Sleep–Wake Cycle in Young and Older Mice
Sleep plays a key role in multiple cognitive functions and sleep pattern changes with aging. Human studies revealed that aging decreases sleep efficiency and reduces the total sleep time, the time spent in slow-wave sleep (SWS), and the delta power (1-4 Hz) during sleep; however, some studies of sle...
Saved in:
Published in | Frontiers in systems neuroscience Vol. 13; p. 51 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Frontiers Media S.A
24.09.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Sleep plays a key role in multiple cognitive functions and sleep pattern changes with aging. Human studies revealed that aging decreases sleep efficiency and reduces the total sleep time, the time spent in slow-wave sleep (SWS), and the delta power (1-4 Hz) during sleep; however, some studies of sleep and aging in mice reported opposing results. The aim of our work is to estimate how features of sleep-wake state in mice during aging could correspond to age-dependent changes observed in human. In this study, we investigated the sleep/wake cycle in young (3 months old) and older (12 months old) C57BL/6 mice using local-field potentials (LFPs). We found that older adult mice sleep more than young ones but only during the dark phase of sleep-wake cycle. Sleep fragmentation and sleep during the active phase (dark phase of cycle), homologous to naps, were higher in older mice. Older mice show a higher delta power in frontal cortex, which was accompanied with similar trend for age differences in slow wave density. We also investigated regional specificity of sleep-wake electrographic activities and found that globally posterior regions of the cortex show more rapid eye movement (REM) sleep whereas somatosensory cortex displays more often SWS patterns. Our results indicate that the effects of aging on the sleep-wake activities in mice occur mainly during the dark phase and the electrode location strongly influence the state detection. Despite some differences in sleep-wake cycle during aging between human and mice, some features of mice sleep share similarity with human sleep during aging.Sleep plays a key role in multiple cognitive functions and sleep pattern changes with aging. Human studies revealed that aging decreases sleep efficiency and reduces the total sleep time, the time spent in slow-wave sleep (SWS), and the delta power (1-4 Hz) during sleep; however, some studies of sleep and aging in mice reported opposing results. The aim of our work is to estimate how features of sleep-wake state in mice during aging could correspond to age-dependent changes observed in human. In this study, we investigated the sleep/wake cycle in young (3 months old) and older (12 months old) C57BL/6 mice using local-field potentials (LFPs). We found that older adult mice sleep more than young ones but only during the dark phase of sleep-wake cycle. Sleep fragmentation and sleep during the active phase (dark phase of cycle), homologous to naps, were higher in older mice. Older mice show a higher delta power in frontal cortex, which was accompanied with similar trend for age differences in slow wave density. We also investigated regional specificity of sleep-wake electrographic activities and found that globally posterior regions of the cortex show more rapid eye movement (REM) sleep whereas somatosensory cortex displays more often SWS patterns. Our results indicate that the effects of aging on the sleep-wake activities in mice occur mainly during the dark phase and the electrode location strongly influence the state detection. Despite some differences in sleep-wake cycle during aging between human and mice, some features of mice sleep share similarity with human sleep during aging. |
---|---|
