Lidocaine Modulates Cytokine Production and Reprograms the Tumor Immune Microenvironment to Enhance Anti-Tumor Immune Responses in Gastric Cancer

Lidocaine, a local anesthetic, has been shown to modulate immune responses. This study examines its effects on cytokine production in peripheral blood mononuclear cells (PBMCs) from healthy donors and tumor-infiltrating immune cells (TIICs) from gastric cancer patients. PBMCs from healthy donors and...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of molecular sciences Vol. 26; no. 7; p. 3236
Main Authors Wu, Yi-Ying, Chen, Ming-Shan, Chen, I-Chun, Wu, Feng-Hsu, Liao, Tsai-Ling, Wen, Hsiao-Wei, Nielsen, Brent L., Liu, Hung-Jen
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 31.03.2025
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Lidocaine, a local anesthetic, has been shown to modulate immune responses. This study examines its effects on cytokine production in peripheral blood mononuclear cells (PBMCs) from healthy donors and tumor-infiltrating immune cells (TIICs) from gastric cancer patients. PBMCs from healthy donors and TIICs from gastric cancer patients were treated with lidocaine. Cytokine production was assessed using flow cytometry and cytokine assays, with a focus on IFN-γ, IL-12, IL-10, TGF-β, and IL-35 levels. Cytotoxicity against primary gastric cancer cells (PGCCs) was also evaluated. Lidocaine inhibited IFN-γ production in CD8+ PBMCs and IL-12 in CD14+ PBMCs while increasing anti-inflammatory cytokines (IL-10, TGF-β, IL-35) in CD4+CD25+ and CD14+ cells. In TIICs, lidocaine enhanced IFN-γ and IL-12 production in CD8+ and CD14+ cells while reducing IL-10, TGF-β, and IL-35 levels, promoting an M1-like phenotype in macrophages. Mechanistically, lidocaine enhanced IFN-γ production in sorted CD8+ TIICs through G-protein-coupled receptor (GPCR) signaling and increased IL-12 production in sorted CD14+ TIICs via the toll-like receptor 4 (TLR4) signaling pathway. Lidocaine also increased IFN-γ production and cytotoxicity in CD8+ TIICs via NF-κB activation. Importantly, lidocaine did not affect the viability of PBMCs, TIICs, or PGCCs at concentrations up to 1.5 mM. Lidocaine reprogrammed the tumor immune microenvironment, enhancing anti-tumor immune responses, suggesting its potential to modulate immune functions in gastric cancer.
AbstractList Lidocaine, a local anesthetic, has been shown to modulate immune responses. This study examines its effects on cytokine production in peripheral blood mononuclear cells (PBMCs) from healthy donors and tumor-infiltrating immune cells (TIICs) from gastric cancer patients. PBMCs from healthy donors and TIICs from gastric cancer patients were treated with lidocaine. Cytokine production was assessed using flow cytometry and cytokine assays, with a focus on IFN-γ, IL-12, IL-10, TGF-β, and IL-35 levels. Cytotoxicity against primary gastric cancer cells (PGCCs) was also evaluated. Lidocaine inhibited IFN-γ production in CD8+ PBMCs and IL-12 in CD14+ PBMCs while increasing anti-inflammatory cytokines (IL-10, TGF-β, IL-35) in CD4+CD25+ and CD14+ cells. In TIICs, lidocaine enhanced IFN-γ and IL-12 production in CD8+ and CD14+ cells while reducing IL-10, TGF-β, and IL-35 levels, promoting an M1-like phenotype in macrophages. Mechanistically, lidocaine enhanced IFN-γ production in sorted CD8+ TIICs through G-protein-coupled receptor (GPCR) signaling and increased IL-12 production in sorted CD14+ TIICs via the toll-like receptor 4 (TLR4) signaling pathway. Lidocaine also increased IFN-γ production and cytotoxicity in CD8+ TIICs via NF-κB activation. Importantly, lidocaine did not affect the viability of PBMCs, TIICs, or PGCCs at concentrations up to 1.5 mM. Lidocaine reprogrammed the tumor immune microenvironment, enhancing anti-tumor immune responses, suggesting its potential to modulate immune functions in gastric cancer.Lidocaine, a local anesthetic, has been shown to modulate immune responses. This study examines its effects on cytokine production in peripheral blood mononuclear cells (PBMCs) from healthy donors and tumor-infiltrating immune cells (TIICs) from gastric cancer patients. PBMCs from healthy donors and TIICs from gastric cancer patients were treated with lidocaine. Cytokine production was assessed using flow cytometry and cytokine assays, with a focus on IFN-γ, IL-12, IL-10, TGF-β, and IL-35 levels. Cytotoxicity against primary gastric cancer cells (PGCCs) was also evaluated. Lidocaine inhibited IFN-γ production in CD8+ PBMCs and IL-12 in CD14+ PBMCs while increasing anti-inflammatory cytokines (IL-10, TGF-β, IL-35) in CD4+CD25+ and CD14+ cells. In TIICs, lidocaine enhanced IFN-γ and IL-12 production in CD8+ and CD14+ cells while reducing IL-10, TGF-β, and IL-35 levels, promoting an M1-like phenotype in macrophages. Mechanistically, lidocaine enhanced IFN-γ production in sorted CD8+ TIICs through G-protein-coupled receptor (GPCR) signaling and increased IL-12 production in sorted CD14+ TIICs via the toll-like receptor 4 (TLR4) signaling pathway. Lidocaine also increased IFN-γ production and cytotoxicity in CD8+ TIICs via NF-κB activation. Importantly, lidocaine did not affect the viability of PBMCs, TIICs, or PGCCs at concentrations up to 1.5 mM. Lidocaine reprogrammed the tumor immune microenvironment, enhancing anti-tumor immune responses, suggesting its potential to modulate immune functions in gastric cancer.
Lidocaine, a local anesthetic, has been shown to modulate immune responses. This study examines its effects on cytokine production in peripheral blood mononuclear cells (PBMCs) from healthy donors and tumor-infiltrating immune cells (TIICs) from gastric cancer patients. PBMCs from healthy donors and TIICs from gastric cancer patients were treated with lidocaine. Cytokine production was assessed using flow cytometry and cytokine assays, with a focus on IFN-γ, IL-12, IL-10, TGF-β, and IL-35 levels. Cytotoxicity against primary gastric cancer cells (PGCCs) was also evaluated. Lidocaine inhibited IFN-γ production in CD8+ PBMCs and IL-12 in CD14+ PBMCs while increasing anti-inflammatory cytokines (IL-10, TGF-β, IL-35) in CD4+CD25+ and CD14+ cells. In TIICs, lidocaine enhanced IFN-γ and IL-12 production in CD8+ and CD14+ cells while reducing IL-10, TGF-β, and IL-35 levels, promoting an M1-like phenotype in macrophages. Mechanistically, lidocaine enhanced IFN-γ production in sorted CD8+ TIICs through G-protein-coupled receptor (GPCR) signaling and increased IL-12 production in sorted CD14+ TIICs via the toll-like receptor 4 (TLR4) signaling pathway. Lidocaine also increased IFN-γ production and cytotoxicity in CD8+ TIICs via NF-κB activation. Importantly, lidocaine did not affect the viability of PBMCs, TIICs, or PGCCs at concentrations up to 1.5 mM. Lidocaine reprogrammed the tumor immune microenvironment, enhancing anti-tumor immune responses, suggesting its potential to modulate immune functions in gastric cancer.
