Advancing EEG-based biometric identification through multi-modal data fusion and deep learning techniques

The integration of diverse data modalities is critical for advancing the understanding and optimization of complex systems. In this context, EEG-based biometric identification represents a unique challenge and opportunity for multi-modal data fusion. EEG signals, characterized by their high complexi...

Full description

Saved in:
Bibliographic Details
Published inComplex & intelligent systems Vol. 11; no. 9; pp. 398 - 19
Main Authors Rehman, Touseef Ur, Alruwaili, Madallah, Siddiqi, Muhammad Hameed, Alhwaiti, Yousef, Anwar, Sajid, Halim, Zahid, Alam, Maaz
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.09.2025
Springer Nature B.V
Springer
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The integration of diverse data modalities is critical for advancing the understanding and optimization of complex systems. In this context, EEG-based biometric identification represents a unique challenge and opportunity for multi-modal data fusion. EEG signals, characterized by their high complexity and variability, offer a non-intrusive and reliable means of individual identification. This work proposes an advanced deep learning-based framework to extract and analyze distinctive EEG frequency patterns, enhancing the accuracy and robustness of EEG-based biometric systems. Two experimental setups were designed to evaluate the intelligent fusion of EEG data across varied brain activity tasks. In the first setup, the model was trained on data from subjects performing a single task, then assessed on its generalization across diverse tasks, demonstrating its ability to adapt to heterogeneous data streams. This methodology achieved a biometric recognition accuracy of up to 99%, highlighting the potential of intelligent data integration techniques in uncovering hidden patterns within complex physiological data. By leveraging the synergy of multi-modal data analysis and deep learning, this work contributes to the broader objective of developing self-organizing systems capable of adapting to diverse data sources. These findings underscore the transformative potential of EEG-based biometrics within the broader domain of multi-modal data fusion, offering promising applications in healthcare, security, and beyond.
AbstractList The integration of diverse data modalities is critical for advancing the understanding and optimization of complex systems. In this context, EEG-based biometric identification represents a unique challenge and opportunity for multi-modal data fusion. EEG signals, characterized by their high complexity and variability, offer a non-intrusive and reliable means of individual identification. This work proposes an advanced deep learning-based framework to extract and analyze distinctive EEG frequency patterns, enhancing the accuracy and robustness of EEG-based biometric systems. Two experimental setups were designed to evaluate the intelligent fusion of EEG data across varied brain activity tasks. In the first setup, the model was trained on data from subjects performing a single task, then assessed on its generalization across diverse tasks, demonstrating its ability to adapt to heterogeneous data streams. This methodology achieved a biometric recognition accuracy of up to 99%, highlighting the potential of intelligent data integration techniques in uncovering hidden patterns within complex physiological data. By leveraging the synergy of multi-modal data analysis and deep learning, this work contributes to the broader objective of developing self-organizing systems capable of adapting to diverse data sources. These findings underscore the transformative potential of EEG-based biometrics within the broader domain of multi-modal data fusion, offering promising applications in healthcare, security, and beyond.
Abstract The integration of diverse data modalities is critical for advancing the understanding and optimization of complex systems. In this context, EEG-based biometric identification represents a unique challenge and opportunity for multi-modal data fusion. EEG signals, characterized by their high complexity and variability, offer a non-intrusive and reliable means of individual identification. This work proposes an advanced deep learning-based framework to extract and analyze distinctive EEG frequency patterns, enhancing the accuracy and robustness of EEG-based biometric systems. Two experimental setups were designed to evaluate the intelligent fusion of EEG data across varied brain activity tasks. In the first setup, the model was trained on data from subjects performing a single task, then assessed on its generalization across diverse tasks, demonstrating its ability to adapt to heterogeneous data streams. This methodology achieved a biometric recognition accuracy of up to 99%, highlighting the potential of intelligent data integration techniques in uncovering hidden patterns within complex physiological data. By leveraging the synergy of multi-modal data analysis and deep learning, this work contributes to the broader objective of developing self-organizing systems capable of adapting to diverse data sources. These findings underscore the transformative potential of EEG-based biometrics within the broader domain of multi-modal data fusion, offering promising applications in healthcare, security, and beyond.