AbstractList | Sleep plays a key role in multiple cognitive functions and sleep pattern changes with aging. Human studies revealed that aging decreases sleep efficiency and reduces the total sleep time, the time spent in slow-wave sleep (SWS), and the delta power (1-4 Hz) during sleep; however, some studies of sleep and aging in mice reported opposing results. The aim of our work is to estimate how features of sleep-wake state in mice during aging could correspond to age-dependent changes observed in human. In this study, we investigated the sleep/wake cycle in young (3 months old) and older (12 months old) C57BL/6 mice using local-field potentials (LFPs). We found that older adult mice sleep more than young ones but only during the dark phase of sleep-wake cycle. Sleep fragmentation and sleep during the active phase (dark phase of cycle), homologous to naps, were higher in older mice. Older mice show a higher delta power in frontal cortex, which was accompanied with similar trend for age differences in slow wave density. We also investigated regional specificity of sleep-wake electrographic activities and found that globally posterior regions of the cortex show more rapid eye movement (REM) sleep whereas somatosensory cortex displays more often SWS patterns. Our results indicate that the effects of aging on the sleep-wake activities in mice occur mainly during the dark phase and the electrode location strongly influence the state detection. Despite some differences in sleep-wake cycle during aging between human and mice, some features of mice sleep share similarity with human sleep during aging.Sleep plays a key role in multiple cognitive functions and sleep pattern changes with aging. Human studies revealed that aging decreases sleep efficiency and reduces the total sleep time, the time spent in slow-wave sleep (SWS), and the delta power (1-4 Hz) during sleep; however, some studies of sleep and aging in mice reported opposing results. The aim of our work is to estimate how features of sleep-wake state in mice during aging could correspond to age-dependent changes observed in human. In this study, we investigated the sleep/wake cycle in young (3 months old) and older (12 months old) C57BL/6 mice using local-field potentials (LFPs). We found that older adult mice sleep more than young ones but only during the dark phase of sleep-wake cycle. Sleep fragmentation and sleep during the active phase (dark phase of cycle), homologous to naps, were higher in older mice. Older mice show a higher delta power in frontal cortex, which was accompanied with similar trend for age differences in slow wave density. We also investigated regional specificity of sleep-wake electrographic activities and found that globally posterior regions of the cortex show more rapid eye movement (REM) sleep whereas somatosensory cortex displays more often SWS patterns. Our results indicate that the effects of aging on the sleep-wake activities in mice occur mainly during the dark phase and the electrode location strongly influence the state detection. Despite some differences in sleep-wake cycle during aging between human and mice, some features of mice sleep share similarity with human sleep during aging. Sleep plays a key role in multiple cognitive functions and sleep pattern changes with aging. Human studies revealed that aging decreases sleep efficiency and reduces the total sleep time, the time spent in slow-wave sleep (SWS), and the delta power (1–4 Hz) during sleep; however, some studies of sleep and aging in mice reported opposing results. The aim of our work is to estimate how features of sleep–wake state in mice during aging could correspond to age-dependent changes observed in human. In this study, we investigated the sleep/wake cycle in young (3 months old) and older (12 months old) C57BL/6 mice using local-field potentials (LFPs). We found that older adult mice sleep more than young ones but only during the dark phase of sleep-wake cycle. Sleep fragmentation and sleep during the active phase (dark phase of cycle), homologous to naps, were higher in older mice. Older mice show a higher delta power in frontal cortex, which was accompanied with similar trend for age differences in slow wave density. We also investigated regional specificity of sleep–wake electrographic activities and found that globally posterior regions of the cortex show more rapid eye movement (REM) sleep whereas somatosensory cortex displays more often SWS patterns. Our results indicate that the effects of aging on the sleep–wake activities in mice occur mainly during the dark phase and the electrode location strongly influence the state detection. Despite some differences in sleep–wake cycle during aging between human and mice, some features of mice sleep share similarity with human sleep during aging. |
