Sleep–Wake Cycle in Young and Older Mice

Sleep plays a key role in multiple cognitive functions and sleep pattern changes with aging. Human studies revealed that aging decreases sleep efficiency and reduces the total sleep time, the time spent in slow-wave sleep (SWS), and the delta power (1-4 Hz) during sleep; however, some studies of sle...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in systems neuroscience Vol. 13; p. 51
Main Authors Soltani, Sara, Chauvette, Sylvain, Bukhtiyarova, Olga, Lina, Jean-Marc, Dubé, Jonathan, Seigneur, Josée, Carrier, Julie, Timofeev, Igor
Format Journal Article
LanguageEnglish
Published Frontiers Media S.A 24.09.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Sleep plays a key role in multiple cognitive functions and sleep pattern changes with aging. Human studies revealed that aging decreases sleep efficiency and reduces the total sleep time, the time spent in slow-wave sleep (SWS), and the delta power (1-4 Hz) during sleep; however, some studies of sleep and aging in mice reported opposing results. The aim of our work is to estimate how features of sleep-wake state in mice during aging could correspond to age-dependent changes observed in human. In this study, we investigated the sleep/wake cycle in young (3 months old) and older (12 months old) C57BL/6 mice using local-field potentials (LFPs). We found that older adult mice sleep more than young ones but only during the dark phase of sleep-wake cycle. Sleep fragmentation and sleep during the active phase (dark phase of cycle), homologous to naps, were higher in older mice. Older mice show a higher delta power in frontal cortex, which was accompanied with similar trend for age differences in slow wave density. We also investigated regional specificity of sleep-wake electrographic activities and found that globally posterior regions of the cortex show more rapid eye movement (REM) sleep whereas somatosensory cortex displays more often SWS patterns. Our results indicate that the effects of aging on the sleep-wake activities in mice occur mainly during the dark phase and the electrode location strongly influence the state detection. Despite some differences in sleep-wake cycle during aging between human and mice, some features of mice sleep share similarity with human sleep during aging.Sleep plays a key role in multiple cognitive functions and sleep pattern changes with aging. Human studies revealed that aging decreases sleep efficiency and reduces the total sleep time, the time spent in slow-wave sleep (SWS), and the delta power (1-4 Hz) during sleep; however, some studies of sleep and aging in mice reported opposing results. The aim of our work is to estimate how features of sleep-wake state in mice during aging could correspond to age-dependent changes observed in human. In this study, we investigated the sleep/wake cycle in young (3 months old) and older (12 months old) C57BL/6 mice using local-field potentials (LFPs). We found that older adult mice sleep more than young ones but only during the dark phase of sleep-wake cycle. Sleep fragmentation and sleep during the active phase (dark phase of cycle), homologous to naps, were higher in older mice. Older mice show a higher delta power in frontal cortex, which was accompanied with similar trend for age differences in slow wave density. We also investigated regional specificity of sleep-wake electrographic activities and found that globally posterior regions of the cortex show more rapid eye movement (REM) sleep whereas somatosensory cortex displays more often SWS patterns. Our results indicate that the effects of aging on the sleep-wake activities in mice occur mainly during the dark phase and the electrode location strongly influence the state detection. Despite some differences in sleep-wake cycle during aging between human and mice, some features of mice sleep share similarity with human sleep during aging.
AbstractList Sleep plays a key role in multiple cognitive functions and sleep pattern changes with aging. Human studies revealed that aging decreases sleep efficiency and reduces the total sleep time, the time spent in slow-wave sleep (SWS), and the delta power (1-4 Hz) during sleep; however, some studies of sleep and aging in mice reported opposing results. The aim of our work is to estimate how features of sleep-wake state in mice during aging could correspond to age-dependent changes observed in human. In this study, we investigated the sleep/wake cycle in young (3 months old) and older (12 months old) C57BL/6 mice using local-field potentials (LFPs). We found that older adult mice sleep more than young ones but only during the dark phase of sleep-wake cycle. Sleep fragmentation and sleep during the active phase (dark phase of cycle), homologous to naps, were higher in older mice. Older mice show a higher delta power in frontal cortex, which was accompanied with similar trend for age differences in slow wave density. We also investigated regional specificity of sleep-wake electrographic activities and found that globally posterior regions of the cortex show more rapid eye movement (REM) sleep whereas somatosensory cortex displays more often SWS patterns. Our results indicate that the effects of aging on the sleep-wake activities in mice occur mainly during the dark phase and the electrode location strongly influence the state detection. Despite some differences in sleep-wake cycle during aging between human and mice, some features of mice sleep share similarity with human sleep during aging.Sleep plays a key role in multiple cognitive functions and sleep pattern changes with aging. Human studies revealed that aging decreases sleep efficiency and reduces the total sleep time, the time spent in slow-wave sleep (SWS), and the delta power (1-4 Hz) during sleep; however, some studies of sleep and aging in mice reported opposing results. The aim of our work is to estimate how features of sleep-wake state in mice during aging could correspond to age-dependent changes observed in human. In this study, we investigated the sleep/wake cycle in young (3 months old) and older (12 months old) C57BL/6 mice using local-field potentials (LFPs). We found that older adult mice sleep more than young ones but only during the dark phase of sleep-wake cycle. Sleep fragmentation and sleep during the active phase (dark phase of cycle), homologous to naps, were higher in older mice. Older mice show a higher delta power in frontal cortex, which was accompanied with similar trend for age differences in slow wave density. We also investigated regional specificity of sleep-wake electrographic activities and found that globally posterior regions of the cortex show more rapid eye movement (REM) sleep whereas somatosensory cortex displays more often SWS patterns. Our results indicate that the effects of aging on the sleep-wake activities in mice occur mainly during the dark phase and the electrode location strongly influence the state detection. Despite some differences in sleep-wake cycle during aging between human and mice, some features of mice sleep share similarity with human sleep during aging.