ArticleNumber 398
Author Siddiqi, Muhammad Hameed
Alam, Maaz
Halim, Zahid
Rehman, Touseef Ur
Anwar, Sajid
Alruwaili, Madallah
Alhwaiti, Yousef
Author_xml – sequence: 1
  givenname: Touseef Ur
  surname: Rehman
  fullname: Rehman, Touseef Ur
  organization: Ghulam Ishaq Khan Institute of Engineering Sciences and Technology
– sequence: 2
  givenname: Madallah
  surname: Alruwaili
  fullname: Alruwaili, Madallah
  email: madallah@ju.edu.sa
  organization: College of Computer and Information Sciences, Jouf University
– sequence: 3
  givenname: Muhammad Hameed
  surname: Siddiqi
  fullname: Siddiqi, Muhammad Hameed
  organization: College of Computer and Information Sciences, Jouf University
– sequence: 4
  givenname: Yousef
  surname: Alhwaiti
  fullname: Alhwaiti, Yousef
  organization: College of Computer and Information Sciences, Jouf University
– sequence: 5
  givenname: Sajid
  surname: Anwar
  fullname: Anwar, Sajid
  organization: Institute of Management Sciences
– sequence: 6
  givenname: Zahid
  orcidid: 0000-0003-3094-3483
  surname: Halim
  fullname: Halim, Zahid
  email: zahidh@yuntech.edu.tw
  organization: Machine Intelligence and Affective Systems Laboratory, National Yunlin University of Science and Technology
– sequence: 7
  givenname: Maaz
  surname: Alam
  fullname: Alam, Maaz
  organization: Ghulam Ishaq Khan Institute of Engineering Sciences and Technology
BookMark eNp9kU9r3DAQxU1IoWmaL9CToGe3oz-WrGMI2zQQ6KU9C1ka72rxShtJDuTb116X9taDkBi995sZ3ofmOqaITfOJwhcKoL4WAUqoFli3HKCslVfNDaO6byV0_Pry1q3ouHzf3JVyBACqVM-B3TTh3r_a6ELck93usR1sQU-GkE5Yc3AkeIw1jMHZGlIk9ZDTvD-Q0zzV0J6StxPxtloyzmX9t9ETj3gmE9ocV2hFd4jhZcbysXk32qng3Z_7tvn1bffz4Xv7_OPx6eH-uXWC69oiBwGDZ72VqBQKYB4V470YPV3rkkraM6-ZHiigBxxGGKRmrqcOGFP8tnnauD7ZoznncLL5zSQbzKWQ8t7YXIOb0DApNGjJqcNRQId64HYUuhtQW-6FWFifN9Y5p3WHao5pznEZ33DGOe-56LtFxTaVy6mUjOPfrhTMmpDZEjJLQuaSkJGLiW-msojjHvM_9H9cvwFcp5Tc
Cites_doi 10.1016/j.patrec.2021.01.004
10.3389/fninf.2015.00016
10.1007/978-1-0716-0826-5_3
10.1016/j.bspc.2016.09.007
10.1016/j.robot.2014.11.015
10.1016/j.slast.2025.100265
10.1016/j.neulet.2017.01.022
10.1109/TBME.2004.827072
10.18653/v1/W16-1617
10.1109/IJCNN.2019.8852295
10.1109/TIFS.2015.2481870
10.1016/j.bbe.2020.02.002
10.1016/j.patcog.2012.10.023
10.1038/nature14539
10.1016/j.proeng.2012.06.298
10.1109/ICASSP39728.2021.9414722
10.1155/2008/143728
10.1007/978-3-642-27183-0_12
10.1109/ICOIACT.2018.8350673
10.1016/j.neucom.2020.06.009
10.1007/s11517-025-03338-6
10.1007/978-3-030-30754-7_1
10.1007/s00521-023-08610-0
10.1007/s11571-023-09967-7
10.1109/TAFFC.2017.2712143
10.1109/BTAS.2010.5634515
10.1161/01.CIR.101.23.e215
10.1145/2815317.2815341
10.1007/s00521-022-07795-0
10.1016/j.patcog.2020.107393
10.1145/3058060.3058068
10.1016/j.compbiomed.2021.104696
10.1016/j.simpat.2024.103006
