Advancing EEG-based biometric identification through multi-modal data fusion and deep learning techniques
The integration of diverse data modalities is critical for advancing the understanding and optimization of complex systems. In this context, EEG-based biometric identification represents a unique challenge and opportunity for multi-modal data fusion. EEG signals, characterized by their high complexi...
Saved in:
Published in | Complex & intelligent systems Vol. 11; no. 9; pp. 398 - 19 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
01.09.2025
Springer Nature B.V Springer |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The integration of diverse data modalities is critical for advancing the understanding and optimization of complex systems. In this context, EEG-based biometric identification represents a unique challenge and opportunity for multi-modal data fusion. EEG signals, characterized by their high complexity and variability, offer a non-intrusive and reliable means of individual identification. This work proposes an advanced deep learning-based framework to extract and analyze distinctive EEG frequency patterns, enhancing the accuracy and robustness of EEG-based biometric systems. Two experimental setups were designed to evaluate the intelligent fusion of EEG data across varied brain activity tasks. In the first setup, the model was trained on data from subjects performing a single task, then assessed on its generalization across diverse tasks, demonstrating its ability to adapt to heterogeneous data streams. This methodology achieved a biometric recognition accuracy of up to 99%, highlighting the potential of intelligent data integration techniques in uncovering hidden patterns within complex physiological data. By leveraging the synergy of multi-modal data analysis and deep learning, this work contributes to the broader objective of developing self-organizing systems capable of adapting to diverse data sources. These findings underscore the transformative potential of EEG-based biometrics within the broader domain of multi-modal data fusion, offering promising applications in healthcare, security, and beyond. |
---|---|
AbstractList | The integration of diverse data modalities is critical for advancing the understanding and optimization of complex systems. In this context, EEG-based biometric identification represents a unique challenge and opportunity for multi-modal data fusion. EEG signals, characterized by their high complexity and variability, offer a non-intrusive and reliable means of individual identification. This work proposes an advanced deep learning-based framework to extract and analyze distinctive EEG frequency patterns, enhancing the accuracy and robustness of EEG-based biometric systems. Two experimental setups were designed to evaluate the intelligent fusion of EEG data across varied brain activity tasks. In the first setup, the model was trained on data from subjects performing a single task, then assessed on its generalization across diverse tasks, demonstrating its ability to adapt to heterogeneous data streams. This