Homogeneous-Multiset-CCA-Based Brain Covariation and Contravariance Connectivity Network Modeling

Brain connectivity networks based on functional magnetic resonance imaging (fMRI) have expanded our understanding of brain functions in both healthy and diseased states. However, most current studies construct connectivity networks using averaged regional time courses with the strong assumption that...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on neural systems and rehabilitation engineering Vol. 31; pp. 3556 - 3565
Main Authors Ling, Qinrui, Liu, Aiping, Li, Yu, Mi, Taomian, Chan, Piu, Liu, Ying, Chen, Xun
Format Journal Article
LanguageEnglish
Published New York IEEE 2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Brain connectivity networks based on functional magnetic resonance imaging (fMRI) have expanded our understanding of brain functions in both healthy and diseased states. However, most current studies construct connectivity networks using averaged regional time courses with the strong assumption that the activities of voxels contained in each brain region are similar, ignoring their possible variations. Additionally, pairwise correlation analysis is often adopted with more attention to positive relationships, while joint interactions at the network level as well as anti-correlations are less investigated. In this paper, to provide a new strategy for regional activity representation and brain connectivity modeling, a novel homogeneous multiset canonical correlation analysis (HMCCA) model is proposed, which enforces sign constraints on the weights of voxels to guarantee homogeneity within each brain region. It is capable of obtaining regional representative signals and constructing covariation and contravariance networks simultaneously, at both group and subject levels. Validations on two sessions of fMRI data verified its reproducibility and reliability when dealing with brain connectivity networks. Further experiments on subjects with and without Parkinson's disease (PD) revealed significant alterations in brain connectivity patterns, which were further associated with clinical scores and demonstrated superior prediction ability, indicating its potential in clinical practice.
AbstractList Brain connectivity networks based on functional magnetic resonance imaging (fMRI) have expanded our understanding of brain functions in both healthy and diseased states. However, most current studies construct connectivity networks using averaged regional time courses with the strong assumption that the activities of voxels contained in each brain region are similar, ignoring their possible variations. Additionally, pairwise correlation analysis is often adopted with more attention to positive relationships, while joint interactions at the network level as well as anti-correlations are less investigated. In this paper, to provide a new strategy for regional activity representation and brain connectivity modeling, a novel homogeneous multiset canonical correlation analysis (HMCCA) model is proposed, which enforces sign constraints on the weights of voxels to guarantee homogeneity within each brain region. It is capable of obtaining regional representative signals and constructing covariation and contravariance networks simultaneously, at both group and subject levels. Validations on two sessions of fMRI data verified its reproducibility and reliability when dealing with brain connectivity networks. Further experiments on subjects with and without Parkinson's disease (PD) revealed significant alterations in brain connectivity patterns, which were further associated with clinical scores and demonstrated superior prediction ability, indicating its potential in clinical practice.
Brain connectivity networks based on functional magnetic resonance imaging (fMRI) have expanded our understanding of brain functions in both healthy and diseased states. However, most current studies construct connectivity networks using averaged regional time courses with the strong assumption that the activities of voxels contained in each brain region are similar, ignoring their possible variations. Additionally, pairwise correlation analysis is often adopted with more attention to positive relationships, while joint interactions at the network level as well as anti-correlations are less investigated. In this paper, to provide a new strategy for regional activity representation and brain connectivity modeling, a novel homogeneous multiset canonical correlation analysis (HMCCA) model is proposed, which enforces sign constraints on the weights of voxels to guarantee homogeneity within each brain region. It is capable of obtaining regional representative signals and constructing covariation and contravariance networks simultaneously, at both group and subject levels. Validations on two sessions of fMRI data verified its reproducibility and reliability when dealing with brain connectivity networks. Further experiments on subjects with and without Parkinson's disease (PD) revealed significant alterations in brain connectivity patterns, which were further associated with clinical scores and demonstrated superior prediction ability, indicating its potential in clinical practice.Brain connectivity networks based on functional magnetic resonance imaging (fMRI) have expanded our understanding of brain functions in both healthy and diseased states. However, most current studies construct connectivity networks using averaged regional time courses with the strong assumption that the activities of voxels contained in each brain region are similar, ignoring their possible variations. Additionally, pairwise correlation analysis is often adopted with more attention to positive relationships, while joint interactions at the network level as well as anti-correlations are less investigated. In this paper, to provide a new strategy for regional activity representation and brain connectivity modeling, a novel homogeneous multiset canonical correlation analysis (HMCCA) model is proposed, which enforces sign constraints on the weights of voxels to guarantee homogeneity within each brain region. It is capable of obtaining regional representative signals and constructing covariation and contravariance networks simultaneously, at both group and subject levels. Validations on two sessions of fMRI data verified its reproducibility and reliability when dealing with brain connectivity networks. Further experiments on subjects with and without Parkinson's disease (PD) revealed significant alterations in brain connectivity patterns, which were further associated with clinical scores and demonstrated superior prediction ability, indicating its potential in clinical practice.
