Homogeneous-Multiset-CCA-Based Brain Covariation and Contravariance Connectivity Network Modeling
Brain connectivity networks based on functional magnetic resonance imaging (fMRI) have expanded our understanding of brain functions in both healthy and diseased states. However, most current studies construct connectivity networks using averaged regional time courses with the strong assumption that...
Saved in:
Published in | IEEE transactions on neural systems and rehabilitation engineering Vol. 31; pp. 3556 - 3565 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Brain connectivity networks based on functional magnetic resonance imaging (fMRI) have expanded our understanding of brain functions in both healthy and diseased states. However, most current studies construct connectivity networks using averaged regional time courses with the strong assumption that the activities of voxels contained in each brain region are similar, ignoring their possible variations. Additionally, pairwise correlation analysis is often adopted with more attention to positive relationships, while joint interactions at the network level as well as anti-correlations are less investigated. In this paper, to provide a new strategy for regional activity representation and brain connectivity modeling, a novel homogeneous multiset canonical correlation analysis (HMCCA) model is proposed, which enforces sign constraints on the weights of voxels to guarantee homogeneity within each brain region. It is capable of obtaining regional representative signals and constructing covariation and contravariance networks simultaneously, at both group and subject levels. Validations on two sessions of fMRI data verified its reproducibility and reliability when dealing with brain connectivity networks. Further experiments on subjects with and without Parkinson's disease (PD) revealed significant alterations in brain connectivity patterns, which were further associated with clinical scores and demonstrated superior prediction ability, indicating its potential in clinical practice. |
---|---|
AbstractList | Brain connectivity networks based on functional magnetic resonance imaging (fMRI) have expanded our understanding of brain functions in both healthy and diseased states. However, most current studies construct connectivity networks using averaged regional time courses with the strong assumption that the activities of voxels contained in each brain region are similar, ignoring their possible variations. Additionally, pairwise correlation analysis is often adopted with more attention to positive relationships, while joint interactions at the network level as well as anti-correlations are less investigated. In this paper, to provide a new strategy for regional activity representation and brain connectivity modeling, a novel homogeneous multiset canonical correlation analysis (HMCCA) model is proposed, which enforces sign constraints on the weights of voxels to guarantee homogeneity within each brain region. It is capable of obtaining regional representative signals and constructing covariation and contravariance networks simultaneously, at both group and subject levels. Validations on two sessions of fMRI data verified its reproducibility and reliability when dealing with brain connectivity networks. Further experiments on subjects with and without Parkinson's disease (PD) revealed significant alterations in brain connectivity patterns, which were further associated with clinical scores and demonstrated superior prediction ability, indicating its potential in clinical practice. Brain connectivity networks based on functional magnetic resonance imaging (fMRI) have expanded our understanding of brain functions in both healthy and