methodology achieved a biometric recognition accuracy of up to 99%, highlighting the potential of intelligent data integration techniques in uncovering hidden patterns within complex physiological data. By leveraging the synergy of multi-modal data analysis and deep learning, this work contributes to the broader objective of developing self-organizing systems capable of adapting to diverse data sources. These findings underscore the transformative potential of EEG-based biometrics within the broader domain of multi-modal data fusion, offering promising applications in healthcare, security, and beyond. Abstract The integration of diverse data modalities is critical for advancing the understanding and optimization of complex systems. In this context, EEG-based biometric identification represents a unique challenge and opportunity for multi-modal data fusion. EEG signals, characterized by their high complexity and variability, offer a non-intrusive and reliable means of individual identification. This work proposes an advanced deep learning-based framework to extract and analyze distinctive EEG frequency patterns, enhancing the accuracy and robustness of EEG-based biometric systems. Two experimental setups were designed to evaluate the intelligent fusion of EEG data across varied brain activity tasks. In the first setup, the model was trained on data from subjects performing a single task, then assessed on its generalization across diverse tasks, demonstrating its ability to adapt to heterogeneous data streams. This methodology achieved a biometric recognition accuracy of up to 99%, highlighting the potential of intelligent data integration techniques in uncovering hidden patterns within complex physiological data. By leveraging the synergy of multi-modal data analysis and deep learning, this work contributes to the broader objective of developing self-organizing systems capable of adapting to diverse data sources. These findings underscore the transformative potential of EEG-based biometrics within the broader domain of multi-modal data fusion, offering promising applications in healthcare, security, and beyond. |
ArticleNumber | 398 |
Author | Siddiqi, Muhammad Hameed Alam, Maaz Halim, Zahid Rehman, Touseef Ur Anwar, Sajid Alruwaili, Madallah Alhwaiti, Yousef |
Author_xml | – sequence: 1 givenname: Touseef Ur surname: Rehman fullname: Rehman, Touseef Ur organization: Ghulam Ishaq Khan Institute of Engineering Sciences and Technology – sequence: 2 givenname: Madallah surname: Alruwaili fullname: Alruwaili, Madallah email: madallah@ju.edu.sa organization: College of Computer and Information Sciences, Jouf University – sequence: 3 givenname: Muhammad Hameed surname: Siddiqi fullname: Siddiqi, Muhammad Hameed organization: College of Computer and Information Sciences, Jouf University – sequence: 4 givenname: Yousef surname: Alhwaiti fullname: Alhwaiti, Yousef organization: College of Computer and Information Sciences, Jouf University – sequence: 5 givenname: Sajid surname: Anwar fullname: Anwar, Sajid organization: Institute of Management Sciences – sequence: 6 givenname: Zahid orcidid: 0000-0003-3094-3483 surname: Halim fullname: Halim, Zahid email: zahidh@yuntech.edu.tw organization: Machine Intelligence and Affective Systems Laboratory, National Yunlin University of Science and Technology – sequence: 7 givenname: Maaz surname: Alam fullname: Alam, Maaz organization: Ghulam Ishaq Khan Institute of Engineering Sciences and Technology |