Author | Chauvette, Sylvain Carrier, Julie Lina, Jean-Marc Soltani, Sara Dubé, Jonathan Seigneur, Josée Timofeev, Igor Bukhtiyarova, Olga |
AuthorAffiliation | 2 CERVO Brain Research Centre , Québec, QC , Canada 4 École de Technologie Supérieure , Montreal, QC , Canada 1 Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval , Québec, QC , Canada 5 Department of Psychology, Université de Montréal , Montreal, QC , Canada 3 Center for Advanced Research in Sleep Medicine, Centre Intégré Universitaire de Santé et de Services Sociaux du Nord-de-l’Ile de Montréal , Montreal, QC , Canada |
AuthorAffiliation_xml | – name: 1 Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval , Québec, QC , Canada – name: 2 CERVO Brain Research Centre , Québec, QC , Canada – name: 3 Center for Advanced Research in Sleep Medicine, Centre Intégré Universitaire de Santé et de Services Sociaux du Nord-de-l’Ile de Montréal , Montreal, QC , Canada – name: 5 Department of Psychology, Université de Montréal , Montreal, QC , Canada – name: 4 École de Technologie Supérieure , Montreal, QC , Canada |
Author_xml | – sequence: 1 givenname: Sara surname: Soltani fullname: Soltani, Sara – sequence: 2 givenname: Sylvain surname: Chauvette fullname: Chauvette, Sylvain – sequence: 3 givenname: Olga surname: Bukhtiyarova fullname: Bukhtiyarova, Olga – sequence: 4 givenname: Jean-Marc surname: Lina fullname: Lina, Jean-Marc – sequence: 5 givenname: Jonathan surname: Dubé fullname: Dubé, Jonathan – sequence: 6 givenname: Josée surname: Seigneur fullname: Seigneur, Josée – sequence: 7 givenname: Julie surname: Carrier fullname: Carrier, Julie – sequence: 8 givenname: Igor surname: Timofeev fullname: Timofeev, Igor |
BookMark | eNp1kU1rGzEQhkVIaD7ae457LAW7-tbqUggmaQMpOSSl9CS00shRspZcaR3wrf-h_7C_pGs7lCaQ0wwz8z4zw3uM9lNOgNApwVPGWv0xpLquU4qJnmKMBdlDR0RKOhGEqf3_8kN0XOs9xpJKod-gQ0YkIUrpI_ThpgdY_vn1-7t9gGa2dj00MTU_8irNG5t8c917KM3X6OAtOgi2r_DuKZ6gbxfnt7Mvk6vrz5ezs6uJ40wPE-CUeGUdkZ2GlhHspGaCesowAS4980R52VKhleZdsK3lUnHq29b6ABzYCbrccX2292ZZ4sKWtck2mm0hl7mxZYjjpcYx2oV23CNd4MLKjocWghOadl4xYCPr0461XHUL8A7SUGz_DPq8k-KdmedHI5XUWIkR8P4JUPLPFdTBLGJ10Pc2QV5VM34llJYS43EU70ZdybUWCP_WEGw2dpmtXWZjl9naNUrkC4mLgx1i3hwT-9eFfwFylJv9 |
CitedBy_id | crossref_primary_10_1038_s41598_024_54727_0 crossref_primary_10_3389_fnbeh_2021_703859 crossref_primary_10_1007_s11655_022_3581_0 crossref_primary_10_1016_j_neurobiolaging_2024_04_006 crossref_primary_10_1002_jnr_24771 crossref_primary_10_3233_JAD_230527 crossref_primary_10_3390_biology10111127 crossref_primary_10_3389_fnins_2021_718478 crossref_primary_10_1371_journal_pcbi_1009316 crossref_primary_10_1002_nop2_1680 crossref_primary_10_1016_j_jneumeth_2024_110155 crossref_primary_10_1016_j_bcp_2021_114563 crossref_primary_10_1242_dmm_050379 crossref_primary_10_1016_j_jneumeth_2023_110030 crossref_primary_10_3389_fnagi_2022_809879 crossref_primary_10_3389_fphys_2023_1185744 crossref_primary_10_1111_acel_13598 crossref_primary_10_1038_s41593_022_01102_9 crossref_primary_10_1093_sleep_zsab194 crossref_primary_10_1111_jsr_13090 crossref_primary_10_1093_sleep_zsac106 crossref_primary_10_1016_j_neuroscience_2020_07_032 crossref_primary_10_1016_j_nbas_2023_100068 crossref_primary_10_1140_epjs_s11734_023_01054_6 crossref_primary_10_1523_JNEUROSCI_1828_22_2023 crossref_primary_10_1016_j_cell_2023_02_022 crossref_primary_10_7554_eLife_64337 crossref_primary_10_1111_bph_15220 crossref_primary_10_1016_j_pneurobio_2023_102536 crossref_primary_10_1002_epi4_12462 crossref_primary_10_1111_bcpt_13498 crossref_primary_10_1007_s00424_021_02545_y crossref_primary_10_1016_j_neuron_2023_04_012 crossref_primary_10_1016_j_heliyon_2024_e37531 crossref_primary_10_1186_s13024_021_00504_w crossref_primary_10_1038_s41380_024_02795_z crossref_primary_10_1111_jsr_14287 crossref_primary_10_1016_j_nbd_2022_105690 crossref_primary_10_1111_jsr_13399 crossref_primary_10_26724_2079_8334_2023_3_85_195_200 crossref_primary_10_1073_pnas_2305071120 crossref_primary_10_1093_sleepadvances_zpac022 crossref_primary_10_1111_ejn_16465 crossref_primary_10_1111_ejn_16460 crossref_primary_10_1038_s41598_022_06039_4 crossref_primary_10_1038_s41586_020_2914_4 