Author Li, Yu
Liu, Ying
Chan, Piu
Chen, Xun
Mi, Taomian
Ling, Qinrui
Liu, Aiping
Author_xml – sequence: 1
  givenname: Qinrui
  orcidid: 0000-0003-2368-1745
  surname: Ling
  fullname: Ling, Qinrui
  email: ll12358@mail.ustc.edu.cn
  organization: Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, China
– sequence: 2
  givenname: Aiping
  orcidid: 0000-0001-8849-5228
  surname: Liu
  fullname: Liu, Aiping
  email: aipingl@ustc.edu.cn
  organization: Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, China
– sequence: 3
  givenname: Yu
  orcidid: 0000-0003-3758-5893
  surname: Li
  fullname: Li, Yu
  email: ly666@mail.ustc.edu.cn
  organization: Institute of Dataspace, Hefei Comprehensive National Science Center, Hefei, China
– sequence: 4
  givenname: Taomian
  surname: Mi
  fullname: Mi, Taomian
  email: mitaomian27@163.com
  organization: Department of Neurology, Neurobiology and Geriatrics, Xuanwu Hospital of Capital Medical University, Beijing Institute of Brain Disorders, Beijing, China
– sequence: 5
  givenname: Piu
  orcidid: 0000-0002-4620-1268
  surname: Chan
  fullname: Chan, Piu
  email: pbchan@hotmail.com
  organization: Department of Neurology, Neurobiology and Geriatrics, Xuanwu Hospital of Capital Medical University, Beijing Institute of Brain Disorders, Beijing, China
– sequence: 6
  givenname: Ying
  surname: Liu
  fullname: Liu, Ying
  email: felice828@126.com
  organization: Department of Radiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
– sequence: 7
  givenname: Xun
  orcidid: 0000-0002-4922-8116
  surname: Chen
  fullname: Chen, Xun
  email: xunchen@ustc.edu.cn
  organization: Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, China
BookMark eNp9UU1v1DAUtFAR_YA_gDhE4tJLFtvPcZJjG5W2UlskKGfLsV9WXrJ2sb1F_fdNskVCPXCy52lmnt7MMTnwwSMhHxldMUbbL_d3P75frDjlsAJgFAR9Q45YVTUl5YwezH8QpQBOD8lxShtKWS2r-h05hFo2XFbyiOirsA1r9Bh2qbzdjdklzGXXnZXnOqEtzqN2vujCo45OZxd8ob2dsM9RLzNvcIYeTXaPLj8Vd5j_hPiruA0WR-fX78nbQY8JP7y8J-Tn14v77qq8-XZ53Z3dlEZAm0trh6HHinNbWSproQdrasZlS1k_IdOLgba8b0zTV2bQBtgAIDly2zKstIQTcr33tUFv1EN0Wx2fVNBOLYMQ10rH7MyIijb9tBNbZkGLXrQtFT2HVksJlg-2mbxO914PMfzeYcpq65LBcdRLUIo3EoDypprXfn5F3YRd9NOlM0tMpdRiNmz2LBNDShEHZVxe8pxydKNiVM2VqqVSNVeqXiqdpPyV9O9t_xV92oscIv4j4AIkreEZb2StLQ
CODEN ITNSB3
CitedBy_id crossref_primary_10_1097_WCO_0000000000001280
Cites_doi 10.1016/j.neuroimage.2009.12.011
10.1093/biostatistics/kxs038
10.1109/TMI.2017.2681966
10.1016/j.parkreldis.2019.02.031
10.1007/b98874
10.1093/cercor/bhx179
10.1371/journal.pone.0151391
10.1016/j.neuroimage.2013.04.007
10.1155/2012/412512
10.1038/s41592-018-0235-4
10.1109/TBME.2014.2359211
10.1016/j.jneumeth.2010.11.029
10.1016/j.neuroimage.2020.117126
10.1016/j.pscychresns.2018.12.013
10.1016/j.neuroimage.2013.05.041
10.1109/TMI.2020.2970375
10.1038/s41593-019-0357-8
10.1002/hbm.25090
10.1109/JBHI.2022.3196689
10.1109/JBHI.2021.3083879
10.1093/biostatistics/kxp008
10.1016/j.neuroimage.2012.06.035
10.1002/hbm.22528
10.1016/j.neuroimage.2014.03.034