BookMark | eNp9kU9r3DAQxU1IoWmaL9CToGe3oz-WrGMI2zQQ6KU9C1ka72rxShtJDuTb116X9taDkBi995sZ3ofmOqaITfOJwhcKoL4WAUqoFli3HKCslVfNDaO6byV0_Pry1q3ouHzf3JVyBACqVM-B3TTh3r_a6ELck93usR1sQU-GkE5Yc3AkeIw1jMHZGlIk9ZDTvD-Q0zzV0J6StxPxtloyzmX9t9ETj3gmE9ocV2hFd4jhZcbysXk32qng3Z_7tvn1bffz4Xv7_OPx6eH-uXWC69oiBwGDZ72VqBQKYB4V470YPV3rkkraM6-ZHiigBxxGGKRmrqcOGFP8tnnauD7ZoznncLL5zSQbzKWQ8t7YXIOb0DApNGjJqcNRQId64HYUuhtQW-6FWFifN9Y5p3WHao5pznEZ33DGOe-56LtFxTaVy6mUjOPfrhTMmpDZEjJLQuaSkJGLiW-msojjHvM_9H9cvwFcp5Tc |
Cites_doi | 10.1016/j.patrec.2021.01.004 10.3389/fninf.2015.00016 10.1007/978-1-0716-0826-5_3 10.1016/j.bspc.2016.09.007 10.1016/j.robot.2014.11.015 10.1016/j.slast.2025.100265 10.1016/j.neulet.2017.01.022 10.1109/TBME.2004.827072 10.18653/v1/W16-1617 10.1109/IJCNN.2019.8852295 10.1109/TIFS.2015.2481870 10.1016/j.bbe.2020.02.002 10.1016/j.patcog.2012.10.023 10.1038/nature14539 10.1016/j.proeng.2012.06.298 10.1109/ICASSP39728.2021.9414722 10.1155/2008/143728 10.1007/978-3-642-27183-0_12 10.1109/ICOIACT.2018.8350673 10.1016/j.neucom.2020.06.009 10.1007/s11517-025-03338-6 10.1007/978-3-030-30754-7_1 10.1007/s00521-023-08610-0 10.1007/s11571-023-09967-7 10.1109/TAFFC.2017.2712143 10.1109/BTAS.2010.5634515 10.1161/01.CIR.101.23.e215 10.1145/2815317.2815341 10.1007/s00521-022-07795-0 10.1016/j.patcog.2020.107393 10.1145/3058060.3058068 10.1016/j.compbiomed.2021.104696 10.1016/j.simpat.2024.103006 10.3390/s22239547 10.1109/THMS.2017.2682115 10.1007/978-3-319-67777-4_16 10.1142/9789812797926_0003 10.1016/j.knosys.2025.113284 |
ContentType | Journal Article |
Copyright | The Author(s) 2025 The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2025 – notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI DOA |
DOI | 10.1007/s40747-025-02012-6 |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea SciTech Premium Collection Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Acceso a contenido Full Text - Doaj |
DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Open Access url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Mathematics |
EISSN | 2198-6053 |
EndPage | 19 |
ExternalDocumentID | oai_doaj_org_article_264909631cef405e9b3af495be9a3d44 10_1007_s40747_025_02012_6 |
GroupedDBID | 0R~ 8FE 8FG AAJSJ AAKKN AASML ABEEZ ABFTD ACACY ACGFS ACULB ADMLS AFGXO AFKRA AHBYD AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP ARAPS ASPBG AVWKF BAPOH BENPR BGLVJ C24 C6C CCPQU EBLON EBS GROUPED_DOAJ HCIFZ IAO ISR ITC OK1 P62 PHGZM PHGZT PIMPY PQGLB PROAC PUEGO SOJ AAYXX AHSBF CITATION EJD ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI |
ID | FETCH-LOGICAL-c439t-e3040bd28a6e77e402de72384fd10bd2616182d929b10ed0ebf0b692c81c02273 |
IEDL.DBID | DOA |
ISSN | 2199-4536 |