Sleep plays a key role in multiple cognitive functions and sleep pattern changes with aging. Human studies revealed that aging decreases sleep efficiency and reduces the total sleep time, the time spent in slow-wave sleep (SWS), and the delta power (1–4 Hz) during sleep; however, some studies of sleep and aging in mice reported opposing results. The aim of our work is to estimate how features of sleep–wake state in mice during aging could correspond to age-dependent changes observed in human. In this study, we investigated the sleep/wake cycle in young (3 months old) and older (12 months old) C57BL/6 mice using local-field potentials (LFPs). We found that older adult mice sleep more than young ones but only during the dark phase of sleep-wake cycle. Sleep fragmentation and sleep during the active phase (dark phase of cycle), homologous to naps, were higher in older mice. Older mice show a higher delta power in frontal cortex, which was accompanied with similar trend for age differences in slow wave density. We also investigated regional specificity of sleep–wake electrographic activities and found that globally posterior regions of the cortex show more rapid eye movement (REM) sleep whereas somatosensory cortex displays more often SWS patterns. Our results indicate that the effects of aging on the sleep–wake activities in mice occur mainly during the dark phase and the electrode location strongly influence the state detection. Despite some differences in sleep–wake cycle during aging between human and mice, some features of mice sleep share similarity with human sleep during aging.
Author Chauvette, Sylvain
Carrier, Julie
Lina, Jean-Marc
Soltani, Sara
Dubé, Jonathan
Seigneur, Josée
Timofeev, Igor
Bukhtiyarova, Olga
AuthorAffiliation 2 CERVO Brain Research Centre , Québec, QC , Canada
4 École de Technologie Supérieure , Montreal, QC , Canada
1 Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval , Québec, QC , Canada
5 Department of Psychology, Université de Montréal , Montreal, QC , Canada
3 Center for Advanced Research in Sleep Medicine, Centre Intégré Universitaire de Santé et de Services Sociaux du Nord-de-l’Ile de Montréal , Montreal, QC , Canada
AuthorAffiliation_xml – name: 1 Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval , Québec, QC , Canada
– name: 2 CERVO Brain Research Centre , Québec, QC , Canada
– name: 3 Center for Advanced Research in Sleep Medicine, Centre Intégré Universitaire de Santé et de Services Sociaux du Nord-de-l’Ile de Montréal , Montreal, QC , Canada
– name: 5 Department of Psychology, Université de Montréal , Montreal, QC , Canada
– name: 4 École de Technologie Supérieure , Montreal, QC , Canada
Author_xml – sequence: 1
  givenname: Sara
  surname: Soltani
  fullname: Soltani, Sara
– sequence: 2
  givenname: Sylvain
  surname: Chauvette
  fullname: Chauvette, Sylvain
– sequence: 3
  givenname: Olga
  surname: Bukhtiyarova
  fullname: Bukhtiyarova, Olga
– sequence: 4
  givenname: Jean-Marc
  surname: Lina
  fullname: Lina, Jean-Marc
– sequence: 5
  givenname: Jonathan
  surname: Dubé
  fullname: Dubé, Jonathan
– sequence: 6
  givenname: Josée
  surname: Seigneur
  fullname: Seigneur, Josée
– sequence: 7
  givenname: Julie
  surname: Carrier
  fullname: Carrier, Julie
– sequence: 8
  givenname: Igor
  surname: Timofeev
  fullname: Timofeev, Igor