diseased states. However, most current studies construct connectivity networks using averaged regional time courses with the strong assumption that the activities of voxels contained in each brain region are similar, ignoring their possible variations. Additionally, pairwise correlation analysis is often adopted with more attention to positive relationships, while joint interactions at the network level as well as anti-correlations are less investigated. In this paper, to provide a new strategy for regional activity representation and brain connectivity modeling, a novel homogeneous multiset canonical correlation analysis (HMCCA) model is proposed, which enforces sign constraints on the weights of voxels to guarantee homogeneity within each brain region. It is capable of obtaining regional representative signals and constructing covariation and contravariance networks simultaneously, at both group and subject levels. Validations on two sessions of fMRI data verified its reproducibility and reliability when dealing with brain connectivity networks. Further experiments on subjects with and without Parkinson's disease (PD) revealed significant alterations in brain connectivity patterns, which were further associated with clinical scores and demonstrated superior prediction ability, indicating its potential in clinical practice.Brain connectivity networks based on functional magnetic resonance imaging (fMRI) have expanded our understanding of brain functions in both healthy and diseased states. However, most current studies construct connectivity networks using averaged regional time courses with the strong assumption that the activities of voxels contained in each brain region are similar, ignoring their possible variations. Additionally, pairwise correlation analysis is often adopted with more attention to positive relationships, while joint interactions at the network level as well as anti-correlations are less investigated. In this paper, to provide a new strategy for regional activity representation and brain connectivity modeling, a novel homogeneous multiset canonical correlation analysis (HMCCA) model is proposed, which enforces sign constraints on the weights of voxels to guarantee homogeneity within each brain region. It is capable of obtaining regional representative signals and constructing covariation and contravariance networks simultaneously, at both group and subject levels. Validations on two sessions of fMRI data verified its reproducibility and reliability when dealing with brain connectivity networks. Further experiments on subjects with and without Parkinson's disease (PD) revealed significant alterations in brain connectivity patterns, which were further associated with clinical scores and demonstrated superior prediction ability, indicating its potential in clinical practice. |
Author | Li, Yu Liu, Ying Chan, Piu Chen, Xun Mi, Taomian Ling, Qinrui Liu, Aiping |
Author_xml | – sequence: 1 givenname: Qinrui orcidid: 0000-0003-2368-1745 surname: Ling fullname: Ling, Qinrui email: ll12358@mail.ustc.edu.cn organization: Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, China – sequence: 2 givenname: Aiping orcidid: 0000-0001-8849-5228 surname: Liu fullname: Liu, Aiping email: aipingl@ustc.edu.cn organization: Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, China – sequence: 3 givenname: Yu orcidid: 0000-0003-3758-5893 surname: Li fullname: Li, Yu email: ly666@mail.ustc.edu.cn organization: Institute of Dataspace, Hefei Comprehensive National Science Center, Hefei, China – sequence: 4 givenname: Taomian surname: Mi fullname: Mi, Taomian email: mitaomian27@163.com organization: Department of Neurology, Neurobiology and Geriatrics, Xuanwu Hospital of Capital