IngestDate | Mon Sep 01 19:39:54 EDT 2025 Mon Sep 01 02:50:05 EDT 2025 Wed Sep 03 16:45:19 EDT 2025 Mon Sep 01 01:17:00 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | Deep learning EEG-based biometric identification Pattern recognition Complex systems optimization Multi-modal data fusion |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c439t-e3040bd28a6e77e402de72384fd10bd2616182d929b10ed0ebf0b692c81c02273 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-3094-3483 |
OpenAccessLink | https://doaj.org/article/264909631cef405e9b3af495be9a3d44 |
PQID | 3233383485 |
PQPubID | 2044308 |
PageCount | 19 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_264909631cef405e9b3af495be9a3d44 proquest_journals_3233383485 crossref_primary_10_1007_s40747_025_02012_6 springer_journals_10_1007_s40747_025_02012_6 |
PublicationCentury | 2000 |
PublicationDate | 2025-09-01 |
PublicationDateYYYYMMDD | 2025-09-01 |
PublicationDate_xml | – month: 09 year: 2025 text: 2025-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: Heidelberg |
PublicationTitle | Complex & intelligent systems |
PublicationTitleAbbrev | Complex Intell. Syst |
PublicationYear | 2025 |
Publisher | Springer International Publishing Springer Nature B.V Springer |
Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V – name: Springer |
References | H Zeng (2012_CR14) 2022; 71 2012_CR27 I Shaheen (2012_CR33) 2025 E Maiorana (2012_CR4) 2015; 11 2012_CR29 JS Kumar (2012_CR18) 2012; 38 I Shaheen (2012_CR32) 2025; 315 2012_CR24 2012_CR25 S Yang (2012_CR3) 2017; 47 S-K Yeom (2012_CR36) 2013; 46 M Benomar (2012_CR41) 2022; 22 AL Goldberger (2012_CR16) 2000; 101 A Riera (2012_CR35) 2007; 2008 2012_CR20 P Kumari (2012_CR23) 2015; 65 R Mishra (2012_CR42) 2023 AU Rahman (2012_CR6) 2025; 32 J Kevric (2012_CR8) 2017; 31 A Gramfort (2012_CR31) 2013; 7 2012_CR38 ZAA Alyasseri (2012_CR40) 2020; 105 S-H Liew (2012_CR37) 2015; 7 Y LeCun (2012_CR2) 2015; 521 MU Javed (2012_CR34) 2024; 136 2012_CR19 W-L Zheng (2012_CR5) 2017; 10 AB Tatar (2012_CR9) 2023; 35 2012_CR13 A Khosla (2012_CR1) 2020; 40 MK Abdullah (2012_CR10) 2010; 68 E Maiorana (2012_CR12) 2021; 143 D Chicco (2012_CR26) 2021 E Maiorana (2012_CR39) 2020; 410 G Schalk (2012_CR15) 2004; 51 N Serrano (2012_CR28) 2023 N Bigdely-Shamlo (2012_CR17) 2015; 9 2012_CR7 2012_CR30 2012_CR11 MM Rahman (2012_CR22) 2021; 136 C-C Hsu (2012_CR21) 2017; 640 |
References_xml | – volume: 143 start-page: 122 year: 2021 ident: 2012_CR12 publication-title: Pattern Recogn Lett doi: 10.1016/j.patrec.2021.01.004 – volume: 9 start-page: 16 year: 2015 ident: 2012_CR17 publication-title: Front Neuroinform doi: 10.3389/fninf.2015.00016 – start-page: 73 volume-title: Artificial neural networks year: 2021 ident: 2012_CR26 doi: 10.1007/978-1-0716-0826-5_3 – volume: 31 start-page: 398 year: 2017 ident: 2012_CR8 publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2016.09.007 – volume: 65 start-page: 15 year: 2015 ident: 2012_CR23 publication-title: Robot Auton Syst doi: 10.1016/j.robot.2014.11.015 – volume: 7 start-page: 1 issue: 267 year: 2013 ident: 2012_CR31 publication-title: Front Neurosci – volume: 32 start-page: 100265 year: 2025 ident: 