A hybrid deep convolutional neural network for accurate land cover classification

•Spatial attention mechanism improves delineation of various-sized objects in CNNs.•Cascading residual dilated convolution reinforces feature multi-scale inference.•Deep supervision through intermediary loss enhances the network training process.•Different components in the hybrid network can improv...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of applied earth observation and geoinformation Vol. 103; p. 102515
Main Authors Wambugu, Naftaly, Chen, Yiping, Xiao, Zhenlong, Wei, Mingqiang, Aminu Bello, Saifullahi, Marcato Junior, José, Li, Jonathan
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.12.2021
Elsevier
Subjects
Online AccessGet full text
ISSN1569-8432
1872-826X
DOI10.1016/j.jag.2021.102515

Cover

Abstract •Spatial attention mechanism improves delineation of various-sized objects in CNNs.•Cascading residual dilated convolution reinforces feature multi-scale inference.•Deep supervision through intermediary loss enhances the network training process.•Different components in the hybrid network can improve land cover classification. Land cover classification provides updated information regarding the Earth's resources, which is vital for agricultural investigation, urban management, and disaster monitoring. Current advances in sensor technology on satellite and aerial remote sensing (RS) devices have improved the spatial-spectral, radiometric, and temporal resolutions of images over time. These improvements offer invaluable chances of understanding land cover information. However, land cover classification from RS images is an intricate task because of the high intra-class disparities, low inter-class similarities, and image variation types. We propose a cascaded residual dilated network (CRD-Net) for land cover classification using very high spatial resolution (VHSR) images to address these challenges. The proposed hybrid network follows the encoder-decoder concept with a spatial attention block to guide the network on learnable discriminate features coupled with an intermediary loss to enhance the training process. Moreover, a cascaded residual dilated module increases the network's receptive field to enrich multi-contextual features further, thus boosting the resultant feature descriptor. Extensive experimental results demonstrate that the proposed CRD-Net outperformed state-of-the-art methods, achieving an overall accuracy (OA) of 90.73% and 90.51% on the ISPRS Potsdam land cover dataset and ISPRS Vaihingen dataset, respectively.
AbstractList Land cover classification provides updated information regarding the Earth's resources, which is vital for agricultural investigation, urban management, and disaster monitoring. Current advances in sensor technology on satellite and aerial remote sensing (RS) devices have improved the spatial-spectral, radiometric, and temporal resolutions of images over time. These improvements offer invaluable chances of understanding land cover information. However, land cover classification from RS images is an intricate task because of the high intra-class disparities, low inter-class similarities, and image variation types. We propose a cascaded residual dilated network (CRD-Net) for land cover classification using very high spatial resolution (VHSR) images to address these challenges. The proposed hybrid network follows the encoder-decoder concept with a spatial attention block to guide the network on learnable discriminate features coupled with an intermediary loss to enhance the training process. Moreover, a cascaded residual dilated module increases the network's receptive field to enrich multi-contextual features further, thus boosting the resultant feature descriptor. Extensive experimental results demonstrate that the proposed CRD-Net outperformed state-of-the-art methods, achieving an overall accuracy (OA) of 90.73% and 90.51% on the ISPRS Potsdam land cover dataset and ISPRS Vaihingen dataset, respectively.
Land cover classification provides updated information regarding the Earth's resources, which is vital for agricultural investigation, urban management, and disaster monitoring. Current advances in sensor technology on satellite and aerial remote sensing (RS) devices have improved the spatial-spectral, radiometric, and temporal resolutions of images over time. These improvements offer invaluable chances of understanding land cover information. However, land cover classification from RS images is an intricate task because of the high intra-class disparities, low inter-class similarities, and image variation types. We propose a cascaded residual dilated network (CRD-Net) for land cover classification using very high spatial resolution (VHSR) images to address these challenges. The proposed hybrid network follows the encoder-decoder concept with a spatial attention block to guide the network on learnable discriminate features coupled with an intermediary loss to enhance the training process. Moreover, a cascaded residual dilated module increases the network's receptive field to enrich multi-contextual features further, thus boosting the resultant feature descriptor. Extensive experimental results demonstrate that the proposed CRD-Net outperformed state-of-the-art methods, achieving an overall accuracy (OA) of 90.73% and 90.51% on the ISPRS Potsdam land cover dataset and ISPRS Vaihingen dataset, respectively.
•Spatial attention mechanism improves delineation of various-sized objects in CNNs.•Cascading residual dilated convolution reinforces feature multi-scale inference.•Deep supervision through intermediary loss enhances the network training process.•Different components in the hybrid network can improve land cover classification. Land cover classification provides updated information regarding the Earth's resources, which is vital for agricultural investigation, urban management, and disaster monitoring. Current advances in sensor technology on satellite and aerial remote sensing (RS) devices have improved the spatial-spectral, radiometric, and temporal resolutions of images over time. These improvements offer invaluable chances of understanding land cover information. However, land cover classification from RS images is an intricate task because of the high intra-class disparities, low inter-class similarities, and image variation types. We propose a cascaded residual dilated network (CRD-Net) for land cover classification using very high spatial resolution (VHSR) images to address these challenges. The proposed hybrid network follows the encoder-decoder concept with a spatial attention block to guide the network on learnable discriminate features coupled with an intermediary loss to enhance the training process. Moreover, a cascaded residual dilated module increases the network's receptive field to enrich multi-contextual features further, thus boosting the resultant feature descriptor. Extensive experimental results demonstrate that the proposed CRD-Net outperformed state-of-the-art methods, achieving an overall accuracy (OA) of 90.73% and 90.51% on the ISPRS Potsdam land cover dataset and ISPRS Vaihingen dataset, respectively.