Medical University, Beijing Institute of Brain Disorders, Beijing, China – sequence: 5 givenname: Piu orcidid: 0000-0002-4620-1268 surname: Chan fullname: Chan, Piu email: pbchan@hotmail.com organization: Department of Neurology, Neurobiology and Geriatrics, Xuanwu Hospital of Capital Medical University, Beijing Institute of Brain Disorders, Beijing, China – sequence: 6 givenname: Ying surname: Liu fullname: Liu, Ying email: felice828@126.com organization: Department of Radiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China – sequence: 7 givenname: Xun orcidid: 0000-0002-4922-8116 surname: Chen fullname: Chen, Xun email: xunchen@ustc.edu.cn organization: Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, China |
BookMark | eNp9UU1v1DAUtFAR_YA_gDhE4tJLFtvPcZJjG5W2UlskKGfLsV9WXrJ2sb1F_fdNskVCPXCy52lmnt7MMTnwwSMhHxldMUbbL_d3P75frDjlsAJgFAR9Q45YVTUl5YwezH8QpQBOD8lxShtKWS2r-h05hFo2XFbyiOirsA1r9Bh2qbzdjdklzGXXnZXnOqEtzqN2vujCo45OZxd8ob2dsM9RLzNvcIYeTXaPLj8Vd5j_hPiruA0WR-fX78nbQY8JP7y8J-Tn14v77qq8-XZ53Z3dlEZAm0trh6HHinNbWSproQdrasZlS1k_IdOLgba8b0zTV2bQBtgAIDly2zKstIQTcr33tUFv1EN0Wx2fVNBOLYMQ10rH7MyIijb9tBNbZkGLXrQtFT2HVksJlg-2mbxO914PMfzeYcpq65LBcdRLUIo3EoDypprXfn5F3YRd9NOlM0tMpdRiNmz2LBNDShEHZVxe8pxydKNiVM2VqqVSNVeqXiqdpPyV9O9t_xV92oscIv4j4AIkreEZb2StLQ |
CODEN | ITNSB3 |
CitedBy_id | crossref_primary_10_1097_WCO_0000000000001280 |
Cites_doi | 10.1016/j.neuroimage.2009.12.011 10.1093/biostatistics/kxs038 10.1109/TMI.2017.2681966 10.1016/j.parkreldis.2019.02.031 10.1007/b98874 10.1093/cercor/bhx179 10.1371/journal.pone.0151391 10.1016/j.neuroimage.2013.04.007 10.1155/2012/412512 10.1038/s41592-018-0235-4 10.1109/TBME.2014.2359211 10.1016/j.jneumeth.2010.11.029 10.1016/j.neuroimage.2020.117126 10.1016/j.pscychresns.2018.12.013 10.1016/j.neuroimage.2013.05.041 10.1109/TMI.2020.2970375 10.1038/s41593-019-0357-8 10.1002/hbm.25090 10.1109/JBHI.2022.3196689 10.1109/JBHI.2021.3083879 10.1093/biostatistics/kxp008 10.1016/j.neuroimage.2012.06.035 10.1002/hbm.22528 10.1016/j.neuroimage.2014.03.034 10.1109/TMI.2019.2918839 10.1016/j.neuroimage.2013.04.127 10.1007/s11682-014-9317-9 10.1007/s12031-021-01915-6 10.1016/j.nicl.2018.10.022 10.1038/mp.2011.177 10.1016/j.neuroimage.2016.12.018 10.1002/mds.28566 10.1088/1741-2552/ab4341 10.1016/j.neuroimage.2005.12.057 10.1002/hbm.20661 10.1016/j.neuroimage.2007.06.017 10.1038/nrn2915 10.1038/nrn1763 10.1016/S1053-8119(03)00160-5 10.1109/TNSRE.2018.2857501 10.1016/j.media.2021.102297 10.1109/TKDE.2019.2958342 10.1093/brain/aws281 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 DOA |
DOI | 10.1109/TNSRE.2023.3310340 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Neurosciences Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Nursing & Allied Health Premium Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
DatabaseTitleList | Materials Research Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Occupational Therapy & Rehabilitation |
EISSN | 1558-0210 |
EndPage | 3565 |
ExternalDocumentID | oai_doaj_org_article_08b439e91d3a4b49904b239a663d2fd8 10_1109_TNSRE_2023_3310340 10243607 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 82272070; 32271431; 62301344 funderid: 10.13039/501100001809 |
GroupedDBID | --- -~X 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E AAFWJ AAJGR AASAJ AAWTH ABAZT ABVLG ACGFO ACGFS ACIWK ACPRK AENEX AETIX AFPKN AFRAH AGSQL AIBXA ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD ESBDL F5P GROUPED_DOAJ HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL OK1 P2P RIA RIE RNS AAYXX CITATION RIG 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 |
ID | FETCH-LOGICAL-c439t-ddffbe522d5d0674afdc7126901b74acb4f092b8c8b5cfac31f3362e2d91e5a63 |
IEDL.DBID | RIE |
ISSN | 1534-4320 1558-0210 |