10.3390/s22239547
10.1109/THMS.2017.2682115
10.1007/978-3-319-67777-4_16
10.1142/9789812797926_0003
10.1016/j.knosys.2025.113284
ContentType Journal Article
Copyright The Author(s) 2025
The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2025
– notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOA
DOI 10.1007/s40747-025-02012-6
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Acceso a contenido Full Text - Doaj
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database


Database_xml – sequence: 1
  dbid: C6C
  name: Springer Open Access
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 2198-6053
EndPage 19
ExternalDocumentID oai_doaj_org_article_264909631cef405e9b3af495be9a3d44
10_1007_s40747_025_02012_6
GroupedDBID 0R~
8FE
8FG
AAJSJ
AAKKN
AASML
ABEEZ
ABFTD
ACACY
ACGFS
ACULB
ADMLS
AFGXO
AFKRA
AHBYD
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
ARAPS
ASPBG
AVWKF
BAPOH
BENPR
BGLVJ
C24
C6C
CCPQU
EBLON
EBS
GROUPED_DOAJ
HCIFZ
IAO
ISR
ITC
OK1
P62
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PUEGO
SOJ
AAYXX
AHSBF
CITATION
EJD
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c439t-e3040bd28a6e77e402de72384fd10bd2616182d929b10ed0ebf0b692c81c02273
IEDL.DBID DOA
ISSN 2199-4536
IngestDate Mon Sep 01 19:39:54 EDT 2025
Mon Sep 01 02:50:05 EDT 2025
Wed Sep 03 16:45:19 EDT 2025
Mon Sep 01 01:17:00 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Deep learning
EEG-based biometric identification
Pattern recognition
Complex systems optimization
Multi-modal data fusion
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c439t-e3040bd28a6e77e402de72384fd10bd2616182d929b10ed0ebf0b692c81c02273
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3094-3483
OpenAccessLink https://doaj.org/article/264909631cef405e9b3af495be9a3d44
PQID 3233383485
PQPubID 2044308
PageCount 19
ParticipantIDs doaj_primary_oai_doaj_org_article_264909631cef405e9b3af495be9a3d44
proquest_journals_3233383485
crossref_primary_10_1007_s40747_025_02012_6
springer_journals_10_1007_s40747_025_02012_6
PublicationCentury 2000
PublicationDate 2025-09-01
PublicationDateYYYYMMDD 2025-09-01
PublicationDate_xml – month: 09
  year: 2025
  text: 2025-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Heidelberg
PublicationTitle Complex & intelligent systems
PublicationTitleAbbrev Complex Intell. Syst
PublicationYear 2025
Publisher Springer International Publishing
Springer Nature B.V
Springer
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
– name: Springer
References H Zeng (2012_CR14) 2022; 71
2012_CR27
I Shaheen (2012_CR33) 2025
E Maiorana (2012_CR4) 2015; 11
2012_CR29
JS Kumar (2012_CR18) 2012; 38
I Shaheen (2012_CR32) 2025; 315
2012_CR24
2012_CR25
S Yang (2012_CR3) 2017; 47
S-K Yeom (2012_CR36) 2013; 46
M Benomar (2012_CR41) 2022; 22