ArticleNumber 102515
Author Marcato Junior, José
Chen, Yiping
Xiao, Zhenlong
Wei, Mingqiang
Aminu Bello, Saifullahi
Li, Jonathan
Wambugu, Naftaly
Author_xml – sequence: 1
  givenname: Naftaly
  surname: Wambugu
  fullname: Wambugu, Naftaly
  organization: Fujian Key Laboratory of Sensing and Computing for Smart Cities, School of Informatics, Xiamen University, Xiamen, FJ 361005, China
– sequence: 2
  givenname: Yiping
  surname: Chen
  fullname: Chen, Yiping
  email: chenyiping@xmu.edu.cn
  organization: Fujian Key Laboratory of Sensing and Computing for Smart Cities, School of Informatics, Xiamen University, Xiamen, FJ 361005, China
– sequence: 3
  givenname: Zhenlong
  surname: Xiao
  fullname: Xiao, Zhenlong
  organization: Fujian Key Laboratory of Sensing and Computing for Smart Cities, School of Informatics, Xiamen University, Xiamen, FJ 361005, China
– sequence: 4
  givenname: Mingqiang
  surname: Wei
  fullname: Wei, Mingqiang
  organization: School of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China
– sequence: 5
  givenname: Saifullahi
  surname: Aminu Bello
  fullname: Aminu Bello, Saifullahi
  organization: Fujian Key Laboratory of Sensing and Computing for Smart Cities, School of Informatics, Xiamen University, Xiamen, FJ 361005, China
– sequence: 6
  givenname: José
  surname: Marcato Junior
  fullname: Marcato Junior, José
  organization: Faculty of Engineering, Architecture and Urbanism and Geography, Federal University of Mato Grosso do Sul, Campo Grande 79070900, Brazil
– sequence: 7
  givenname: Jonathan
  surname: Li
  fullname: Li, Jonathan
  email: junli@uwaterloo.ca
  organization: Fujian Key Laboratory of Sensing and Computing for Smart Cities, School of Informatics, Xiamen University, Xiamen, FJ 361005, China
BookMark eNp9kU1P3DAQhq0KpPL1A3rLsZds_e1YnBBqKRISQgKJm-XYE-oQ4q3tXcS_x7tBPfTAaT40zzuaeY_RwRxnQOgbwSuCifwxrkb7tKKYklpTQcQXdEQ6RduOyseDmgup244z-hUd5zxiTJSS3RG6u2j-vPUp-MYDrBsX522cNiXE2U7NDJu0D-U1pudmiKmxztVegWays6_jW0iNm2zOYQjO7rhTdDjYKcPZRzxBD79-3l_-bm9ur64vL25ax5kuLfTES6e5llb4zpOeWIU7BloRTzQI0D3tuPCeCuGw5tIB84NUFHwFmWIn6HrR9dGOZp3Ci01vJtpg9o2YnoxNJbgJjMLCSwAFvfacWdCM98CsoINkfABftb4vWusU_24gF_MSsoOpHglxkw1VpKOMK75bS5ZRl2LOCYZ_qwk2OyvMaKoVZmeFWayojPqPcaHsn1WSDdOn5PlCQv3kNkAy2QWYHfiQwJV6aviEfgews6Xp
CitedBy_id crossref_primary_10_1109_JSTARS_2024_3522197
crossref_primary_10_1080_01431161_2022_2098078
crossref_primary_10_1071_WF22181
crossref_primary_10_1007_s42979_023_02434_4
crossref_primary_10_1016_j_mlwa_2023_100502
crossref_primary_10_3389_frai_2022_964279
crossref_primary_10_1080_01431161_2022_2030071
crossref_primary_10_1109_ACCESS_2024_3374208
crossref_primary_10_1007_s12524_024_01839_9
crossref_primary_10_1080_07038992_2023_2237591
crossref_primary_10_1080_01431161_2023_2274820
crossref_primary_10_1007_s11053_023_10185_5
crossref_primary_10_1007_s12205_023_2285_0
Cites_doi 10.1007/s13735-017-0141-z
10.1016/j.rse.2018.04.050
10.1109/TPAMI.2017.2699184
10.1109/LGRS.2020.2988294
10.1109/TPAMI.2016.2644615
10.3390/rs11121493
10.1109/LGRS.2019.2952660
10.1109/JSTARS.2019.2911113
10.2174/1574893615666200127124145
10.1109/TGRS.2017.2755542
10.1109/LGRS.2019.2938555
10.1109/JSTARS.2014.2348411
10.1109/JPROC.2017.2675998
ContentType Journal Article
Copyright 2021
Copyright_xml – notice: 2021
DBID 6I.
AAFTH
AAYXX
CITATION
7S9
L.6
DOA
DOI 10.1016/j.jag.2021.102515
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1872-826X
ExternalDocumentID oai_doaj_org_article_705d6ee7eb9d43ae934be3a52f634fed
10_1016_j_jag_2021_102515
S0303243421002221
GroupedDBID 4.4
5GY
6I.