Lidocaine, a local anesthetic, has been shown to modulate immune responses. This study examines its effects on cytokine production in peripheral blood mononuclear cells (PBMCs) from healthy donors and tumor-infiltrating immune cells (TIICs) from gastric cancer patients. PBMCs from healthy donors and TIICs from gastric cancer patients were treated with lidocaine. Cytokine production was assessed using flow cytometry and cytokine assays, with a focus on IFN-γ, IL-12, IL-10, TGF-β, and IL-35 levels. Cytotoxicity against primary gastric cancer cells (PGCCs) was also evaluated. Lidocaine inhibited IFN-γ production in CD8 PBMCs and IL-12 in CD14 PBMCs while increasing anti-inflammatory cytokines (IL-10, TGF-β, IL-35) in CD4 CD25 and CD14 cells. In TIICs, lidocaine enhanced IFN-γ and IL-12 production in CD8 and CD14 cells while reducing IL-10, TGF-β, and IL-35 levels, promoting an M1-like phenotype in macrophages. Mechanistically, lidocaine enhanced IFN-γ production in sorted CD8 TIICs through G-protein-coupled receptor (GPCR) signaling and increased IL-12 production in sorted CD14 TIICs via the toll-like receptor 4 (TLR4) signaling pathway. Lidocaine also increased IFN-γ production and cytotoxicity in CD8 TIICs via NF-κB activation. Importantly, lidocaine did not affect the viability of PBMCs, TIICs, or PGCCs at concentrations up to 1.5 mM. Lidocaine reprogrammed the tumor immune microenvironment, enhancing anti-tumor immune responses, suggesting its potential to modulate immune functions in gastric cancer.
Lidocaine, a local anesthetic, has been shown to modulate immune responses. This study examines its effects on cytokine production in peripheral blood mononuclear cells (PBMCs) from healthy donors and tumor-infiltrating immune cells (TIICs) from gastric cancer patients. PBMCs from healthy donors and TIICs from gastric cancer patients were treated with lidocaine. Cytokine production was assessed using flow cytometry and cytokine assays, with a focus on IFN-γ, IL-12, IL-10, TGF-β, and IL-35 levels. Cytotoxicity against primary gastric cancer cells (PGCCs) was also evaluated. Lidocaine inhibited IFN-γ production in CD8[sup.+] PBMCs and IL-12 in CD14[sup.+] PBMCs while increasing anti-inflammatory cytokines (IL-10, TGF-β, IL-35) in CD4[sup.+]CD25[sup.+] and CD14[sup.+] cells. In TIICs, lidocaine enhanced IFN-γ and IL-12 production in CD8[sup.+] and CD14[sup.+] cells while reducing IL-10, TGF-β, and IL-35 levels, promoting an M1-like phenotype in macrophages. Mechanistically, lidocaine enhanced IFN-γ production in sorted CD8[sup.+] TIICs through G-protein-coupled receptor (GPCR) signaling and increased IL-12 production in sorted CD14[sup.+] TIICs via the toll-like receptor 4 (TLR4) signaling pathway. Lidocaine also increased IFN-γ production and cytotoxicity in CD8[sup.+] TIICs via NF-κB activation. Importantly, lidocaine did not affect the viability of PBMCs, TIICs, or PGCCs at concentrations up to 1.5 mM. Lidocaine reprogrammed the tumor immune microenvironment, enhancing anti-tumor immune responses, suggesting its potential to modulate immune functions in gastric cancer.
Lidocaine, a local anesthetic, has been shown to modulate immune responses. This study examines its effects on cytokine production in peripheral blood mononuclear cells (PBMCs) from healthy donors and tumor-infiltrating immune cells (TIICs) from gastric cancer patients. PBMCs from healthy donors and TIICs from gastric cancer patients were treated with lidocaine. Cytokine production was assessed using flow cytometry and cytokine assays, with a focus on IFN-γ, IL-12, IL-10, TGF-β, and IL-35 levels. Cytotoxicity against primary gastric cancer cells (PGCCs) was also evaluated. Lidocaine inhibited IFN-γ production in CD8 + PBMCs and IL-12 in CD14 + PBMCs while increasing anti-inflammatory cytokines (IL-10, TGF-β, IL-35) in CD4 + CD25 + and CD14 + cells. In TIICs, lidocaine enhanced IFN-γ and IL-12 production in CD8 + and CD14 + cells while reducing IL-10, TGF-β, and IL-35 levels, promoting an M1-like phenotype in macrophages. Mechanistically, lidocaine enhanced IFN-γ production in sorted CD8 + TIICs through G-protein-coupled receptor (GPCR) signaling and increased IL-12 production in sorted CD14 + TIICs via the toll-like receptor 4 (TLR4) signaling pathway. Lidocaine also increased IFN-γ production and cytotoxicity in CD8 + TIICs via NF-κB activation. Importantly, lidocaine did not affect the viability of PBMCs, TIICs, or PGCCs at concentrations up to 1.5 mM. Lidocaine reprogrammed the tumor immune microenvironment, enhancing anti-tumor immune responses, suggesting its potential to modulate immune functions in gastric cancer.
Audience Academic
Author Liu, Hung-Jen
Chen, Ming-Shan
Wu, Feng-Hsu
Wu, Yi-Ying
Wen, Hsiao-Wei
Nielsen, Brent L.