10.1109/TMI.2019.2918839
10.1016/j.neuroimage.2013.04.127
10.1007/s11682-014-9317-9
10.1007/s12031-021-01915-6
10.1016/j.nicl.2018.10.022
10.1038/mp.2011.177
10.1016/j.neuroimage.2016.12.018
10.1002/mds.28566
10.1088/1741-2552/ab4341
10.1016/j.neuroimage.2005.12.057
10.1002/hbm.20661
10.1016/j.neuroimage.2007.06.017
10.1038/nrn2915
10.1038/nrn1763
10.1016/S1053-8119(03)00160-5
10.1109/TNSRE.2018.2857501
10.1016/j.media.2021.102297
10.1109/TKDE.2019.2958342
10.1093/brain/aws281
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
DOA
DOI 10.1109/TNSRE.2023.3310340
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Neurosciences Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList
Materials Research Database

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Occupational Therapy & Rehabilitation
EISSN 1558-0210
EndPage 3565
ExternalDocumentID oai_doaj_org_article_08b439e91d3a4b49904b239a663d2fd8
10_1109_TNSRE_2023_3310340
10243607
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 82272070; 32271431; 62301344
  funderid: 10.13039/501100001809
GroupedDBID ---
-~X
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAFWJ
AAJGR
AASAJ
AAWTH
ABAZT
ABVLG
ACGFO
ACGFS
ACIWK
ACPRK
AENEX
AETIX
AFPKN
AFRAH
AGSQL
AIBXA
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
ESBDL
F5P
GROUPED_DOAJ
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
OK1
P2P
RIA
RIE
RNS
AAYXX
CITATION
RIG
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
ID FETCH-LOGICAL-c439t-ddffbe522d5d0674afdc7126901b74acb4f092b8c8b5cfac31f3362e2d91e5a63
IEDL.DBID RIE
ISSN 1534-4320
1558-0210
IngestDate Wed Aug 27 01:20:20 EDT 2025
Thu Jul 10 18:29:29 EDT 2025
Sun Jul 13 04:14:43 EDT 2025
Tue Jul 01 00:43:28 EDT 2025
Thu Apr 24 23:11:10 EDT 2025
Wed Aug 27 02:51:02 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c439t-ddffbe522d5d0674afdc7126901b74acb4f092b8c8b5cfac31f3362e2d91e5a63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-3758-5893
0000-0003-2368-1745
0000-0001-8849-5228
0000-0002-4620-1268
0000-0002-4922-8116
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/10243607
PMID 37682656
PQID 2864340748
PQPubID 85423
PageCount 10
ParticipantIDs proquest_journals_2864340748
doaj_primary_oai_doaj_org_article_08b439e91d3a4b49904b239a663d2fd8
proquest_miscellaneous_2863302856
ieee_primary_10243607
crossref_citationtrail_10_1109_TNSRE_2023_3310340
crossref_primary_10_1109_TNSRE_2023_3310340
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230000
2023-00-00
20230101
2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – year: 2023
  text: 20230000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on neural systems and rehabilitation engineering
PublicationTitleAbbrev TNSRE
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref39
ref16
ref38
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref42
ref41
ref22
ref21
ref43
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
References_xml – ident: ref17
  doi: 10.1016/j.neuroimage.2009.12.011
– ident: ref31