IngestDate | Wed Aug 27 01:20:20 EDT 2025 Thu Jul 10 18:29:29 EDT 2025 Sun Jul 13 04:14:43 EDT 2025 Tue Jul 01 00:43:28 EDT 2025 Thu Apr 24 23:11:10 EDT 2025 Wed Aug 27 02:51:02 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by/4.0/legalcode |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c439t-ddffbe522d5d0674afdc7126901b74acb4f092b8c8b5cfac31f3362e2d91e5a63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-3758-5893 0000-0003-2368-1745 0000-0001-8849-5228 0000-0002-4620-1268 0000-0002-4922-8116 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/10243607 |
PMID | 37682656 |
PQID | 2864340748 |
PQPubID | 85423 |
PageCount | 10 |
ParticipantIDs | proquest_journals_2864340748 doaj_primary_oai_doaj_org_article_08b439e91d3a4b49904b239a663d2fd8 proquest_miscellaneous_2863302856 ieee_primary_10243607 crossref_citationtrail_10_1109_TNSRE_2023_3310340 crossref_primary_10_1109_TNSRE_2023_3310340 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20230000 2023-00-00 20230101 2023-01-01 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – year: 2023 text: 20230000 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on neural systems and rehabilitation engineering |
PublicationTitleAbbrev | TNSRE |
PublicationYear | 2023 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref39 ref16 ref38 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref42 ref41 ref22 ref21 ref43 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 |
References_xml | – ident: ref17 doi: 10.1016/j.neuroimage.2009.12.011 – ident: ref31 doi: 10.1093/biostatistics/kxs038 – ident: ref25 doi: 10.1109/TMI.2017.2681966 – ident: ref37 doi: 10.1016/j.parkreldis.2019.02.031 – ident: ref35 doi: 10.1007/b98874 – ident: ref36 doi: 10.1093/cercor/bhx179 – ident: ref7 doi: 10.1371/journal.pone.0151391 – ident: ref12 doi: 10.1016/j.neuroimage.2013.04.007 – ident: ref6 doi: 10.1155/2012/412512 – ident: ref29 doi: 10.1038/s41592-018-0235-4 – ident: ref15 doi: 10.1109/TBME.2014.2359211 – ident: ref13 doi: 10.1016/j.jneumeth.2010.11.029 – ident: ref8 doi: 10.1016/j.neuroimage.2020.117126 – ident: ref3 doi: 10.1016/j.pscychresns.2018.12.013 – ident: ref26 doi: 10.1016/j.neuroimage.2013.05.041 – ident: ref14 doi: 10.1109/TMI.2020.2970375 – ident: ref21 doi: 10.1038/s41593-019-0357-8 – ident: ref32 doi: 10.1002/hbm.25090 – ident: ref24 doi: 10.1109/JBHI.2022.3196689 – ident: ref43 doi: 10.1109/JBHI.2021.3083879 – ident: ref34 doi: 10.1093/biostatistics/kxp008 – ident: ref20 doi: 10.1016/j.neuroimage.2012.06.035 – ident: ref18 doi: 10.1002/hbm.22528 – ident: ref28 doi: 10.1016/j.neuroimage.2014.03.034 – ident: ref4 doi: 10.1109/TMI.2019.2918839 – ident: ref27 doi: 10.1016/j.neuroimage.2013.04.127 – ident: ref38 doi: 10.1007/s11682-014-9317-9 – ident: ref1 doi: 10.1007/s12031-021-01915-6 – ident: ref2 doi: 10.1016/j.nicl.2018.10.022 – ident: ref9 doi: 10.1038/mp.2011.177 – ident: ref30 doi: 10.1016/j.neuroimage.2016.12.018 – ident: ref39 doi: 10.1002/mds.28566 – ident: ref42 doi: 10.1088/1741-2552/ab4341 – ident: ref19 doi: 10.1016/j.neuroimage.2005.12.057 – ident: ref10 doi: 10.1002/hbm.20661 – ident: ref23 doi: 10.1016/j.neuroimage.2007.06.017 – ident: ref41 doi: 10.1038/nrn2915 – ident: ref40 doi: 10.1038/nrn1763 – ident: ref16 doi: 10.1016/S1053-8119(03)00160-5 – ident: ref11 doi: 10.1109/TNSRE.2018.2857501 – ident: ref22 doi: 10.1016/j.media.2021.102297 – ident: ref33 doi: 10.1109/TKDE.2019.2958342 – ident: ref5 doi: 10.1093/brain/aws281 |
SSID | ssj0017657 |
Score | 2.3958247 |
Snippet | Brain connectivity networks based on functional magnetic resonance imaging (fMRI) have expanded our understanding of brain functions in both healthy and... |
SourceID | doaj proquest crossref ieee |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 3556 |