Liao, Tsai-Ling
Chen, I-Chun
AuthorAffiliation 10 Department of Medical Research, Taichung Veterans General Hospital, Taichung 407, Taiwan; tlliao@vghtc.gov.tw
12 Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA; brentnielsen@byu.edu
1 Institute of Molecular Biology, National Chung Hsing University, Taichung 402, Taiwan; yiying939@gmail.com
4 Department of Psychiatry, Taichung Veterans General Hospital, Taichung 407, Taiwan; ichun.chen@vghtc.gov.tw
13 Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan
14 Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan
5 Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
11 Department of Food Science and Biotechnology, National Chung Hsing University, Taichung 402, Taiwan; hwwen@nchu.edu.tw
6 Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung 402, Taiwan
8 Department of Critical Care,
AuthorAffiliation_xml – name: 3 Department of Anesthesiology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chia-Yi City 600, Taiwan; 06590@cych.org.tw
– name: 4 Department of Psychiatry, Taichung Veterans General Hospital, Taichung 407, Taiwan; ichun.chen@vghtc.gov.tw
– name: 9 Department of Nursing, Hung Kuang University, Taichung 433, Taiwan
– name: 7 Division of General Surgery, Department of Surgery, Taichung Veterans General Hospital, Taichung 407, Taiwan; b101091110@tmu.edu.tw
– name: 12 Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA; brentnielsen@byu.edu
– name: 5 Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
– name: 8 Department of Critical Care, Taichung Veterans General Hospital, Taichung 407, Taiwan
– name: 2 The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan
– name: 6 Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung 402, Taiwan
– name: 14 Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan
– name: 10 Department of Medical Research, Taichung Veterans General Hospital, Taichung 407, Taiwan; tlliao@vghtc.gov.tw
– name: 13 Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan
– name: 1 Institute of Molecular Biology, National Chung Hsing University, Taichung 402, Taiwan; yiying939@gmail.com
– name: 11 Department of Food Science and Biotechnology, National Chung Hsing University, Taichung 402, Taiwan; hwwen@nchu.edu.tw
Author_xml – sequence: 1
  givenname: Yi-Ying
  orcidid: 0000-0002-3312-8938
  surname: Wu
  fullname: Wu, Yi-Ying
– sequence: 2
  givenname: Ming-Shan
  orcidid: 0000-0003-2361-3195
  surname: Chen
  fullname: Chen, Ming-Shan
– sequence: 3
  givenname: I-Chun
  surname: Chen
  fullname: Chen, I-Chun
– sequence: 4
  givenname: Feng-Hsu
  surname: Wu
  fullname: Wu, Feng-Hsu
– sequence: 5
  givenname: Tsai-Ling
  orcidid: 0000-0001-7059-4228
  surname: Liao
  fullname: Liao, Tsai-Ling
– sequence: 6
  givenname: Hsiao-Wei
  orcidid: 0000-0003-3427-1768
  surname: Wen
  fullname: Wen, Hsiao-Wei
– sequence: 7
  givenname: Brent L.
  orcidid: 0000-0001-6300-4816
  surname: Nielsen
  fullname: Nielsen, Brent L.
– sequence: 8
  givenname: Hung-Jen
  orcidid: 0000-0002-1460-1494
  surname: Liu
  fullname: Liu, Hung-Jen
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40244064$$D View this record in MEDLINE/PubMed
BookMark eNptkktvEzEUhS1URB-wY40ssWHRKdePcWZWKIpKWykIVJW15Xg8icPYDranUn8G_xiPWkqCkBe2rj-fe498TtGRD94g9JbABWMtfLRbl6iAGaNMvEAnhFNaAYjZ0d75GJ2mtAWgjNbtK3TMgXIOgp-gX0vbBa2sN_hL6MZBZZPw4iGHH1PpWyw1nW3wWPkO35pdDOuoXMJ5Y_Dd6ELEN86N02urYzD-3sbgnfEZ54Av_UZ5bfDcZ1sd0Lcm7YJPpZf1-EqlHK3GiwmOr9HLXg3JvHnaz9D3z5d3i-tq-fXqZjFfVpqzNlfdSkPTslWnqakJ4XVd_BDSAaOEguo5Z9oYpkQDAGpFiuOWz3pQUBNRd4SdoU-Purtx5Uyny8xRDXIXrVPxQQZl5eGNtxu5DveSkLZpZwBF4cOTQgw_R5OydDZpMwzKmzAmyUhbBmsFFwV9_w-6DWP0xV-hmqYRQEX9l1qrwUjr-1Aa60lUzhvWcC5qQQt18R-qrM44q0s4elvqBw_e7Tt9tvgnBQU4fwTKF6YUTf-MEJBTyOR-yNhvo3DEWg
Cites_doi 10.1186/s40364-020-00228-x
10.1186/s13567-020-00836-3
10.3389/fimmu.2020.00270
10.1016/j.imbio.2014.05.002
10.3892/mmr.2015.3692
10.1007/s00432-023-04865-1
10.1038/nature06306
10.1038/s41392-024-01868-3
10.1038/nri2343
10.1159/000107792
10.1155/2019/3152040
10.1097/01.cji.0000211336.91513.dd
10.1136/jitc-2023-007280
10.1089/jir.2011.0028
10.1016/j.humimm.2011.12.011
10.1186/s12964-024-01888-0
10.1002/ctm2.309
10.1038/s41571-022-00689-z
10.1016/j.intimp.2022.108938
10.1053/j.gastro.2011.02.059
10.1016/j.semcancer.2015.03.004
10.1186/2051-1426-2-S3-P210
10.3389/fimmu.2019.00003
10.1016/j.cell.2017.07.024
10.1080/21691401.2019.1636807
10.1111/j.1399-3038.2011.01249.x
10.1073/pnas.0400810101
10.1038/s41577-021-00566-3
10.3390/cancers12123515
10.1023/A:1009846624044
10.1089/wound.2019.1032
10.1073/pnas.1718217115
10.5114/ceji.2014.42133
10.3390/ijms232213879
10.1172/jci.insight.152511
10.1136/jitc-2020-001486
10.1002/cac2.12420
10.1038/nm.3848
10.1016/j.cell.2022.09.020
10.1016/j.yexcr.2015.07.007
10.1016/j.bj.2022.07.008
10.4049/jimmunol.1201744
10.1186/s12964-020-00557-2
10.21037/tcr.2019.07.30
10.3390/cancers5010092
10.1016/j.immuni.2022.02.005
10.1016/j.redox.2023.102923
10.4049/jimmunol.1402550
10.1016/j.immuni.2016.01.013
10.1080/2162402X.2018.1528411
10.1002/jcp.27782
10.1016/S0264-410X(03)00196-8
10.1016/j.vetimm.2010.06.016
10.3389/fcell.2020.00565
10.3892/ol.2017.5858
10.3389/fimmu.2020.583084
10.1016/j.ebiom.2020.103039
10.1097/00002371-200307000-00005
10.4049/jimmunol.172.5.3157
10.1111/j.1365-2249.2008.03636.x
10.4049/jimmunol.172.7.4111
10.1007/s00705-016-3091-5
10.3109/08923979009006471
10.1093/femspd/ftab010
10.3389/fphar.2021.644281
10.3389/fphar.2022.774440
10.2147/OTT.S336548
10.1097/SLA.0000000000004037
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2025 by the authors. 2025
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2025 by the authors. 2025
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
COVID
DWQXO
FYUFA
GHDGH
GNUQQ
GUQSH
K9.