AAFTH
AAXUO
ABFYP
ABLST
ABQEM
ABQYD
ABYKQ
ACLVX
ACRLP
ACSBN
ADBBV
AFKWA
AFTJW
AFXIZ
AGYEJ
AHEUO
AIKHN
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
BKOJK
BLECG
EBS
FDB
FEDTE
FIRID
FYGXN
GROUPED_DOAJ
HVGLF
IMUCA
KCYFY
KOM
M41
O-L
P-8
P-9
P2P
ROL
SDF
SDG
SES
SPC
SSE
SSJ
T5K
~02
29J
AAHBH
AALRI
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ADMUD
ADNMO
ADVLN
AEIPS
AFJKZ
AGCQF
AGQPQ
AGRNS
AIIUN
AITUG
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EFJIC
EJD
R2-
RIG
SSH
7S9
EFKBS
L.6
ID FETCH-LOGICAL-c439t-eb1d6c9496a5d8d1b1a7083e971d19e5e9b2845dd255c0946ce3df672ed1d6373
IEDL.DBID DOA
ISSN 1569-8432
IngestDate Wed Aug 27 01:26:31 EDT 2025
Thu Sep 04 17:49:29 EDT 2025
Tue Jul 01 02:15:18 EDT 2025
Thu Apr 24 23:08:50 EDT 2025
Fri Feb 23 02:40:00 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Dilated convolution
Deep supervision
very high spatial resolution (VHSR)
Spatial attention
Remote sensing
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c439t-eb1d6c9496a5d8d1b1a7083e971d19e5e9b2845dd255c0946ce3df672ed1d6373
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doaj.org/article/705d6ee7eb9d43ae934be3a52f634fed
PQID 2718234747
PQPubID 24069
ParticipantIDs doaj_primary_oai_doaj_org_article_705d6ee7eb9d43ae934be3a52f634fed
proquest_miscellaneous_2718234747
crossref_primary_10_1016_j_jag_2021_102515
crossref_citationtrail_10_1016_j_jag_2021_102515
elsevier_sciencedirect_doi_10_1016_j_jag_2021_102515
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-12-01
2021-12-00
20211201
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-01
  day: 01
PublicationDecade 2020
PublicationTitle International journal of applied earth observation and geoinformation
PublicationYear 2021
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Liu, Chen, Wei, Wang, Gonçalves, Junior, Li (b0135) 2021; PP
Mishra, Limaye, Muench, Cherrington, Markert (b0145) 2020; 93
Li, Su, Wu, Li, Zhang, Qin, Zhang, Wei (b0100) 2020; 17
Yu, Koltun (b0225) 2016
Duarte, Nex, Kerle, Vosselman (b0045) 2018
Wang, Jiang, Qian, Yang, Li, Zhang, Wang, Tang (b0190)
Weigand, Staab, Wurm, Taubenböck (b0200) 2020; 88
Guo, Haque, Huang, Yeung, Li (bib247) 2018
Lin, Milan, Shen, Reid (b0120) 2017
Wang, Wang, Chen, Qu, Chen, Huang, Liu (bib248) 2019; 13
Pereira, Costa, Foerster, Brosinsky, de Araújo (b0160) 2019; 79
Martinez, Stiefelhagen (b0140) 2018
Buslaev, Iglovikov, Khvedchenya, Parinov, Druzhinin, Kalinin (b0020) 2020; 11
Xiang, Li, Xiao, Jianping, Sofia (b0210) 2019; 11
Zhou, Zhang, Wu (b0245)
Briechle, Krzystek, Vosselman (b0015) 2021; 98
Zhao, Zhang, Liu, Shi, Loy, Lin, Jia (b0235) 2018
.
Huang, Zhao, Song (b0075) 2018; 214
Zhong, Jonathan, Luo, Chapman (bib246) 2018; 56
Zhao, Shi, Qi, Wang, Jia (b0230) 2017
Alshehhi, Marpu (b0005) 2021; 102
Chen, Papandreou, Kokkinos, Murphy, Yuille (b0025) 2018; 40
Hamaguchi, Fujita, Nemoto, Imaizumi, Hikosaka (bib249) 2018
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I., 2017. Attention is All you Need, Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, pp. 5998-6008.
Islam, Rochan, Bruce, Wang (bib250) 2017
Ojha, Challa, Vemuri, Yarlagadda, Kumar (b0155) 2019
Xu, Du, Zhang, Cerra, Pato, Carmona, Prasad, Yokoya, Hansch, Le Saux (b0215) 2019; 12
Eigen, Fergus (b0050)
Cheng, Han, Lu (b0035) 2017; 105
Liu, Kampffmeyer, Jenssen, Salberg (b0130)
Yin, Pflugmacher, Kennedy, Sulla-Menashe, Hostert (b0220) 2014; 7
Badrinarayanan, Kendall, Cipolla (b0010) 2017; 39
Wong, Gatt, Stamatescu, McDonnell (b0205) 2016
Huang, Dumitru, Pan, Lei, Datcu (b0080) 2019
Rottensteiner, Sohn, Jung, Gerke, Baillard, Benitez, Breitkopf (b0170) 2012
Flood, Watson, Collett (b0055) 2019; 82
Sherrah, J., 2016. Fully Convolutional Networks for Dense Semantic Labelling of High-Resolution Aerial Imagery.