BookMark eNp1kU1rGzEQhkVIaD7ae457LAW7-tbqUggmaQMpOSSl9CS00shRspZcaR3wrf-h_7C_pGs7lCaQ0wwz8z4zw3uM9lNOgNApwVPGWv0xpLquU4qJnmKMBdlDR0RKOhGEqf3_8kN0XOs9xpJKod-gQ0YkIUrpI_ThpgdY_vn1-7t9gGa2dj00MTU_8irNG5t8c917KM3X6OAtOgi2r_DuKZ6gbxfnt7Mvk6vrz5ezs6uJ40wPE-CUeGUdkZ2GlhHspGaCesowAS4980R52VKhleZdsK3lUnHq29b6ABzYCbrccX2292ZZ4sKWtck2mm0hl7mxZYjjpcYx2oV23CNd4MLKjocWghOadl4xYCPr0461XHUL8A7SUGz_DPq8k-KdmedHI5XUWIkR8P4JUPLPFdTBLGJ10Pc2QV5VM34llJYS43EU70ZdybUWCP_WEGw2dpmtXWZjl9naNUrkC4mLgx1i3hwT-9eFfwFylJv9
CitedBy_id crossref_primary_10_1038_s41598_024_54727_0
crossref_primary_10_3389_fnbeh_2021_703859
crossref_primary_10_1007_s11655_022_3581_0
crossref_primary_10_1016_j_neurobiolaging_2024_04_006
crossref_primary_10_1002_jnr_24771
crossref_primary_10_3233_JAD_230527
crossref_primary_10_3390_biology10111127
crossref_primary_10_3389_fnins_2021_718478
crossref_primary_10_1371_journal_pcbi_1009316
crossref_primary_10_1002_nop2_1680
crossref_primary_10_1016_j_jneumeth_2024_110155
crossref_primary_10_1016_j_bcp_2021_114563
crossref_primary_10_1242_dmm_050379
crossref_primary_10_1016_j_jneumeth_2023_110030
crossref_primary_10_3389_fnagi_2022_809879
crossref_primary_10_3389_fphys_2023_1185744
crossref_primary_10_1111_acel_13598
crossref_primary_10_1038_s41593_022_01102_9
crossref_primary_10_1093_sleep_zsab194
crossref_primary_10_1111_jsr_13090
crossref_primary_10_1093_sleep_zsac106
crossref_primary_10_1016_j_neuroscience_2020_07_032
crossref_primary_10_1016_j_nbas_2023_100068
crossref_primary_10_1140_epjs_s11734_023_01054_6
crossref_primary_10_1523_JNEUROSCI_1828_22_2023
crossref_primary_10_1016_j_cell_2023_02_022
crossref_primary_10_7554_eLife_64337
crossref_primary_10_1111_bph_15220
crossref_primary_10_1016_j_pneurobio_2023_102536
crossref_primary_10_1002_epi4_12462
crossref_primary_10_1111_bcpt_13498
crossref_primary_10_1007_s00424_021_02545_y
crossref_primary_10_1016_j_neuron_2023_04_012
crossref_primary_10_1016_j_heliyon_2024_e37531
crossref_primary_10_1186_s13024_021_00504_w
crossref_primary_10_1038_s41380_024_02795_z
crossref_primary_10_1111_jsr_14287
crossref_primary_10_1016_j_nbd_2022_105690
crossref_primary_10_1111_jsr_13399
crossref_primary_10_26724_2079_8334_2023_3_85_195_200
crossref_primary_10_1073_pnas_2305071120
crossref_primary_10_1093_sleepadvances_zpac022
crossref_primary_10_1111_ejn_16465
crossref_primary_10_1111_ejn_16460
crossref_primary_10_1038_s41598_022_06039_4
crossref_primary_10_1038_s41586_020_2914_4
crossref_primary_10_1038_s41593_024_01715_2
crossref_primary_10_3390_s22124367
crossref_primary_10_1073_pnas_2123427119
crossref_primary_10_26508_lsa_202301992
crossref_primary_10_1016_j_neubiorev_2024_105810
crossref_primary_10_36740_WLek202109131
crossref_primary_10_3389_fnins_2020_00705
crossref_primary_10_3390_brainsci11030298
crossref_primary_10_1109_LSENS_2024_3523427
crossref_primary_10_1016_j_neures_2021_07_003
crossref_primary_10_1523_JNEUROSCI_0650_21_2021
crossref_primary_10_3389_fneur_2022_1040975
crossref_primary_10_1016_j_cophys_2020_03_004
crossref_primary_10_3390_ijms22157824
crossref_primary_10_1038_s41598_022_06307_3
crossref_primary_10_1016_j_molcel_2021_10_026
crossref_primary_10_1016_j_cophys_2020_01_007
crossref_primary_10_1371_journal_pcbi_1012245
crossref_primary_10_3390_molecules28145592
crossref_primary_10_1016_j_isci_2022_104396
crossref_primary_10_1038_s41598_022_11888_0
crossref_primary_10_1103_PhysRevLett_132_218403
crossref_primary_10_3389_fncel_2023_1138624
crossref_primary_10_1007_s10072_023_07232_7
crossref_primary_10_3389_fphar_2020_01037
Cites_doi 10.1152/ajpregu.1998.275.4.R1127
10.15761/TBR.1000104