M0S
M1P
M2O
MBDVC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
Q9U
7X8
5PM
DOI 10.3390/ijms26073236
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
Coronavirus Research Database
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Research Library Prep
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni)
Medical Database
Research Library
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Research Library Prep
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Research Library
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Central Basic
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef
MEDLINE
Publicly Available Content Database


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1422-0067
ExternalDocumentID PMC11989700
A838446562
40244064
10_3390_ijms26073236
Genre Journal Article
GeographicLocations United States
Taiwan
California
GeographicLocations_xml – name: Taiwan
– name: California
– name: United States
GrantInformation_xml – fundername: Ditmanson Medical Foundation of Chia-Yi Christian Hospital
  grantid: R111-03
– fundername: iEGG and Animal Biotechnology Center from The Feature Areas Research Center Program within the framework of the Higher Education Sprout Project by the Ministry of Education (MOE) in Taiwan
  grantid: 110S0023A, 111S0023A, 112S0023A, 113S0023A and 114S0023A
– fundername: Taichung Veterans General Hospital
  grantid: TCVGH-NCHU 1127605 , TCVGH-NCHU-1137607 and TCVGH-NCHU-114-OA017
– fundername: Ministry of Science and Technology of Taiwan
  grantid: 112-2313-B-005-050-MY3
– fundername: iEGG and Animal Biotechnology Center from The Feature Areas Research Center Program within the framework of the Higher Education Sprout Project by the Ministry of Education (MOE) in Taiwan
  grantid: 110S0023A; 111S0023A; 112S0023A; 113S0023A; 114S0023A
– fundername: Taichung Veterans General Hospital
  grantid: TCVGH-NCHU 1127605; TCVGH-NCHU-1137607; TCVGH-NCHU-114-OA017
GroupedDBID ---
29J
2WC
53G
5GY
5VS
7X7
88E
8FE
8FG
8FH
8FI
8FJ
8G5
A8Z
AADQD
AAFWJ
AAHBH
AAYXX
ABDBF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BCNDV
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DIK
DU5
DWQXO
E3Z
EBD
EBS
EJD
ESX
F5P
FRP
FYUFA
GNUQQ
GUQSH
GX1
HH5
HMCUK
HYE
IAO
IHR
ITC
KQ8
LK8
M1P
M2O
M48
MODMG
O5R
O5S
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TR2
TUS
UKHRP
~8M
CGR
CUY
CVF
ECM
EIF
NPM
PMFND
3V.
7XB
8FK
COVID
K9.
MBDVC
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
Q9U
7X8
5PM
ID FETCH-LOGICAL-c439t-dbc0893bdc2e51145506411d032120af443cee3a68000ab1024947f0a05165d13
IEDL.DBID M48
ISSN 1422-0067
1661-6596
IngestDate Thu Aug 21 18:32:13 EDT 2025
Fri Jul 11 18:36:47 EDT 2025
Fri Jul 25 08:47:54 EDT 2025
Thu May 08 04:18:30 EDT 2025
Tue Jun 10 20:58:24 EDT 2025
Thu Apr 24 02:14:59 EDT 2025
Tue Jul 01 05:18:54 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords gastric cancer
M1 macrophages
immune response
inflammation
cytokine modulation
tumor-infiltrating immune cells
NF-κB activation
gastrointestinal disease
IFN-γ production
lidocaine
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c439t-dbc0893bdc2e51145506411d032120af443cee3a68000ab1024947f0a05165d13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
These authors contributed equally to this work.
ORCID 0000-0002-3312-8938
0000-0001-7059-4228
0000-0002-1460-1494
0000-0003-2361-3195
0000-0003-3427-1768
0000-0001-6300-4816
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/ijms26073236
PMID 40244064
PQID 3188860265
PQPubID 2032341
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_11989700
proquest_miscellaneous_3191149646
proquest_journals_3188860265
gale_infotracmisc_A838446562
gale_infotracacademiconefile_A838446562
pubmed_primary_40244064
crossref_primary_10_3390_ijms26073236
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-03-31
PublicationDateYYYYMMDD 2025-03-31
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-31
  day: 31
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle International journal of molecular sciences
PublicationTitleAlternate Int J Mol Sci
PublicationYear 2025
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Shao (ref_29) 2021; 6
Han (ref_19) 2020; 10
ref_14
Yu (ref_24) 2014; 39
Olson (ref_57) 2012; 189
Sun (ref_5) 2019; 47
Smoot (ref_67) 2000; 22
He (ref_18) 2023; 23
Jiang (ref_53) 2019; 8
ref_15
Karnina (ref_28) 2021; 17
Vignali (ref_47) 2008; 8
Chen (ref_6) 2018; 22
Hesse (ref_9) 2004; 172
Steen (ref_44) 2020; 9
Lahat (ref_7) 2008; 152
Zhang (ref_48) 2022; 275
Zhou (ref_71) 2019; 8
ref_60
Huang (ref_21) 2022; 185
Loftus (ref_1) 2010; 138
ref_68
Renzi (ref_2) 1990; 12
ref_23
ref_22
Farhood (ref_10) 2019; 234
Feng (ref_17) 2022; 110
ref_62
Johnson (ref_8) 2007; 30
Wu (ref_65) 2024; 22
Ilkow (ref_70) 2015; 21
Pfeffer (ref_59) 2011; 31
Pinchuk (ref_33) 2011; 140
Vergis (ref_69) 2021; 79
Gocher (ref_34) 2022; 22
Yi (ref_46) 2024; 9
Wei (ref_20) 2017; 170
ref_36
Bally (ref_38) 2015; 194
Lou (ref_30) 2012; 23
ref_73
Ahn (ref_49) 2018; 115
Hayakawa (ref_61) 2014; 2
Dinarello (ref_11) 2003; 21
Banta (ref_35) 2022; 55
Chow (ref_42) 2022; 19
Vogel (ref_27) 2014; 219
Aziz (ref_66) 2015; 12
ref_37
Chen (ref_63) 2020; 51
Macedo (ref_12) 2020; 8
Wen (ref_43) 2023; 43
Wu (ref_52) 2017; 13
Vinay (ref_58) 2015; 35
Moeini (ref_51) 2017; 162
Sun (ref_74) 2023; 149
Ma (ref_26) 2021; 14
Peng (ref_31) 2004; 101
Turnis (ref_55) 2016; 44
Huang (ref_56) 2019; 2019
Liu (ref_25) 2020; 18
ref_45
Collison (ref_16) 2007; 450
Hayakawa (ref_41) 2013; 5
Zeng (ref_54) 2013; 6
Elizagaray (ref_3) 2023; 46
Xu (ref_39) 2015; 337
Ye (ref_40) 2019; 120
Dons (ref_32) 2012; 73
Snyder (ref_72) 2023; 11
Shi (ref_13) 2004; 172
Feng (ref_4) 2008; 81
Cai (ref_50) 2021; 11
Dudley (ref_64) 2003; 26
References_xml – ident: ref_60
  doi: 10.1186/s40364-020-00228-x
– volume: 51
  start-page: 112
  year: 2020
  ident: ref_63
  article-title: Construction of Polycistronic Baculovirus Surface Display Vectors to Express the PCV2 Cap(d41) Protein and Analysis of Its Immunogenicity in Mice and Swine
  publication-title: Vet. Res.
  doi: 10.1186/s13567-020-00836-3
– ident: ref_15
  doi: 10.3389/fimmu.2020.00270
– volume: 219
  start-page: 695
  year: 2014
  ident: ref_27
  article-title: Human Macrophage Polarization in Vitro: Maturation and Activation Methods Compared
  publication-title: Immunobiology
  doi: 10.1016/j.imbio.2014.05.002
– volume: 12
  start-page: 2939
  year: 2015
  ident: ref_66
  article-title: A Method for Establishing Human Primary Gastric Epithelial Cell Culture from Fresh Surgical Gastric Tissues
  publication-title: Mol. Med. Rep.