2012_CR6 publication-title: SLAS Technol doi: 10.1016/j.slast.2025.100265 – volume: 640 start-page: 42 year: 2017 ident: 2012_CR21 publication-title: Neurosci Lett doi: 10.1016/j.neulet.2017.01.022 – volume: 51 start-page: 1034 issue: 6 year: 2004 ident: 2012_CR15 publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2004.827072 – ident: 2012_CR27 doi: 10.18653/v1/W16-1617 – ident: 2012_CR30 doi: 10.1109/IJCNN.2019.8852295 – volume: 11 start-page: 163 issue: 1 year: 2015 ident: 2012_CR4 publication-title: IEEE Trans Inf Forensics Secur doi: 10.1109/TIFS.2015.2481870 – volume: 40 start-page: 649 issue: 2 year: 2020 ident: 2012_CR1 publication-title: Biocybern Biomed Eng doi: 10.1016/j.bbe.2020.02.002 – volume: 46 start-page: 1159 issue: 4 year: 2013 ident: 2012_CR36 publication-title: Pattern Recogn doi: 10.1016/j.patcog.2012.10.023 – volume: 521 start-page: 436 issue: 7553 year: 2015 ident: 2012_CR2 publication-title: Nature doi: 10.1038/nature14539 – volume: 38 start-page: 2525 year: 2012 ident: 2012_CR18 publication-title: Proc Eng doi: 10.1016/j.proeng.2012.06.298 – ident: 2012_CR29 doi: 10.1109/ICASSP39728.2021.9414722 – volume: 2008 start-page: 1 year: 2007 ident: 2012_CR35 publication-title: EURASIP J Adv Signal Process doi: 10.1155/2008/143728 – ident: 2012_CR19 doi: 10.1007/978-3-642-27183-0_12 – ident: 2012_CR20 doi: 10.1109/ICOIACT.2018.8350673 – volume: 410 start-page: 374 year: 2020 ident: 2012_CR39 publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.06.009 – volume: 68 start-page: 1123 year: 2010 ident: 2012_CR10 publication-title: World Acad Sci Eng Technol – year: 2025 ident: 2012_CR33 publication-title: Med Biol Eng Comput doi: 10.1007/s11517-025-03338-6 – ident: 2012_CR13 doi: 10.1007/978-3-030-30754-7_1 – year: 2023 ident: 2012_CR28 publication-title: Neural Comput Appl doi: 10.1007/s00521-023-08610-0 – year: 2023 ident: 2012_CR42 publication-title: Cognit Neurodyn doi: 10.1007/s11571-023-09967-7 – volume: 10 start-page: 417 issue: 3 year: 2017 ident: 2012_CR5 publication-title: IEEE Trans Affect Comput doi: 10.1109/TAFFC.2017.2712143 – ident: 2012_CR11 doi: 10.1109/BTAS.2010.5634515 – volume: 71 start-page: 1 year: 2022 ident: 2012_CR14 publication-title: IEEE Trans Instrum Meas – volume: 101 start-page: e215 issue: 23 year: 2000 ident: 2012_CR16 publication-title: Circulation doi: 10.1161/01.CIR.101.23.e215 – ident: 2012_CR24 doi: 10.1145/2815317.2815341 – volume: 7 start-page: 85 issue: 3 year: 2015 ident: 2012_CR37 publication-title: Int J Adv Soft Comput Appl – volume: 35 start-page: 1009 issue: 1 year: 2023 ident: 2012_CR9 publication-title: Neural Comput Appl doi: 10.1007/s00521-022-07795-0 – volume: 105 start-page: 107393 year: 2020 ident: 2012_CR40 publication-title: Pattern Recogn doi: 10.1016/j.patcog.2020.107393 – ident: 2012_CR38 doi: 10.1145/3058060.3058068 – volume: 136 start-page: 104696 year: 2021 ident: 2012_CR22 publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2021.104696 – volume: 136 start-page: 103006 year: 2024 ident: 2012_CR34 publication-title: Simul Model Pract Theory doi: 10.1016/j.simpat.2024.103006 – volume: 22 start-page: 9547 issue: 23 year: 2022 ident: 2012_CR41 publication-title: Sensors doi: 10.3390/s22239547 – volume: 47 start-page: 958 issue: 6 year: 2017 ident: 2012_CR3 publication-title: IEEE Trans Hum Mach Syst doi: 10.1109/THMS.2017.2682115 – ident: 2012_CR7 doi: 10.1007/978-3-319-67777-4_16 – ident: 2012_CR25 doi: 10.1142/9789812797926_0003 – volume: 315 start-page: 113284 year: 2025 ident: 2012_CR32 publication-title: Knowl Based Syst doi: 10.1016/j.knosys.2025.113284 |
SSID | ssj0001778302 ssib044733412 |
Score | 2.3018749 |
Snippet | The integration of diverse data modalities is critical for advancing the understanding and optimization of complex systems. In this context, EEG-based... Abstract The integration of diverse data modalities is critical for advancing the understanding and optimization of complex systems. In this context, EEG-based... |
SourceID | doaj proquest crossref springer |
SourceType | Open Website Aggregation Database Index Database Publisher |
StartPage | 398 |
SubjectTerms | Access control Artificial intelligence Biometric identification Biometrics Brain research Complex systems Complex systems optimization Complexity Computational Intelligence Cybersecurity Data analysis Data integration Data Structures and Information Theory Data transmission Deep learning EEG-based biometric identification Electroencephalography Engineering Identification systems Investigations Machine learning Modal data Multi-modal data fusion Neural networks Neurosciences Original Article Pattern recognition Physiology Self organizing systems |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3PT9swFLY2uLDDtA0QBYZ82A0skthx4hNap3bVJCqEQOJmxXk24rC2tOX_33uuk4pJcHUSK3o_7Peen7-PsR-goUB_bkSmMy-UhlI4XTrhKqkbZ8oCYjHneqon9-rPQ_mQCm6r1FbZrYlxoYZ5SzXyS1lIyqZUXV4tngWxRtHpaqLQ-Mh2cQmuMfnaHY6mN7edRSlVSanSBh6rLlVFgFfEOJcbI1Q8uzzu79MpgpMXxPCKUVReCP1qt4qg_q8i0f8OT-OeNP7CPqdgkv_caP8r--Bn39in6x6JdbXPniJtcouf89Hot6BNC3i8c0_Q_PwJUrdQVBBPrD08thmKv3PA2amHlIcXqqrxZgYcvF_wRDbxyHsM2NUBux-P7n5NRKJXEC1GIWvhJTqwg6JutK8qj4kkeKIgUwFyGteEpY-6KozLMw-ZdyFz2hRtnbcEPCgP2c5sPvNHjNdagwkQKhWUamRpmpBL8ABliQFElg_YeSdGu9igaNgeLzkK3aLQbRS61QM2JEn3bxICdhyYLx9tciiLgZzB9EvmrQ8YdHrjZBMw23PeNBKUGrDTTk82ueXKbo1owC463W0fv_1Lx-_PdsL2img11Ht2ynbWyxf_HYOVtTtLFvkPhuDjkw priority: 102 providerName: ProQuest – databaseName: Springer Journals Complete - Open Access dbid: C24 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV25TsQwELU4GigQp1guuaADS0l8ZF0C2mWFBBVIdFacsREFu4hd_p8Z44RDoqCMYyWRnyfzxh6_YewUDFRoz40oTBGEMqCFN9oLX0vTeKsrSIs5t3dm8qBuHvVjPhQ277Lduy3J9KfuD7sp0noXVH4VKU5ZCbPMVjXG7jSvr740x5WqpVTZaaeVlromkSuqMldaK1Tarzz4-7E_PFQS8v_BPn9tmCY_NN5kG5lA8otPxLfYUphus_VvsoJ4ddtrsc532HMqnNziHT4aXQtyW8DTqXsS5-fPkPOFEkQ81-3hKdFQvMwA30VZpDy-07oab6bAIYRXnstNPPFeBXa-yx7Go_uricgFFkSLPGQhgkQT9lANGxPqOmAoCYGKkKkIJbUbUtNHtCrryyJAEXwsvLFVOyxbkh6Ue2xlOpuGfcaHxoCNEGsVlWqktk0sJQQArZFCFOWAnXWD6l4_dTRcr5icIHAIgUsQODNglzTufU_SwE4Ns7cnl03KIZWzGIDJsg0RaWewXjYR4z0fbCNBqQE76lBz2TDnTlaSgnI11AN23iH5dfvvTzr4X_dDtlalOUXZaEdsZfH2Ho6Rviz8SZqtH5Uv41g priority: 102 providerName: Springer Nature |
