Deep learning Dilated convolution Deep supervision very high spatial resolution (VHSR) Spatial attention Remote sensing |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c439t-eb1d6c9496a5d8d1b1a7083e971d19e5e9b2845dd255c0946ce3df672ed1d6373 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://doaj.org/article/705d6ee7eb9d43ae934be3a52f634fed |
PQID | 2718234747 |
PQPubID | 24069 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_705d6ee7eb9d43ae934be3a52f634fed proquest_miscellaneous_2718234747 crossref_primary_10_1016_j_jag_2021_102515 crossref_citationtrail_10_1016_j_jag_2021_102515 elsevier_sciencedirect_doi_10_1016_j_jag_2021_102515 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-12-01 2021-12-00 20211201 |
PublicationDateYYYYMMDD | 2021-12-01 |
PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | International journal of applied earth observation and geoinformation |
PublicationYear | 2021 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Liu, Chen, Wei, Wang, Gonçalves, Junior, Li (b0135) 2021; PP Mishra, Limaye, Muench, Cherrington, Markert (b0145) 2020; 93 Li, Su, Wu, Li, Zhang, Qin, Zhang, Wei (b0100) 2020; 17 Yu, Koltun (b0225) 2016 Duarte, Nex, Kerle, Vosselman (b0045) 2018 Wang, Jiang, Qian, Yang, Li, Zhang, Wang, Tang (b0190) Weigand, Staab, Wurm, Taubenböck (b0200) 2020; 88 Guo, Haque, Huang, Yeung, Li (bib247) 2018 Lin, Milan, Shen, Reid (b0120) 2017 Wang, Wang, Chen, Qu, Chen, Huang, Liu (bib248) 2019; 13 Pereira, Costa, Foerster, Brosinsky, de Araújo (b0160) 2019; 79 Martinez, Stiefelhagen (b0140) 2018 Buslaev, Iglovikov, Khvedchenya, Parinov, Druzhinin, Kalinin (b0020) 2020; 11 Xiang, Li, Xiao, Jianping, Sofia (b0210) 2019; 11 Zhou, Zhang, Wu (b0245) Briechle, Krzystek, Vosselman (b0015) 2021; 98 Zhao, Zhang, Liu, Shi, Loy, Lin, Jia (b0235) 2018 . Huang, Zhao, Song (b0075) 2018; 214 Zhong, Jonathan, Luo, Chapman (bib246) 2018; 56 Zhao, Shi, Qi, Wang, Jia (b0230) 2017 Alshehhi, Marpu (b0005) 2021; 102 Chen, Papandreou, Kokkinos, Murphy, Yuille (b0025) 2018; 40 Hamaguchi, Fujita, Nemoto, Imaizumi, Hikosaka (bib249) 2018 Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I., 2017. Attention is All you Need, Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, pp. 5998-6008. Islam, Rochan, Bruce, Wang (bib250) 2017 Ojha, Challa, Vemuri, Yarlagadda, Kumar (b0155) 2019 Xu, Du, Zhang, Cerra, Pato, Carmona, Prasad, Yokoya, Hansch, Le Saux (b0215) 2019; 12 Eigen, Fergus (b0050) Cheng, Han, Lu (b0035) 2017; 105 Liu, Kampffmeyer, Jenssen, Salberg (b0130) Yin, Pflugmacher, Kennedy, Sulla-Menashe, Hostert (b0220) 2014; 7 Badrinarayanan, Kendall, Cipolla (b0010) 2017; 39 Wong, Gatt, Stamatescu, McDonnell (b0205) 2016 Huang, Dumitru, Pan, Lei, Datcu (b0080) 2019 Rottensteiner, Sohn, Jung, Gerke, Baillard, Benitez, Breitkopf (b0170) 2012 Flood, Watson, Collett (b0055) 2019; 82 Sherrah, J., 2016. Fully Convolutional Networks for Dense Semantic Labelling of High-Resolution Aerial Imagery. Sang, Zhuang, Dong, Wang, Chen (b0175) 2020; 17 Guo, Liu, Georgiou, Lew (b0065) 2017; 7 Muhammad, Wang, Hadid (b0150) 2018 Kingma, Ba (b0090) 2014 Li, Zhou, Yang, Chen, Meng, Lu, Pan, Qi (b0115) 2018; 72 Chennupati, Sistu, Yogamani, Rawashdeh (bib252) 2019 Reddi, Kale, Kumar (b0165) 2018 Lee, Xie, Gallagher, Zhang, Tu (b0095) 2015 Zhong, Lin, Bidart, Hu, Daya, Li, Zheng, Li, Wong (b0240) Liu, Fu, Jiang, Gong (b0125) 2020; 15 Chen, Zhu, Papandreou, Schroff, Adam (b0030) 2018 Li, Qiu, Chen, Mei, Hong, Tao (bib251) 2021 Pereira (10.1016/j.jag.2021.102515_b0160) 