  doi: 10.1093/biostatistics/kxs038
– ident: ref25
  doi: 10.1109/TMI.2017.2681966
– ident: ref37
  doi: 10.1016/j.parkreldis.2019.02.031
– ident: ref35
  doi: 10.1007/b98874
– ident: ref36
  doi: 10.1093/cercor/bhx179
– ident: ref7
  doi: 10.1371/journal.pone.0151391
– ident: ref12
  doi: 10.1016/j.neuroimage.2013.04.007
– ident: ref6
  doi: 10.1155/2012/412512
– ident: ref29
  doi: 10.1038/s41592-018-0235-4
– ident: ref15
  doi: 10.1109/TBME.2014.2359211
– ident: ref13
  doi: 10.1016/j.jneumeth.2010.11.029
– ident: ref8
  doi: 10.1016/j.neuroimage.2020.117126
– ident: ref3
  doi: 10.1016/j.pscychresns.2018.12.013
– ident: ref26
  doi: 10.1016/j.neuroimage.2013.05.041
– ident: ref14
  doi: 10.1109/TMI.2020.2970375
– ident: ref21
  doi: 10.1038/s41593-019-0357-8
– ident: ref32
  doi: 10.1002/hbm.25090
– ident: ref24
  doi: 10.1109/JBHI.2022.3196689
– ident: ref43
  doi: 10.1109/JBHI.2021.3083879
– ident: ref34
  doi: 10.1093/biostatistics/kxp008
– ident: ref20
  doi: 10.1016/j.neuroimage.2012.06.035
– ident: ref18
  doi: 10.1002/hbm.22528
– ident: ref28
  doi: 10.1016/j.neuroimage.2014.03.034
– ident: ref4
  doi: 10.1109/TMI.2019.2918839
– ident: ref27
  doi: 10.1016/j.neuroimage.2013.04.127
– ident: ref38
  doi: 10.1007/s11682-014-9317-9
– ident: ref1
  doi: 10.1007/s12031-021-01915-6
– ident: ref2
  doi: 10.1016/j.nicl.2018.10.022
– ident: ref9
  doi: 10.1038/mp.2011.177
– ident: ref30
  doi: 10.1016/j.neuroimage.2016.12.018
– ident: ref39
  doi: 10.1002/mds.28566
– ident: ref42
  doi: 10.1088/1741-2552/ab4341
– ident: ref19
  doi: 10.1016/j.neuroimage.2005.12.057
– ident: ref10
  doi: 10.1002/hbm.20661
– ident: ref23
  doi: 10.1016/j.neuroimage.2007.06.017
– ident: ref41
  doi: 10.1038/nrn2915
– ident: ref40
  doi: 10.1038/nrn1763
– ident: ref16
  doi: 10.1016/S1053-8119(03)00160-5
– ident: ref11
  doi: 10.1109/TNSRE.2018.2857501
– ident: ref22
  doi: 10.1016/j.media.2021.102297
– ident: ref33
  doi: 10.1109/TKDE.2019.2958342
– ident: ref5
  doi: 10.1093/brain/aws281
SSID ssj0017657
Score 2.3958247
Snippet Brain connectivity networks based on functional magnetic resonance imaging (fMRI) have expanded our understanding of brain functions in both healthy and...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3556
SubjectTerms Brain
Brain connectivity networks
Brain mapping
Brain modeling
Constraint modelling
Correlation
Correlation analysis
Covariance matrices
Diseases
Estimation
Functional magnetic resonance imaging
Functionals
Homogeneity
Magnetic resonance imaging
Movement disorders
multiset canonical correlation analysis
Networks
Neural networks
Neurodegenerative diseases
Neuroimaging
Parkinson's disease
Reliability