crossref_primary_10_1038_s41593_024_01715_2 crossref_primary_10_3390_s22124367 crossref_primary_10_1073_pnas_2123427119 crossref_primary_10_26508_lsa_202301992 crossref_primary_10_1016_j_neubiorev_2024_105810 crossref_primary_10_36740_WLek202109131 crossref_primary_10_3389_fnins_2020_00705 crossref_primary_10_3390_brainsci11030298 crossref_primary_10_1109_LSENS_2024_3523427 crossref_primary_10_1016_j_neures_2021_07_003 crossref_primary_10_1523_JNEUROSCI_0650_21_2021 crossref_primary_10_3389_fneur_2022_1040975 crossref_primary_10_1016_j_cophys_2020_03_004 crossref_primary_10_3390_ijms22157824 crossref_primary_10_1038_s41598_022_06307_3 crossref_primary_10_1016_j_molcel_2021_10_026 crossref_primary_10_1016_j_cophys_2020_01_007 crossref_primary_10_1371_journal_pcbi_1012245 crossref_primary_10_3390_molecules28145592 crossref_primary_10_1016_j_isci_2022_104396 crossref_primary_10_1038_s41598_022_11888_0 crossref_primary_10_1103_PhysRevLett_132_218403 crossref_primary_10_3389_fncel_2023_1138624 crossref_primary_10_1007_s10072_023_07232_7 crossref_primary_10_3389_fphar_2020_01037 |
Cites_doi | 10.1152/ajpregu.1998.275.4.R1127 10.15761/TBR.1000104 10.1038/ncomms13289 10.1093/cercor/bhq009 10.1016/j.neuron.2011.02.043 10.1093/cercor/bhj085 10.1093/cercor/bhj157 10.1093/brain/awq169 10.1016/j.neuron.2006.01.010 10.1016/j.neuron.2017.02.004 10.1177/074873048900400205 10.1523/jneurosci.0279-06.2006 10.1523/JNEUROSCI.3560-16.2017 10.3390/brainsci7030026 10.1523/jneurosci.03-05-01116.1983 10.1073/pnas.1221180110 10.1016/j.neuron.2016.03.036 10.1038/srep43656 10.1523/jneurosci.0108-06.2006 10.1126/science.8036500 10.1152/jn.2001.85.5.1969 10.1523/JNEUROSCI.2298-18.2019 10.1073/pnas.1221381110 10.1146/annurev-neuro-062111-150444 10.1038/nature10009 10.1016/j.neurobiolaging.2012.11.022 10.1016/j.nbd.2013.02.005 10.1523/JNEUROSCI.2532-10.2010 10.1016/j.cub.2015.11.062 10.1093/sleep/zsy060 10.1073/pnas.041430398 10.1002/cne.902410209 10.1111/j.1365-2869.1997.00230.x 10.1093/cercor/3.2.148 10.1016/j.neurobiolaging.2010.05.010 10.1126/science.158.3808.1597 10.1523/jneurosci.15-01-00604.1995 10.1523/JNEUROSCI.2339-11.2011 10.1523/JNEUROSCI.5813-12.2014 10.1111/jsr.12780 10.1126/science.1169626 10.1016/j.jneumeth.2018.08.016 10.1523/JNEUROSCI.2513-17.2018 10.1371/journal.pone.0081880 10.1111/j.1460-9568.2010.07543.x 10.1073/pnas.0931349100 10.1093/cercor/bhw311 10.1016/0166-4328(84)90186-4 10.1073/pnas.1615230114 10.1523/jneurosci.17-05-01869.1997 10.1016/j.neuron.2009.08.024 10.1523/JNEUROSCI.3956-14.2015 10.1016/b978-012369454-6/50074-1 10.1016/s0167-8760(00)00173-2 |
ContentType | Journal Article |
Copyright | Copyright © 2019 Soltani, Chauvette, Bukhtiyarova, Lina, Dubé, Seigneur, Carrier and Timofeev. Copyright © 2019 Soltani, Chauvette, Bukhtiyarova, Lina, Dubé, Seigneur, Carrier and Timofeev. 2019 Soltani, Chauvette, Bukhtiyarova, Lina, Dubé, Seigneur, Carrier and Timofeev |
Copyright_xml | – notice: Copyright © 2019 Soltani, Chauvette, Bukhtiyarova, Lina, Dubé, Seigneur, Carrier and Timofeev. – notice: Copyright © 2019 Soltani, Chauvette, Bukhtiyarova, Lina, Dubé, Seigneur, Carrier and Timofeev. 2019 Soltani, Chauvette, Bukhtiyarova, Lina, Dubé, Seigneur, Carrier and Timofeev |
DBID | AAYXX CITATION 7X8 5PM DOA |
DOI | 10.3389/fnsys.2019.00051 |
DatabaseName | CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1662-5137 |
ExternalDocumentID | oai_doaj_org_article_c32bf8b9e6cf45a6b4f8efc592bd73e3 PMC6769075 10_3389_fnsys_2019_00051 |
GrantInformation_xml | – fundername: Canadian Institutes of Health Research – fundername: Fonds de Recherche du Québec - Nature et Technologies – fundername: National Institute of Neurological Disorders and Stroke – fundername: Savoy Foundation |
GroupedDBID | --- 29H 2WC 53G 5GY 5VS 9T4 AAFWJ AAYXX ABIVO ACGFO ACGFS ACXDI ADBBV ADRAZ AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV CITATION CS3 DIK E3Z EMOBN F5P GROUPED_DOAJ GX1 HYE KQ8 M48 M~E O5R O5S OK1 OVT P2P PGMZT RNS RPM TR2 7X8 5PM |
ID | FETCH-LOGICAL-c439t-e421d7ac16b9e8310c69352d2301e46d3d17d68259794bfa8a46742d88adfe4e3 |
IEDL.DBID | DOA |
ISSN | 1662-5137 |