2019; 79 Liu (10.1016/j.jag.2021.102515_b0130) Liu (10.1016/j.jag.2021.102515_b0125) 2020; 15 Huang (10.1016/j.jag.2021.102515_b0080) 2019 Liu (10.1016/j.jag.2021.102515_b0135) 2021; PP Yu (10.1016/j.jag.2021.102515_b0225) 2016 Chennupati (10.1016/j.jag.2021.102515_bib252) 2019 Zhao (10.1016/j.jag.2021.102515_b0230) 2017 Zhong (10.1016/j.jag.2021.102515_bib246) 2018; 56 10.1016/j.jag.2021.102515_b0185 Rottensteiner (10.1016/j.jag.2021.102515_b0170) 2012 Flood (10.1016/j.jag.2021.102515_b0055) 2019; 82 10.1016/j.jag.2021.102515_b0180 Lee (10.1016/j.jag.2021.102515_b0095) 2015 Muhammad (10.1016/j.jag.2021.102515_b0150) 2018 Chen (10.1016/j.jag.2021.102515_b0030) 2018 Briechle (10.1016/j.jag.2021.102515_b0015) 2021; 98 Xu (10.1016/j.jag.2021.102515_b0215) 2019; 12 Guo (10.1016/j.jag.2021.102515_bib247) 2018 Lin (10.1016/j.jag.2021.102515_b0120) 2017 Weigand (10.1016/j.jag.2021.102515_b0200) 2020; 88 Duarte (10.1016/j.jag.2021.102515_b0045) 2018 Xiang (10.1016/j.jag.2021.102515_b0210) 2019; 11 Eigen (10.1016/j.jag.2021.102515_b0050) Hamaguchi (10.1016/j.jag.2021.102515_bib249) 2018 Kingma (10.1016/j.jag.2021.102515_b0090) 2014 Chen (10.1016/j.jag.2021.102515_b0025) 2018; 40 Wang (10.1016/j.jag.2021.102515_bib248) 2019; 13 Martinez (10.1016/j.jag.2021.102515_b0140) 2018 Sang (10.1016/j.jag.2021.102515_b0175) 2020; 17 Cheng (10.1016/j.jag.2021.102515_b0035) 2017; 105 Guo (10.1016/j.jag.2021.102515_b0065) 2017; 7 Huang (10.1016/j.jag.2021.102515_b0075) 2018; 214 Wang (10.1016/j.jag.2021.102515_b0190) Buslaev (10.1016/j.jag.2021.102515_b0020) 2020; 11 Li (10.1016/j.jag.2021.102515_b0115) 2018; 72 Mishra (10.1016/j.jag.2021.102515_b0145) 2020; 93 Zhong (10.1016/j.jag.2021.102515_b0240) Zhao (10.1016/j.jag.2021.102515_b0235) 2018 Islam (10.1016/j.jag.2021.102515_bib250) 2017 Alshehhi (10.1016/j.jag.2021.102515_b0005) 2021; 102 Ojha (10.1016/j.jag.2021.102515_b0155) 2019 Li (10.1016/j.jag.2021.102515_b0100) 2020; 17 Badrinarayanan (10.1016/j.jag.2021.102515_b0010) 2017; 39 Zhou (10.1016/j.jag.2021.102515_b0245) Wong (10.1016/j.jag.2021.102515_b0205) 2016 Yin (10.1016/j.jag.2021.102515_b0220) 2014; 7 Li (10.1016/j.jag.2021.102515_bib251) 2021 Reddi (10.1016/j.jag.2021.102515_b0165) 2018 |
References_xml | – volume: 40 start-page: 834 year: 2018 end-page: 848 ident: b0025 article-title: DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – start-page: 6230 year: 2017 end-page: 6239 ident: b0230 article-title: Pyramid Scene Parsing Network publication-title: In Proc. of CVPR – volume: 12 start-page: 1709 year: 2019 end-page: 1724 ident: b0215 article-title: Advanced Multi-Sensor Optical Remote Sensing for Urban Land Use and Land Cover Classification: Outcome of the 2018 IEEE GRSS Data Fusion Contest publication-title: IEEE J Sel. Top. Appl. Earth Obs. Remote Sens. – start-page: 89 year: 2018 end-page: 96 ident: b0045 article-title: Satellite Image Classification Of Building Damages Using Airborne And Satellite Image Samples In A Deep Learning Approach publication-title: ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences IV-2 – ident: b0245 article-title: D-LinkNet: LinkNet with Pretrained Encoder and Dilated Convolution for High Resolution Satellite Imagery Road Extraction – start-page: 293 year: 2012 end-page: 298 ident: b0170 article-title: The ISPRS Benchmark on Urban Object Classification and 3d Building Reconstruction publication-title: ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci. I-3 – ident: b0130 article-title: Dense Dilated Convolutions