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA7iyYv4qFhfRFAvEs0m2dfRFqUI9lAreAt5nrSVWv39zmS3pSLoxeNmk90kM7szX5KZj5AzaaMV3EvmwZ1gSnHPapMDSgk-VEgkXSsMFH4YFoMndf-cP69QfeGZsCY9cDNx17yyYDNDnXlplAX_nCsrZG3AUnoRfQrzBZu3AFPt_kFZ5OUiRIbX1-Ph4-j2CpnCryQSa-FSx4oZStn6W3qVH__kZGjutshm6yHSm6Zn22QtTHbI-Wo2YDpuUgHQCzr6lmh7l5jB9HUKOhEA0LMUXPse5qzfv2E9MFee9pARgvannwCRUxNqJp5iiqqZSWWgAzQdfnENrQQdNufEKZKmYeh6hzzd3Y77A9ayKDAHEzdn3sdoA7hZPvdgmpSJ3pWZQCIqC1fOqshrYStX2dxF42QWJVi1IHydhdwUco-sT6aTsE8or0zmZIQWAMMC57Y0Ah4KEFH6ospkl2SLSdWuHTkyXbzoBDV4rZMgNApCt4Lokstlm7cmwcavtXsoq2VNTI6dCkBldKsy-i-V6ZIOSnrldULJgpddcrQQvW6_5HctKvDZAPUqaHa6vA3fIG6smCROrCMlOGp5cfAf_TskGzjmZqHniKzPZx_hGFyfuT1JWv4FUwP-dw
  priority: 102
  providerName: Directory of Open Access Journals
Title Homogeneous-Multiset-CCA-Based Brain Covariation and Contravariance Connectivity Network Modeling
URI https://ieeexplore.ieee.org/document/10243607
https://www.proquest.com/docview/2864340748
https://www.proquest.com/docview/2863302856
https://doaj.org/article/08b439e91d3a4b49904b239a663d2fd8
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Pb9MwFLZgJy4wYGgdYzIS7DI5OLaTJse12lQh0cPopN0s_7xsa6Y15bC_nvfstCogELc2tZNan1_ee7bf9xHySdpoBfeSeQgnmFLcs9ZUkKUEHxoUkm4VFgp_m9eza_X1proZitVTLUwIIR0-CwV-THv5vnNrXCoDCxdK1lg7_hwyt1ystd0yGNeJ1hMsWDElBd9UyPD2y2L-_eqiQKHwQqKulkL9N7AsCK1RuHrHISXe_kFo5Y-3c3I5l6_IfPNn80mT22Ld28I9_cbj-N-j2Scvh-CTnufZ8po8C8s35PMu0TBdZJYBekqvfuHwfkvMrLvvYLqFbr1iqW53FXo2nZ6zCXhCTycoNkGn3Q_IvlMXapaeIvvVo0nXYHrRdK7GZcUKOs9H0CnqsWFV_AG5vrxYTGdsEGhgDuKYnnkfow0QwfnKg9dTJno3LgVqXFn45qyKvBW2cY2tXDROllGCwwzCt2WoTC3fkb1ltwyHhPLGlE5G6AEZXuDcjo2Am0L2KX3dlHJEyg1K2g0jRxGNO52yGN7qBLJGkPUA8oicbfs8ZO6Of7aeIPjblsi7nS4AaHowY80bCyMPbemlURayRa6skK2BuM2L6JsROUCgdx6XMR6R481c0sNLYqVFA-EgJNQKun3c_gzmjXs2JsGJbaSEGLCqj_5y6_fkBQ4jLwsdk73-cR0-QKDU25O0wHCSzOQni0gNmw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nj9MwELXQcoALn4soLGAk4IIcHNtJk-O22lWB3RyWrrQ3y58XoEHblAO_nhk7rQoIxC1J7aTWeDJvYs97hLySNlrBvWQe4ARTinvWmgqylOBDg0LSrcJC4fOuXlyqD1fV1VisnmphQghp81ko8DCt5fvebfBTGXi4ULLG2vGbEPirMpdr7RYNpnUi9gQfVkxJwbc1Mrx9t-w-XZwUKBVeSFTWUqgAB74F4Bqlq_dCUmLuH6VW_ng_p6Bzepd027-b95p8LjaDLdyP35gc_3s898idEX7S4zxf7pMbYfWAvN6nGqbLzDNA39CLX1i8HxKz6L_2MOFCv1mzVLm7DgObz4_ZDGKhpzOUm6Dz_jvk36kLNStPkf_q2qRrMMFo2lnjsmYF7fImdIqKbFgXf0guT0-W8wUbJRqYAyQzMO9jtAEwnK88xD1lonfTUqDKlYUzZ1XkrbCNa2zlonGyjBJCZhC-LUNlavmIHKz6VXhMKG9M6WSEHpDjBc7t1Ai4KeSf0tdNKSek3FpJu3HkKKPxRac8hrc6GVmjkfVo5Al5u-vzLbN3_LP1DI2_a4nM2-kCGE2Pjqx5Y2HkoS29NMpCvsiVFbI1gNy8iL6ZkEM09N7jso0n5Gg7l_T4mlhr0QAghJRaQbeXu5_BwXHVxiRzYhspAQVW9ZO_3PoFubVYnp_ps_fdx6fkNg4pfyQ6IgfD9SY8A9g02OfJWX4CX9oP7w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Homogeneous-Multiset-CCA-Based+Brain+Covariation+and+Contravariance+Connectivity+Network+Modeling&rft.jtitle=IEEE+transactions+on+neural+systems+and+rehabilitation+engineering&rft.au=Ling%2C+Qinrui&rft.au=Liu%2C+Aiping&rft.au=Li%2C+Yu&rft.au=Mi%2C+Taomian&rft.date=2023&rft.pub=IEEE&rft.issn=1534-4320&rft.volume=31&rft.spage=3556&rft.epage=3565&rft_id=info:doi/10.1109%2FTNSRE.2023.3310340&rft_id=info%3Apmid%2F37682656&rft.externalDocID=10243607
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1534-4320&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1534-4320&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1534-4320&client=summon