AL Goldberger (2012_CR16) 2000; 101
A Riera (2012_CR35) 2007; 2008
2012_CR20
P Kumari (2012_CR23) 2015; 65
R Mishra (2012_CR42) 2023
AU Rahman (2012_CR6) 2025; 32
J Kevric (2012_CR8) 2017; 31
A Gramfort (2012_CR31) 2013; 7
2012_CR38
ZAA Alyasseri (2012_CR40) 2020; 105
S-H Liew (2012_CR37) 2015; 7
Y LeCun (2012_CR2) 2015; 521
MU Javed (2012_CR34) 2024; 136
2012_CR19
W-L Zheng (2012_CR5) 2017; 10
AB Tatar (2012_CR9) 2023; 35
2012_CR13
A Khosla (2012_CR1) 2020; 40
MK Abdullah (2012_CR10) 2010; 68
E Maiorana (2012_CR12) 2021; 143
D Chicco (2012_CR26) 2021
E Maiorana (2012_CR39) 2020; 410
G Schalk (2012_CR15) 2004; 51
N Serrano (2012_CR28) 2023
N Bigdely-Shamlo (2012_CR17) 2015; 9
2012_CR7
2012_CR30
2012_CR11
MM Rahman (2012_CR22) 2021; 136
C-C Hsu (2012_CR21) 2017; 640
References_xml – volume: 143
  start-page: 122
  year: 2021
  ident: 2012_CR12
  publication-title: Pattern Recogn Lett
  doi: 10.1016/j.patrec.2021.01.004
– volume: 9
  start-page: 16
  year: 2015
  ident: 2012_CR17
  publication-title: Front Neuroinform
  doi: 10.3389/fninf.2015.00016
– start-page: 73
  volume-title: Artificial neural networks
  year: 2021
  ident: 2012_CR26
  doi: 10.1007/978-1-0716-0826-5_3
– volume: 31
  start-page: 398
  year: 2017
  ident: 2012_CR8
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2016.09.007
– volume: 65
  start-page: 15
  year: 2015
  ident: 2012_CR23
  publication-title: Robot Auton Syst
  doi: 10.1016/j.robot.2014.11.015
– volume: 7
  start-page: 1
  issue: 267
  year: 2013
  ident: 2012_CR31
  publication-title: Front Neurosci
– volume: 32
  start-page: 100265
  year: 2025
  ident: 2012_CR6
  publication-title: SLAS Technol
  doi: 10.1016/j.slast.2025.100265
– volume: 640
  start-page: 42
  year: 2017
  ident: 2012_CR21
  publication-title: Neurosci Lett
  doi: 10.1016/j.neulet.2017.01.022
– volume: 51
  start-page: 1034
  issue: 6
  year: 2004
  ident: 2012_CR15
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2004.827072
– ident: 2012_CR27
  doi: 10.18653/v1/W16-1617
– ident: 2012_CR30
  doi: 10.1109/IJCNN.2019.8852295
– volume: 11
  start-page: 163
  issue: 1
  year: 2015
  ident: 2012_CR4
  publication-title: IEEE Trans Inf Forensics Secur
  doi: 10.1109/TIFS.2015.2481870
– volume: 40
  start-page: 649
  issue: 2
  year: 2020
  ident: 2012_CR1
  publication-title: Biocybern Biomed Eng
  doi: 10.1016/j.bbe.2020.02.002
– volume: 46
  start-page: 1159
  issue: 4
  year: 2013
  ident: 2012_CR36
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2012.10.023
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  ident: 2012_CR2
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 38
  start-page: 2525
  year: 2012
  ident: 2012_CR18
  publication-title: Proc Eng
  doi: 10.1016/j.proeng.2012.06.298