Merging Network for Semantic Mapping of Remote Sensing Images – start-page: 270 year: 2018 end-page: 286 ident: b0235 article-title: PSANet: Point-wise Spatial Attention Network for Scene Parsing publication-title: In Proc. of ECCV – year: 2018 ident: b0165 article-title: On the Convergence of Adam and Beyond publication-title: In Proc. of Int. Conf. on Learning Representations, ICLR – start-page: 9847 year: 2019 end-page: 9850 ident: b0080 article-title: Can a Deep Network Understand the Land Cover Across Sensors? – start-page: 4877 year: 2017 end-page: 4885 ident: bib250 article-title: Gated Feedback Refinement Network for Dense Image Labeling publication-title: In Proc. of CVPR – start-page: 905 year: 2021 end-page: 909 ident: bib251 article-title: SCAttNet: Semantic Segmentation Network With Spatial and Channel Attention Mechanism for High-Resolution Remote Sensing Images publication-title: IEEE Geosci. Remote Sens. Lett. – volume: 88 year: 2020 ident: b0200 article-title: Spatial and semantic effects of LUCAS samples on fully automated land use/land cover classification in high-resolution Sentinel-2 data publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 214 start-page: 73 year: 2018 end-page: 86 ident: b0075 article-title: Urban land-use mapping using a deep convolutional neural network with high spatial resolution multispectral remote sensing imagery publication-title: Remote Sens. Environ. – volume: 7 start-page: 87 year: 2017 end-page: 93 ident: b0065 article-title: A review of semantic segmentation using deep neural networks publication-title: Int. J. Multimedia Inf. Retrieval – volume: 7 start-page: 3421 year: 2014 end-page: 3427 ident: b0220 article-title: Mapping Annual Land Use and Land Cover Changes Using MODIS Time Series publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. – start-page: 562 year: 2015 end-page: 570 ident: b0095 article-title: Deeply-Supervised Nets publication-title: In Proc. of – reference: Sherrah, J., 2016. Fully Convolutional Networks for Dense Semantic Labelling of High-Resolution Aerial Imagery. – volume: 72 start-page: 140 year: 2018 end-page: 150 ident: b0115 article-title: Urban landscape extraction and analysis in the mega-city of China’s coastal regions using high-resolution satellite imagery: A case of Shanghai, China publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 102 year: 2021 ident: b0005 article-title: Extraction of urban multi-class from high-resolution images using pyramid generative adversarial networks publication-title: Int. J. Appl. Earth Obs. Geoinf. – ident: b0190 article-title: Residual Attention Network for Image Classification – start-page: 999 year: 2019 end-page: 1003 ident: b0155 article-title: Land Use Prediction on Satillite images using Deep Neural Nets – volume: 98 year: 2021 ident: b0015 article-title: Silvi-Net – A dual-CNN approach for combined classification of tree species and standing dead trees from remote sensing data publication-title: Int. J. Appl. Earth Obs. Geoinf. – ident: b0050 article-title: Predicting Depth, Surface Normals and Semantic Labels with a Common Multi-scale Convolutional Architecture – volume: 56 start-page: 847 year: 2018 end-page: 858 ident: bib246 article-title: Spectral–Spatial Residual Network for Hyperspectral Image Classification: A 3-D Deep Learning Framework publication-title: IEEE Trans. Geosci. Remote. Sens. – volume: PP, start-page: 1 year: 2021 end-page: 5 ident: b0135 article-title: Building Instance Extraction Method Based on