IngestDate | Wed Aug 27 01:16:46 EDT 2025 Thu Aug 21 14:09:55 EDT 2025 Fri Jul 11 12:40:17 EDT 2025 Thu Apr 24 23:00:13 EDT 2025 Tue Jul 01 04:03:45 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c439t-e421d7ac16b9e8310c69352d2301e46d3d17d68259794bfa8a46742d88adfe4e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Reviewed by: M. Gustavo Murer, University of Buenos Aires, Argentina; Michele Bellesi, University of Bristol, United Kingdom Edited by: Ilan Lampl, Weizmann Institute of Science, Israel |
OpenAccessLink | https://doaj.org/article/c32bf8b9e6cf45a6b4f8efc592bd73e3 |
PMID | 31611779 |
PQID | 2305796600 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_c32bf8b9e6cf45a6b4f8efc592bd73e3 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6769075 proquest_miscellaneous_2305796600 crossref_primary_10_3389_fnsys_2019_00051 crossref_citationtrail_10_3389_fnsys_2019_00051 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-09-24 |
PublicationDateYYYYMMDD | 2019-09-24 |
PublicationDate_xml | – month: 09 year: 2019 text: 2019-09-24 day: 24 |
PublicationDecade | 2010 |
PublicationTitle | Frontiers in systems neuroscience |
PublicationYear | 2019 |
Publisher | Frontiers Media S.A |
Publisher_xml | – name: Frontiers Media S.A |
References | Panagiotou (B43) 2017; 7 Kim (B30) 2017; 114 Buzsaki (B8) 2012; 35 Libet (B35) 1967; 158 Schuz (B47) 2006; 16 Gilbert (B25) 1983; 3 Koerner (B32) 2017; 7 Purdon (B44) 2013; 110 Carrier (B9) 1997; 6 Csercsa (B15) 2010; 133 Kurth (B34) 2010; 30 Chauvette (B13) 2010; 20 Nir (B42) 2011; 70 Chauvette (B12) 2011; 31 Van Hooser (B51) 2006; 26 Koch (B31) 2019; 28 Funk (B24) 2016; 26 Cash (B11) 2009; 324 Fernandez (B20) 2017; 27 Rockland (B46) 1985; 241 Edelman (B18) 2003; 100 El Helou (B19) 2013; 110 Wimmer (B58) 2013; 8 Iber (B29) 2007 Mukamel (B40) 2014; 34 Durán (B17) 2018; 41 Lund (B37) 1993; 3 Watson (B56) 2016; 90 Flurkey (B21) 2007 Bezdudnaya (B2) 2006; 49 Vyazovskiy (B54) 2011; 472 Lund (B36) 1994; 265 Reimer (B45) 2016; 7 Carrier (B10) 2011; 33 Vanni (B52) 2017; 37 Franken (B23) 1999; 22 Hasan (B27) 2012; 33 Mukovski (B41) 2007; 17 Bukhtiyarova (B7) 2019; 316 Timofeev (B49) 2001; 98 Volgushev (B53) 2006; 26 Hébert (B28) 2013; 34 Contreras (B14) 1995; 15 Steriade (B48) 2001; 85 Bernardi (B1) 2019; 39 Borbely (B3) 1982; 1 Bukhtiyarova (B6) 2016; 1 Franken (B22) 1998; 275 Konorski (B33) 1967 Whittington (B57) 2000; 38 Vyazovskiy (B55) 2009; 63 Borbely (B4) 1989; 4 Borbély (B5) 1984; 14 Grand’Maison (B26) 2013; 54 McKillop (B39) 2018; 38 Dube (B16) 2015; 35 Mander (B38) 2017; 94 Tobler (B50) 1997; 17 |
References_xml | – volume: 275 start-page: R1127 year: 1998 ident: B22 article-title: Genetic variation in EEG activity during sleep in inbred mice. publication-title: Am. J. Physiol. doi: 10.1152/ajpregu.1998.275.4.R1127 – volume: 1 start-page: 14 year: 2016 ident: B6 article-title: Supervised semi-automatic detection of slow waves in non-anaesthetized mice with the use of neural network approach. publication-title: Transl. Brain Rhythm. doi: 10.15761/TBR.1000104 – volume: 7 year: 2016 ident: B45 article-title: Pupil fluctuations track rapid changes in adrenergic and cholinergic activity in cortex. publication-title: Nat. Commun. doi: 10.1038/ncomms13289 – volume: 20 start-page: 2660 year: 2010 ident: B13 article-title: Origin of active states in local neocortical networks during slow sleep oscillation. publication-title: Cereb. Cortex doi: 10.1093/cercor/bhq009 – volume: 70 start-page: 153 year: 2011 ident: B42 article-title: Regional slow waves and spindles in human sleep. publication-title: Neuron doi: 10.1016/j.neuron.2011.02.043 – volume: 16 start-page: 1474 year: 2006 ident: B47 article-title: Quantitative aspects of corticocortical connections: a tracer study in the mouse. publication-title: Cereb. Cortex doi: 10.1093/cercor/bhj085 – volume: 17 start-page: 400 year: 2007 ident: B41 article-title: Detection of active and silent states in neocortical neurons from the field potential signal during slow-wave sleep. publication-title: Cereb. Cortex doi: 10.1093/cercor/bhj157 – volume: 133 start-page: 2814 year: 2010 ident: B15 article-title: Laminar analysis of slow wave activity in humans. publication-title: Brain doi: 10.1093/brain/awq169 – volume: 49 start-page: 421 year: 2006 ident: B2 article-title: Thalamic burst mode and inattention in the awake