Sang, Zhuang, Dong, Wang, Chen (b0175) 2020; 17
Guo, Liu, Georgiou, Lew (b0065) 2017; 7
Muhammad, Wang, Hadid (b0150) 2018
Kingma, Ba (b0090) 2014
Li, Zhou, Yang, Chen, Meng, Lu, Pan, Qi (b0115) 2018; 72
Chennupati, Sistu, Yogamani, Rawashdeh (bib252) 2019
Reddi, Kale, Kumar (b0165) 2018
Lee, Xie, Gallagher, Zhang, Tu (b0095) 2015
Zhong, Lin, Bidart, Hu, Daya, Li, Zheng, Li, Wong (b0240)
Liu, Fu, Jiang, Gong (b0125) 2020; 15
Chen, Zhu, Papandreou, Schroff, Adam (b0030) 2018
Li, Qiu, Chen, Mei, Hong, Tao (bib251) 2021
Pereira (10.1016/j.jag.2021.102515_b0160) 2019; 79
Liu (10.1016/j.jag.2021.102515_b0130)
Liu (10.1016/j.jag.2021.102515_b0125) 2020; 15
Huang (10.1016/j.jag.2021.102515_b0080) 2019
Liu (10.1016/j.jag.2021.102515_b0135) 2021; PP
Yu (10.1016/j.jag.2021.102515_b0225) 2016
Chennupati (10.1016/j.jag.2021.102515_bib252) 2019
Zhao (10.1016/j.jag.2021.102515_b0230) 2017
Zhong (10.1016/j.jag.2021.102515_bib246) 2018; 56
10.1016/j.jag.2021.102515_b0185
Rottensteiner (10.1016/j.jag.2021.102515_b0170) 2012
Flood (10.1016/j.jag.2021.102515_b0055) 2019; 82
10.1016/j.jag.2021.102515_b0180
Lee (10.1016/j.jag.2021.102515_b0095) 2015
Muhammad (10.1016/j.jag.2021.102515_b0150) 2018
Chen (10.1016/j.jag.2021.102515_b0030) 2018
Briechle (10.1016/j.jag.2021.102515_b0015) 2021; 98
Xu (10.1016/j.jag.2021.102515_b0215) 2019; 12
Guo (10.1016/j.jag.2021.102515_bib247) 2018
Lin (10.1016/j.jag.2021.102515_b0120) 2017
Weigand (10.1016/j.jag.2021.102515_b0200) 2020; 88
Duarte (10.1016/j.jag.2021.102515_b0045) 2018
Xiang (10.1016/j.jag.2021.102515_b0210) 2019; 11
Eigen (10.1016/j.jag.2021.102515_b0050)
Hamaguchi (10.1016/j.jag.2021.102515_bib249) 2018
Kingma (10.1016/j.jag.2021.102515_b0090) 2014
Chen (10.1016/j.jag.2021.102515_b0025) 2018; 40
Wang (10.1016/j.jag.2021.102515_bib248) 2019; 13
Martinez (10.1016/j.jag.2021.102515_b0140) 2018
Sang (10.1016/j.jag.2021.102515_b0175) 2020; 17
Cheng (10.1016/j.jag.2021.102515_b0035) 2017; 105
Guo (10.1016/j.jag.2021.102515_b0065) 2017; 7
Huang (10.1016/j.jag.2021.102515_b0075) 2018; 214
Wang (10.1016/j.jag.2021.102515_b0190)
Buslaev (10.1016/j.jag.2021.102515_b0020) 2020; 11
Li (10.1016/j.jag.2021.102515_b0115) 2018; 72
Mishra (10.1016/j.jag.2021.102515_b0145) 2020; 93
Zhong (10.1016/j.jag.2021.102515_b0240)
Zhao (10.1016/j.jag.2021.102515_b0235) 2018
Islam (10.1016/j.jag.2021.102515_bib250) 2017
Alshehhi (10.1016/j.jag.2021.102515_b0005) 2021; 102
Ojha (10.1016/j.jag.2021.102515_b0155) 2019
Li (10.1016/j.jag.2021.102515_b0100) 2020; 17
Badrinarayanan (10.1016/j.jag.2021.102515_b0010) 2017; 39
Zhou (10.1016/j.jag.2021.102515_b0245)
Wong (10.1016/j.jag.2021.102515_b0205) 2016
Yin (10.1016/j.jag.2021.102515_b0220) 2014; 7
Li (10.1016/j.jag.2021.102515_bib251) 2021
Reddi (10.1016/j.jag.2021.102515_b0165) 2018
References_xml – volume: 40
  start-page: 834
  year: 2018
  end-page: 848
  ident: b0025
  article-title: DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– start-page: 6230
  year: 2017
  end-page: 6239
  ident: b0230
  article-title: Pyramid Scene Parsing Network
  publication-title: In Proc. of CVPR
– volume: 12
  start-page: 1709
  year: 2019
  end-page: 1724
  ident: b0215
  article-title: Advanced Multi-Sensor Optical Remote Sensing for Urban Land Use and Land Cover Classification: Outcome of the 2018 IEEE GRSS Data Fusion Contest
  publication-title: IEEE J Sel. Top. Appl. Earth Obs. Remote Sens.
– start-page: 89
  year: 2018
  end-page: 96
  ident: b0045
  article-title: Satellite Image Classification Of Building Damages Using Airborne And Satellite Image Samples In A Deep Learning Approach
  publication-title: ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences IV-2
– ident: b0245
  article-title: D-LinkNet: LinkNet with Pretrained Encoder and Dilated Convolution for High Resolution Satellite Imagery Road Extraction
– start-page: 293
  year: 2012
  end-page: 298
  ident: b0170
  article-title: The ISPRS Benchmark on Urban Object Classification and 3d Building Reconstruction
  publication-title: ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci. I-3
– ident: b0130
  article-title: Dense Dilated Convolutions Merging Network for Semantic Mapping of Remote Sensing Images
– start-page: 270
  year: 2018
  end-page: 286
  ident: b0235
  article-title: PSANet: Point-wise Spatial Attention Network for Scene Parsing
  publication-title: In Proc. of ECCV
– year: 2018
  ident: b0165
  article-title: On the Convergence of Adam and Beyond
  publication-title: In Proc. of Int. Conf. on Learning Representations, ICLR
– start-page: 9847
  year: 2019
  end-page: 9850
  ident: b0080
  article-title: Can a Deep Network Understand the Land Cover Across Sensors?
– start-page: 4877
  year: 2017
  end-page: 4885
  ident: bib250
  article-title: Gated Feedback Refinement Network for Dense Image Labeling
  publication-title: In Proc. of CVPR
– start-page: 905
  year: 2021
  end-page: 909
  ident: bib251
  article-title: SCAttNet: Semantic Segmentation Network With Spatial and Channel Attention Mechanism for High-Resolution Remote Sensing Images
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 88
  year: 2020
  ident: b0200
  article-title: Spatial and semantic effects of LUCAS samples on fully automated land use/land cover classification in high-resolution Sentinel-2 data
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 214
  start-page: 73
  year: 2018
  end-page: 86
  ident: b0075
  article-title: Urban land-use mapping using a deep convolutional neural network with high spatial resolution multispectral remote sensing imagery
  publication-title: Remote Sens. Environ.