10.1038/ncomms13289
10.1093/cercor/bhq009
10.1016/j.neuron.2011.02.043
10.1093/cercor/bhj085
10.1093/cercor/bhj157
10.1093/brain/awq169
10.1016/j.neuron.2006.01.010
10.1016/j.neuron.2017.02.004
10.1177/074873048900400205
10.1523/jneurosci.0279-06.2006
10.1523/JNEUROSCI.3560-16.2017
10.3390/brainsci7030026
10.1523/jneurosci.03-05-01116.1983
10.1073/pnas.1221180110
10.1016/j.neuron.2016.03.036
10.1038/srep43656
10.1523/jneurosci.0108-06.2006
10.1126/science.8036500
10.1152/jn.2001.85.5.1969
10.1523/JNEUROSCI.2298-18.2019
10.1073/pnas.1221381110
10.1146/annurev-neuro-062111-150444
10.1038/nature10009
10.1016/j.neurobiolaging.2012.11.022
10.1016/j.nbd.2013.02.005
10.1523/JNEUROSCI.2532-10.2010
10.1016/j.cub.2015.11.062
10.1093/sleep/zsy060
10.1073/pnas.041430398
10.1002/cne.902410209
10.1111/j.1365-2869.1997.00230.x
10.1093/cercor/3.2.148
10.1016/j.neurobiolaging.2010.05.010
10.1126/science.158.3808.1597
10.1523/jneurosci.15-01-00604.1995
10.1523/JNEUROSCI.2339-11.2011
10.1523/JNEUROSCI.5813-12.2014
10.1111/jsr.12780
10.1126/science.1169626
10.1016/j.jneumeth.2018.08.016
10.1523/JNEUROSCI.2513-17.2018
10.1371/journal.pone.0081880
10.1111/j.1460-9568.2010.07543.x
10.1073/pnas.0931349100
10.1093/cercor/bhw311
10.1016/0166-4328(84)90186-4
10.1073/pnas.1615230114
10.1523/jneurosci.17-05-01869.1997
10.1016/j.neuron.2009.08.024
10.1523/JNEUROSCI.3956-14.2015
10.1016/b978-012369454-6/50074-1
10.1016/s0167-8760(00)00173-2
ContentType Journal Article
Copyright Copyright © 2019 Soltani, Chauvette, Bukhtiyarova, Lina, Dubé, Seigneur, Carrier and Timofeev.
Copyright © 2019 Soltani, Chauvette, Bukhtiyarova, Lina, Dubé, Seigneur, Carrier and Timofeev. 2019 Soltani, Chauvette, Bukhtiyarova, Lina, Dubé, Seigneur, Carrier and Timofeev
Copyright_xml – notice: Copyright © 2019 Soltani, Chauvette, Bukhtiyarova, Lina, Dubé, Seigneur, Carrier and Timofeev.
– notice: Copyright © 2019 Soltani, Chauvette, Bukhtiyarova, Lina, Dubé, Seigneur, Carrier and Timofeev. 2019 Soltani, Chauvette, Bukhtiyarova, Lina, Dubé, Seigneur, Carrier and Timofeev
DBID AAYXX
CITATION
7X8
5PM
DOA
DOI 10.3389/fnsys.2019.00051
DatabaseName CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1662-5137
ExternalDocumentID oai_doaj_org_article_c32bf8b9e6cf45a6b4f8efc592bd73e3
PMC6769075
10_3389_fnsys_2019_00051
GrantInformation_xml – fundername: Canadian Institutes of Health Research
– fundername: Fonds de Recherche du Québec - Nature et Technologies
– fundername: National Institute of Neurological Disorders and Stroke
– fundername: Savoy Foundation
GroupedDBID ---
29H
2WC
53G
5GY
5VS
9T4
AAFWJ
AAYXX
ABIVO
ACGFO
ACGFS
ACXDI
ADBBV
ADRAZ
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
CITATION
CS3
DIK
E3Z
EMOBN
F5P
GROUPED_DOAJ
GX1
HYE
KQ8
M48
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
RNS
RPM
TR2
7X8
5PM
ID FETCH-LOGICAL-c439t-e421d7ac16b9e8310c69352d2301e46d3d17d68259794bfa8a46742d88adfe4e3
IEDL.DBID DOA
ISSN 1662-5137
IngestDate Wed Aug 27 01:16:46 EDT 2025
Thu Aug 21 14:09:55 EDT 2025
Fri Jul 11 12:40:17 EDT 2025
Thu Apr 24 23:00:13 EDT 2025
Tue Jul 01 04:03:45 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c439t-e421d7ac16b9e8310c69352d2301e46d3d17d68259794bfa8a46742d88adfe4e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Reviewed by: M. Gustavo Murer, University of Buenos Aires, Argentina; Michele Bellesi, University of Bristol, United Kingdom
Edited by: Ilan Lampl, Weizmann Institute of Science, Israel
OpenAccessLink https://doaj.org/article/c32bf8b9e6cf45a6b4f8efc592bd73e3