  doi: 10.3892/mmr.2015.3692
– volume: 149
  start-page: 10189
  year: 2023
  ident: ref_74
  article-title: T cells with Split CARs Specific for NKG2D Ligands and PD-L1 Exhibit Improved Selectivity Towards Monocyte-derived Cells While Effective in Eliminating Acute Myeloid Leukaemia in Vivo
  publication-title: J. Cancer Res. Clin. Oncol.
  doi: 10.1007/s00432-023-04865-1
– volume: 450
  start-page: 566
  year: 2007
  ident: ref_16
  article-title: The Inhibitory Cytokine IL-35 Contributes to Regulatory T-cell Function
  publication-title: Nature
  doi: 10.1038/nature06306
– volume: 9
  start-page: 176
  year: 2024
  ident: ref_46
  article-title: Targeting Cytokine and Chemokine Signaling Pathways for Cancer Therapy
  publication-title: Signal Transduct. Target Ther.
  doi: 10.1038/s41392-024-01868-3
– volume: 8
  start-page: 523
  year: 2008
  ident: ref_47
  article-title: How Regulatory T cells work
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri2343
– volume: 81
  start-page: 32
  year: 2008
  ident: ref_4
  article-title: Lidocaine Attenuates Lipopolysaccharide-induced Acute Lung Injury Through Inhibiting NF-kappaB Activation
  publication-title: Pharmacology
  doi: 10.1159/000107792
– volume: 2019
  start-page: 3152040
  year: 2019
  ident: ref_56
  article-title: Interleukin-12p35 Deficiency Reverses the Th1/Th2 Imbalance, Aggravates the Th17/Treg Imbalance, and Ameliorates Atherosclerosis in ApoE-/- Mice
  publication-title: Mediat. Inflamm.
  doi: 10.1155/2019/3152040
– volume: 30
  start-page: 203
  year: 2007
  ident: ref_8
  article-title: CD25+ Regulatory T cell Inhibition Enhances Vaccine-induced Immunity to Neuroblastoma
  publication-title: J. Immunother.
  doi: 10.1097/01.cji.0000211336.91513.dd
– volume: 11
  start-page: e007280
  year: 2023
  ident: ref_72
  article-title: IPSC-derived Natural Killer Cells Expressing the FcγR Fusion CD64/16A Can be Armed with Antibodies for Multitumor Antigen Targeting
  publication-title: J. Immunother. Cancer
  doi: 10.1136/jitc-2023-007280
– volume: 31
  start-page: 553
  year: 2011
  ident: ref_59
  article-title: The Role of Nuclear Factor κB in the Interferon Response
  publication-title: J. Interferon Cytokine Res.
  doi: 10.1089/jir.2011.0028
– volume: 6
  start-page: 1806
  year: 2013
  ident: ref_54
  article-title: Assessing the Role of IL-35 in Colorectal Cancer Progression and Prognosis
  publication-title: Int. J. Clin. Exp. Pathol.
– volume: 73
  start-page: 328
  year: 2012
  ident: ref_32
  article-title: Induced Regulatory T cells: Mechanisms of Conversion and Suppressive Potential
  publication-title: Hum. Immunol.
  doi: 10.1016/j.humimm.2011.12.011
– volume: 22
  start-page: 514
  year: 2024
  ident: ref_65
  article-title: Oncolytic Avian Reovirus-sensitized Tumor infiltrating CD8+ T cells Triggering Immunogenic Apoptosis in Gastric Cancer
  publication-title: Cell Commun. Signal.
  doi: 10.1186/s12964-024-01888-0
– volume: 11
  start-page: e309
  year: 2021
  ident: ref_50
  article-title: A Novel Potential Target of IL-35-regulated JAK/STAT Signaling Pathway in Lupus Nephritis
  publication-title: Clin. Transl. Med.
  doi: 10.1002/ctm2.309
– volume: 19
  start-page: 775
  year: 2022
  ident: ref_42
  article-title: Clinical Implications of T cell Exhaustion for Cancer Immunotherapy
  publication-title: Nat. Rev. Clin. Oncol.
  doi: 10.1038/s41571-022-00689-z
– volume: 110
  start-page: 108938
  year: 2022
  ident: ref_17
  article-title: Interleukin-35 Ameliorates Cardiovascular Disease by Suppressing Inflammatory Responses and Regulating Immune Homeostasis
  publication-title: Int. Immunopharmacol.
  doi: 10.1016/j.intimp.2022.108938
– volume: 140
  start-page: 2019
  year: 2011
  ident: ref_33
  article-title: Human Colonic Myofibroblasts Promote Expansion of CD4+ CD25high Foxp3+ Regulatory T Cells
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2011.02.059
– volume: 35
  start-page: S185
  year: 2015
  ident: ref_58
  article-title: Immune Evasion in Cancer: Mechanistic Basis and Therapeutic Strategies
  publication-title: Semin. Cancer Biol.
  doi: 10.1016/j.semcancer.2015.03.004
– volume: 2
  start-page: 210
  year: 2014
  ident: ref_61
  article-title: Enhanced Anti-tumor Effects of The PD-1/PD-L1 Blockade by Combining a Highly Absorptive Form of NF-kB/STAT3 Inhibitor Curcumin
  publication-title: J. Immunother. Cancer
  doi: 10.1186/2051-1426-2-S3-P210
– ident: ref_45
  doi: 10.3389/fimmu.2019.00003
– volume: 170
  start-page: 1120
  year: 2017
  ident: ref_20
  article-title: Distinct Cellular Mechanisms Underlie Anti-CTLA-4 and Anti-PD-1 Checkpoint Blockade
  publication-title: Cell
  doi: 10.1016/j.cell.2017.07.024
– volume: 47
  start-page: 2866
  year: 2019
  ident: ref_5
  article-title: Lidocaine Inhibits Proliferation and Metastasis of Lung Cancer Cell via Regulation of MiR-539/EGFR Axis
  publication-title: Artif. Cells Nanomed. Biotechnol.
  doi: 10.1080/21691401.2019.1636807
– volume: 23
  start-page: 140
  year: 2012
  ident: ref_30
  article-title: Responses of CD4+CD25+Foxp3+ and IL-10-secreting type I T Regulatory Cells to Cluster-specific Immunotherapy for Allergic Rhinitis in Children
  publication-title: Pediatr. Allergy Immunol.
  doi: 10.1111/j.1399-3038.2011.01249.x
– volume: 101
  start-page: 4572
  year: 2004
  ident: ref_31
  article-title: TGF-beta Regulates in vivo Expansion of Foxp3-expressing CD4+CD25+ Regulatory T cells Responsible for Protection Against Diabetes
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0400810101
– volume: 22
  start-page: 158
  year: 2022
  ident: ref_34
  article-title: Interferon-γ: Teammate or Opponent in the Tumour Microenvironment?