– volume: 7
  start-page: 87
  year: 2017
  end-page: 93
  ident: b0065
  article-title: A review of semantic segmentation using deep neural networks
  publication-title: Int. J. Multimedia Inf. Retrieval
– volume: 7
  start-page: 3421
  year: 2014
  end-page: 3427
  ident: b0220
  article-title: Mapping Annual Land Use and Land Cover Changes Using MODIS Time Series
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
– start-page: 562
  year: 2015
  end-page: 570
  ident: b0095
  article-title: Deeply-Supervised Nets
  publication-title: In Proc. of
– reference: Sherrah, J., 2016. Fully Convolutional Networks for Dense Semantic Labelling of High-Resolution Aerial Imagery.
– volume: 72
  start-page: 140
  year: 2018
  end-page: 150
  ident: b0115
  article-title: Urban landscape extraction and analysis in the mega-city of China’s coastal regions using high-resolution satellite imagery: A case of Shanghai, China
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 102
  year: 2021
  ident: b0005
  article-title: Extraction of urban multi-class from high-resolution images using pyramid generative adversarial networks
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– ident: b0190
  article-title: Residual Attention Network for Image Classification
– start-page: 999
  year: 2019
  end-page: 1003
  ident: b0155
  article-title: Land Use Prediction on Satillite images using Deep Neural Nets
– volume: 98
  year: 2021
  ident: b0015
  article-title: Silvi-Net – A dual-CNN approach for combined classification of tree species and standing dead trees from remote sensing data
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– ident: b0050
  article-title: Predicting Depth, Surface Normals and Semantic Labels with a Common Multi-scale Convolutional Architecture
– volume: 56
  start-page: 847
  year: 2018
  end-page: 858
  ident: bib246
  article-title: Spectral–Spatial Residual Network for Hyperspectral Image Classification: A 3-D Deep Learning Framework
  publication-title: IEEE Trans. Geosci. Remote. Sens.
– volume: PP,
  start-page: 1
  year: 2021
  end-page: 5
  ident: b0135
  article-title: Building Instance Extraction Method Based on Improved Hybrid Task Cascade
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 79
  start-page: 153
  year: 2019
  end-page: 161
  ident: b0160
  article-title: Estimation of suspended sediment concentration in an intermittent river using multi-temporal high-resolution satellite imagery
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– reference: Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I., 2017. Attention is All you Need, Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, pp. 5998-6008.
– volume: 11
  start-page: 125
  year: 2020
  ident: b0020
  article-title: Albumentations: Fast and Flexible Image Augmentations
  publication-title: Inf.
– ident: b0240
  article-title: Squeeze-and-Attention Networks for Semantic Segmentation
– year: 2018
  ident: b0140
  article-title: Taming the Cross Entropy Loss
  publication-title: In Proc. of GCPR
– start-page: 1925
  year: 2017
  end-page: 1934
  ident: b0120
  article-title: RefineNet: Multi-path Refinement Networks for High-Resolution Semantic Segmentation
  publication-title: In Proc. of CVPR.
– volume: 11
  start-page: 1
  year: 2019
  end-page: 20
  ident: b0210
  article-title: remote sensing Quantitative Analysis of Anthropogenic Morphologies Based on Multi-Temporal High-Resolution Topography
  publication-title: Remote. Sens.
– year: 2018
  ident: b0030
  article-title: Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation
– volume: 105
  start-page: 1865
  year: 2017
  end-page: 1883
  ident: b0035
  article-title: Remote Sensing Image Scene Classification: Benchmark and State of the Art
  publication-title: In Proc. of IEEE
– start-page: 282
  year: 2018
  end-page: 299
  ident: bib247
  article-title: Dynamic Task Prioritization for Multitask Learning
  publication-title: In Proc. of ECCV
– start-page: 645
  year: 2019
  end-page: 652
  ident: bib252
  article-title: AuxNet: Auxiliary Tasks Enhanced Semantic Segmentation for Automated Driving
  publication-title: International Conference on Computer Vision Theory and Applications
– volume: 39
  start-page: 2481
  year: 2017
  end-page: 2495
  ident: b0010
  article-title: SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– start-page: 1442
  year: 2018
  end-page: 1450
  ident: bib249
  article-title: Effective Use of Dilated Convolutions for Segmenting Small Object Instances in Remote Sensing Imagery
  publication-title: In Proc. of WACV
– volume: 17
  start-page: 1687
  year: 2020
  end-page: 1691
  ident: b0100
  article-title: Further Exploring Convolutional Neural Networks’ Potential for Land-Use Scene Classification
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 17
  start-page: 1057
  year: 2020
  end-page: 1061
  ident: b0175
  article-title: FRF-Net: Land Cover Classification From Large-Scale VHR Optical Remote Sensing Images
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 82
  year: 2019
  ident: b0055
  article-title: Using a U-net convolutional neural network to map woody vegetation extent from high resolution satellite imagery across Queensland, Australia
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– start-page: 1
  year: 2016
  end-page: 6
  ident: b0205
  article-title: Understanding Data Augmentation for Classification: When to Warp?
  publication-title: In Proc International Conference on Digital Image Computing: Techniques and Applications
– reference: .