PMID 31611779
PQID 2305796600
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_c32bf8b9e6cf45a6b4f8efc592bd73e3
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6769075
proquest_miscellaneous_2305796600
crossref_primary_10_3389_fnsys_2019_00051
crossref_citationtrail_10_3389_fnsys_2019_00051
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-09-24
PublicationDateYYYYMMDD 2019-09-24
PublicationDate_xml – month: 09
  year: 2019
  text: 2019-09-24
  day: 24
PublicationDecade 2010
PublicationTitle Frontiers in systems neuroscience
PublicationYear 2019
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Panagiotou (B43) 2017; 7
Kim (B30) 2017; 114
Buzsaki (B8) 2012; 35
Libet (B35) 1967; 158
Schuz (B47) 2006; 16
Gilbert (B25) 1983; 3
Koerner (B32) 2017; 7
Purdon (B44) 2013; 110
Carrier (B9) 1997; 6
Csercsa (B15) 2010; 133
Kurth (B34) 2010; 30
Chauvette (B13) 2010; 20
Nir (B42) 2011; 70
Chauvette (B12) 2011; 31
Van Hooser (B51) 2006; 26
Koch (B31) 2019; 28
Funk (B24) 2016; 26
Cash (B11) 2009; 324
Fernandez (B20) 2017; 27
Rockland (B46) 1985; 241
Edelman (B18) 2003; 100
El Helou (B19) 2013; 110
Wimmer (B58) 2013; 8
Iber (B29) 2007
Mukamel (B40) 2014; 34
Durán (B17) 2018; 41
Lund (B37) 1993; 3
Watson (B56) 2016; 90
Flurkey (B21) 2007
Bezdudnaya (B2) 2006; 49
Vyazovskiy (B54) 2011; 472
Lund (B36) 1994; 265
Reimer (B45) 2016; 7
Carrier (B10) 2011; 33
Vanni (B52) 2017; 37
Franken (B23) 1999; 22
Hasan (B27) 2012; 33
Mukovski (B41) 2007; 17
Bukhtiyarova (B7) 2019; 316
Timofeev (B49) 2001; 98
Volgushev (B53) 2006; 26
Hébert (B28) 2013; 34
Contreras (B14) 1995; 15
Steriade (B48) 2001; 85
Bernardi (B1) 2019; 39
Borbely (B3) 1982; 1
Bukhtiyarova (B6) 2016; 1
Franken (B22) 1998; 275
Konorski (B33) 1967
Whittington (B57) 2000; 38
Vyazovskiy (B55) 2009; 63
Borbely (B4) 1989; 4
Borbély (B5) 1984; 14
Grand’Maison (B26) 2013; 54
McKillop (B39) 2018; 38
Dube (B16) 2015; 35
Mander (B38) 2017; 94
Tobler (B50) 1997; 17
References_xml – volume: 275
  start-page: R1127
  year: 1998
  ident: B22
  article-title: Genetic variation in EEG activity during sleep in inbred mice.
  publication-title: Am. J. Physiol.
  doi: 10.1152/ajpregu.1998.275.4.R1127
– volume: 1
  start-page: 14
  year: 2016
  ident: B6
  article-title: Supervised semi-automatic detection of slow waves in non-anaesthetized mice with the use of neural network approach.
  publication-title: Transl. Brain Rhythm.
  doi: 10.15761/TBR.1000104
– volume: 7
  year: 2016
  ident: B45
  article-title: Pupil fluctuations track rapid changes in adrenergic and cholinergic activity in cortex.
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms13289
– volume: 20
  start-page: 2660
  year: 2010
  ident: B13
  article-title: Origin of active states in local neocortical networks during slow sleep oscillation.
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhq009
– volume: 70
  start-page: 153
  year: 2011
  ident: B42
  article-title: Regional slow waves and spindles in human sleep.
  publication-title: Neuron
  doi: 10.1016/j.neuron.2011.02.043
– volume: 16
  start-page: 1474
  year: 2006
  ident: B47
  article-title: Quantitative aspects of corticocortical connections: a tracer study in the mouse.
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhj085
– volume: 17
  start-page: 400
  year: 2007
  ident: B41
  article-title: Detection of active and silent states in neocortical neurons from the field potential signal during slow-wave sleep.