LGNd. publication-title: Neuron doi: 10.1016/j.neuron.2006.01.010 – volume: 94 start-page: 19 year: 2017 ident: B38 article-title: Sleep and human aging. publication-title: Neuron doi: 10.1016/j.neuron.2017.02.004 – volume: 4 start-page: 149 year: 1989 ident: B4 article-title: Sleep initiation and initial sleep intensity: interactions of homeostatic and circadian mechanisms. publication-title: J. Biol. Rhythms doi: 10.1177/074873048900400205 – volume: 26 start-page: 5665 year: 2006 ident: B53 article-title: Precise long-range synchronization of activity and silence in neocortical neurons during slow-wave sleep. publication-title: J. Neurosci. doi: 10.1523/jneurosci.0279-06.2006 – volume: 37 start-page: 7513 year: 2017 ident: B52 article-title: Mesoscale mapping of mouse cortex reveals frequency-dependent cycling between distinct macroscale functional modules. publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.3560-16.2017 – volume: 7 start-page: 1 year: 2017 ident: B32 article-title: Application of linear mixed-effects models in human neuroscience research: a comparison with pearson correlation in two auditory electrophysiology studies. publication-title: Brain Sci. doi: 10.3390/brainsci7030026 – volume: 3 start-page: 1116 year: 1983 ident: B25 article-title: Clustered intrinsic connections in cat visual cortex. publication-title: J. Neurosci. doi: 10.1523/jneurosci.03-05-01116.1983 – volume: 110 start-page: E1142 year: 2013 ident: B44 article-title: Electroencephalogram signatures of loss and recovery of consciousness from propofol. publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1221180110 – volume: 90 start-page: 839 year: 2016 ident: B56 article-title: Network homeostasis and state dynamics of neocortical sleep. publication-title: Neuron doi: 10.1016/j.neuron.2016.03.036 – volume: 7 year: 2017 ident: B43 article-title: Differences in electroencephalographic non-rapid-eye movement sleep slow-wave characteristics between young and old mice. publication-title: Sci. Rep. doi: 10.1038/srep43656 – volume: 26 start-page: 7680 year: 2006 ident: B51 article-title: Lack of patchy horizontal connectivity in primary visual cortex of a mammal without orientation maps. publication-title: J. Neurosci. doi: 10.1523/jneurosci.0108-06.2006 – volume: 265 start-page: 546 year: 1994 ident: B36 article-title: Cortical reorganization and deafferentation in adult macaques. publication-title: Science doi: 10.1126/science.8036500 – volume: 85 start-page: 1969 year: 2001 ident: B48 article-title: Natural waking and sleep states: a view from inside neocortical neurons. publication-title: J. Neurophysiol. doi: 10.1152/jn.2001.85.5.1969 – volume: 39 start-page: 2686 year: 2019 ident: B1 article-title: Regional delta waves in human rapid eye movement sleep. publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.2298-18.2019 – volume: 110 start-page: 9974 year: 2013 ident: B19 article-title: Neuroligin-1 links neuronal activity to sleep-wake regulation. publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1221381110 – volume: 35 start-page: 203 year: 2012 ident: B8 article-title: Mechanisms of gamma oscillations. publication-title: Annu. Rev. Neurosci. doi: 10.1146/annurev-neuro-062111-150444 – volume: 472 start-page: 443 year: 2011 ident: B54 article-title: Local sleep in awake rats. publication-title: Nature doi: 10.1038/nature10009 – volume: 34 start-page: 1644 year: 2013 ident: B28 article-title: Cortical atrophy and hypoperfusion in a transgenic mouse model of Alzheimer’s disease. publication-title: Neurobiol. Aging doi: 10.1016/j.neurobiolaging.2012.11.022 – volume: 54 start-page: 59 year: 2013 ident: B26 article-title: Early cortical thickness changes predict β-amyloid deposition in a mouse model of Alzheimer’s disease. publication-title: Neurobiol. Dis. doi: 10.1016/j.nbd.2013.02.005 – volume: 30 start-page: 13211 year: 2010 ident: B34 article-title: Mapping of cortical activity in the first two decades of life: a high-density sleep electroencephalogram study. publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.2532-10.2010 – volume: 26 start-page: 396 year: 2016 ident: B24 article-title: Local slow waves in superficial layers of primary cortical areas during REM