Improved Hybrid Task Cascade publication-title: IEEE Geosci. Remote Sens. Lett. – volume: 79 start-page: 153 year: 2019 end-page: 161 ident: b0160 article-title: Estimation of suspended sediment concentration in an intermittent river using multi-temporal high-resolution satellite imagery publication-title: Int. J. Appl. Earth Obs. Geoinf. – reference: Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I., 2017. Attention is All you Need, Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, pp. 5998-6008. – volume: 11 start-page: 125 year: 2020 ident: b0020 article-title: Albumentations: Fast and Flexible Image Augmentations publication-title: Inf. – ident: b0240 article-title: Squeeze-and-Attention Networks for Semantic Segmentation – year: 2018 ident: b0140 article-title: Taming the Cross Entropy Loss publication-title: In Proc. of GCPR – start-page: 1925 year: 2017 end-page: 1934 ident: b0120 article-title: RefineNet: Multi-path Refinement Networks for High-Resolution Semantic Segmentation publication-title: In Proc. of CVPR. – volume: 11 start-page: 1 year: 2019 end-page: 20 ident: b0210 article-title: remote sensing Quantitative Analysis of Anthropogenic Morphologies Based on Multi-Temporal High-Resolution Topography publication-title: Remote. Sens. – year: 2018 ident: b0030 article-title: Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation – volume: 105 start-page: 1865 year: 2017 end-page: 1883 ident: b0035 article-title: Remote Sensing Image Scene Classification: Benchmark and State of the Art publication-title: In Proc. of IEEE – start-page: 282 year: 2018 end-page: 299 ident: bib247 article-title: Dynamic Task Prioritization for Multitask Learning publication-title: In Proc. of ECCV – start-page: 645 year: 2019 end-page: 652 ident: bib252 article-title: AuxNet: Auxiliary Tasks Enhanced Semantic Segmentation for Automated Driving publication-title: International Conference on Computer Vision Theory and Applications – volume: 39 start-page: 2481 year: 2017 end-page: 2495 ident: b0010 article-title: SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – start-page: 1442 year: 2018 end-page: 1450 ident: bib249 article-title: Effective Use of Dilated Convolutions for Segmenting Small Object Instances in Remote Sensing Imagery publication-title: In Proc. of WACV – volume: 17 start-page: 1687 year: 2020 end-page: 1691 ident: b0100 article-title: Further Exploring Convolutional Neural Networks’ Potential for Land-Use Scene Classification publication-title: IEEE Geosci. Remote Sens. Lett. – volume: 17 start-page: 1057 year: 2020 end-page: 1061 ident: b0175 article-title: FRF-Net: Land Cover Classification From Large-Scale VHR Optical Remote Sensing Images publication-title: IEEE Geosci. Remote Sens. Lett. – volume: 82 year: 2019 ident: b0055 article-title: Using a U-net convolutional neural network to map woody vegetation extent from high resolution satellite imagery across Queensland, Australia publication-title: Int. J. Appl. Earth Obs. Geoinf. – start-page: 1 year: 2016 end-page: 6 ident: b0205 article-title: Understanding Data Augmentation for Classification: When to Warp? publication-title: In Proc International Conference on Digital Image Computing: Techniques and Applications – reference: . – volume: 93 year: 2020 ident: b0145 article-title: Evaluating the performance of high-resolution satellite imagery in detecting ephemeral water bodies over West Africa publication-title: Int. J. Appl. Earth Obs. Geoinf. – year: 2014 ident: b0090 article-title: Adam: A Method for Stochastic Optimization publication-title: International Conference on Learning Representations – volume: 15 start-page: 788 year: 2020 end-page: 799 ident: b0125 article-title: Densely Dilated Spatial Pooling Convolutional Network using benign loss functions for imbalanced volumetric prostate segmentation DDSP network with benign loss for prostate segmentation publication-title: Current Bioinformat. – volume: 13 year: 2019 ident: bib248 article-title: Nested Dilation Networks for Brain Tumor Segmentation Based on Magnetic Resonance Imaging publication-title: Frontiers in Neuroscience – start-page: 249 year: 2018 end-page: 253 ident: b0150 article-title: Feature Fusion with Deep Supervision for Remote-Sensing Image Scene Classification – year: 2016 ident: b0225 article-title: Multi-Scale Context Aggregation by Dilated Convolutions publication-title: In Proc. of In. Conf. on Learning Representations, ICLR – start-page: 4877 year: 2017 ident: 10.1016/j.jag.2021.102515_bib250 article-title: Gated Feedback Refinement Network for Dense Image Labeling publication-title: In Proc. of CVPR – ident: 10.1016/j.jag.2021.102515_b0180 – start-page: 1442 year: 2018 ident: 10.1016/j.jag.2021.102515_bib249 article-title: Effective Use of Dilated Convolutions for Segmenting Small Object Instances in Remote Sensing Imagery publication-title: In Proc. of WACV – volume: 7 start-page: 87 year: 2017 ident: 10.1016/j.jag.2021.102515_b0065 article-title: A review of semantic segmentation using deep neural networks publication-title: Int. J. Multimedia Inf. Retrieval doi: 10.1007/s13735-017-0141-z – volume: 72 start-page: 140 year: 2018 ident: 10.1016/j.jag.2021.102515_b0115 article-title: Urban landscape extraction and analysis in the mega-city of China’s coastal regions using high-resolution satellite imagery: A case of Shanghai, China publication-title: Int. J. Appl. Earth Obs. Geoinf. – ident: 10.1016/j.jag.2021.102515_b0240 – start-page: 6230 year: 2017 ident: 10.1016/j.jag.2021.102515_b0230 article-title: Pyramid Scene Parsing Network publication-title: In Proc. of CVPR – start-page: 249 year: 2018 ident: 10.1016/j.jag.2021.102515_b0150 article-title: Feature Fusion with Deep Supervision for Remote-Sensing Image Scene Classification – year: 2016 ident: 10.1016/j.jag.2021.102515_b0225 article-title: Multi-Scale Context Aggregation by Dilated Convolutions publication-title: In Proc. of In. Conf. on Learning Representations, ICLR – year: 2018 ident: 10.1016/j.jag.2021.102515_b0140 article-title: Taming the Cross Entropy Loss publication-title: In Proc. of GCPR – start-page: 270 year: 2018 ident: 10.1016/j.jag.2021.102515_b0235 article-title: PSANet: Point-wise Spatial Attention Network for Scene Parsing publication-title: In Proc. of ECCV – volume: 214 start-page: 73 year: 2018 ident: 10.1016/j.jag.2021.102515_b0075 article-title: Urban land-use mapping using a deep convolutional neural network with high spatial resolution multispectral remote sensing imagery publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2018.04.050 – volume: 40 start-page: 834 issue: 4 year: 2018 ident: 10.1016/j.jag.2021.102515_b0025 article-title: DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2017.2699184 – start-page: 905 year: 2021 ident: 10.1016/j.jag.2021.102515_bib251 article-title: SCAttNet: Semantic Segmentation Network With Spatial and Channel Attention Mechanism for High-Resolution Remote Sensing Images publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2020.2988294 – volume: 39 start-page: 2481 year: 2017 ident: 10.1016/j.jag.2021.102515_b0010 article-title: SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2016.2644615 – start-page: 293 year: 2012 ident: 10.1016/j.jag.2021.102515_b0170 article-title: The ISPRS Benchmark on Urban Object Classification and 3d Building Reconstruction – start-page: 562 year: 2015 ident: 10.1016/j.jag.2021.102515_b0095 article-title: Deeply-Supervised Nets – year: 2018 ident: 10.1016/j.jag.2021.102515_b0030 – volume: 11 start-page: 1 year: 2019 ident: 10.1016/j.jag.2021.102515_b0210 article-title: remote sensing Quantitative Analysis of Anthropogenic Morphologies Based on Multi-Temporal High-Resolution Topography publication-title: Remote. Sens. doi: 10.3390/rs11121493 – ident: 10.1016/j.jag.2021.102515_b0050 – volume: 98 year: 2021 ident: 10.1016/j.jag.2021.102515_b0015 article-title: Silvi-Net – A dual-CNN approach for combined classification of tree species and standing dead trees from remote sensing data publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 13 year: 2019 ident: 10.1016/j.jag.2021.102515_bib248 article-title: Nested Dilation Networks for Brain Tumor Segmentation Based on Magnetic Resonance Imaging publication-title: Frontiers in Neuroscience – volume: PP, start-page: 1 year: 2021 ident: 10.1016/j.jag.2021.102515_b0135 article-title: Building Instance Extraction Method Based on Improved Hybrid Task Cascade publication-title: IEEE Geosci. Remote Sens. Lett. – volume: 17 start-page: 1687 year: 2020 ident: 10.1016/j.jag.2021.102515_b0100 article-title: Further Exploring Convolutional Neural Networks’ Potential for Land-Use Scene Classification publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2019.2952660 – ident: 10.1016/j.jag.2021.102515_b0245 – volume: 12 start-page: 1709 year: 2019 ident: 10.1016/j.jag.2021.102515_b0215 article-title: Advanced Multi-Sensor Optical Remote Sensing for Urban Land Use and Land Cover Classification: Outcome of the 2018 IEEE GRSS Data Fusion Contest publication-title: IEEE J Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2019.2911113 – volume: 15 start-page: 788 issue: 7 year: 2020 ident: 10.1016/j.jag.2021.102515_b0125 article-title: Densely Dilated Spatial Pooling Convolutional Network using benign loss functions for imbalanced volumetric prostate segmentation DDSP network with benign loss for prostate segmentation publication-title: Current Bioinformat. doi: 10.2174/1574893615666200127124145 – start-page: 1925 year: 2017 ident: 10.1016/j.jag.2021.102515_b0120 article-title: RefineNet: Multi-path Refinement Networks for High-Resolution Semantic Segmentation publication-title: In Proc. of CVPR. – volume: 102 year: 2021 ident: 10.1016/j.jag.2021.102515_b0005 article-title: Extraction of urban multi-class from high-resolution images using pyramid generative adversarial networks publication-title: Int. J. Appl. Earth Obs. Geoinf. – start-page: 1 year: 2016 ident: 10.1016/j.jag.2021.102515_b0205 article-title: Understanding Data Augmentation for Classification: When to Warp? – ident: 10.1016/j.jag.2021.102515_b0185 – volume: 56 start-page: 847 issue: 2 year: 2018 ident: 10.1016/j.jag.2021.102515_bib246 article-title: Spectral–Spatial Residual Network for Hyperspectral Image Classification: A 3-D Deep Learning Framework publication-title: IEEE Trans. Geosci. Remote. Sens. doi: 10.1109/TGRS.2017.2755542 – volume: 79 start-page: 153 year: 2019 ident: 10.1016/j.jag.2021.102515_b0160 article-title: Estimation of suspended sediment