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/s41577-021-00566-3
– ident: ref_37
  doi: 10.3390/cancers12123515
– volume: 22
  start-page: 133
  year: 2000
  ident: ref_67
  article-title: A Method for Establishing Primary Cultures of Human Gastric Epithelial Cells
  publication-title: Methods Cell Sci.
  doi: 10.1023/A:1009846624044
– volume: 9
  start-page: 184
  year: 2020
  ident: ref_44
  article-title: The Role of the Anti-Inflammatory Cytokine Interleukin-10 in Tissue Fibrosis. Adv
  publication-title: Wound Care
  doi: 10.1089/wound.2019.1032
– volume: 115
  start-page: 4749
  year: 2018
  ident: ref_49
  article-title: Role of PD-1 During Effector CD8 T cell Differentiation
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1718217115
– volume: 39
  start-page: 100
  year: 2014
  ident: ref_24
  article-title: CD4+CD25+ Regulatory T cells as a Therapeutic Target in Rheumatoid Arthritis
  publication-title: Cent. Eur. J. Immunol.
  doi: 10.5114/ceji.2014.42133
– ident: ref_14
  doi: 10.3390/ijms232213879
– volume: 22
  start-page: 2099
  year: 2018
  ident: ref_6
  article-title: The Protective Effect of Lidocaine on Lipopolysaccharide-induced Acute Lung Injury in Rats Through NF-κB and P38 MAPK Signaling Pathway and Excessive Inflammatory Responses
  publication-title: Eur. Rev. Med. Pharmacol. Sci.
– volume: 23
  start-page: 53
  year: 2023
  ident: ref_18
  article-title: Circulating Cytokine Profile and Modulation of Regulatory T cells in Chronic Hepatitis B Patients with Type 2 Diabetes Mellitus
  publication-title: Biomol. Biomed.
– volume: 6
  start-page: e152511
  year: 2021
  ident: ref_29
  article-title: IL-35 Promotes CD4+Foxp3+ Tregs and Inhibits Atherosclerosis via Maintaining CCR5-amplified Treg-suppressive Mechanisms
  publication-title: JCI Insight
  doi: 10.1172/jci.insight.152511
– volume: 10
  start-page: 727
  year: 2020
  ident: ref_19
  article-title: PD-1/PD-L1 Pathway: Current Researches in Cancer
  publication-title: Am. J. Cancer Res.
– volume: 8
  start-page: e001486
  year: 2020
  ident: ref_12
  article-title: Clinical Landscape of Oncolytic Virus Research in 2020
  publication-title: J. Immunother. Cancer.
  doi: 10.1136/jitc-2020-001486
– volume: 43
  start-page: 562
  year: 2023
  ident: ref_43
  article-title: High Baseline Tumor Burden-Associated Macrophages Promote an Immunosuppressive Microenvironment and Reduce the Efficacy of Immune Checkpoint Inhibitors Through the IGFBP2-STAT3-PD-L1 Pathway
  publication-title: Cancer Commun.
  doi: 10.1002/cac2.12420
– volume: 21
  start-page: 530
  year: 2015
  ident: ref_70
  article-title: Reciprocal Cellular Cross-talk Within the Tumor Microenvironment Promotes Oncolytic Virus Activity
  publication-title: Nat. Med.
  doi: 10.1038/nm.3848
– volume: 185
  start-page: 4049
  year: 2022
  ident: ref_21
  article-title: The Primordial Differentiation of Tumor-specific Memory CD8+ T cells as Bona Fide Responders to PD-1/PD-L1 Blockade in Draining Lymph Nodes
  publication-title: Cell
  doi: 10.1016/j.cell.2022.09.020
– volume: 337
  start-page: 53
  year: 2015
  ident: ref_39
  article-title: Long-term Use of Indomethacin Leads to Poor Prognoses Through Promoting The Expression of PD-1 and PD-L2 via TRIF/NF-κB Pathway and JAK/STAT3 Pathway to Inhibit TNF-α and IFN-γ in Hepatocellular Carcinoma
  publication-title: Exp. Cell Res.
  doi: 10.1016/j.yexcr.2015.07.007
– volume: 46
  start-page: 81
  year: 2023
  ident: ref_3
  article-title: Lidocaine Reinforces the Anti-inflammatory Action of Dexamethasone on Myeloid and Epithelial Cells Activated by Inflammatory Cytokines or SARS-CoV-2 Infection
  publication-title: Biomed. J.
  doi: 10.1016/j.bj.2022.07.008
– volume: 189
  start-page: 5590
  year: 2012
  ident: ref_57
  article-title: Human Prostate Tumor Antigen-Specific CD8+ Regulatory T cells are Inhibited by CTLA-4 or IL-35 Blockade
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1201744
– volume: 18
  start-page: 51
  year: 2020
  ident: ref_25
  article-title: Wnt5a-induced M2 Polarization of Tumor-associated Macrophages via IL-10 Promotes Colorectal Cancer Progression
  publication-title: Cell Commun. Signal.
  doi: 10.1186/s12964-020-00557-2
– volume: 8
  start-page: 1319
  year: 2019
  ident: ref_53
  article-title: IL-35 Inhibits CD8+ T cells Activity by Suppressing Expression of Costimulatory Molecule CD28 and Th1 Cytokine Production
  publication-title: Transl. Cancer Res.
  doi: 10.21037/tcr.2019.07.30
– volume: 5
  start-page: 92
  year: 2013
  ident: ref_41
  article-title: Mouse Models of Gastric Cancer
  publication-title: Cancers
  doi: 10.3390/cancers5010092
– volume: 55
  start-page: 512
  year: 2022
  ident: ref_35
  article-title: Mechanistic Convergence of the TIGIT and PD-1 Inhibitory Pathways Necessitates Co-blockade to Optimize Anti-tumor CD8+ T Cell Responses
  publication-title: Immunity
  doi: 10.1016/j.immuni.2022.02.005
– ident: ref_73
  doi: 10.1016/j.redox.2023.102923
– volume: 194
  start-page: 4545
  year: 2015
  ident: ref_38
  article-title: NF-κB Regulates PD-1 Expression in Macrophages
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1402550
– volume: 44
  start-page: 316
  year: 2016
  ident: ref_55
  article-title: Interleukin-35 Limits Anti-Tumor Immunity
  publication-title: Immunity
  doi: 10.1016/j.immuni.2016.01.013
– volume: 8
  start-page: e1528411
  year: 2019
  ident: ref_71
  article-title: Retrospective Analysis of the Efficacy of Adjuvant CIK Cell Therapy in Epithelial Ovarian Cancer Patients Who Received Postoperative Chemotherapy
  publication-title: Oncoimmunology
  doi: 10.1080/2162402X.2018.1528411
– volume: 234
  start-page: 8509
  year: 2019
  ident: ref_10
  article-title: CD8+ Cytotoxic T Lymphocytes in Cancer Immunotherapy: A Review
  publication-title: J. Cell Physiol.