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhj157
– volume: 133
  start-page: 2814
  year: 2010
  ident: B15
  article-title: Laminar analysis of slow wave activity in humans.
  publication-title: Brain
  doi: 10.1093/brain/awq169
– volume: 49
  start-page: 421
  year: 2006
  ident: B2
  article-title: Thalamic burst mode and inattention in the awake LGNd.
  publication-title: Neuron
  doi: 10.1016/j.neuron.2006.01.010
– volume: 94
  start-page: 19
  year: 2017
  ident: B38
  article-title: Sleep and human aging.
  publication-title: Neuron
  doi: 10.1016/j.neuron.2017.02.004
– volume: 4
  start-page: 149
  year: 1989
  ident: B4
  article-title: Sleep initiation and initial sleep intensity: interactions of homeostatic and circadian mechanisms.
  publication-title: J. Biol. Rhythms
  doi: 10.1177/074873048900400205
– volume: 26
  start-page: 5665
  year: 2006
  ident: B53
  article-title: Precise long-range synchronization of activity and silence in neocortical neurons during slow-wave sleep.
  publication-title: J. Neurosci.
  doi: 10.1523/jneurosci.0279-06.2006
– volume: 37
  start-page: 7513
  year: 2017
  ident: B52
  article-title: Mesoscale mapping of mouse cortex reveals frequency-dependent cycling between distinct macroscale functional modules.
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.3560-16.2017
– volume: 7
  start-page: 1
  year: 2017
  ident: B32
  article-title: Application of linear mixed-effects models in human neuroscience research: a comparison with pearson correlation in two auditory electrophysiology studies.
  publication-title: Brain Sci.
  doi: 10.3390/brainsci7030026
– volume: 3
  start-page: 1116
  year: 1983
  ident: B25
  article-title: Clustered intrinsic connections in cat visual cortex.
  publication-title: J. Neurosci.
  doi: 10.1523/jneurosci.03-05-01116.1983
– volume: 110
  start-page: E1142
  year: 2013
  ident: B44
  article-title: Electroencephalogram signatures of loss and recovery of consciousness from propofol.
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1221180110
– volume: 90
  start-page: 839
  year: 2016
  ident: B56
  article-title: Network homeostasis and state dynamics of neocortical sleep.
  publication-title: Neuron
  doi: 10.1016/j.neuron.2016.03.036
– volume: 7
  year: 2017
  ident: B43
  article-title: Differences in electroencephalographic non-rapid-eye movement sleep slow-wave characteristics between young and old mice.
  publication-title: Sci. Rep.
  doi: 10.1038/srep43656
– volume: 26
  start-page: 7680
  year: 2006
  ident: B51
  article-title: Lack of patchy horizontal connectivity in primary visual cortex of a mammal without orientation maps.
  publication-title: J. Neurosci.
  doi: 10.1523/jneurosci.0108-06.2006
– volume: 265
  start-page: 546
  year: 1994
  ident: B36
  article-title: Cortical reorganization and deafferentation in adult macaques.
  publication-title: Science
  doi: 10.1126/science.8036500
– volume: 85
  start-page: 1969
  year: 2001
  ident: B48
  article-title: Natural waking and sleep states: a view from inside neocortical neurons.
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.2001.85.5.1969
– volume: 39
  start-page: 2686
  year: 2019
  ident: B1
  article-title: Regional delta waves in human rapid eye movement sleep.
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.2298-18.2019
– volume: 110
  start-page: 9974
  year: 2013
  ident: B19
  article-title: Neuroligin-1 links neuronal activity to sleep-wake regulation.
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1221381110
– volume: 35
  start-page: 203
  year: 2012
  ident: B8
  article-title: Mechanisms of gamma oscillations.
  publication-title: Annu. Rev. Neurosci.
  doi: 10.1146/annurev-neuro-062111-150444
– volume: 472
  start-page: 443
  year: 2011
  ident: B54
  article-title: Local sleep in awake rats.
  publication-title: Nature
  doi: 10.1038/nature10009
– volume: 34
  start-page: 1644
  year: 2013
  ident: B28
  article-title: Cortical atrophy and hypoperfusion in a transgenic mouse model of Alzheimer’s disease.
  publication-title: Neurobiol. Aging
  doi: 10.1016/j.neurobiolaging.2012.11.022
– volume: 54
  start-page: 59
  year: 2013
  ident: B26
  article-title: Early cortical thickness changes predict β-amyloid deposition in a mouse model of Alzheimer’s disease.
  publication-title: Neurobiol. Dis.
  doi: 10.1016/j.nbd.2013.02.005
– volume: 30
  start-page: 13211
  year: 2010
  ident: B34
  article-title: Mapping of cortical activity in the first two decades of life: a high-density sleep electroencephalogram study.
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.2532-10.2010
– volume: 26
  start-page: 396
  year: 2016
  ident: B24
  article-title: Local slow waves in superficial layers of primary cortical areas during REM sleep.
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2015.11.062
– volume: 41
  year: 2018
  ident: B17
  article-title: Sleep stage dynamics in neocortex and hippocampus.
  publication-title: Sleep
  doi: 10.1093/sleep/zsy060
– volume: 98
  start-page: 1924
  year: 2001
  ident: B49
  article-title: Disfacilitation and active inhibition in the neocortex during the natural sleep-wake cycle: an intracellular study.