concentration in an intermittent river using multi-temporal high-resolution satellite imagery publication-title: Int. J. Appl. Earth Obs. Geoinf. – ident: 10.1016/j.jag.2021.102515_b0130 – ident: 10.1016/j.jag.2021.102515_b0190 – volume: 17 start-page: 1057 year: 2020 ident: 10.1016/j.jag.2021.102515_b0175 article-title: FRF-Net: Land Cover Classification From Large-Scale VHR Optical Remote Sensing Images publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2019.2938555 – start-page: 282 year: 2018 ident: 10.1016/j.jag.2021.102515_bib247 article-title: Dynamic Task Prioritization for Multitask Learning – volume: 7 start-page: 3421 year: 2014 ident: 10.1016/j.jag.2021.102515_b0220 article-title: Mapping Annual Land Use and Land Cover Changes Using MODIS Time Series publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2014.2348411 – volume: 105 start-page: 1865 issue: 10 year: 2017 ident: 10.1016/j.jag.2021.102515_b0035 article-title: Remote Sensing Image Scene Classification: Benchmark and State of the Art publication-title: In Proc. of IEEE doi: 10.1109/JPROC.2017.2675998 – volume: 88 year: 2020 ident: 10.1016/j.jag.2021.102515_b0200 article-title: Spatial and semantic effects of LUCAS samples on fully automated land use/land cover classification in high-resolution Sentinel-2 data publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 93 year: 2020 ident: 10.1016/j.jag.2021.102515_b0145 article-title: Evaluating the performance of high-resolution satellite imagery in detecting ephemeral water bodies over West Africa publication-title: Int. J. Appl. Earth Obs. Geoinf. – year: 2018 ident: 10.1016/j.jag.2021.102515_b0165 article-title: On the Convergence of Adam and Beyond publication-title: In Proc. of Int. Conf. on Learning Representations, ICLR – start-page: 9847 year: 2019 ident: 10.1016/j.jag.2021.102515_b0080 article-title: Can a Deep Network Understand the Land Cover Across Sensors? – start-page: 999 year: 2019 ident: 10.1016/j.jag.2021.102515_b0155 article-title: Land Use Prediction on Satillite images using Deep Neural Nets – volume: 11 start-page: 125 year: 2020 ident: 10.1016/j.jag.2021.102515_b0020 article-title: Albumentations: Fast and Flexible Image Augmentations publication-title: Inf. – start-page: 645 year: 2019 ident: 10.1016/j.jag.2021.102515_bib252 article-title: AuxNet: Auxiliary Tasks Enhanced Semantic Segmentation for Automated Driving publication-title: International Conference on Computer Vision Theory and Applications – start-page: 89 year: 2018 ident: 10.1016/j.jag.2021.102515_b0045 article-title: Satellite Image Classification Of Building Damages Using Airborne And Satellite Image Samples In A Deep Learning Approach – year: 2014 ident: 10.1016/j.jag.2021.102515_b0090 article-title: Adam: A Method for Stochastic Optimization – volume: 82 year: 2019 ident: 10.1016/j.jag.2021.102515_b0055 article-title: Using a U-net convolutional neural network to map woody vegetation extent from high resolution satellite imagery across Queensland, Australia publication-title: Int. J. Appl. Earth Obs. Geoinf. |
SSID | ssj0017768 |
Score | 2.523496 |
Snippet | •Spatial attention mechanism improves delineation of various-sized objects in CNNs.•Cascading residual dilated convolution reinforces feature multi-scale... Land cover classification provides updated information regarding the Earth's resources, which is vital for agricultural investigation, urban management, and... |
SourceID | doaj proquest crossref elsevier |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 102515 |