– volume: 93
  year: 2020
  ident: b0145
  article-title: Evaluating the performance of high-resolution satellite imagery in detecting ephemeral water bodies over West Africa
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– year: 2014
  ident: b0090
  article-title: Adam: A Method for Stochastic Optimization
  publication-title: International Conference on Learning Representations
– volume: 15
  start-page: 788
  year: 2020
  end-page: 799
  ident: b0125
  article-title: Densely Dilated Spatial Pooling Convolutional Network using benign loss functions for imbalanced volumetric prostate segmentation DDSP network with benign loss for prostate segmentation
  publication-title: Current Bioinformat.
– volume: 13
  year: 2019
  ident: bib248
  article-title: Nested Dilation Networks for Brain Tumor Segmentation Based on Magnetic Resonance Imaging
  publication-title: Frontiers in Neuroscience
– start-page: 249
  year: 2018
  end-page: 253
  ident: b0150
  article-title: Feature Fusion with Deep Supervision for Remote-Sensing Image Scene Classification
– year: 2016
  ident: b0225
  article-title: Multi-Scale Context Aggregation by Dilated Convolutions
  publication-title: In Proc. of In. Conf. on Learning Representations, ICLR
– start-page: 4877
  year: 2017
  ident: 10.1016/j.jag.2021.102515_bib250
  article-title: Gated Feedback Refinement Network for Dense Image Labeling
  publication-title: In Proc. of CVPR
– ident: 10.1016/j.jag.2021.102515_b0180
– start-page: 1442
  year: 2018
  ident: 10.1016/j.jag.2021.102515_bib249
  article-title: Effective Use of Dilated Convolutions for Segmenting Small Object Instances in Remote Sensing Imagery
  publication-title: In Proc. of WACV
– volume: 7
  start-page: 87
  year: 2017
  ident: 10.1016/j.jag.2021.102515_b0065
  article-title: A review of semantic segmentation using deep neural networks
  publication-title: Int. J. Multimedia Inf. Retrieval
  doi: 10.1007/s13735-017-0141-z
– volume: 72
  start-page: 140
  year: 2018
  ident: 10.1016/j.jag.2021.102515_b0115
  article-title: Urban landscape extraction and analysis in the mega-city of China’s coastal regions using high-resolution satellite imagery: A case of Shanghai, China
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– ident: 10.1016/j.jag.2021.102515_b0240
– start-page: 6230
  year: 2017
  ident: 10.1016/j.jag.2021.102515_b0230
  article-title: Pyramid Scene Parsing Network
  publication-title: In Proc. of CVPR
– start-page: 249
  year: 2018
  ident: 10.1016/j.jag.2021.102515_b0150
  article-title: Feature Fusion with Deep Supervision for Remote-Sensing Image Scene Classification
– year: 2016
  ident: 10.1016/j.jag.2021.102515_b0225
  article-title: Multi-Scale Context Aggregation by Dilated Convolutions
  publication-title: In Proc. of In. Conf. on Learning Representations, ICLR
– year: 2018
  ident: 10.1016/j.jag.2021.102515_b0140
  article-title: Taming the Cross Entropy Loss
  publication-title: In Proc. of GCPR
– start-page: 270
  year: 2018
  ident: 10.1016/j.jag.2021.102515_b0235
  article-title: PSANet: Point-wise Spatial Attention Network for Scene Parsing
  publication-title: In Proc. of ECCV
– volume: 214
  start-page: 73
  year: 2018
  ident: 10.1016/j.jag.2021.102515_b0075
  article-title: Urban land-use mapping using a deep convolutional neural network with high spatial resolution multispectral remote sensing imagery
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.04.050
– volume: 40
  start-page: 834
  issue: 4
  year: 2018
  ident: 10.1016/j.jag.2021.102515_b0025
  article-title: DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2017.2699184
– start-page: 905
  year: 2021
  ident: 10.1016/j.jag.2021.102515_bib251
  article-title: SCAttNet: Semantic Segmentation Network With Spatial and Channel Attention Mechanism for High-Resolution Remote Sensing Images
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2020.2988294
– volume: 39
  start-page: 2481
  year: 2017
  ident: 10.1016/j.jag.2021.102515_b0010
  article-title: SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2016.2644615
– start-page: 293
  year: 2012
  ident: 10.1016/j.jag.2021.102515_b0170
  article-title: The ISPRS Benchmark on Urban Object Classification and 3d Building Reconstruction
– start-page: 562
  year: 2015
  ident: 10.1016/j.jag.2021.102515_b0095
  article-title: Deeply-Supervised Nets
– year: 2018
  ident: 10.1016/j.jag.2021.102515_b0030
– volume: 11
  start-page: 1
  year: 2019
  ident: 10.1016/j.jag.2021.102515_b0210
  article-title: remote sensing Quantitative Analysis of Anthropogenic Morphologies Based on Multi-Temporal High-Resolution Topography
  publication-title: Remote. Sens.
  doi: 10.3390/rs11121493
– ident: 10.1016/j.jag.2021.102515_b0050
– volume: 98
  year: 2021
  ident: 10.1016/j.jag.2021.102515_b0015
  article-title: Silvi-Net – A dual-CNN approach for combined classification of tree species and standing dead trees from remote sensing data
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 13
  year: 2019
  ident: 10.1016/j.jag.2021.102515_bib248
  article-title: Nested Dilation Networks for Brain Tumor Segmentation Based on Magnetic Resonance Imaging
  publication-title: Frontiers in Neuroscience
– volume: PP,
  start-page: 1
  year: 2021
  ident: 10.1016/j.jag.2021.102515_b0135
  article-title: Building Instance Extraction Method Based on Improved Hybrid Task Cascade
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 17
  start-page: 1687
  year: 2020
  ident: 10.1016/j.jag.2021.102515_b0100
  article-title: Further Exploring Convolutional Neural Networks’ Potential for Land-Use Scene Classification
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2019.2952660
– ident: 10.1016/j.jag.2021.102515_b0245
– volume: 12
  start-page: 1709
  year: 2019
  ident: 10.1016/j.jag.2021.102515_b0215
  article-title: Advanced Multi-Sensor Optical Remote Sensing for Urban Land Use and Land Cover Classification: Outcome of the 2018 IEEE GRSS Data Fusion Contest
  publication-title: IEEE J Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2019.2911113
– volume: 15
  start-page: 788
  issue: 7
  year: 2020
  ident: 10.1016/j.jag.2021.102515_b0125
  article-title: Densely Dilated Spatial Pooling Convolutional Network using benign loss functions for imbalanced volumetric prostate segmentation DDSP network with benign loss for prostate segmentation
  publication-title: Current Bioinformat.