sleep. publication-title: Curr. Biol. doi: 10.1016/j.cub.2015.11.062 – volume: 41 year: 2018 ident: B17 article-title: Sleep stage dynamics in neocortex and hippocampus. publication-title: Sleep doi: 10.1093/sleep/zsy060 – volume: 98 start-page: 1924 year: 2001 ident: B49 article-title: Disfacilitation and active inhibition in the neocortex during the natural sleep-wake cycle: an intracellular study. publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.041430398 – volume: 241 start-page: 225 year: 1985 ident: B46 article-title: Anatomical organization of primary visual cortex. (area 17) in the ferret. publication-title: J. Comp. Neurol. doi: 10.1002/cne.902410209 – volume: 6 start-page: 230 year: 1997 ident: B9 article-title: Sleep and morningness-eveningness in the ‘middle’ years of life (20-59 y). publication-title: J. Sleep Res. doi: 10.1111/j.1365-2869.1997.00230.x – volume: 22 start-page: 155 year: 1999 ident: B23 article-title: Genetic determinants of sleep regulation in inbred mice. publication-title: Sleep – volume: 3 start-page: 148 year: 1993 ident: B37 article-title: Comparison of intrinsic connectivity in different areas of macaque monkey cerebral cortex. publication-title: Cereb. Cortex doi: 10.1093/cercor/3.2.148 – volume: 33 start-page: .e13 year: 2012 ident: B27 article-title: Age-related changes in sleep in inbred mice are genotype dependent. publication-title: Neurobiol. Aging doi: 10.1016/j.neurobiolaging.2010.05.010 – volume: 158 start-page: 1597 year: 1967 ident: B35 article-title: Responses of human somatosensory cortex to stimuli below threshold for conscious sensation. publication-title: Science doi: 10.1126/science.158.3808.1597 – volume: 15 start-page: 604 year: 1995 ident: B14 article-title: Cellular basis of EEG slow rhythms: a study of dynamic corticothalamic relationships. publication-title: J. Neurosci. doi: 10.1523/jneurosci.15-01-00604.1995 – year: 2007 ident: B29 publication-title: Manual for the Scoring of Sleep and Associated Events: Rules, Terminology and Technical Specifications. – volume: 31 start-page: 14998 year: 2011 ident: B12 article-title: Properties of slow oscillation during slow-wave sleep and anesthesia in cats. publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.2339-11.2011 – volume: 34 start-page: 839 year: 2014 ident: B40 article-title: A transition in brain state during propofol-induced unconsciousness. publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.5813-12.2014 – volume: 28 year: 2019 ident: B31 article-title: Automatic sleep classification using adaptive segmentation reveals an increased number of rapid eye movement sleep transitions. publication-title: J. Sleep Res. doi: 10.1111/jsr.12780 – year: 1967 ident: B33 publication-title: Integrative Activity of the Brain: An Interdisciplinary Approach. – volume: 324 start-page: 1084 year: 2009 ident: B11 article-title: The human K-complex represents an isolated cortical down-state. publication-title: Science doi: 10.1126/science.1169626 – volume: 316 start-page: 35 year: 2019 ident: B7 article-title: Slow wave detection in sleeping mice: comparison of traditional and machine learning methods. publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2018.08.016 – volume: 38 start-page: 3911 year: 2018 ident: B39 article-title: Effects of aging on cortical neural dynamics and local sleep homeostasis in mice. publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.2513-17.2018 – volume: 8 year: 2013 ident: B58 article-title: Aging in mice reduces the ability to sustain sleep/wake states. publication-title: PLoS One doi: 10.1371/journal.pone.0081880 – volume: 1 start-page: 195 year: 1982 ident: B3 article-title: A two process model of sleep regulation. publication-title: Hum. Neurobiol. – volume: 33 start-page: 758 year: 2011 ident: B10 article-title: Sleep slow wave changes during the middle years of life. publication-title: Eur. J. Neurosci. doi: 10.1111/j.1460-9568.2010.07543.x – volume: 100 start-page: 5520 year: 2003 ident: B18 article-title: Naturalizing consciousness: a theoretical framework. publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0931349100 – volume: 27 start-page: 5444 year: 2017 ident: B20 article-title: Highly dynamic spatiotemporal organization