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.041430398
– volume: 241
  start-page: 225
  year: 1985
  ident: B46
  article-title: Anatomical organization of primary visual cortex. (area 17) in the ferret.
  publication-title: J. Comp. Neurol.
  doi: 10.1002/cne.902410209
– volume: 6
  start-page: 230
  year: 1997
  ident: B9
  article-title: Sleep and morningness-eveningness in the ‘middle’ years of life (20-59 y).
  publication-title: J. Sleep Res.
  doi: 10.1111/j.1365-2869.1997.00230.x
– volume: 22
  start-page: 155
  year: 1999
  ident: B23
  article-title: Genetic determinants of sleep regulation in inbred mice.
  publication-title: Sleep
– volume: 3
  start-page: 148
  year: 1993
  ident: B37
  article-title: Comparison of intrinsic connectivity in different areas of macaque monkey cerebral cortex.
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/3.2.148
– volume: 33
  start-page: .e13
  year: 2012
  ident: B27
  article-title: Age-related changes in sleep in inbred mice are genotype dependent.
  publication-title: Neurobiol. Aging
  doi: 10.1016/j.neurobiolaging.2010.05.010
– volume: 158
  start-page: 1597
  year: 1967
  ident: B35
  article-title: Responses of human somatosensory cortex to stimuli below threshold for conscious sensation.
  publication-title: Science
  doi: 10.1126/science.158.3808.1597
– volume: 15
  start-page: 604
  year: 1995
  ident: B14
  article-title: Cellular basis of EEG slow rhythms: a study of dynamic corticothalamic relationships.
  publication-title: J. Neurosci.
  doi: 10.1523/jneurosci.15-01-00604.1995
– year: 2007
  ident: B29
  publication-title: Manual for the Scoring of Sleep and Associated Events: Rules, Terminology and Technical Specifications.
– volume: 31
  start-page: 14998
  year: 2011
  ident: B12
  article-title: Properties of slow oscillation during slow-wave sleep and anesthesia in cats.
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.2339-11.2011
– volume: 34
  start-page: 839
  year: 2014
  ident: B40
  article-title: A transition in brain state during propofol-induced unconsciousness.
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.5813-12.2014
– volume: 28
  year: 2019
  ident: B31
  article-title: Automatic sleep classification using adaptive segmentation reveals an increased number of rapid eye movement sleep transitions.
  publication-title: J. Sleep Res.
  doi: 10.1111/jsr.12780
– year: 1967
  ident: B33
  publication-title: Integrative Activity of the Brain: An Interdisciplinary Approach.
– volume: 324
  start-page: 1084
  year: 2009
  ident: B11
  article-title: The human K-complex represents an isolated cortical down-state.
  publication-title: Science
  doi: 10.1126/science.1169626
– volume: 316
  start-page: 35
  year: 2019
  ident: B7
  article-title: Slow wave detection in sleeping mice: comparison of traditional and machine learning methods.
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2018.08.016
– volume: 38
  start-page: 3911
  year: 2018
  ident: B39
  article-title: Effects of aging on cortical neural dynamics and local sleep homeostasis in mice.
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.2513-17.2018
– volume: 8
  year: 2013
  ident: B58
  article-title: Aging in mice reduces the ability to sustain sleep/wake states.
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0081880
– volume: 1
  start-page: 195
  year: 1982
  ident: B3
  article-title: A two process model of sleep regulation.
  publication-title: Hum. Neurobiol.
– volume: 33
  start-page: 758
  year: 2011
  ident: B10
  article-title: Sleep slow wave changes during the middle years of life.
  publication-title: Eur. J. Neurosci.
  doi: 10.1111/j.1460-9568.2010.07543.x
– volume: 100
  start-page: 5520
  year: 2003
  ident: B18
  article-title: Naturalizing consciousness: a theoretical framework.
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0931349100
– volume: 27
  start-page: 5444
  year: 2017
  ident: B20
  article-title: Highly dynamic spatiotemporal organization of low-frequency activities during behavioral states in the mouse cerebral cortex.
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhw311
– volume: 14
  start-page: 171
  year: 1984
  ident: B5
  article-title: Effect of sleep deprivation on sleep and EEG power spectra in the rat.
  publication-title: Behav. Brain Res.
  doi: 10.1016/0166-4328(84)90186-4
– volume: 114
  start-page: E1727
  year: 2017
  ident: B30
  article-title: Differential modulation of global and local neural oscillations in REM sleep by homeostatic sleep regulation.
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1615230114
– volume: 17
  start-page: 1869
  year: 1997
  ident: B50
  article-title: Sleep and sleep regulation in normal and prion protein-deficient mice.
  publication-title: J. Neurosci.
  doi: 10.1523/jneurosci.17-05-01869.1997
– volume: 63
  start-page: 865
  year: 2009
  ident: B55
  article-title: Cortical firing and sleep homeostasis.
  publication-title: Neuron
  doi: 10.1016/j.neuron.2009.08.024
– volume: 35
  start-page: 7795
  year: 2015
  ident: B16
  article-title: Cortical thinning explains changes in sleep slow waves during adulthood.