SubjectTerms | data collection Deep learning Deep supervision Dilated convolution hybrids land cover neural networks radiometry Remote sensing satellites Spatial attention spatial data urban development very high spatial resolution (VHSR) |
SummonAdditionalLinks | – databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] dbid: AIKHN link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxsxELZQuNBDBbSoAVq5Uk-VVsmuX_ExRaC0VZFQi8TN8mNCg1ASQXLg3zPj9QbogUNPq12NvdZ4PA_5mxnGvqDVSUOQobIpmIoab1d-igfPQ9LeG2F9zq36da4nl_LHlbraYiddLgzBKovub3V61tbly6Bwc7CczQa_UTzRGxCyqXNGJ4ZA242wWvXY9vj7z8n55jLBmDYjTmlbjaRousvNDPO68dcYJTY11TBQ1Bz3mXnKVfxfWKl_9HU2Qme77G3xHvm4XeAe24L5PnvzrKbgPjs4fUpdQ9Jydu_fsYsx__tA-Vk8ASw5wc2L2CEZlbXMjwwK5-jJch_jmupIcMI-IjnKPI_kaxO4KO_ne3Z5dvrnZFKVhgpVRL9jVaFeTjpaabVXaZTqUHuDLhhYU6faggIb0FqplDDOiBj36QgiTbVpIOFAYcQB680Xc_jAuKFgKgUBwQukk6OkIUoVRxE1uQiiz4YdH10s1cap6cWt62BlNw5Z74j1rmV9n33dDFm2pTZeI_5Gm7MhpCrZ-cPi7toVMXFmqHBZYCDYJIUHK2QA4VUz1UJOIfWZ7LbWvRA6nGr22r8_d2Lg8DDSDYufw2J97xq09I2QGKId_t_UR2yH3lq8zDHrre7W8BG9nlX4VKT6EUwNADc priority: 102 providerName: Elsevier |
Title | A hybrid deep convolutional neural network for accurate land cover classification |
URI | https://dx.doi.org/10.1016/j.jag.2021.102515 https://www.proquest.com/docview/2718234747 https://doaj.org/article/705d6ee7eb9d43ae934be3a52f634fed |
Volume | 103 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LTxwxDI4quJRDVaCoSwEFiVOlETOT1-a4rBYt0KKCisQtysNbQGhBsHvov6-dmYGFA1x6ijRyJpHtxLZif2ZsD61OKkGGwqZgCmq8XfgJHjwPSXtvhPW5turnqR5fyONLdbnQ6otywhp44IZx-6ZUSQMYCDZJ4cEKGUB4VU-0kBNIdPuWtuyCqfb9wJimCE5pW_SlqLv3zJzZdeP_YGBYVwRboKgf7oJFysD9LwzTqys6253Dz-xT6zDyQbPRVfYBpmtsZQFGcI1tjJ6r1ZC0Pa6P6-xswK_-UkkWTwD3nDLMW01DMkKyzEPOA-fovHIf45ygIzilOyI5qjmP5F5TPlEW4Rd2cTj6PRwXbQ-FIqKrMSvwKk46Wmm1V6mfqlB5g14XWFOlyoICG9BAqZQwtIgY6ukIIk20qSHhRGHEBlua3k3hK-OG4qcUBAQvkE72US5RqtiPeHmLIHqs7PjoYgswTn0ubl2XSXbjkPWOWO8a1vfY96cp9w26xlvEByScJ0ICxs4fUF1cqy7uPXXpMdmJ1rU-RuM74K-u31p7t1MDh-ePHlX8FO7mj65G414LiVHZ5v_Y3zf2kZZtEma22NLsYQ7b6PbMwg5bHgzPf_yi8ehkfLqTNf4fU9cDuQ |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxsxEBbBObQ9lDZtqPtUoafCYu_qZR3dkOA0iaE0gdyEHuPEodgmsQ_9953Rat2khxx6WtCOdsVoNA_0zQxjX9DqpCHIUNkUTEWNtys_w4PnIWnvjbA-51adTfXkQn6_VJc77KDLhSFYZdH9rU7P2rqMDAo3B6v5fPATxRO9ASGbOmd0Ygi0KxVGez22Oz4-mUy3lwnGtBlxSttqJEXTXW5mmNeNv8IosamphoGi5rj3zFOu4v_ASv2jr7MROnrBnhfvkY_bBb5kO7DYY8_u1RTcY_uHf1PXkLSc3btX7MeYX_-m_CyeAFac4OZF7JCMylrmRwaFc_RkuY9xQ3UkOGEfkRxlnkfytQlclPfzNbs4Ojw_mFSloUIV0e9YV6iXk45WWu1VGqU61N6gCwbW1Km2oMAGtFYqJYwzIsZ9OoJIM20aSDhRGLHPeovlAt4wbiiYSkFA8ALp5ChpiFLFUURNLoLos2HHRxdLtXFqevHLdbCyG4esd8R617K-z75up6zaUhuPEX-jzdkSUpXsPLC8vXJFTJwZKlwWGAg2SeHBChlAeNXMtJAzSH0mu611D4QOPzV_7N-fOzFweBjphsUvYLm5cw1a-kZIDNHe_t-nP7Enk_OzU3d6PD15x57SmxY785711rcb-IAe0Dp8LBL-B3eUAyQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+hybrid+deep+convolutional+neural+network+for+accurate+land+cover+classification&rft.jtitle=International+journal+of+applied+earth+observation+and+geoinformation&rft.au=Naftaly+Wambugu&rft.au=Yiping+Chen&rft.au=Zhenlong+Xiao&rft.au=Mingqiang+Wei&rft.date=2021-12-01&rft.pub=Elsevier&rft.issn=1569-8432&rft.volume=103&rft.spage=102515&rft_id=info:doi/10.1016%2Fj.jag.2021.102515&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_705d6ee7eb9d43ae934be3a52f634fed |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1569-8432&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1569-8432&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1569-8432&client=summon |