– ident: 2012_CR29
  doi: 10.1109/ICASSP39728.2021.9414722
– volume: 2008
  start-page: 1
  year: 2007
  ident: 2012_CR35
  publication-title: EURASIP J Adv Signal Process
  doi: 10.1155/2008/143728
– ident: 2012_CR19
  doi: 10.1007/978-3-642-27183-0_12
– ident: 2012_CR20
  doi: 10.1109/ICOIACT.2018.8350673
– volume: 410
  start-page: 374
  year: 2020
  ident: 2012_CR39
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.06.009
– volume: 68
  start-page: 1123
  year: 2010
  ident: 2012_CR10
  publication-title: World Acad Sci Eng Technol
– year: 2025
  ident: 2012_CR33
  publication-title: Med Biol Eng Comput
  doi: 10.1007/s11517-025-03338-6
– ident: 2012_CR13
  doi: 10.1007/978-3-030-30754-7_1
– year: 2023
  ident: 2012_CR28
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-023-08610-0
– year: 2023
  ident: 2012_CR42
  publication-title: Cognit Neurodyn
  doi: 10.1007/s11571-023-09967-7
– volume: 10
  start-page: 417
  issue: 3
  year: 2017
  ident: 2012_CR5
  publication-title: IEEE Trans Affect Comput
  doi: 10.1109/TAFFC.2017.2712143
– ident: 2012_CR11
  doi: 10.1109/BTAS.2010.5634515
– volume: 71
  start-page: 1
  year: 2022
  ident: 2012_CR14
  publication-title: IEEE Trans Instrum Meas
– volume: 101
  start-page: e215
  issue: 23
  year: 2000
  ident: 2012_CR16
  publication-title: Circulation
  doi: 10.1161/01.CIR.101.23.e215
– ident: 2012_CR24
  doi: 10.1145/2815317.2815341
– volume: 7
  start-page: 85
  issue: 3
  year: 2015
  ident: 2012_CR37
  publication-title: Int J Adv Soft Comput Appl
– volume: 35
  start-page: 1009
  issue: 1
  year: 2023
  ident: 2012_CR9
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-022-07795-0
– volume: 105
  start-page: 107393
  year: 2020
  ident: 2012_CR40
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2020.107393
– ident: 2012_CR38
  doi: 10.1145/3058060.3058068
– volume: 136
  start-page: 104696
  year: 2021
  ident: 2012_CR22
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2021.104696
– volume: 136
  start-page: 103006
  year: 2024
  ident: 2012_CR34
  publication-title: Simul Model Pract Theory
  doi: 10.1016/j.simpat.2024.103006
– volume: 22
  start-page: 9547
  issue: 23
  year: 2022
  ident: 2012_CR41
  publication-title: Sensors
  doi: 10.3390/s22239547
– volume: 47
  start-page: 958
  issue: 6
  year: 2017
  ident: 2012_CR3
  publication-title: IEEE Trans Hum Mach Syst
  doi: 10.1109/THMS.2017.2682115
– ident: 2012_CR7
  doi: 10.1007/978-3-319-67777-4_16
– ident: 2012_CR25
  doi: 10.1142/9789812797926_0003
– volume: 315
  start-page: 113284
  year: 2025
  ident: 2012_CR32
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2025.113284
SSID ssj0001778302
ssib044733412
Score 2.3018749