  doi: 10.2174/1574893615666200127124145
– start-page: 1925
  year: 2017
  ident: 10.1016/j.jag.2021.102515_b0120
  article-title: RefineNet: Multi-path Refinement Networks for High-Resolution Semantic Segmentation
  publication-title: In Proc. of CVPR.
– volume: 102
  year: 2021
  ident: 10.1016/j.jag.2021.102515_b0005
  article-title: Extraction of urban multi-class from high-resolution images using pyramid generative adversarial networks
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– start-page: 1
  year: 2016
  ident: 10.1016/j.jag.2021.102515_b0205
  article-title: Understanding Data Augmentation for Classification: When to Warp?
– ident: 10.1016/j.jag.2021.102515_b0185
– volume: 56
  start-page: 847
  issue: 2
  year: 2018
  ident: 10.1016/j.jag.2021.102515_bib246
  article-title: Spectral–Spatial Residual Network for Hyperspectral Image Classification: A 3-D Deep Learning Framework
  publication-title: IEEE Trans. Geosci. Remote. Sens.
  doi: 10.1109/TGRS.2017.2755542
– volume: 79
  start-page: 153
  year: 2019
  ident: 10.1016/j.jag.2021.102515_b0160
  article-title: Estimation of suspended sediment concentration in an intermittent river using multi-temporal high-resolution satellite imagery
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– ident: 10.1016/j.jag.2021.102515_b0130
– ident: 10.1016/j.jag.2021.102515_b0190
– volume: 17
  start-page: 1057
  year: 2020
  ident: 10.1016/j.jag.2021.102515_b0175
  article-title: FRF-Net: Land Cover Classification From Large-Scale VHR Optical Remote Sensing Images
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2019.2938555
– start-page: 282
  year: 2018
  ident: 10.1016/j.jag.2021.102515_bib247
  article-title: Dynamic Task Prioritization for Multitask Learning
– volume: 7
  start-page: 3421
  year: 2014
  ident: 10.1016/j.jag.2021.102515_b0220
  article-title: Mapping Annual Land Use and Land Cover Changes Using MODIS Time Series
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2014.2348411
– volume: 105
  start-page: 1865
  issue: 10
  year: 2017
  ident: 10.1016/j.jag.2021.102515_b0035
  article-title: Remote Sensing Image Scene Classification: Benchmark and State of the Art
  publication-title: In Proc. of IEEE
  doi: 10.1109/JPROC.2017.2675998
– volume: 88
  year: 2020
  ident: 10.1016/j.jag.2021.102515_b0200
  article-title: Spatial and semantic effects of LUCAS samples on fully automated land use/land cover classification in high-resolution Sentinel-2 data
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 93
  year: 2020
  ident: 10.1016/j.jag.2021.102515_b0145
  article-title: Evaluating the performance of high-resolution satellite imagery in detecting ephemeral water bodies over West Africa
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– year: 2018
  ident: 10.1016/j.jag.2021.102515_b0165
  article-title: On the Convergence of Adam and Beyond
  publication-title: In Proc. of Int. Conf. on Learning Representations, ICLR
– start-page: 9847
  year: 2019
  ident: 10.1016/j.jag.2021.102515_b0080
  article-title: Can a Deep Network Understand the Land Cover Across Sensors?
– start-page: 999
  year: 2019
  ident: 10.1016/j.jag.2021.102515_b0155
  article-title: Land Use Prediction on Satillite images using Deep Neural Nets
– volume: 11
  start-page: 125
  year: 2020
  ident: 10.1016/j.jag.2021.102515_b0020
  article-title: Albumentations: Fast and Flexible Image Augmentations
  publication-title: Inf.
– start-page: 645
  year: 2019
  ident: 10.1016/j.jag.2021.102515_bib252
  article-title: AuxNet: Auxiliary Tasks Enhanced Semantic Segmentation for Automated Driving
  publication-title: International Conference on Computer Vision Theory and Applications
– start-page: 89
  year: 2018
  ident: 10.1016/j.jag.2021.102515_b0045
  article-title: Satellite Image Classification Of Building Damages Using Airborne And Satellite Image Samples In A Deep Learning Approach
– year: 2014
  ident: 10.1016/j.jag.2021.102515_b0090
  article-title: Adam: A Method for Stochastic Optimization
– volume: 82
  year: 2019
  ident: 10.1016/j.jag.2021.102515_b0055
  article-title: Using a U-net convolutional neural network to map woody vegetation extent from high resolution satellite imagery across Queensland, Australia
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
SSID ssj0017768
Score 2.523496
Snippet •Spatial attention mechanism improves delineation of various-sized objects in CNNs.•Cascading residual dilated convolution reinforces feature multi-scale...
Land cover classification provides updated information regarding the Earth's resources, which is vital for agricultural investigation, urban management, and...