Title | Advancing EEG-based biometric identification through multi-modal data fusion and deep learning techniques |
URI | https://link.springer.com/article/10.1007/s40747-025-02012-6 https://www.proquest.com/docview/3233383485 https://doaj.org/article/264909631cef405e9b3af495be9a3d44 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwEB0VeimHqi2tupSufOitWE1sx4mPy2oXtBKoaovEzYozdsWhC2KX_8-MN5tCpYoLl0RyPmTNjDXP9vg9gC9oUdF4bmVhiyiNxUoGWwUZam3b4CqFeTHn7NyeXpjFZXX5QOqLa8I29MAbw32jhO0IZuuyi4nARXRBt4lQfYiu1WgyEyjlvAeTKYokY2qtTZ-482pLXTPRFSvNlc5Jk_csD4ZzdIZp5CUruxJ6KpW0j7JUJvN_hED_2TTNuWj-Bl73IFJMNp1_Cy_i8h3snQ0MrKt9uMpyyR19LmazE8nJCkU-a8-U_OIK-yqh7BjRq_WIXF4o_1wj_Z1rR0W649U00S5RYIw3oheZ-C0G7tfVe7iYz35NT2UvqyA7Qh9rGTUN3ICqaW2s60gTSIwsPWYSltxumUOffKRcKIuIRQypCNaprik7JhzUH2B3eb2MH0E01qJLmGqTjGl15dpUaoyIVUXAoShH8HVrRn-zYc_wA09yNrono_tsdG9HcMyWHt5k5uvcQPHg-3jwT8XDCA63fvL9cFx5rTRPxU1TjeBo67u_j__fpYPn6NIneKVybHFl2iHsrm_v4meCMuswhp1mfjKGl5PJ4ueC7sez8-8_qHWqDF_tdJzj-h6-bPAr |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOFU9121J8gBNYJLbjxAdUFbrbLe321Eq9mThjVz2wu3S3QvwpfiMeb5KqSHDrNQ_LGs94Hh5_H8Bb1CiiPdc805nnSmPBnS4cd6XUtTOFwFTMmZzq8bn6elFcrMHv7i4MtVV2e2LaqHHWUI38oxSSsilVFXvzH5xYo-h0taPQWKnFsf_1M6Zsi09HB3F93wkxGp59GfOWVYA30fkuuY8JfOZQVLX2Zelj_oSemLdUwJyea4KQj1MUxuWZx8y7kDltRFPlDeHtyTjuA3iopDRkUdXosNNfpUopVRsupBpPWRK8FvHb5cZwlU5Kt_rbe4rA6znxycaYLRdc3_GNiULgTtz711Ft8oCjp7DRhq5sf6Vrz2DNT5_Dk0mP-7p4AVeJpLmJv7Ph8JCTi0SWbvgTEQC7wrY3KakDazmCWGpq5N9nGEenjlUWbqiGx-opMvR-zlpqi0vWI84uXsL5vYj9FaxPZ1O_CazSGk3AUKqgVC0LU4dcokcsihiuZPkA3nditPMVZoft0ZmT0G0Uuk1Ct3oAn0nS_ZeEt50ezK4vbWu-NoaNJiZ7Mm98iCGuN07WIeaWzptaolID2OnWybabwMLequwAPnRrd_v631Pa-v9ob-DR-GxyYk-OTo-34bFIGkRdbzuwvry-8a9jmLR0u0k3GXy7b2P4A_z0Hfw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB4VKlX0UNHSqkt5-NBbsUhix1kf6XYX-gD1UCRuVpyxEYdmV-zy_zvjTQJU4sAxtpVEHo_mG8_MNwCf0WBB-lzLzGRBaoOl9Kb00lfK1N6WBabLnPMLc3apf1yVVw-q-FO2ex-SXNc0MEtTuzpeYDweCt80875LbsVKcCcvpNmAl-SppEDtxEz6E6V1pZTuDHi6dakqJrzijnO5tVKn2OXu0699ZK0Sqf8jJPpf8DTZpNk2vOnApDhZS_8tvAjtO3j9gGKQns4HXtblDtykJsoNzYjp9FSyCUORKvCZqF_cYJc7lMQluh4-IiUdyr9zpG9xRqmId3zHJuoWBYawEF3riWsxMMIu38PlbPpncia7ZguyIUyykkGROnssxrUJVRXIrcTADcl0xJzHDTPrk-QK6_MsYBZ8zLyxRTPOG6YhVB9gs5234SOIsTFoI8ZKR61rVdo65goDYlkSnMjyEXzpN9Ut1pwabmBPTiJwJAKXRODMCL7yvg8rmQ87Dcxvr12nXo5gnSVnTOVNiARBg_WqjuT7-WBrhVqPYK-XmuuUdOlUodhB1-NyBEe9JO-nn_6l3ectP4RXv7_N3K_vFz8_wVaRjhcnqe3B5ur2LuwTqln5g3Rw_wE3G-qw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Advancing+EEG-based+biometric+identification+through+multi-modal+data+fusion+and+deep+learning+techniques&rft.jtitle=Complex+%26+intelligent+systems&rft.au=Touseef+Ur+Rehman&rft.au=Madallah+Alruwaili&rft.au=Muhammad+Hameed+Siddiqi&rft.au=Yousef+Alhwaiti&rft.date=2025-09-01&rft.pub=Springer&rft.issn=2199-4536&rft.eissn=2198-6053&rft.volume=11&rft.issue=9&rft.spage=1&rft.epage=19&rft_id=info:doi/10.1007%2Fs40747-025-02012-6&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_264909631cef405e9b3af495be9a3d44 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2199-4536&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2199-4536&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2199-4536&client=summon |