of low-frequency activities during behavioral states in the mouse cerebral cortex. publication-title: Cereb. Cortex doi: 10.1093/cercor/bhw311 – volume: 14 start-page: 171 year: 1984 ident: B5 article-title: Effect of sleep deprivation on sleep and EEG power spectra in the rat. publication-title: Behav. Brain Res. doi: 10.1016/0166-4328(84)90186-4 – volume: 114 start-page: E1727 year: 2017 ident: B30 article-title: Differential modulation of global and local neural oscillations in REM sleep by homeostatic sleep regulation. publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1615230114 – volume: 17 start-page: 1869 year: 1997 ident: B50 article-title: Sleep and sleep regulation in normal and prion protein-deficient mice. publication-title: J. Neurosci. doi: 10.1523/jneurosci.17-05-01869.1997 – volume: 63 start-page: 865 year: 2009 ident: B55 article-title: Cortical firing and sleep homeostasis. publication-title: Neuron doi: 10.1016/j.neuron.2009.08.024 – volume: 35 start-page: 7795 year: 2015 ident: B16 article-title: Cortical thinning explains changes in sleep slow waves during adulthood. publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.3956-14.2015 – start-page: 637 year: 2007 ident: B21 article-title: The mouse in aging research publication-title: The Mouse in Biomedical Research doi: 10.1016/b978-012369454-6/50074-1 – volume: 38 start-page: 315 year: 2000 ident: B57 article-title: Inhibition-based rhythms: experimental and mathematical observations on network dynamics. publication-title: Int. J. Psychophysiol. doi: 10.1016/s0167-8760(00)00173-2 |
SSID | ssj0062659 |
Score | 2.4705076 |
Snippet | Sleep plays a key role in multiple cognitive functions and sleep pattern changes with aging. Human studies revealed that aging decreases sleep efficiency and... |
SourceID | doaj pubmedcentral proquest crossref |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 51 |
SubjectTerms | delta power LFP Neuroscience REM sleep–wake cycle SWS wake |
SummonAdditionalLinks | – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NTttAEF5VcOGC-KsItGgrVZVAMsT2em0fEEpREaqUcoAIbtb-zEJEuoGQSM2Nd-ANeZLObExaS4gTV3tX6_3G4_nGszPD2FdpyG5KEeVFBpFwzkY61e2o7QCNswJwGSUKd3_J0574eZVd_UuPrgF8eNW1o35SvdFg_8_99AgV_pA8TrS3B84_TKnydkylJ9uUT72IdiknNe2KeUwBmXtWzgKVr85qGKZQv79BOptHJv-zQScrbLkmj7wzk_Yq-wB-ja13PDrOv6f8Gw_HOcN_8nW2dz4AuHt-fLpUt8CPpziB9z0P2s2Vt_yM-nPzLn4oNljv5MfF8WlUN0aIDPKHcQQiiW2uTCx1CdQpzMgSiZRFdyIGIW1q49xK9P1K1DbtVKGop0hii0JZlAGkH9mCH3rYZFyLPJWZck7LQqgkV05IlygnDThblKLFDl5QqUxdNZyaVwwq9B4IxyrgWBGOVcCxxXbnM-5mFTPeGPudgJ6Po1rX4cJwdF3VqlOZNNGuwJ1K40SmpBauAGeyMtE2TyFtsS8vYqpQNyjgoTwMJ7hQGlJtkdO1WN6QX2PF5h3fvwlVtunsL_Kprfd4xG22RJuOQjTrE1sYjybwGcnMWO-Ed_Qvidb3vA priority: 102 providerName: Scholars Portal |
Title | Sleep–Wake Cycle in Young and Older Mice |
URI | https://www.proquest.com/docview/2305796600 https://pubmed.ncbi.nlm.nih.gov/PMC6769075 https://doaj.org/article/c32bf8b9e6cf45a6b4f8efc592bd73e3 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV27TsMwFLUQEwviKcpLRkJIIEVtEsdxxoIoFVJhAES3yI9rUQFuBe3QjX_gD_kSrp0WNQssLBkSW3bOjX3Pje1zCTnm2vtNzqJcZBAxa02kUtWKWhbQOUsAm_mDwr0b3n1g1_2sv5Dqy-8Jq-SBK-CaOk2UFaoAri3LJFfMCrA6KxJl8hSCzif6vHkwVc3ByNKzolqUxBCsaFr3PvXa3LEXp2xlcc0JBa3-GsGsb49c8DedNbI6I4q0XXVwnSyB2yCbbYdB8uuUntCwdTP8E98kZ3cvAKOvj89H-Qz0YooV6MDRMJKpdIbe-lzctIeTwhZ56FzeX3SjWRKESCNXGEfAktjkUsccMfBZwTQvkDQZDB1iYNykJs4NxzivwJGlrBTS5w9JjBDSIN6QbpNlN3SwQ6hiecozaa3igskkl5Zxm0jLNVgjCtYgzTkqpZ4phPtEFS8lRgoexzLgWHocy4Bjg5z-1BhV6hi_lD33QP-U87rW4QZau5xZu_zL2g1yNDdTiePAL25IB8MJNpSGY7XI3xokr9mv1mL9iRs8BUVtv88XudPuf3Rxj6z4l47CytU-WR6_TeAAictYHYZvFK9X_RivPSa-AYdU8ic |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sleep%E2%80%93Wake+Cycle+in+Young+and+Older+Mice&rft.jtitle=Frontiers+in+systems+neuroscience&rft.au=Sara+Soltani&rft.au=Sara+Soltani&rft.au=Sylvain+Chauvette&rft.au=Olga+Bukhtiyarova&rft.date=2019-09-24&rft.pub=Frontiers+Media+S.A&rft.eissn=1662-5137&rft.volume=13&rft_id=info:doi/10.3389%2Ffnsys.2019.00051&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_c32bf8b9e6cf45a6b4f8efc592bd73e3 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-5137&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-5137&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-5137&client=summon |