SourceID doaj
proquest
crossref
elsevier
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 102515
SubjectTerms data collection
Deep learning
Deep supervision
Dilated convolution
hybrids
land cover
neural networks
radiometry
Remote sensing
satellites
Spatial attention
spatial data
urban development
very high spatial resolution (VHSR)
SummonAdditionalLinks – databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  dbid: AIKHN
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxsxELZQuNBDBbSoAVq5Uk-VVsmuX_ExRaC0VZFQi8TN8mNCg1ASQXLg3zPj9QbogUNPq12NvdZ4PA_5mxnGvqDVSUOQobIpmIoab1d-igfPQ9LeG2F9zq36da4nl_LHlbraYiddLgzBKovub3V61tbly6Bwc7CczQa_UTzRGxCyqXNGJ4ZA242wWvXY9vj7z8n55jLBmDYjTmlbjaRousvNDPO68dcYJTY11TBQ1Bz3mXnKVfxfWKl_9HU2Qme77G3xHvm4XeAe24L5PnvzrKbgPjs4fUpdQ9Jydu_fsYsx__tA-Vk8ASw5wc2L2CEZlbXMjwwK5-jJch_jmupIcMI-IjnKPI_kaxO4KO_ne3Z5dvrnZFKVhgpVRL9jVaFeTjpaabVXaZTqUHuDLhhYU6faggIb0FqplDDOiBj36QgiTbVpIOFAYcQB680Xc_jAuKFgKgUBwQukk6OkIUoVRxE1uQiiz4YdH10s1cap6cWt62BlNw5Z74j1rmV9n33dDFm2pTZeI_5Gm7MhpCrZ-cPi7toVMXFmqHBZYCDYJIUHK2QA4VUz1UJOIfWZ7LbWvRA6nGr22r8_d2Lg8DDSDYufw2J97xq09I2QGKId_t_UR2yH3lq8zDHrre7W8BG9nlX4VKT6EUwNADc
  priority: 102
  providerName: Elsevier
Title A hybrid deep convolutional neural network for accurate land cover classification
URI https://dx.doi.org/10.1016/j.jag.2021.102515
https://www.proquest.com/docview/2718234747
https://doaj.org/article/705d6ee7eb9d43ae934be3a52f634fed
Volume 103
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LTxwxDI4quJRDVaCoSwEFiVOlETOT1-a4rBYt0KKCisQtysNbQGhBsHvov6-dmYGFA1x6ijRyJpHtxLZif2ZsD61OKkGGwqZgCmq8XfgJHjwPSXtvhPW5turnqR5fyONLdbnQ6otywhp44IZx-6ZUSQMYCDZJ4cEKGUB4VU-0kBNIdPuWtuyCqfb9wJimCE5pW_SlqLv3zJzZdeP_YGBYVwRboKgf7oJFysD9LwzTqys6253Dz-xT6zDyQbPRVfYBpmtsZQFGcI1tjJ6r1ZC0Pa6P6-xswK_-UkkWTwD3nDLMW01DMkKyzEPOA-fovHIf45ygIzilOyI5qjmP5F5TPlEW4Rd2cTj6PRwXbQ-FIqKrMSvwKk46Wmm1V6mfqlB5g14XWFOlyoICG9BAqZQwtIgY6ukIIk20qSHhRGHEBlua3k3hK-OG4qcUBAQvkE72US5RqtiPeHmLIHqs7PjoYgswTn0ubl2XSXbjkPWOWO8a1vfY96cp9w26xlvEByScJ0ICxs4fUF1cqy7uPXXpMdmJ1rU-RuM74K-u31p7t1MDh-ePHlX8FO7mj65G414LiVHZ5v_Y3zf2kZZtEma22NLsYQ7b6PbMwg5bHgzPf_yi8ehkfLqTNf4fU9cDuQ
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxsxEBbBObQ9lDZtqPtUoafCYu_qZR3dkOA0iaE0gdyEHuPEodgmsQ_9953Rat2khxx6WtCOdsVoNA_0zQxjX9DqpCHIUNkUTEWNtys_w4PnIWnvjbA-51adTfXkQn6_VJc77KDLhSFYZdH9rU7P2rqMDAo3B6v5fPATxRO9ASGbOmd0Ygi0KxVGez22Oz4-mUy3lwnGtBlxSttqJEXTXW5mmNeNv8IosamphoGi5rj3zFOu4v_ASv2jr7MROnrBnhfvkY_bBb5kO7DYY8_u1RTcY_uHf1PXkLSc3btX7MeYX_-m_CyeAFac4OZF7JCMylrmRwaFc_RkuY9xQ3UkOGEfkRxlnkfytQlclPfzNbs4Ojw_mFSloUIV0e9YV6iXk45WWu1VGqU61N6gCwbW1Km2oMAGtFYqJYwzIsZ9OoJIM20aSDhRGLHPeovlAt4wbiiYSkFA8ALp5ChpiFLFUURNLoLos2HHRxdLtXFqevHLdbCyG4esd8R617K-z75up6zaUhuPEX-jzdkSUpXsPLC8vXJFTJwZKlwWGAg2SeHBChlAeNXMtJAzSH0mu611D4QOPzV_7N-fOzFweBjphsUvYLm5cw1a-kZIDNHe_t-nP7Enk_OzU3d6PD15x57SmxY785711rcb-IAe0Dp8LBL-B3eUAyQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+hybrid+deep+convolutional+neural+network+for+accurate+land+cover+classification&rft.jtitle=International+journal+of+applied+earth+observation+and+geoinformation&rft.au=Naftaly+Wambugu&rft.au=Yiping+Chen&rft.au=Zhenlong+Xiao&rft.au=Mingqiang+Wei&rft.date=2021-12-01&rft.pub=Elsevier&rft.issn=1569-8432&rft.volume=103&rft.spage=102515&rft_id=info:doi/10.1016%2Fj.jag.2021.102515&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_705d6ee7eb9d43ae934be3a52f634fed
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1569-8432&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1569-8432&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1569-8432&client=summon