Snippet The integration of diverse data modalities is critical for advancing the understanding and optimization of complex systems. In this context, EEG-based...
Abstract The integration of diverse data modalities is critical for advancing the understanding and optimization of complex systems. In this context, EEG-based...
SourceID doaj
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 398
SubjectTerms Access control
Artificial intelligence
Biometric identification
Biometrics
Brain research
Complex systems
Complex systems optimization
Complexity
Computational Intelligence
Cybersecurity
Data analysis
Data integration
Data Structures and Information Theory
Data transmission
Deep learning
EEG-based biometric identification
Electroencephalography
Engineering
Identification systems
Investigations
Machine learning
Modal data
Multi-modal data fusion
Neural networks
Neurosciences
Original Article
Pattern recognition
Physiology
Self organizing systems
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3PT9swFLY2uLDDtA0QBYZ82A0skthx4hNap3bVJCqEQOJmxXk24rC2tOX_33uuk4pJcHUSK3o_7Peen7-PsR-goUB_bkSmMy-UhlI4XTrhKqkbZ8oCYjHneqon9-rPQ_mQCm6r1FbZrYlxoYZ5SzXyS1lIyqZUXV4tngWxRtHpaqLQ-Mh2cQmuMfnaHY6mN7edRSlVSanSBh6rLlVFgFfEOJcbI1Q8uzzu79MpgpMXxPCKUVReCP1qt4qg_q8i0f8OT-OeNP7CPqdgkv_caP8r--Bn39in6x6JdbXPniJtcouf89Hot6BNC3i8c0_Q_PwJUrdQVBBPrD08thmKv3PA2amHlIcXqqrxZgYcvF_wRDbxyHsM2NUBux-P7n5NRKJXEC1GIWvhJTqwg6JutK8qj4kkeKIgUwFyGteEpY-6KozLMw-ZdyFz2hRtnbcEPCgP2c5sPvNHjNdagwkQKhWUamRpmpBL8ABliQFElg_YeSdGu9igaNgeLzkK3aLQbRS61QM2JEn3bxICdhyYLx9tciiLgZzB9EvmrQ8YdHrjZBMw23PeNBKUGrDTTk82ueXKbo1owC463W0fv_1Lx-_PdsL2img11Ht2ynbWyxf_HYOVtTtLFvkPhuDjkw
  priority: 102
  providerName: ProQuest
– databaseName: Springer Journals Complete - Open Access
  dbid: C24
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV25TsQwELU4GigQp1guuaADS0l8ZF0C2mWFBBVIdFacsREFu4hd_p8Z44RDoqCMYyWRnyfzxh6_YewUDFRoz40oTBGEMqCFN9oLX0vTeKsrSIs5t3dm8qBuHvVjPhQ277Lduy3J9KfuD7sp0noXVH4VKU5ZCbPMVjXG7jSvr740x5WqpVTZaaeVlromkSuqMldaK1Tarzz4-7E_PFQS8v_BPn9tmCY_NN5kG5lA8otPxLfYUphus_VvsoJ4ddtrsc532HMqnNziHT4aXQtyW8DTqXsS5-fPkPOFEkQ81-3hKdFQvMwA30VZpDy-07oab6bAIYRXnstNPPFeBXa-yx7Go_uricgFFkSLPGQhgkQT9lANGxPqOmAoCYGKkKkIJbUbUtNHtCrryyJAEXwsvLFVOyxbkh6Ue2xlOpuGfcaHxoCNEGsVlWqktk0sJQQArZFCFOWAnXWD6l4_dTRcr5icIHAIgUsQODNglzTufU_SwE4Ns7cnl03KIZWzGIDJsg0RaWewXjYR4z0fbCNBqQE76lBz2TDnTlaSgnI11AN23iH5dfvvTzr4X_dDtlalOUXZaEdsZfH2Ho6Rviz8SZqtH5Uv41g
  priority: 102
  providerName: Springer Nature
Title Advancing EEG-based biometric identification through multi-modal data fusion and deep learning techniques
URI https://link.springer.com/article/10.1007/s40747-025-02012-6
https://www.proquest.com/docview/3233383485
https://doaj.org/article/264909631cef405e9b3af495be9a3d44