  doi: 10.1002/jcp.27782
– volume: 21
  start-page: S24
  year: 2003
  ident: ref_11
  article-title: Anti-cytokine Therapeutics and Infections
  publication-title: Vaccine
  doi: 10.1016/S0264-410X(03)00196-8
– volume: 138
  start-page: 60
  year: 2010
  ident: ref_1
  article-title: In Vivo Priming and Ex Vivo Activation of Equine Neutrophils in Black Walnut Extract-induced Equine Laminitis is Not Attenuated by Systemic Lidocaine Administration
  publication-title: Vet. Immunol. Immunopathol.
  doi: 10.1016/j.vetimm.2010.06.016
– ident: ref_62
  doi: 10.3389/fcell.2020.00565
– volume: 13
  start-page: 3303
  year: 2017
  ident: ref_52
  article-title: IL-35 Expression is Increased in Laryngeal Squamous Cell Carcinoma and in the Peripheral Blood of Patients
  publication-title: Oncol. Lett.
  doi: 10.3892/ol.2017.5858
– ident: ref_23
  doi: 10.3389/fimmu.2020.583084
– ident: ref_22
  doi: 10.1016/j.ebiom.2020.103039
– volume: 26
  start-page: 332
  year: 2003
  ident: ref_64
  article-title: Generation of Tumor-infiltrating Lymphocyte Cultures for Use in Adoptive Transfer Therapy for Melanoma Patients
  publication-title: J. Immunother.
  doi: 10.1097/00002371-200307000-00005
– volume: 172
  start-page: 3157
  year: 2004
  ident: ref_9
  article-title: The Pathogenesis of Schistosomiasis is Controlled by Cooperating IL-10-producing Innate Effector and Regulatory T Cells
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.172.5.3157
– volume: 152
  start-page: 320
  year: 2008
  ident: ref_7
  article-title: Lidocaine Down-Regulates Nuclear Factor-kappaB Signalling and Inhibits Cytokine Production and T cell Proliferation
  publication-title: Clin. Exp. Immunol.
  doi: 10.1111/j.1365-2249.2008.03636.x
– volume: 172
  start-page: 4111
  year: 2004
  ident: ref_13
  article-title: Genome-wide Analysis of Molecular Changes in IL-12-induced Control of Mammary Carcinoma via IFN-gamma-independent Mechanisms
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.172.7.4111
– volume: 162
  start-page: 333
  year: 2017
  ident: ref_51
  article-title: Synergistic Effect of Programmed Cell Death Protein 1 Blockade and Secondary Lymphoid Tissue Chemokine in the Induction of Anti-tumor Immunity by a Therapeutic Cancer Vaccine
  publication-title: Arch. Virol.
  doi: 10.1007/s00705-016-3091-5
– volume: 17
  start-page: 102733
  year: 2021
  ident: ref_28
  article-title: Molecular Mechanisms of Lidocaine
  publication-title: Ann. Med. Surg.
– volume: 12
  start-page: 417
  year: 1990
  ident: ref_2
  article-title: Effect of Lidocaine on Natural Killer Activity: Rapid Inhibition of Lysis
  publication-title: Immunopharmacol. Immunotoxicol.
  doi: 10.3109/08923979009006471
– volume: 79
  start-page: ftab010
  year: 2021
  ident: ref_69
  article-title: Exploring Galleria Mellonella Larval Model to Evaluate Antibacterial Efficacy of Cecropin A (1-7)-Melittin Against Multi-drug Resistant Enteroaggregative Escherichia coli
  publication-title: Pathog. Dis.
  doi: 10.1093/femspd/ftab010
– ident: ref_68
  doi: 10.3389/fphar.2021.644281
– ident: ref_36
  doi: 10.3389/fphar.2022.774440
– volume: 120
  start-page: 212
  year: 2019
  ident: ref_40
  article-title: Anti-tumor Effects of Lidocaine on Human Gastric Cancer Cells in Vitro
  publication-title: Bratisl. Lek. Listy.
– volume: 14
  start-page: 5391
  year: 2021
  ident: ref_26
  article-title: M2-Type Macrophages Induce Tregs Generation by Activating the TGF-β/Smad Signalling Pathway to Promote Colorectal Cancer Development
  publication-title: Onco. Targets Ther.
  doi: 10.2147/OTT.S336548
– volume: 275
  start-page: e626
  year: 2022
  ident: ref_48
  article-title: Poor Clinical Outcomes and Immunoevasive Contexture in Intratumoral IL-10-Producing Macrophages Enriched Gastric Cancer Patients
  publication-title: Ann. Surg.
  doi: 10.1097/SLA.0000000000004037
SSID ssj0023259
Score 2.4399848
Snippet Lidocaine, a local anesthetic, has been shown to modulate immune responses. This study examines its effects on cytokine production in peripheral blood...
SourceID pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
StartPage 3236
SubjectTerms Cancer
Care and treatment
CD8-Positive T-Lymphocytes - drug effects
CD8-Positive T-Lymphocytes - immunology
Cell growth
Cell Line, Tumor
Cytokines
Cytokines - metabolism
Cytotoxicity
Female
Gastric cancer
Humans
Immune response
Immune system
Immunity (Disease)
Immunotherapy
Interferon-gamma - metabolism
Leukocytes, Mononuclear - drug effects
Leukocytes, Mononuclear - immunology
Leukocytes, Mononuclear - metabolism
Lidocaine
Lidocaine - pharmacology
Lymphocytes
Lymphocytes, Tumor-Infiltrating - drug effects
Lymphocytes, Tumor-Infiltrating - immunology