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.3956-14.2015
– start-page: 637
  year: 2007
  ident: B21
  article-title: The mouse in aging research
  publication-title: The Mouse in Biomedical Research
  doi: 10.1016/b978-012369454-6/50074-1
– volume: 38
  start-page: 315
  year: 2000
  ident: B57
  article-title: Inhibition-based rhythms: experimental and mathematical observations on network dynamics.
  publication-title: Int. J. Psychophysiol.
  doi: 10.1016/s0167-8760(00)00173-2
SSID ssj0062659
Score 2.4705076
Snippet Sleep plays a key role in multiple cognitive functions and sleep pattern changes with aging. Human studies revealed that aging decreases sleep efficiency and...
SourceID doaj
pubmedcentral
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 51
SubjectTerms delta power
LFP
Neuroscience
REM
sleep–wake cycle
SWS
wake
SummonAdditionalLinks – databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NTttAEF5VcOGC-KsItGgrVZVAMsT2em0fEEpREaqUcoAIbtb-zEJEuoGQSM2Nd-ANeZLObExaS4gTV3tX6_3G4_nGszPD2FdpyG5KEeVFBpFwzkY61e2o7QCNswJwGSUKd3_J0574eZVd_UuPrgF8eNW1o35SvdFg_8_99AgV_pA8TrS3B84_TKnydkylJ9uUT72IdiknNe2KeUwBmXtWzgKVr85qGKZQv79BOptHJv-zQScrbLkmj7wzk_Yq-wB-ja13PDrOv6f8Gw_HOcN_8nW2dz4AuHt-fLpUt8CPpziB9z0P2s2Vt_yM-nPzLn4oNljv5MfF8WlUN0aIDPKHcQQiiW2uTCx1CdQpzMgSiZRFdyIGIW1q49xK9P1K1DbtVKGop0hii0JZlAGkH9mCH3rYZFyLPJWZck7LQqgkV05IlygnDThblKLFDl5QqUxdNZyaVwwq9B4IxyrgWBGOVcCxxXbnM-5mFTPeGPudgJ6Po1rX4cJwdF3VqlOZNNGuwJ1K40SmpBauAGeyMtE2TyFtsS8vYqpQNyjgoTwMJ7hQGlJtkdO1WN6QX2PF5h3fvwlVtunsL_Kprfd4xG22RJuOQjTrE1sYjybwGcnMWO-Ed_Qvidb3vA
  priority: 102
  providerName: Scholars Portal
Title Sleep–Wake Cycle in Young and Older Mice
URI https://www.proquest.com/docview/2305796600
https://pubmed.ncbi.nlm.nih.gov/PMC6769075
https://doaj.org/article/c32bf8b9e6cf45a6b4f8efc592bd73e3
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV27TsMwFLUQEwviKcpLRkJIIEVtEsdxxoIoFVJhAES3yI9rUQFuBe3QjX_gD_kSrp0WNQssLBkSW3bOjX3Pje1zCTnm2vtNzqJcZBAxa02kUtWKWhbQOUsAm_mDwr0b3n1g1_2sv5Dqy-8Jq-SBK-CaOk2UFaoAri3LJFfMCrA6KxJl8hSCzif6vHkwVc3ByNKzolqUxBCsaFr3PvXa3LEXp2xlcc0JBa3-GsGsb49c8DedNbI6I4q0XXVwnSyB2yCbbYdB8uuUntCwdTP8E98kZ3cvAKOvj89H-Qz0YooV6MDRMJKpdIbe-lzctIeTwhZ56FzeX3SjWRKESCNXGEfAktjkUsccMfBZwTQvkDQZDB1iYNykJs4NxzivwJGlrBTS5w9JjBDSIN6QbpNlN3SwQ6hiecozaa3igskkl5Zxm0jLNVgjCtYgzTkqpZ4phPtEFS8lRgoexzLgWHocy4Bjg5z-1BhV6hi_lD33QP-U87rW4QZau5xZu_zL2g1yNDdTiePAL25IB8MJNpSGY7XI3xokr9mv1mL9iRs8BUVtv88XudPuf3Rxj6z4l47CytU-WR6_TeAAictYHYZvFK9X_RivPSa-AYdU8ic
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sleep%E2%80%93Wake+Cycle+in+Young+and+Older+Mice&rft.jtitle=Frontiers+in+systems+neuroscience&rft.au=Sara+Soltani&rft.au=Sara+Soltani&rft.au=Sylvain+Chauvette&rft.au=Olga+Bukhtiyarova&rft.date=2019-09-24&rft.pub=Frontiers+Media+S.A&rft.eissn=1662-5137&rft.volume=13&rft_id=info:doi/10.3389%2Ffnsys.2019.00051&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_c32bf8b9e6cf45a6b4f8efc592bd73e3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-5137&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-5137&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-5137&client=summon