SubjectTerms | Brain Brain connectivity networks Brain mapping Brain modeling Constraint modelling Correlation Correlation analysis Covariance matrices Diseases Estimation Functional magnetic resonance imaging Functionals Homogeneity Magnetic resonance imaging Movement disorders multiset canonical correlation analysis Networks Neural networks Neurodegenerative diseases Neuroimaging Parkinson's disease Reliability |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA7iyYv4qFhfRFAvEs0m2dfRFqUI9lAreAt5nrSVWv39zmS3pSLoxeNmk90kM7szX5KZj5AzaaMV3EvmwZ1gSnHPapMDSgk-VEgkXSsMFH4YFoMndf-cP69QfeGZsCY9cDNx17yyYDNDnXlplAX_nCsrZG3AUnoRfQrzBZu3AFPt_kFZ5OUiRIbX1-Ph4-j2CpnCryQSa-FSx4oZStn6W3qVH__kZGjutshm6yHSm6Zn22QtTHbI-Wo2YDpuUgHQCzr6lmh7l5jB9HUKOhEA0LMUXPse5qzfv2E9MFee9pARgvannwCRUxNqJp5iiqqZSWWgAzQdfnENrQQdNufEKZKmYeh6hzzd3Y77A9ayKDAHEzdn3sdoA7hZPvdgmpSJ3pWZQCIqC1fOqshrYStX2dxF42QWJVi1IHydhdwUco-sT6aTsE8or0zmZIQWAMMC57Y0Ah4KEFH6ospkl2SLSdWuHTkyXbzoBDV4rZMgNApCt4Lokstlm7cmwcavtXsoq2VNTI6dCkBldKsy-i-V6ZIOSnrldULJgpddcrQQvW6_5HctKvDZAPUqaHa6vA3fIG6smCROrCMlOGp5cfAf_TskGzjmZqHniKzPZx_hGFyfuT1JWv4FUwP-dw priority: 102 providerName: Directory of Open Access Journals |
Title | Homogeneous-Multiset-CCA-Based Brain Covariation and Contravariance Connectivity Network Modeling |
URI | https://ieeexplore.ieee.org/document/10243607 https://www.proquest.com/docview/2864340748 https://www.proquest.com/docview/2863302856 https://doaj.org/article/08b439e91d3a4b49904b239a663d2fd8 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Pb9MwFLZgJy4wYGgdYzIS7DI5OLaTJse12lQh0cPopN0s_7xsa6Y15bC_nvfstCogELc2tZNan1_ee7bf9xHySdpoBfeSeQgnmFLcs9ZUkKUEHxoUkm4VFgp_m9eza_X1proZitVTLUwIIR0-CwV-THv5vnNrXCoDCxdK1lg7_hwyt1ystd0yGNeJ1hMsWDElBd9UyPD2y2L-_eqiQKHwQqKulkL9N7AsCK1RuHrHISXe_kFo5Y-3c3I5l6_IfPNn80mT22Ld28I9_cbj-N-j2Scvh-CTnufZ8po8C8s35PMu0TBdZJYBekqvfuHwfkvMrLvvYLqFbr1iqW53FXo2nZ6zCXhCTycoNkGn3Q_IvlMXapaeIvvVo0nXYHrRdK7GZcUKOs9H0CnqsWFV_AG5vrxYTGdsEGhgDuKYnnkfow0QwfnKg9dTJno3LgVqXFn45qyKvBW2cY2tXDROllGCwwzCt2WoTC3fkb1ltwyHhPLGlE5G6AEZXuDcjo2Am0L2KX3dlHJEyg1K2g0jRxGNO52yGN7qBLJGkPUA8oicbfs8ZO6Of7aeIPjblsi7nS4AaHowY80bCyMPbemlURayRa6skK2BuM2L6JsROUCgdx6XMR6R481c0sNLYqVFA-EgJNQKun3c_gzmjXs2JsGJbaSEGLCqj_5y6_fkBQ4jLwsdk73-cR0-QKDU25O0wHCSzOQni0gNmw |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nj9MwELXQcoALn4soLGAk4IIcHNtJk-O22lWB3RyWrrQ3y58XoEHblAO_nhk7rQoIxC1J7aTWeDJvYs97hLySNlrBvWQe4ARTinvWmgqylOBDg0LSrcJC4fOuXlyqD1fV1VisnmphQghp81ko8DCt5fvebfBTGXi4ULLG2vGbEPirMpdr7RYNpnUi9gQfVkxJwbc1Mrx9t-w-XZwUKBVeSFTWUqgAB74F4Bqlq_dCUmLuH6VW_ng_p6Bzepd027-b95p8LjaDLdyP35gc_3s898idEX7S4zxf7pMbYfWAvN6nGqbLzDNA39CLX1i8HxKz6L_2MOFCv1mzVLm7DgObz4_ZDGKhpzOUm6Dz_jvk36kLNStPkf_q2qRrMMFo2lnjsmYF7fImdIqKbFgXf0guT0-W8wUbJRqYAyQzMO9jtAEwnK88xD1lonfTUqDKlYUzZ1XkrbCNa2zlonGyjBJCZhC-LUNlavmIHKz6VXhMKG9M6WSEHpDjBc7t1Ai4KeSf0tdNKSek3FpJu3HkKKPxRac8hrc6GVmjkfVo5Al5u-vzLbN3_LP1DI2_a4nM2-kCGE2Pjqx5Y2HkoS29NMpCvsiVFbI1gNy8iL6ZkEM09N7jso0n5Gg7l_T4mlhr0QAghJRaQbeXu5_BwXHVxiRzYhspAQVW9ZO_3PoFubVYnp_ps_fdx6fkNg4pfyQ6IgfD9SY8A9g02OfJWX4CX9oP7w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Homogeneous-Multiset-CCA-Based+Brain+Covariation+and+Contravariance+Connectivity+Network+Modeling&rft.jtitle=IEEE+transactions+on+neural+systems+and+rehabilitation+engineering&rft.au=Ling%2C+Qinrui&rft.au=Liu%2C+Aiping&rft.au=Li%2C+Yu&rft.au=Mi%2C+Taomian&rft.date=2023&rft.pub=IEEE&rft.issn=1534-4320&rft.volume=31&rft.spage=3556&rft.epage=3565&rft_id=info:doi/10.1109%2FTNSRE.2023.3310340&rft_id=info%3Apmid%2F37682656&rft.externalDocID=10243607 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1534-4320&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1534-4320&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1534-4320&client=summon |