Lymphocytes, Tumor-Infiltrating - metabolism
Macrophages
Macrophages - drug effects
Macrophages - immunology
Macrophages - metabolism
Male
Middle Aged
Stomach cancer
Stomach Neoplasms - drug therapy
Stomach Neoplasms - immunology
Stomach Neoplasms - metabolism
Stomach Neoplasms - pathology
Transforming growth factors
Tumor Microenvironment - drug effects
Tumor Microenvironment - immunology
Tumors
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BERKXindTWmQkECerduy8TtVq1W1BFCHUSr1FTuyoAdVpN9lDfwb_mJkku91w4Jh4ongzY3_feOcB8DGWxjgtUk6lRLguIsGN1CFHau2yRLrEWToaOP8en13qr1fR1Xjg1o5hles9sd-obVPSGfkR2l7a90uKjm_vOHWNon9XxxYaj-GJRKShkK50cbpxuFTYN0uTiEE8jrJ4CHxX6OYf1b9uWqTyiQr74swPkPTvxryFTNOoyS0YWjyH3ZE_stmg8BfwyPmX8HToKHn_Cv58q_GnoLfv2HljqTWXa9n8vmt-060fQ3lXVAUz3jIk30N0VsuQBrKL1U2zZF8oYQSfpkC9rSw41jXsxF-TjbCZ72o-kf45RNriu2rPTg31AinZnISXr-FycXIxP-Nj1wVeIjnpuC1KgSSmsGXokI1R1nOspbRCIcoJU2mtEFiViZFqClNIqjmok0oYXN5xZKV6Azu-8W4PWFQViI8VQmBptbVZhm48XlRSIWtD3hbAp_WHz2-H4ho5OiWkoHxbQQF8Jq3ktObw05dmTB3At1D1qnyWqrQv_BYGcDCRxLVSTofXes3HtdrmD5YVwIfNMD1J8WfeNSuSQVDQWaxxLm8HM9jMGD1wjbRIB5BODGQjQBW8pyO-vu4reUuKWEuE2P__vN7Bs5DaDvepkAew0y1X7hC5UFe87w3-LxswCPk
  priority: 102
  providerName: ProQuest
Title Lidocaine Modulates Cytokine Production and Reprograms the Tumor Immune Microenvironment to Enhance Anti-Tumor Immune Responses in Gastric Cancer
URI https://www.ncbi.nlm.nih.gov/pubmed/40244064
https://www.proquest.com/docview/3188860265
https://www.proquest.com/docview/3191149646
https://pubmed.ncbi.nlm.nih.gov/PMC11989700
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB71ISQuqOVpWqJFAnEy-LF-5IBQGiUtiFRV1Ui5WWvvWjVQGxJHIj-Df8w3dhLFwIGLpXhnZWtndr9vnHkQvQpdpYx0YptLidgyDRxbudKzQa1NP3JNZDR_GphchhdT-WkWzPZo0210vYCLf7p23E9qOv_29ueP1Qds-PfsccJlf1d8uVuAlke-54f7dAhMiriXwURu_08AbWjapvEHD5sP6DYE_q_ZHXD684jewahu_OQOII2P6MGaSYpBq_pj2jPlQ7rX9pZcPaJfnwsNnAKJFJNKc5MusxDDVV195VtXbaFXKEWoUgvQ8DZOayFACMXN8q6ai4-cOoLZHLK3kw8n6kqMylu2FjEo68LuSF-3Mbd4VlGKc8VdQTIxZOH5Y5qORzfDC3vdf8HOQFNqW6eZAzqT6swz4GWc_xxK19WOD7xzVC6lD4j1VQjS6ajU5eqDMsodhY0eBtr1n9BBWZXmGYkgT4GUOcAw01Lrfh8OPX7krg_-BgZn0evNwiff2zIbCdwTVlCyqyCL3rBWErYHLH2m1kkEeArXsUoGsR83JeA8i047ktg1WXd4o9dkY3QJzre46ckVWPRyO8wzORKtNNWSZQAPsh9KvMvT1gy2bwxfXIIgSYvijoFsBbiWd3ekLG6bmt4ux65FjvP8PxfihO573Im4yY48pYN6vjQvQI_qtEf70SzCNR6f9-jwbHR5dd1jwAp6zZ74DdqKEo4
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIgQXxBtDgUWi4rSq116_DghFoWlCkwqhVOrNrL1r1VS129gRys_gj_AbmbHjNObArVfv2F7tzO73jT0PgA--UMpIO-RUSoTLxLO5EtLhSK1NFAgTGE2fBmYn_vhUfj3zznbgT5cLQ2GV3ZnYHNS6TOkb-QHaXtj0S_I-X11z6hpFf1e7FhqtWRyb1S902apPky-o333HGR3Oh2O-7irAUwTfmusktRGkE506BtkGZfX6Ughtu3iK2yqT0kXgcJWPVMpWiaCaejLIbIXm63tauPjcO3BXuojklJk-Oto4eK7TNGcTiHnc9yK_DbRHQfsg_3lZoesQuE5TDPoGAv8Fgi0k7EdpbsHe6BE8XPNVNmgN7DHsmOIJ3Gs7WK6ewu9pjkunkKqyWampFZip2HBVlxd06VtbThZVz1ShGZL9NhqsYkg72Xx5WS7YhBJU8G4KDNzKumN1yQ6Lc7JJNijqnPekv7eRvfiuvGBHinqPpGxIwotncHor-ngOu0VZmJfAvCxBPM4QclMttY4ik-Azwky4yBKRJ1qw3y18fNUW84jRCSIFxdsKsuAjaSWmPY5Ln6p1qgK-haplxYPQDZtCc44Fez1J3Jtpf7jTa7w-G6r4xpIteL8Zpjsp3q0w5ZJkEIRk5Eucy4vWDDYzRo9fIg2TFoQ9A9kIUMXw_kiRnzeVwwVFyAW2_er_83oH98fz2TSeTk6OX8MDh1oeN2mYe7BbL5bmDfKwOnnbGD-DH7e92_4COXtDTw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVCAuiDeGAotExcnK2l6_DgiFNKGhbRRVrdSbWXvXqkG1S-wI5Wfwd_h1zPiRxhy49eod26ud2f2-secB8N6zpNSCByaVEjFF7HJTWsI2kVrr0Le0rxV9GjiZe4fn4uuFe7EDf7pcGAqr7M7E-qBWRULfyIdoe0HdL8kdpm1YxOJg-un6p0kdpOhPa9dOozGRI73-he5b-XF2gLret-3p5Gx8aLYdBswEgbgyVZxwBOxYJbZG5kEZvp6wLMUdPNG5TIVwEEQc6SGt4jK2qL6e8FMu0ZQ9V1kOPvcO7PrkFQ1g9_NkvjjduHuOXbdqsxABTc8NvSbs3nFCPsy-X5XoSPiOXZeGvgHEf2FhCxf7MZtbIDh9CA9a9spGjbk9gh2dP4a7TT_L9RP4fZzhQkokruykUNQYTJdsvK6KH3Rp0RSXRUNgMlcMqX8TG1YyJKHsbHVVLNmM0lXwbgoT3MrBY1XBJvklWSgb5VVm9qRPmzhffFeWsy-SOpEkbEzCy6dwfisaeQaDvMj1C2BuGiM6pwjAiRJKhaGO8RlBajnIGZE1GrDfLXx03ZT2iNAlIgVF2woy4ANpJaIdj0ufyDZxAd9CtbOiUeAEddk524C9niTu1KQ_3Ok1ak-KMrqxawPebYbpTop-y3WxIhmEJBF6AufyvDGDzYzR_xdIyoQBQc9ANgJUP7w_kmeXdR1xi-LlfM5f_n9eb-Ee7rToeDY_egX3bep_XOdk7sGgWq70ayRlVfymtX4G3257w_0Ft09I4Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lidocaine+Modulates+Cytokine+Production+and+Reprograms+the+Tumor+Immune+Microenvironment+to+Enhance+Anti-Tumor+Immune+Responses+in+Gastric+Cancer&rft.jtitle=International+journal+of+molecular+sciences&rft.au=Wu%2C+Yi-Ying&rft.au=Chen%2C+Ming-Shan&rft.au=Chen%2C+I-Chun&rft.au=Wu%2C+Feng-Hsu&rft.date=2025-03-31&rft.issn=1422-0067&rft.eissn=1422-0067&rft.volume=26&rft.issue=7&rft.spage=3236&rft_id=info:doi/10.3390%2Fijms26073236&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_ijms26073236
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1422-0067&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1422-0067&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1422-0067&client=summon