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwEB0VeimHqi2tupSufOitWE1sx4mPy2oXtBKoaovEzYozdsWhC2KX_8-MN5tCpYoLl0RyPmTNjDXP9vg9gC9oUdF4bmVhiyiNxUoGWwUZam3b4CqFeTHn7NyeXpjFZXX5QOqLa8I29MAbw32jhO0IZuuyi4nARXRBt4lQfYiu1WgyEyjlvAeTKYokY2qtTZ-482pLXTPRFSvNlc5Jk_csD4ZzdIZp5CUruxJ6KpW0j7JUJvN_hED_2TTNuWj-Bl73IFJMNp1_Cy_i8h3snQ0MrKt9uMpyyR19LmazE8nJCkU-a8-U_OIK-yqh7BjRq_WIXF4o_1wj_Z1rR0W649U00S5RYIw3oheZ-C0G7tfVe7iYz35NT2UvqyA7Qh9rGTUN3ICqaW2s60gTSIwsPWYSltxumUOffKRcKIuIRQypCNaprik7JhzUH2B3eb2MH0E01qJLmGqTjGl15dpUaoyIVUXAoShH8HVrRn-zYc_wA09yNrono_tsdG9HcMyWHt5k5uvcQPHg-3jwT8XDCA63fvL9cFx5rTRPxU1TjeBo67u_j__fpYPn6NIneKVybHFl2iHsrm_v4meCMuswhp1mfjKGl5PJ4ueC7sez8-8_qHWqDF_tdJzj-h6-bPAr
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOFU9121J8gBNYJLbjxAdUFbrbLe321Eq9mThjVz2wu3S3QvwpfiMeb5KqSHDrNQ_LGs94Hh5_H8Bb1CiiPdc805nnSmPBnS4cd6XUtTOFwFTMmZzq8bn6elFcrMHv7i4MtVV2e2LaqHHWUI38oxSSsilVFXvzH5xYo-h0taPQWKnFsf_1M6Zsi09HB3F93wkxGp59GfOWVYA30fkuuY8JfOZQVLX2Zelj_oSemLdUwJyea4KQj1MUxuWZx8y7kDltRFPlDeHtyTjuA3iopDRkUdXosNNfpUopVRsupBpPWRK8FvHb5cZwlU5Kt_rbe4rA6znxycaYLRdc3_GNiULgTtz711Ft8oCjp7DRhq5sf6Vrz2DNT5_Dk0mP-7p4AVeJpLmJv7Ph8JCTi0SWbvgTEQC7wrY3KakDazmCWGpq5N9nGEenjlUWbqiGx-opMvR-zlpqi0vWI84uXsL5vYj9FaxPZ1O_CazSGk3AUKqgVC0LU4dcokcsihiuZPkA3nditPMVZoft0ZmT0G0Uuk1Ct3oAn0nS_ZeEt50ezK4vbWu-NoaNJiZ7Mm98iCGuN07WIeaWzptaolID2OnWybabwMLequwAPnRrd_v631Pa-v9ob-DR-GxyYk-OTo-34bFIGkRdbzuwvry-8a9jmLR0u0k3GXy7b2P4A_z0Hfw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB4VKlX0UNHSqkt5-NBbsUhix1kf6XYX-gD1UCRuVpyxEYdmV-zy_zvjTQJU4sAxtpVEHo_mG8_MNwCf0WBB-lzLzGRBaoOl9Kb00lfK1N6WBabLnPMLc3apf1yVVw-q-FO2ex-SXNc0MEtTuzpeYDweCt80875LbsVKcCcvpNmAl-SppEDtxEz6E6V1pZTuDHi6dakqJrzijnO5tVKn2OXu0699ZK0Sqf8jJPpf8DTZpNk2vOnApDhZS_8tvAjtO3j9gGKQns4HXtblDtykJsoNzYjp9FSyCUORKvCZqF_cYJc7lMQluh4-IiUdyr9zpG9xRqmId3zHJuoWBYawEF3riWsxMMIu38PlbPpncia7ZguyIUyykkGROnssxrUJVRXIrcTADcl0xJzHDTPrk-QK6_MsYBZ8zLyxRTPOG6YhVB9gs5234SOIsTFoI8ZKR61rVdo65goDYlkSnMjyEXzpN9Ut1pwabmBPTiJwJAKXRODMCL7yvg8rmQ87Dcxvr12nXo5gnSVnTOVNiARBg_WqjuT7-WBrhVqPYK-XmuuUdOlUodhB1-NyBEe9JO-nn_6l3ectP4RXv7_N3K_vFz8_wVaRjhcnqe3B5ur2LuwTqln5g3Rw_wE3G-qw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Advancing+EEG-based+biometric+identification+through+multi-modal+data+fusion+and+deep+learning+techniques&rft.jtitle=Complex+%26+intelligent+systems&rft.au=Touseef+Ur+Rehman&rft.au=Madallah+Alruwaili&rft.au=Muhammad+Hameed+Siddiqi&rft.au=Yousef+Alhwaiti&rft.date=2025-09-01&rft.pub=Springer&rft.issn=2199-4536&rft.eissn=2198-6053&rft.volume=11&rft.issue=9&rft.spage=1&rft.epage=19&rft_id=info:doi/10.1007%2Fs40747-025-02012-6&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_264909631cef405e9b3af495be9a3d44
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2199-4536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2199-4536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2199-4536&client=summon